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This paper deals with the singularity analysis of paral- The Jacobian matrid, of a 6-DOF PM is a & 6 matrix
lel manipulators with identical limb structures perforrgin relating the linear and angular velocities of the end-affec
Sclonflies motions, namely, three independent translatiotrs six input rates associated with six actuated joints. Zla-
and one rotation about an axis of fixed direction (3T1R}anov et al. [2] proposed an approach, using an input-output
Eleven architectures obtained from a recent type synthesislocity relationship, to formulate a %66 J, for 6-DOF
of such manipulators are analyzed. The constraint anal{®Ms and also for lower-mobility PMs whose limbs and end-
sis shows that these architectures are all over-consthineffector have the same DOF. Nevertheless, their approach
and share some common properties between the actuat@annot provide a & 6 Jr, for a more general lower-mobility
and the constraint wrenches. The singularities of such mBM and thus it does not allow the examination of all sin-
nipulators are examined through the singularity analydis @ular configurations of such a PM. Based on the theory of
the 4-RJU parallel manipulator. A wrench graph repre- reciprocal screws [3—7], Joshi and Tsai [8] developed a gen-
senting the constraint wrenches and the actuation forces efal methodology to perform the Jacobian analysis of lower-
the manipulator is introduced to formulate its superbrackemobility PMs, namely, to derive a % 6 Jy, providing infor-
Grassmann-Cayley Algebra is used to obtain geometric simation about both constraint and actuation wrench systems
gularity conditions. Based on the concept of wrench grapbf such PMs. Accordingly, away from parallel singularities
Grassmann geometry is used to show the rank deficiencyttedé rows ofJy, of a (n < 6)-DOF PM are composed aflin-
the Jacobian matrix for the singularity conditions. Finall early independent actuation wrenches plés- n) linearly
this paper shows the general aspect of the obtained singndependent constraint wrenches.
larity conditions and their validity for 3T1R parallel mamni The classification of singularities for lower-mobility
ulators with identical limb structures. PMs has stimulated the interest of many researchers [2, 8—
11]. In this paper, we adopt the classification proposed
) in [10], which is similar the one proposed in [8]. Accord-
1 Introduction _ _ingly, a lower-mobility PM can exhibit three different type
Lower-mobility Parallel Manipulators (PMs) are suit-of singularities: {) limb singularities, if) platform singu-
able for a wide range of applications that require fewer thagyjies [10], also known as constraint singularities [fija
six degrees of freedom (DOF). The singular configurationg;y actuation singularities, also called architecture siagu
of lower-mobility PMs are crltlc_:al poses characterized byjag [8]. A limb singularity is similar to the singularityfo
either the loss of DOF, the gain of extra DOF or the 10sg serial manipulator. On the other hand, constraint and ac-
of stiffness. The determination of singular configuratians yation singularities are referred to parallel singularities
thus a central issue in robotics due to their major effect ofhq are related to the rank deficiencyJaf Linear algebra
the robot performance. For(a < 6)-DOF PM, in a general qnsists of a direct analysis 8f, by examining the vanish-
configuration, the actuators applynesystem ofactuation g conditions of its determinant. Mostly, the determinant
wrencheswhereas the legs apply (@& — n)-system ofcon-  of gych a matrix is highly non linear and unwieldy to assess
straint wrenchesalso known as platform constraints [1], 0Neyen with a computer algebra system. In that case, linear al-
the moving platform. gebra fails to give satisfactory results, and therefore ube
of Grassmann-Cayley Algebra (GCA) [7, 12-15] or Grass-
mann Geometry (GG) [16—21] can be regarded as promising
*Address all correspondence to this author.



