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Abstract—Dynamic Voltage Scaling (DVS) is an im-
portant method in managing dynamically the sys-
tem supply voltage for efficient power reduction. This
approach is applied in Very-Large-Scale Integration
(VLSI). A DC-DC converter is an electronic device
which allows to vary the voltage and, thus, to imple-
ment DVS technique.

In this paper, a high-performance controller is pre-
sented for a novel discrete DVS converter. This con-
troller is developed with the aim to deal with the
unknown resistive component of the load as well as
to minimize the dissipated energy and current peaks,
what is very important in the field of microelectronics.
Current peaks and power consumption are minimized
by computing an optimal evolution for the voltage
reference. Likewise, an adaptive controller is proposed
to deal with the unknown load resistive parameter.
Consequently, the obtained advanced controller can
acquires a high consideration on electronic devices.

Index Terms—Dynamic voltage scaling, energy
aware, Lyapunov’s methods, optimal control, adaptive
control

I. Introduction

The development of low-power electronic devices has
raised up in recent years. Very-Large-Scale Integration
(VLSI) is mostly used in information technology-related
products, such as PCs, mobile devices and digital con-
sumer equipments.

Dynamic Voltage Scaling (DVS) is a known technique
that adjusts the processor voltage supply to the minimum
level of performance required by the system application
[1], [2]. DC-DC converters are a key element in a DVS
mechanism, since they can dynamically adapt the supply
voltage. This technology has been employed in VLSI. How-
ever, this kind of converters has a different structure than
the standard ones since they must change the operating
voltage in a dynamic way [3], [4]. Likewise, the controllers
of these DC-DC converters present a relevant interest [5].

A dynamic continuous buck converter for DVS systems
was presented in [6], which provides suited performance.
It, however, limits SoC scaling properties due to the
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size of the inductive component. In the framework of
SoC miniaturization, a discrete DC-DC converter was
developed in [7]. It is composed of two supply sources
and a Power Supply Selector (PSS). This discrete DVS
converter replaces the inductive element with a set of
CMOS transistors, reducing the converter required size.

Control objective for the discrete DVS converter is to
achieve the target voltage providing a correct and reliable
operation during the switching transitions. Therefore, the
control must achieve:

• small current peaks,
• fast transient periods,
• minimum dissipated energy,
• adaptation to unknown load and
• low performance cost.

A simple discrete controller was proposed in [7] to
handle the two-voltage level required for the discrete DVS
converter. In this control structure, only one transistor
can be switched at each sampling time. This limits the
ability of the converter to make fast transient periods. In
addition, the employed voltage reference was a ramp with
a computed slope to obtain small current peaks.

In the first part of this paper, a high-performance con-
trol law for discrete DVS converter is developed, without
the constraint that only one transistor can be switched at
each sampling time. [8]. This allows to obtain a richer con-
trol sequence and, thus, better expected performance with
respect to the issues previously mentioned. The controller
is based on Lyapunov theory, being developed in order
to improve the tracking capability and their regulation
characteristic. As a side effect, it is also observed that the
current peaks are reduced during the transient periods.

This controller is compared with the controller proposed
in [7] in terms of: transient response, quality of the induced
load current, power consumption and performance cost.
The high-performance controller presents suited proper-
ties. Nevertheless, it needs knowledge of the load and, cur-
rent peaks and energy-saving are not necessarily optimal.
These important issues are also dealt with in this work.

In the second part of this paper the Lyapunov-based
controller is improved in two directions: on the one hand,
optimal control theory is applied in order to achieve min-
imum current peaks and maximum energy efficiency. For
this purpose, an optimal evolution for the voltage reference
is obtained by solving a Boundary Value Problem (BVP)
with transversality condition. This problem is numerically
solved by using the MATLAB function bvp4c [9], [7].

On the other hand, an adaptation mechanism is added
to the Lyapunov-based control law in order to cope with
load uncertainties. Modelling the load connected to the



discrete DVS converter is involved. In some occasions, it
is designed as a dynamic resistance modeled as function
depending on the voltage and chip frequency [10], [11],
among other components. However, this is not an accurate
model. This is why this resistance connected to the DVS
converter should be considered unknown or/and slowly
changing. For this reason, an adaptive strategy is imple-
mented in such a way that the load resistive component is
adapted.

These researchers have been developed in the French
project called ARAVIS (Architecture avancée reconfig-
urable et asynchrone intégrée sur puce ) sponsored by
sponsored by the international competitiveness pole Mi-
nalogic1.