solutions. constraint singularities, the actuation singularitiesl éine
The GCA is a systematic approach to obtain a brackiénb singularities—of the RUU PM are exhaustively ex-
representation of the determinantXyf calledsuperbracket amined and some singular configurations are illustrated. Fi
By exploring this superbracket, all the parallel singuiari nally, it is shown that the singularity conditions of the 4-
conditions of a PM can be obtained either algebraically, glUU PM are also true for the eleven architectures and some
ometrically or in a vector form. Ben-Horin et al. [13, 14] an-other 3T1R PMs.
alyzed the singularities of 6-DOF PMs whose legs transmit
six pure actuation forces, i.e., six finite lines, to the mov-
ing platform, by means of GCA. The singularity conditiong Preliminary Concepts
are derived from a simplified expression of the superbrackétl ~Screw Theory
which is obtained by using the intersection points between Screw theory [3—6] is suitable for the type synthesis and
actuation lines. Nevertheless, their method does not densithe study of the instantaneous motion of PMstwAst and
the intersection at infinity of two parallel finite lines. Mor awrenchare screws that represent the instantaneous motion
over, it does not apply when a line at infinity is among the sif a rigid body and a system of forces and moments applied
Pliicker lines ofl,. Recently, Kanaan et al. [15] and AmineOn a rigid body, respectively. &ero-pitch wrenchnamely,
et al. [7, 22, 23] filled this gap by using some properties ¢f pure force, corresponds to the Pliicker coordinate vector
projective geometry in order to formulate a superbrack#t wiof @ finite line in the 3-dimensional projective spakg In
points and lines at infinity, and therefore, to extend thdiappturn, aninfinite-pitch wrenchnamely, a pure moment, cor-
cation of GCA to lower-mobility PMs. responds to the Plicker coordinate vector of a line at ityfini
In turn, GGisa geometric approach that provides a C|ai§].]P)3. Itis nOteWOI‘thy that finite lines and lines at Inflnlty are
sification of the conditions under which a setroPlicker Projectivelines, i.e., Pliicker lines whose six composeat-
lines spans a variety of dimension lower than Mer- isfy the Grassmann Pliicker relation [27].nAscrew system
let [16—18] proposed a framework based on GG, to analyiea screw subspace whose basis is composadofews.
the singularities of PMs for which the rows &f, are Pliicker
coordinate vectors of six finite lines. This methodisbased @ 2  projective Space
a general classification of linear varieties. Tale Masoaleth The 3-dimensional projective spade can be inter-

Gosselin [20] followed the latter framework to analyze thgreted as the affine spafe in addition to the plane at in-
singularities of 3T2R PMs, having a line at infinity amonginity Q,,. It is noteworthy that the coordinates of a pro-
the rows ofJm, using GG. jective element are determined up to a scalar multiple. A
Schonflies Motion Generators (SMGs) [24] are manipisrojective point has four homogeneous coordinates whereas
lators performing three independent translations and one g projective line has six Pliicker coordinates represebyed
tation about an axis of fixed direction, namely, 3T1R. Thigs pliicker coordinate vector. The following propertiéghh

type of motion is required in a wide range of industrial piclﬁght the relations between projective elements:
and place operations such as the assembly of computer cir-

cuit boards. The GCA was used in [7, 15] to analyze thel- A finite point.A, is represented b¥ its hamogeneous co-
singularities of SMGs with an articulated moving platform ~ °rdinates vectoa = (ay, &, as, 1)’ the first three co-
and of SMGs with two limbs, two joints being actuated per oro!ln.ate.s be'“9 its Cartesian coqrdlnz.:l-teRﬁn .
limb. 2. Afinite line, , is represented by its Pliicker coordinates
This paper focuses on the singularity analysis of 3T1R ve_ctorl F :_(_S; rxs); wheresis th_e unit vector ofz,
PMs with Identical Limb Structures (ILS) using both GCA r is the position vector of any paint an and (r_x_s)
and GG as complementary approaches. The type synthesis of represents the moment ofwith respect to the_ ongm, -
such PMs was performed in [6, 25, 26]. In [6], eleven archi-3: L_et qnderllned points denote p0|.nts at |nf|n|ty._ A_ny fi-
tectures of four legged 3T1R PMs with ILS were obtained. nite line, F — (s, rx §), has a unique pom.t at |_nf|n|.ty
Here, the singular configurations of these architectures ar <~ (,S; 0). Th|§ point only depends on _the line dlrec_:t|on
examined through the singularity analysis of thRdU PM. and IS determlned_ up to a scalar multiple. Accordingly,
Moreover, this paper aims to establish a conceptual approac if a z_mdb are tW_O finite pomts_ Of, thenc =b —a;
to obtain the analogy between GCA and GG by providing & AII.flnlte_Iln_e.s directed alongintersect at one common
wrench graphnamely, a schematic representation, in the 3- point at infinity, namelyg;