The rest of this work is organized as follows: in Sec-
tion II, the circuit model of the discrete DVS converter
is presented as well as their properties and the error
equation. A high-performance controller for the discrete
DVS converter is proposed in Section III, explaining in
Section IV its implementation. Next up, a performance
evaluation of the controller is done in Section V. Section
VI states the possibility to improve the high-performance
controller by employing optimal and adaptive control.
They are developed in Section VII (optimal control) and
VIII (adaptive law). A performance evaluation of this
advanced controller is presented in Section IX. The work
closes with a section of conclusions.

The work closes with a section of conclusions.
Notation. Denote:

satM
m (x) =







M if x > M
x if m ≤ x ≤ M
m if x < m.

,

round(x) is the nearest integer to x, and q−1 is the
discrete-time parameter, i.e. xk−1 = q−1xk.

II. Model of a discrete DVS converter

A discrete DVS converter handling two-voltage levels
with a PSS structure was proposed in [7]. Its main ad-
vantage is the possibility to reduce the SoC scale because
it does not need passive components. It is composed of
a PSS and two external supply voltages. A high voltage
supply, Vh, for a unit running at nominal speed and a low
voltage supply, Vl, for a unit running at reduced speed. Its
structure is shown in Fig. 1.

A PSS is constituted by a group of PMOS transistors
connected in parallel with common drain, source and bulk
but separated gates in order to scale the output voltage
from Vh to Vl and vice-versa. On the other side, vc is the
output core voltage of the system. The PMOS transistor
that connects the Vl to the voltage output vc is switched
on when Vl is the selected power supply. This reduces
the dissipated energy when the unit running is at low
speed. Other component in the PSS is a control block that
provides a control signal uk for the PMOS transistors.
Besides it generates a reference signal vr. Likewise, this

1http://www.minalogic.com/

control block has as inputs: a clock signal (CLK), a local
power manager signal (LPM), that orders to the PSS to
start the hopping sequence and an error voltage signal, e,
from a comparator.

DIGITAL

CONTROL
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LPM

+

−

Vh Vl

Set

of

PMOS

vc
e

uk

vr

Fig. 1: DVS converter.

Load model.

The discrete DVS converter is connected to a load that
can be modeled as an impedance depending on the core
voltage, vc. In this work, the load model implemented in
VHDL-AMS in [12] is employed:

Il = f(vc) = Idyn + Ishort + Ileak + Icap (1)

Idyn = Kdynωvc (2)

Ishort = Kshortω(vc − 2Vth)3 (3)

Ileak = Kleak (4)

Icap = C
dvc

dt
, (5)

where C, Kdyn, Kshort and Kleak depend on the real
consumption estimations. Vth is the threshold voltage,
which must fulfill vc > 2Vth. Likewise, the impedance
frequency is modelled2

ω , ωn(1.735 − 6.746vc + 7.872v2
c − 2.299v3

c). (6)

ωn is the system frequency.
Figure 2 shows the representation of the load model used

in this research. rL contains the dynamic resistance. For
simplicity reasons, firstly, a constant average value of rL is
taken in order to design controllers. Later, the real time-
varying parameter, rL, will be taken into account.

The averaged load resistance RL is given by

RL ,
1

tf − t0

∫ tf

t0

rLdt. (7)

where t0 and tf are the initial and final time, respectively,
in the rising transient period. Assume that RL has the
same value in the falling transient period.

A. Electrical model for control design

The general discrete DVS converter control problem in
portable electronic systems are to obtain a high energy
efficiency, small current peaks, fast transient periods and

2Cortesy of Sylvain Miermont.
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Fig. 2: Load model.

robustness and/or adaptation with respect to unknown
electrical parameter.

For simplicity the low voltage supply, Vl, is disregarded
for control design purposes (see Fig. 3). The main objective
is that the core voltage vc achieves the high and low voltage
levels by switching the PMOS transistors. Note that, at
least, one transistor must always be switched on.

Figure 3 shows an electrical representation of the DVS
converter without the low voltage supply, Vl, connected to
the load that has been described above.
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Fig. 3: Load with DVS converter without Vl.

Assume that the PMOS transistors are modeled as ideal
resistors when they are switched on and, as resistors with
infinite resistance when they are switched off. They are
considered to have the same electrical characteristic.

The voltage loop equation yields the relationship

Il(vc) =
Vh − vc

Ruk

, where Ruk
,

R0

uk

. (8)

uk is the number of transistors switched on, thus, uk ∈ U =
{1, 2, ..N} and it will be the control variable. Likewise, R0

is the PMOS transistor resistance.
Combining the specific form of the load, Eqs. (1)–(5),

Eq.(6) and Eq. (7) with system (8), the voltage equation
can be expressed as:

v̇c = −βvc + b(Vh − vc)uk − δ, (9)

where

• β , 1
RLC

> 0 and δ , Ileak

C
> 0 depend on the load.

• b , 1
R0C

> 0.

Define the voltage error as: e , vr − vc, where vr is
a voltage reference. Thus, the associated error voltage
equation is

ė =−(β + buk)e + (buk + β)vr − bVhuk + δ + v̇r. (10)

III. Control law

The objective of this section is to present a high per-
formance control law for the discrete DVS converter. This
controller must fulfill the requirements mentioned before
for the transient periods, i.e., when the output voltage
is scaled from a low voltage level to a high voltage level
(rising transient period) and from a high voltage level to a
low voltage level (falling transient period). This controller
is designed to provide stable behavior by using control
methodology.

In the steady states, the maximum stable voltage
achieved is Vh − ∆h and the minimum stable voltage
achieved is Vl − ∆l where ∆h, ∆l ∈ R depend on several
factors and are difficult to estimate. These variables catch
the PMOS model errors, current variations, supply voltage
and the resistive losses through the PMOS transistors
switched on.

Assumption 1: ∆h, ∆l are small with respect to vc, and
they do not change the system stability properties.

Some simulations are performed in such a way that
the behavior of the closed-loop system with the different
controllers are shown. In these simulations, N = 24 is
taken as the total number of PMOS transistors in the
model shown in Fig. 1. Note that at least, one active
transistor must be always switched on. The voltage supply
is Vh = 1.2V . The reference signal, vr, is a step between the
low voltage level Vcl

= 0.8V −ǫh and the high voltage level
Vch

= 1.2− ǫh, being ǫh = 0.06V and ǫl = 0.01 (Vcl
≈ Vl).

These parameters comes from the equilibrium of Eq. (10).
This signal has a slope specified by the designer, which is
inspired by [7].

The system resistances are RL = 39.67Ω and R0 =
31.41Ω, the capacitance is C = 9nF while Kleak =
1.67·10−3, the threshold voltage is Vth = 0.4V , and system
frequency is ωn = 500MHz. The sampling frequency has
the same value that the clock frequency. Finally, the slope
of the reference signal, vr, is 1.067 · 106V/s.

A. Control proposed in [7]

The development of the high performance controller for
the DVS converter is inspired by the ‘intuitive control’
used in [7], under the form:

uk = satN1 {uk−1 + sign(e)}

In this law, no more than one transistor switches at each
sampling time according to the sign of the voltage error.
Therefore, this controller has the limitation that one only
transistor can be switched on or off at every sampling



time. Figure 4 shows the implementation of this controller.
Likewise, Fig. 5 shows a simulation for this controller by
using Matlab. This controller is implemented in fixed-
point by using 4 bits. Note that although this controller
presents a simple implementation (only one addition),
the performance presents an oscillatory behavior, with
important current peaks.
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Fig. 4: Intuitive control from [7].
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Fig. 5: Intuitive control. Evolution of the: a) number of PMOS
transistors switched on, b) vr (green) and vc (blue), c) current.
Il.

In what follows, other control alternative is proposed
without the limitation that only one transistor can be
switched on or off, as long as the number of transistor
is limited by 1 and N .

Remark 1: The control law is designed in such a way
that the desired output voltage corresponds to one of the
saturation bounds 1 or N , since they corresponds to the
lower or higher voltage level, respectively.

The control law will be designed using directly the
nonlinear continuous-time equation (10). This will lead
to a continuous-time controller expression that will be
approximately discretized. This approach is very common
in the field of automatic control [13], [14]. The implemen-
tation of this discrete-time controller is shown by block
diagrams.

The time evolution for the reference signal employed
in [7] is maintained in the simulation of the developed
controller in this section. However, later, it will be seen
that, by means of choosing a suitable reference the closed-
loop system performance can be enhanced.

B. Controller: Lyapunov-based design

The controller is designed guarantying closed-loop Lya-
punov stability conditions for the equilibrium, e = 0. The
design is performed employing the continuous-time error
equation (10).

Consider the following Lyapunov function candidate

Vlyap =
e2

2
.

Its time derivative is

V̇lyap = −βe2+(b(vr−Vh)uk−buke+βvr +δ+ v̇r)e. (11)

The negativeness of V̇ can be assured canceling the unde-
sired terms. This can be performed by choosing

uk =
βvr + v̇r + δ

b(Vh + e − vr)
, (12)

then Eq. (11) is

V̇lyap = −βe2 ≤ 0.

Therefore, e = 0 is asymptotically stable.

IV. Lyapunov control implementation

Now, the implementation of the Lyapunov controller is
dealt with.