dimensional projective space, of the constraint and aictuat - Al finité planes of normal vectan, have a common line
wrenches of a given lower-mobility PM. at infinity. This line is given byM = (0; m) and passes

The remainder of this paper is organized as follows. through the point at infinity of any finite line orthogonal

First, some fundamental concepts of screw theory, projec- tom; . L

tive space, GCA and GG are recalled. Then, eleven archf: 1Wo lines at infinityM; = (0;my) andMz = (0; m2)
tectures of four legged 3T1R PMs with ILS are presented 'Mtérsectataunique pointat infinigy= (My > my; 0).
and their constraint analysis is performed. The singuylarit

analysis is performed through an complete study of the 4=

RUU PM using GCA and GG and the conceptwifench 1In the scope of this papefs; r x s) denotes a Pliicker coordinate vector
graph  Accordingly, the three types of singularities—theyien, by{ }

s
rxs|’



Table 1. Grassmann varieties [16—18].

2.3 Grassmann-Cayley Algebra and Superbracket
The GCA was developed by H. Grassmann (1809-1877)

as a calculus for linear varieties operatingextensorswith Rank | Class Linear line variety
thejoin “Vv” and meet“ A" operators. The latter are associ-
ated with thespanandintersectiorof vector spaces of exten- 9 empty set 0
sors characterized with thestep Indeed, points, lines and 1 point aline in the 3-D space
planes in the projective space are represented with extensg lines (22) | a pair of skew lines
of step 1, 2 and 3, respectively. A Plicker line (extensor
of step 2) can be obtained either from the join of two distinct (2b) | aplanar pencil of lines
projective points (extensors of step 1) or from the meet of tw 5 planes 3a) | aregulus
disctinct projective planes (extensors of step 3). GCA make - -
it possible to work at the symbolic level, and therefore, to the union of two planar pencils
produce coordinate-free algebraic expressions for thgusin having a line in common
larity conditions of spatial PMs. For further details on GCA (3b) but Iving in disti |
the reader is referred to [13, 14, 27] and references therein utlying In distinct planes

The rows ofJy, of a PM are usually Pliicker coordinate and with distinct centers
vectors of six projective lines. The superjoin of these gig-v (3c) | all lines through a point
tors inPs corresponds to the determinantlaf up to a scalar —
multiple, which is the superbracket in GCA(V(?)) [27]. (3d) | alllines in a plane
Thus, a singularity occurs when this superbracket vanisheg congruences| (4a) | elliptic congruence
The superbracket is an expression involving 12 points se- (4b) | hyperbolic congruence
lected on the six lines and can be developed into a linear
combination of 24 bracket monomials [13, 28], each one be- (4c) | parabolic congruence
ing the product of three brackets of four projective points: (4d) | degenerate congruence

o4 5 complexes | (5a) non-singular complex;
[ab, cd, ef, gh, ij, k1] = Zyi Q) generated by five skew lines
where - (5b) singular complexall the
lines meeting one given line

y1 = —[abcd][efgi][hjkl] Y2 = [abcd][efhi][gjkl]

y3 = [abcd][efg]]|[hikl]
Y5 = [abce|[dfgh][ijk1]