The approximate discrete-time version of Eq. (12) con-
sidering the saturation and rounding function for physical
implementation purposes is:

uk = satN1 round

{

βTsvrk
+ vrk

− vrk−1
+ δTs

bTs(Vh + ek − vrk
)

}

For implementation issues the division is remplaced by a
multiplication for Φ.

uk = satN
1 round

{(

K1vrk
+ K2(vrk

− vrk−1
) + K3

)

Φ
}

(13)
where

• K1 ,
βTs

R0

,

• K2 , 1
R0

,

• K3 , δTs

R0

and

• Φ ≈ C
Ts(Vh+ek−vrk

) takes the closest corresponding

value to Table I.

This is the structure for the controller implementation.



vck 0.8 0.84 0.88 0.92 0.96
Φ 1.3 1.4 1.6 1.8 2.1

vck 1.0 1.04 1.08 1.12
Φ 2.5 3.1 4.2 6.2

TABLE I: Stored values of C
Ts(Vh+ek−vrk

) .

+

−

+

+

vr
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Fig. 6: Digital Lyapunov control.

Figure 6 shows a block diagram of this approxi-
mate discrete-time version. Note that it presents 3 addi-
tions/sustrations, 3 multiplications and an access table.

The performance of this controller is shown by simula-
tion in Fig. 7. This controller is implemented in fixed-point
by using 4 bits. Note that the application of this controller
to the DVS converter reduces the current peaks, obtaining
smoother voltage and current evolutions. However, the
controller implementation presents some more operations
than the ‘intuitive controller’.

V. Performance evaluation

In this section a performance evaluation is performed for
the resulting voltage and current signals in the transient
period, after applying the previous controller. The voltage
signal performance is evaluated by computing the mean
and variance of the voltage error. Likewise, the current
signal performance is evaluated by computing the maxi-
mum current peaks as well as its Power Spectral Density
(PSD). This PSD is computed using all the recorded data,
since this decompositions is computed after the simulation.
These computations have been performed by Matlab.

Table II presents the mean and variance of the voltage
error signal and maximum peak of the current signal.

Mean Error Var. Error Max. Curr. Peak
Intuitive c. 3.32 · 10−3 6.59 · 10−5 4.0 · 10−2

Lyapunov c. 2.24 · 10−3 3.37 · 10−5 0.5 · 10−2

TABLE II: Performance evaluation.

Note that the new proposed controller improves the
system performance with respect to the solution given
in [7]. Observe that Lyapunov controller provides a PSD
smaller than the ‘intuitive controller’ (Fig. 9 and 8).
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A. Cost performance

Concerning to implementation issues, note that the
‘intuitive controller’ presents a simpler implementation
than the Lyapunov controller. Table V summarizes the
numerical operations and the bits needed for the imple-
mentation of theses controllers.

Note that the Lyapunov controller generates a better
performance in spite of introducing more numerical op-
erations. However, the number of bits are maintained in
fixed-point implementation.
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Fig. 9: Power spectral density with Lyapunov controller

Addit Multipl. Acc. table bits
Intuitive control 1 0 0 4
Lyapunov control 3 3 1 4

TABLE III: Implementation cost.

B. Energy evaluation

In the set of PMOS, the accumulated dissipated en-
ergy in the transient period depends on the control law
employed, i.e., on the switching sequence. For instance,
undesirable oscillatory current profile can be obtained with
certain controllers. This non-smooth behavior of the tran-
sient current may result in a higher energy consumption.
The purpose here is to evaluate the energy cost during the
transient periods associated with the controller presented
in previous section.

The ideal dissipated energy in the PMOS transistors
during the transient period is

Ed =

∫ tf

t0

(Vh − vc)Ildt

where t0 is the initial time and tf is the final time in
such transient period. Figure 10 and Table IV show the
dissipated energy during the rising transient period.

Note that the energy consumption obtained with the
Lyapunov controller is improved with respect to the ‘intu-
itive controller’. This is due to the smoother behavior of
voltage and current signals obtained with this controller.

Dissip. Total Energy (µJ)
Intuitive control 7.2
Lyapunov control 4.8

TABLE IV: Dissipated total energy in rising transient period.

C. Summary

The intuitive control proposed in [7] provides a reason-
able tracking at the expense of an oscillatory behavior due
to its own limitation. This involves that the current signal
time profile presents a high frequency behavior with some
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Fig. 10: Energy dissipated during the rising transient period
with the ‘intuitive controller’ and the Lyapunov.

substantial peaks, in particular when the total PMOS
parallel resistances are larger. This seems to be the main
cause of larger dissipated energy.

The highlight of Lyapunov’s controller is its energy con-
sumption reduction, which is due to the smoother behavior
of the voltage and current time profiles. This involves that
the controller reduces by 32% the energy consumption
with respect to the ‘intuitive control’. On the other side,
the number of bits required for fixed-point implementation
is maintened. Its higher number of operations is affordable
in this application. It supposes a minimum cost in com-
parison with the favorable performance.