y7 = —[abcf][degh][ijk1]
Y9 = —[abce][dghi][f jk1]
y11 = [abcf][dghi][ejkl]
y13 = —[abdf][cghi][ejk1]
y15 = —[abcf][dghj][eikl]
y17 = [abcg][defi][hjk1]
Y19 = —[abch]|[defi][gjkl]
Y21 = [abdh][cefi][gjkl]
Y23 = [abch][def j][gikl]

y4 = —[abcd|[efh]j][gikl]
Yo = —[abde][cfgh][1]k1]
yg = [abdf]|[cegh]|[ijk1]
Y10 = [abde][cghi] [f jk1]
Y12 = [abce][dghj][£ik1]
y14 = —[abde][cghj][fik1]
Y16 = [abdf][cghj][eikl]
y1s = —[abdg][cef]hjk1]
Yoo = —[abceg][def j][hikl]
Y22 = [abdg][cef j][hik1]
Y24 = —[abdh][cef]][gikl]

2.4 Grassmann Geometry

A general classification of linear line varieties can be
found in [16—18] and is summarized in Table 1. Since a pro-
jective line can be either a finite line or a line at infinityeth
foregoing classification does apply for a linear line variet
in which some lines at infinity may appear. In what follows,
some particularities with points and lines at infinity arghri
lighted based on Table 1.

2.4.1 Planar Pencil of Lines, condition (2b)

A bracket[abcd] is null if and only if (iff) the projective A Dl i of li i i ety of
pointsa, b, ¢ andd are coplanar. The bracket of four projec- . p_an;r -pelnc(;_ 0 ||rl1es slpansra m;er?r mﬁ variety o
tive points is defined as the determinant of the matrix Whogémensmn » Including all cop'anariines through a common

columns are the homogeneous coordinates of these pointgql(_m' When this point is at infinity, two sub-cases could be

is noteworthy that a bracket containing one finite point an%m'ced:

three distinct points at infinity does not depend on the finitep1) All the lines at infinity (in the planeQ.,) passing

three disctinct points at infinity, respectively. Then, (2b2) Allthe lines of a finite plane passing through a point at
infinity. Let us consider a finite plarn@ of normal vec-

O1i1 k1 j1 i ke i tor (p x ). All finite lines F; = (s; rj x s) in Q directed
o |G2iz ke j2| |, Sl PO alongs, as well as the unique line at infinity 6f, M =
kijl= . =12k =[ikj]=[xikj] (2
lgik]] O3 i3 k3 |3 :2 Ki }2 k] =[rik]] (2) (0; px s), pass through poirt= (s; 0). Thus, the planar
1000 378 s pencil, through point, includingM in addition to the

set of all the previoub;, corresponds to a linear line va-

wherex can be any finite point. riety of dimension 2 whose basis can be computed of any



(i) 4-PRRRR (i) 4-PRRRR (k) 4-PRRRR

Fig. 1. 3T1R PMs with identical limb structures [6].

two among its distinctlines. Henceff= (s, rixs)and 2. R is a revolute joint of axis parallel to the horizontal

Fi = (s;rj x s), then sparfg, Fj)=spanf, M;;) where plane of the fixed base;
M;j; = (0; sxrjj) andrj; is the unit vector of a finite line 3. R is a revolute joint whose axis is neither paralleizto
non-parallel tas and crossing botF; andF;. nor to the horizontal plane of the fixed base;
4. All R-joints (all R-joints, respectively) in a given limb
2.4.2 AllLines in a Plane, condition (3d) have parallel axes;

5. In theith limb, letm; denote the direction vector of the
revolute joint axes that are not parallelzo

(3d1) All lines at infinity lie in the plane at infinityQ.,. 6. The first joint of each limb is actuated.
Thus, they generate a linear line variety of dimension 3.

Alllines in a plane span a variety of dimension 3.

3 Constraint Analysis of 3T1R PMs with ILS 3.1 Constraint Wrench System of 3T1R PMs with ILS
The type synthesis of 3T1R PMs performed in [6] has | . . .. . . =scs

) o C Let us consider for example theRRRRR PM pre-
led to eleven arch_ltecftures of 3T1R PMs with identical Ilml%e ted in Fig. 1(a). Each limb of this PM applies one
structures shown in Fig. 1. The foregoing PMs are SUppoé%Qstraint momer¥l; = (0; m; x z) on the moving platform.

to produce Fhre_e translational DOF and_one rotat|on§| D his moment is reciprocal to the twists associated with the
about an axis directed alozgFor the architectures of Fig. 1: limb joints. The four constraint moment4, applied by the

1. Ris a revolute joint of axis parallel t four limbs, span the constraint wrench system of the PM,



namely, 2 ,

Wwe=spafMi) ; Mi=O;mixz) ; i=1...,.4 (3)

of the 4RRRRR PM can each apply a constraint moment
but altogether they constrain only two DOF, namely, two rg
tations of the moving platform. Thus, this PM is an over
constrained SMG.

The expression of the constraint wrench system given in
Eqn. (3) applies for any given architecture of Fig. 1.

3.2 Actuation Wrench System of 3T1R PMs with ILS

Let us consider that the actuated joint of a limb of a
given PM of Fig. 1 is locked. Lef® denote the wrench sys-
tem reciprocal to the unactuated joint of the limb. Gengyall
dim(V¢) =dim(W®) 4+ 1 andv® containsi® plus a set of some Fig.2. The 4RUU PMm.
additional wrenches. Then, the actuation wrench can be se-
lected as one of these additional wrenches. Based on the lo-
cus of the limb actuation wrench, the architectures of Fig.3.2.3 Relation between Two Actuation Forces
can be classified into two types. Let us consider two actuation forcEsandF; provided
by two limbs of a given 3T1R PM with ILS. It can be noticed
that, for the previous two types of 3T1R PMs with ILS, the

3.2.1Let-lrjysp§oln:sli:dlgf.fjr(igln(wd)le theRRRRR PM given in actuation forcés of any limb lies in a plane; containing the
P - 9 unit vectorz. Generally, such two planes and®; (i # j)

Fig. 1(a). By locking the actuated joint of a given linhb ersect at a finite line parallel @ namely:7;; — (i N;).

o . L
gset of additional constralnt wrenches appears. These acﬁ%erefore, fori # j, one can find a finite liner; directed
tional wrenches are zero-pitch wrenches whose axes are p

r- ; )
allel tom; and cross the axis of the unactuakegbint. Thus, affongz and crossing the two actuation fordgsandr;.
the limb actuation force can be selectedras (m;; rg, x m;)

whereG; can be any point on the axis of the unactuaied . )

joint of the limb. Consequently, the locus Bfis a planep; 4 Jacobian Matrix of the 4-RUU PM

containing the axis of the unactuatlgoint of the limb plus 4-1 Architecture Review and Kinematic Modeling
the unit vectom;. Figure 2 represents a CAD model of &JU PM sim-

The actuation force for any limb of the PMs ofilarto the architecture of Fig. 1(e), which consists of adixe
Figs. 1(b)-1(d) can be determined similarly to the ghase and a moving platform connected to each other with
RRRRR PM. four identicalRUU limbs. The input of the mechanism is
o provided by four revolute actuators attached to the base. Th

geometric characteristics of each limb are:
3.2.2 Type 2: Figs. 1(e)-1(k) L

Let us consider for example theRRRRR PM givenin 1. Eachlimb is composed of five revolute joints such that

Fig. 1(e). Letz; (v, respectively) denote the plane defined the second and the third ones, as well as the fourth and

by the axes of the two unactuatBeoints (the twoR-joints, the fifth ones, are built with intersecting and perpendic-
respectively) of thdth limb. The limb actuation force is ular axes and are thus assimilatedXgoints of central
expressed aB = (fi; re, x fi) wheref; is the unit vector of pointsB; andC;, respectively;