The presented advantages became essential in nano-
electronic technology. However, other improvements are
accomplished to obtain an even higher performance.

VI. Advanced Lyapunov’s controller

The Lyapunov’s controller (Eq. (12)) presents very
suited properties for the DVS converter. However, this
controller can be improved.

Firstly, minimum energy consumption and current
peaks are desired. This can be achieved finding an ap-
propriate evolution for the voltage reference, v∗c (t), by
applying optimal control theory [16], [15], [17].

Secondly, note that the Lyapunov’s controller depends
on the resistance load parameter, β. However, this param-
eter is, in many occasions, difficult to estimate and may
change with time, as mentioned in Section II. Therefore,
a second objective is to design an adaptation law in order
to obtain an estimation β̂ for the unknown parameter.

The proposed control architecture including the optimal
reference and the adaptation mechanism is shown in Fig.
11.

VII. Optimal voltage reference computation

Assume that the desired voltage is constant. The prob-
lem may be formulated as to find a continuous-time volt-
age reference trajectory from a voltage initial value vc(t0)
to set-point vr, minimizing current peaks, ∆I, and the
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dissipated energy. This problem will be addressed applying
continuous-time optimal control theory [16], [15], [17].

In order to optimize the current peaks, time derivative
of the current İl is included in the performance index. In
every sampling time, a certain number of transistors will
be switched on. The total number of PMOS transistors
switched on at the previous sampling time is denoted by
u−

k , and the total number of PMOS transistors switched
on at the current sampling time is denoted by u+

k . Conse-
quently, the number of PMOS transistors switched on or
off in every sampling time is given by ∆uk = u+

k − u−

k .

The current peaks are due to the sudden change of
the PMOS resistance at the sampling times. These peaks
∆Il = I+

l − I−l are given by

∆Il =
Vh − vc

R0
(u+

k − u−

k ) =
Vh − vc

R0
∆uk.

The same notation given above for u+
k and u−

k is used
here for variable Il. Therefore, the continuous-time ap-
proximation for the current peaks is

İl ≈
Vh − vc

R0
u̇.

Another way to achieve this same expression is taking
time derivative of Il given by Eq. (8). Rigorously, the time
derivative of this current is

İl =
Vh − vc

R0
u̇ −

v̇c

R0
u.

Nevertheless, it can be seen by simulation that during a
typical transient period, the last term is very small (see
Fig. 12). This simulation is performed using the same
parameters given in Section III. This graph supports the
previous argument.

Consider the following performance index

J =

∫ τ

0

L(e, u, t)dt, (14)

where the final time τ is free and the Lagrangian L(e, u, t)
is chosen in order to penalize:

• voltage error e,
• dissipated power P = (Vh − vc)Il and
• current peaks İl.

.
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Fig. 12: Current time-derivative terms.

The following Lagrangian is chosen

L = q1e
2 + q2

(

(Vh − vr + e)2

R0
u

)2

+

(

Vh − vr + e

R0
u̇

)2

,

(15)
where q1 and q2 are positive weighting constants. The first
term of Eq. (15) penalizes the voltage error, the second
one penalizes the dissipated power and the last one, the
current peaks.

Consider a 2-dimensional optimal control problem x =
[e, u] with ẋ = [ė, ν], where ν , u̇. Thus, the Hamiltonian
function is

H = q1e
2 + q2

(Vh − vr + e)4u2

R2
0

+
(Vh − vr + e)2ν2

R2
0

+

λ1[b(−Vh + vr − e)u + β + δ] + λ2ν. (16)

Solving the algebraic equation

∂H(e, ν, λ1, λ2)

∂ν

∣

∣

∣

∣

ν=ν∗

= 0,

the optimal ν∗(x, λ) is

ν∗ =
−λ2

2

(

R0

Vh − vr + e

)2

which gives the optimal Hamiltonian expression

H∗(e, λ1, λ2) = q1e
2 + q2

(Vh − vr + e)4u2

R2
0

−

λ2
2R

2
0

2(Vh − vr + e)2
+ λ1[b(vr − Vh − e)u + β + δ]. (17)

The optimal solution is associated with the set of differ-



ential equations:

∂H∗

∂λ1

= b(vr − Vh − e)u + β + δ = ė (18)

∂H∗

∂λ2

=
−λ2

2

(

R0

Vh − vr + e

)

2

= u̇ = ν (19)

∂H∗

∂e
= 4q2

(Vh − vr + e)3

R2

0

u
2 +

(λ2R0)
2

2(Vh − vr + e)3
+

2q1e + −buλ1 − βλ1 = −λ̇1 (20)

∂H∗

∂u
=

2q2u(Vh − vr + e)4

R2

0

+ bλ1(vr − Vh − e) = −λ̇2 (21)

with the boundary conditions,

e(0) = vr − vc(0) (22)

e(τ) = 0 (23)

u(0) = PMOS transistors switched on in t = 0 (24)

u(τ) = PMOS transistors switched on in t = τ (25)

and, the transversality condition

H∗(τ) = 0. (26)

Note that this is a nonlinear Boundary Value Problem
(BVP) with a transversality condition, since the final time
τ is unknown.