2,N v, namely, the intersection line of planesandv; and 2. The axes of the third and the fourth revolute joints of
C; can be any point on this line. the ith limb are directed alongn;. These axes form

a planev;. Let f; be the unit vector directed along

The actuation force for any limb of the PMs of lineBiGi. Thus, planevi has(mi x fi) as normal vec-
Figs. 1(f)-1(k) can be determined similarly to th&RRRR tor;
PM. 3. The axes of the first, second and fifth revolute joints of
In a non-singular configuration, the actuation wrench theith limb are directed along. Plane;, defined by

system of a 3T1R PM with ILS is a 4-system expressed as:  the axes of the second and the last revolute joints, has
(zx fj) = m; as normal vector. It should be noted that

. ) planer; degeneratesinto a linefifis parallel toz, which
w'=sparfF) ; i=1....4 (4) is a limb singularity.



Under these geometric constraints, the moving platform of
the 4RUU PM has a 3T1R motion pattern. However, in
some configurations, these geometric constraints may be los
and the manipulator may switch to another motion mode (see
Sec. 6.2 and Fig. 6). In such a mode, the axis of theRast
jointin each limb is no longer parallel to

4.2 Constraint Analysis
The constraint wrench systefg,, of the 4RUU PM
can be obtained from Eqn. (3), namely,

Wiruu = spartM;) ; i=1,....4 (5)

Accordingly, it is an over-constrained SMG. The actuation
force of theith limb is expressed &§ = (fj;rc x fi) where

fi is the unit vector of BiC; = #; N %) andrg, is the posi-

tion vector of pointC;. In a non-singular configuration, the
actuation wrench system of the PM is a 4-system expressed
as:

B

4‘)

Wiruu = spartFi) ; i=1,....4 ©)

~5

The rows of), of the 4RUU PM are composed of four inde-
pendent zero-pitch wrenches withify, ,, plus two indepen-
dent infinite-pitch wrenches withiwgg ,,. However, a par-
allel singularity occurs when the system spanned by the four
actuation forces and the four constraint moments becomes a
(n < 6)-system.

5 Limb Singularities of the 4-RUU PM

A limb singularity is similar to the singularity of a se-
rial manipulator. It occurs for the RUU PM when a limb
kinematic screw system (twist system) degenerates. Conse-
qguently, the platform loses one DOF in such a configuration.
Let us consider the twist system of tit@ limb. It can be
expressed in matrix form as follows:

Fig. 4. A limb singularity, condition a.2

{ z z m m; z } @ a.l (rg—ra)llz< AG || z Inthat casel = (fi; rg x fi)

ZXrp ZXTfg MiXrg MiXrg ZXfg crossed\; at pointC;. As a resultf; acts as a constraint
force and the /KRUU PM loses the translational DOF
alongfi. Figure 3 illustrates such a configuration;

a.2 (rc —rg) || z< fi | zas shown in Fig. 4. In that case,
Fi crossesA; at infinity, i.e., at pointj = (z; 0). Con-

z m; 0 0 0 sequently, the RUU PM loses the translational DOF

{zx ra, mMixrg zx(rg —ra) zx(rg—ra) m xfi} alongz.

After some linear transformations, Eqn. (7) becomes:

wheref; =rc, —rg;. Sincez andm; are two independent If several limb singularities occur simultaneously, thee t
vectors, this matrix is rank deficient whenever its lastéhreobot may lose several DOF. Besides, if some limb singular-
columns (corresponding to infinite-pitch twists) become li ities and a constraint singularity occur simultaneousignt
early dependent. On the other hand, in any robot configuithe lower-mobility PM may lose some allowed motions and
tion one hasA;, B; andC; are three distinct point#yB; Lz gain some other limited motions at the same time. As a con-
andm; |ffi. Thus, thath limb of the 4RUU PM may exhibit sequence, this may lead to unwanted changes on the motion
a limb singularity whenever: pattern of the PM.