Solving (18)–(26) yields e∗, from which, the optimal
voltage evolution v∗ = vr − e∗ can be derived. This
evolution can be employed as reference for the controllers
developed in Section III.

A. Numerical solution

The problem raised before: finding a solution for (18)–
(26) with (22)–(25) and (26), is a complex problem because
it is a nonlinear BVP with a four dimensional character
and it has a transversality condition. A numerical solution
is proposed. Nevertheless, finding this numerical solution
is also an involved task. There is not so many tools that
cope with this kind of problems. In this case the Matlab
function ‘bvp4c’ has been employed. Function bvp4c [9]
combines the solution of Initial Value Problem (IVP) for
Ordinary Differential Equations (ODEs) and the solution
of algebraic equations, being a non-shooting code. The
nonlinear algebraic equations are solved iteratively by
linearization, providing a suited initial guess after some
iterations over a mesh and taking into account the bound-
ary conditions. This is due to the fact that can have more
than one solution and, thus, a guess for the desired solution
must be provided by designers, which includes an initial
mesh for this desired solution.

Function bvp4c controls the error of the numerical
solution and adapts the mesh in every iteration to obtain
an accurate numerical solution with a modest number of
mesh points. Thus, obtaining a ‘residual’ error is common.
If the residual error is small, then the solution provided by
function bvp4c is a suited solution.

Function bvp4c is not directly applicable for the present
problem since it cannot handle the transversality condi-
tion. Thus, this function has been used iteratively in order

to obtain a solution that fulfills condition (26). The system
parameters given in Section III are reported. Furthermore,
it is only considered the rising transient period, i.e, when
output voltage goes from the low voltage level to the high
voltage level. Therefore, the next boundary conditions are
selected:

e(0) = vr − vc(0) (27)

e(τ) = 0 (28)

u(0) = 1 (29)

u(τ) = N (30)

The following values for the weighting constants are
chosen3,

q1 = 0.64 (31)

q2 = 0.32. (32)

Using as initial guess

e(t) = 0.3e−108t

u(t) = 24 − 23e−108t

λ1(t) = 106t + 105

λ2(t) =−3.2 · 107t2 − 3.2 · 107t + 100,

Note that this initial guess has a complex form and, thus,
it has been difficult to obtain. As mentioned before, this is
a complex problem, and finding a solution has been very
involved. However, with the future numerical methods, it
is expected that new tools for this kind of problem will be
researched and developed.

The nonlinear BVP (18)–(21) with the specified bound-
ary conditions (27)–(30) reaches the numerical solution
shown in Fig. 13. Note that, the boundary conditions in
e∗ and u∗ are satisfied when τ = 23.3 ·10−9s. From e∗, the
optimal voltage reference v∗ can be obtained.

Figure 14 shows the evolution of H∗, whose value at
τ = 23.3 ·10−9s is close to zero, fulfilling the transversality
condition.

Observe that, this voltage reference has been computed
for the rising transient period. For the falling transient
period, a similar procedure can be applied.

VIII. Adaptive feedback control design

The Lyapunov’s controller (Section III) has been de-
signed under the assumption that the parameter β is
known. In this section, an adaptive law is proposed in
order to cope with the case when the load parameter β
is unknown or/and changes slowly.

Denote β̂ as the estimated value for the load parameter.
This estimated parameter will be used in control law (12)
instead of the real value,

uk =
β̂vr + v̇r + δ

b(Vh + e − vr)
, (33)

3As usual in optimal control problems, they have been chosen in
a trial-and-error procedure, checking by simulations the solutions
obtained.
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Fig. 13: Optimal numerical solution. a) error evolution, b)
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Fig. 14: H∗ evolution.

Now, the closed-loop system of (10) with controller (33)
yields

ė = −βe + βvr − β̂vr. (34)

Assume that β is a constant parameter which involves
β̇ = 0 and define

β̃ = β − β̂,
˙̃
β = −

˙̂
β.

For the adaptive control system, the next Lyapunov
function candidate is proposed

W =
e2

2
+

β̃2

2γ
, (35)

where γ is a positive design parameter that may define the
adaptation speed.