6 Singularity Analysis of the 4-RUU PM using

Grassmann-Cayley Algebra

In order to formulate a superbracket expression of the
4-RUU PM, one could represent its different wrencheBin
and then select two points on each Plicker lingpf A fi-
nite line (pure force) can be represented in the superbracke
either by two finite points or by one finite point and its unique
point at infinity. In turn, a line at infinity can be represemte
by two points at infinity. However, the selection of the fore-
going points must highlight as much as possible geometric
relations (coincidence, parallelism, orthogonalityensec-
tion and so on) between the wrenches in order to obtain a
simplified expression of the superbracket.

As shown in Fig. 2, each actuation force of the 4-
RUU PM can be expressed &= (7N v}), i =1,...,4,
plane®; being of normalz x f;) = m; while plane; is of
normalm; x f;. On the other hand, in a general configuration,
two planesp; and2; (i # j) intersect at a finite line, namely,
Tij = (#iN#j). Such a line is orthogonal to both vectors
z x fi andz x fj and is thus directed alorgy Therefore, for
i # j, one can find a lingj; = (#; N 2;) directed along and
crossing the two actuation forcésandF;. In this vein, let
a andc be the intersection points af, with F; andF, re-
spectively. Likewise, le¢ andg be the intersection points of
T34 With F3 andF4, respectively.

On the other hand, lét= (f1; 0), d = (f2; 0), £ = (f3; 0)
andh = (f4; 0). Accordingly, the four actuation forces can b
expressed as:

Fig. 5. Wrench graph of the 4-RUU PM in P3.

From Egn. (1)S can be decomposed into a linear combina-
%ion of 24 bracket monomials, which leads to only five non-
zero monomials as follows:

Fi=ab ; Fo=cd ; Fs=ef ; Fu=gh (8)

S1 = — [abef][cdhj][gikj] —[abed][fghj][cikj]
Now letx = (x; 0) andy = (y; 0). Hence, linexy col- + [ebenlifcdjllgikj] - [abihecdjlgikj]
lects all points at infinity corresponding to directions or- + [abfd]leghj|[cikj] (11)

thogonal toz. Let j = (z,0), 1 = (my;0), k = (mz; 0),

1= (m3;0) andm = (m4; 0). Accordingly, the four con-

. From Eqgn. (2), one hdgikij| =[ikj] = [eikj]. Further-
straint moments are expressed as: an. (2) 6{@;_;] [l_l] [el_l]

more, since points, g and j belong to the same projective
line, namely,734, the brackefegh j] is null and as a result:

Mi=3ij ; Ma=kj ; Mg=1j ; Mg=mj (9) [abfd|leghj][cikj]=0.Thus, Eqgn. (11) becomes:
wherei, k, 1 andm belong to xy. A wrench graph, repre- —[abef][cdhj] — [abed][fgh]]

ing the projective li sociated with th i S = [ikj] behllfcdil—labfhllecgil ] 2
senting the projective lines associated with the wrenclfies o I\ 4[abeh][fcd]] - [abth][ecd ]|

the 4RUU PM in P3, is given in Fig. 5.

6.1 Superbracket Decomposition From thesyz;llgleS)r Grassmann-Plucker relations [13, 27],
it ;ollows that:

Due to the redundancy of constraints, a superbracket o
the 4RUU PM can be composed of the four actuation forces

F (i=1,...,4) in addition to two among the four constraint [abec][fdh j| = +[abef][cdh j] + [abed] [ich_‘]]( )
4 .
moments expressed in Eqn. (9). Thus, one can v{rbt} = +labeh][fdcj]+[abe j][fdhc]
C2 = 6 superbracketS; (j = 1,...,6). However, a parallel
P i ) ’ On the other handifdhj] = 0 and[fdcj] = —[fcdj].

singularity occurs when the six possible superbracketiskan
simultaneously. For example, the superbragganvolving
the two constraint moments andkj takes the form:

From Eqn. (2)£gh j] = [£chj]. Therefore,

[abej][fdhc] = —[abef
Si = [ab, ef, cd, gh, ij, kj] (10) +[abe]



Fig. 6. A constraint singular configuration of the 4-RUU PM. Fig. 7. A coupled motion of the 4-RUU PM.