Differentiating W with respect to time, yields

Ẇ = −βe2 + β̃

(

vre +
˙̃β

γ

)

.

Note that β > 0, as has been seen above. The adaptive
law is designed by canceling the term in brackets, i.e.:

˙̂
β = − ˙̃β = γvre. (36)

This achieves Ẇ = −βe2.
Asymptotic stability is established by LaSalle’s invari-

ance principle [18]. Consider the level set Wc = W (e, β̃) ≤
c0 for sufficiently large c0 > 0, where Ẇ ≤ 0. This set is
compact and positively invariant.

Note that Ẇ = 0 on e = 0. Furthermore, note from Eq.
(34), that

e(t) ≡ 0 ⇒ ė(t) ≡ 0 ⇒ β̃(t) ≡ 0.

Therefore, the maximum invariant set in Wc with Ẇ = 0
corresponds to the single point P1 = (e = 0, β̃ = 0), thus,
every solution starting in Wc approaches the desired point
P1 as t → ∞.

IX. Evaluation of the advanced Lyapunov’s

controller

In this section, an evaluation of the advanced Lyapunov
controller with respect to performance cost and energy
saving is performed by doing some simulations.

The resulting controller (13) after applying the optimal
voltage reference and the adaptive law is

uk = satN
1 round

{(

K̄1β̂v∗rk
+ K2(v

∗

rk
− v∗rk−1

) + K3

)

Φ
}

(37)
where v∗rk

and v∗rk−1
comes from the discretization of the

optimal voltage reference, which has been previously ob-
tained. For implementation, the values of v∗rk

can be stored

in a table. In the same way, K̄1 , Ts

R0

and β̂ is adapted
by the discrete-time approximation of the adaptation law
(36):

β̃k = β̃k−1 − K4v
∗

rk
ek

where K4 , Tsγ1.
Some simulations of this controller in the DVS converter

are performed by using the data reported in Section III. In
order to perform more realistic tests, a more precise model
for the load is considered in such a way that β depends on
rL, i.e., it is time-varying. The bounds on β are: βmin =
1.38 · 107 for vc = Vl and βmax = 5.9 · 107 for vc = Vh. As
initial estimated values is taken β̂ = 0.

Figure 15 shows the closed-loop performance by em-
ploying the optimal voltage reference and the adaptation
mechanism. Note that when the adaptation mechanism is
implemented the system can achieve a similar performance
to the case of known load. Although, the adaptive control
introduces a delay in the system response, small current
peaks and faster transient periods are obtained. This
simulation were performed in fixed-point by using 4 bits.

The adaptation of the load resistive component β is
shown in Fig. 16. Note that β approaches its real value, in
spite of the fact that β is time-varying. Observe that the
time-evolutions of β̂ and β are superimposed.

A. Performance cost

Note that the adaptive controller increases the number
of numerical operations. Table V summarizes the numer-
ical operations and the bits that need the controllers
presented in this paper.
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switched on, b) vr (green) and vc (blue) and c) current Il.

0 1 2 3 4 5 6

x 10
−7

0

2

4

6
x 10

7

β
,β̂

t(s)

Fig. 16: Time-evolution of β̂ (blue) and β (green) by using the
advanced Lyapunov controller.

Addit Multipl. Acc. table bits
Intuitive control 1 0 0 4
Lyapunov control 3 3 1 4
Adv. Lyap. control 4 6 1 4

TABLE V: Implementation cost.

Note that this controller needs the same number of bits
for fixed-point implementation. The number of numerical
operation is affordable for SoC integration. Although the
advanced Lyapunov controller implementation is higher,
its performance is optimal: shorter transient period, min-
imum current peaks and load variability adaptation.

B. Energy evaluation

Another effect of the obtained voltage reference is the
reduction of the energy consumption, as is shown in Fig.
17. The accumulated dissipated energy in the rising tran-
sient period is summarized in Table VI. The energy saving
with respect to the ‘intuitive controller’ is 93%. Likewise,
the transient period is reduced to 23.3ns.

Dissip. Total Energy (µJ)
Intuitive control 7.2
Lyapunov control 4.8

Advanced Lyapunov control 0.5

TABLE VI: Dissipated total energy in rising transient period.
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Fig. 17: Dissipated energy in the rising transition.

Consequently, the reliability and efficiency of the ad-
vanced Lyapunov controller, which uses the optimal volt-
age reference and the adaptation mechanism, has been
validated. Besides, the fact, that there exists a time-
varying load parameter is not relevant for the right system
performance. In addition, this controller has an important
energy dissipation reduction as well as small current peaks
and fast transient periods. And its implementation cost is
affordable.



C. Simulations using a more accurate model

In this paper, some assumptions have been formulated.
These assumptions allow to obtain a model that is simple
enough and is not more complicate than necessary for the
DVS converter. From this model, a control structure with a
moderate complexity and dimension should be developed.
However, there obviously are unmodeled components that
could make the control methods developed here invalid.
For this reason, in this section a robustness analysis is
performed with a more real DVS model.

In section II, it was considered that all transistors are
modeled as an ideal resistance when they are switched
on. Now, it is considered that the transistor models are
composed by a resistance and a capacitance, in order
to model the dissipative effects as well as the switching
periods of the PMOS transistors. Moreover, the transistors
have different electrical characteristics. On the other side,
it is considered that the sensor that measures the core
voltage, vc, is modeled as a low-pass filter. These new
characteristics are shown in Fig. 18.
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Mn RN
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Fig. 18: A more real model of the DVS converter.

The system is now modeled as

Il(vc) = (Vh − vc)

uk
∑

i=1

1

Ri

+

uk
∑

i=1

Ci

dvc

dt
, (38)

where Ri ∈ [25, 37]Ω, and Ci ∈ [1, 5] · 10−10F. Note
that, the system response of this more accurate model with
the advanced Lyapunov controller developed in this paper
provides a robust behavior.

Figure (19)–(20) show some simulations of (1)–(6) and
(38) where Ri and Ci ware assigned random values in the
ranges 25 ≤ Ri ≤ 37 and 10−10 ≤ Ci ≤ 5 · 10−10. In
these simulations, it is considered that the voltage sensor
presents a response time of 10−8s.

X. Conclusion

In this work, a Lyapunov controller has been designed
for a DVS converter. This controller improves the per-
formance over the one used in [7] in terms of transient
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Fig. 19: DVS model (38) with Ri and Ci random values, load
(1)–(6) and advanced Lyapunov controller.
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Fig. 20: DVS model (38) with Ri and Ci random values, load
(1)–(6) and advanced Lyapunov controller.

response, as mentioned in Section V. This controller is a
very simple controller with a strong limitation: only one
transistor can be switched on or off in every sampling time.
The good results obtained with the controller developed in
this paper comes from applying control theory as well as
the possibility to let such controller to switch more than
one transistor at once.

In a performance evaluation presented in Section V to
the Lyapunov controller, it has been concluded that this
controller offers a suited performance, from of point of view
of the current peaks and energy consumption. Neverthe-
less, this controller can be enhanced, if both optimal and
adaptive control are developed. These control approaches
allow to diminish energy consumption and current peaks
and deal with unknown load resistive parameter, respec-
tively. A robustness analysis shows the controller reliability
when it is applied to a more accurate model.

The contribution highlights obtained with the advanced
Lyapunov controller developed here are:



1) Energy saving: A method to obtain an optimal
reference has been developed applying optimal control
theory [16], [15], [17]. However, the problem stated for
this method presents a high complexity, because it is a
BVP with transversally condition for a 4th-order optimal
problem. This numerical solution has been obtained by
employing the Matlab function bvp4c. It has been a
involved task, and it is expected that new mathematic
tools will be developed to make easier to compute this volt-
age reference. This result achieves a reduction of current
peaks and 90% energy saving with respect to the previous
Lyapunov controller. This fact makes that the total energy
saving with respect to the ‘intuitive controller’ used in [7]
is 93% reduction.

2) Adaptation to parameter variability: In addition, an
adaptive strategy is developed in order to deal with the
load modeling error. Moreover, in order to prove the relia-
bility of this adaptive controller, it has been introduced by
simulation that parameter β is time-varying, as is common
in practice.

3) Affordable performance cost: The suited perfor-
mance resulting of applying the advanced Lyapunov con-
troller in the DVS converter has been shown in fixed-point
simulation by using 4 bits. The implementation and the
performance cost are affordable.

4) Circuit/control co-design: Control theory can help
to improve the electronic design of the DVS system, as
improved, in this paper, the original reference signal im-
plemented for the DVS converter in [7]. In addition, in the
paper, it is assumed that there exists a known number of
PMOS transistors with the same electrical characteristic.
By means of using control theory (as a design tool), it is
possible to design a reduced number of non-homogeneous
transistors (i.e. different resistance values) yielding similar
closed-loop performance. The advantage is that the total
number of PMOS transistors can be reduced.

In summary, a high-performance controller which does
not need knowledge of the load resistive parameter has
been obtained. This controller reduces energy consump-
tion as well as current peaks, and transient periods. Its
implementation is affordable and this study can improve
the circuit design. These can enhance the future SoC
miniaturization processes.
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