As aresult, Eqn. (12) becomes:

In such a configuration, the constraint wrench system of
S=[ikj] ([abej][ighc] —[abfh][e cgj]) (15) the manipulator degenerates into a 1-system and the moving
—— — — platform gains one extra DOF, namely, the rotation about an
AL B axis directed along the common directiomaf(i =1,...,4),
as shown in Fig. 6. In such a critical configuration, if the
moving platform rotates about an axis directed alentpen
the robot will come back to a non-singular configuration.

Obviously, in Egn. (15), termdy = [gik j| depends only on
the chosen constraint momerit$ andl_{l' whereas ternB
does not depend on the choice of pointandk. Conse-

quently, termB is a common factor of the six possible super-  ©ON the other side, in a constraint singular configura-
brackets: tion, if the moving platform rotates about an axis directed

alongm;, the revolute joints attached to the moving platform
will no longer be directed along. As a consequence, the
constraint wrench of each limb becomes a wrench of finite-
pitch (a combination of a force and a moment). In that case,
where A = [ikj], Ao = [l_ll]v As = [inj], A4 = the moving platform has neither pure constraint moments nor
2 pure constraint forces. Moreover, the limbs constrainheeit
a pure rotation nor a pure translation. Such a configurasion i

6.2 Condition for Constraint Singularities shown in Fig. 7 and corresponds tea@upled motior29].

Constraint singularities correspond to the degeneracy of
the constraint wrench system of the manipulator. In such
configurations, the manipulator loses some constraints a%(_dg Conditions for Actuation Singularities
as a result, its moving platform gains one or several DOF. Ac-

cordingly, a constraint singularity of theRUJU PM occurs ) > \ ) - ht -
when the four constraint momerit (i = 1,...,4) form a configurations in whichly, is rank deficient while the con-

n< 2-system, i.e., when all terdg (j = 1,...,6) expressed strfiint wrench system does nqt degenerate. In such configu-
in Egn. (16) vanish simultaneously. Let us consider brackétions, the motion of the moving platform becomes uncon-
[gik j], namely, termAy. This bracket vanishes iff points troIIabIe,. namely, the actuators cannot control the moqbn

k andj belong to the same projective line. Since pgiror- th(nT moving platform. Accord_mg_ to Eqn._(_16), these singu-
responds to the fixed direction of vecwiit is a fixed point. arities are related to the vanishing conditions of t@min
Pointsi andk correspond to two directions orthogonalzo o_rderto _o_btaln geo_metrlc and ve_ctor conditions for actumti
and, therefore, these points belong to a line that cannet paigularities, terni is expressed in a more compact form by
through pointj unlessi andk are coincident. Consequently,cons'de”ng the following bracket simplifications:

all termsA; vanish simultaneously iff points, k, 1, andm

become all coincident. As a result, theRUU PM reachesa 1. [fdhc]=[cdfh] = [adfh];

S=AB ; j=1..6 (16)

In this paper, the actuation singularities correspond to

constraint singularity iff: 2. Points a,c and j belong to the same pro-
jective line Tio. Thus, j=c—a and
my || mz || m3 || mg 17) [abej|=[(c—j)bej]=[cbej] =[echj].



Table 2. Actuation singularity conditions of the 4RUU PM.

Case Vector form Algebraic form

@ | fallfa f=h

(b) u=0 e, c andj are aligned
(c) f2| f1 d=b

d) | (faxfa) [l (uxz) fh=uj

(© | (f2xf)|l(ux2) db=uj

] (faxfa) || (f2 xf1) fh=db

@ | (faxfa) | (ux2)|(faxf) | fh=uj=db

(h) (f3><f4)><(u><z)>L(f2><f1) (fhAuj) € db

Accordingly,
B =[adfhl|[ecbj]—[abfh|[ecd]j]
= [ad£h][ech ] (18)
= (agh)A(ecj) A(db)

where the dotted letters stand for the permuted elements as

explained in [14, 27]. From Egn. (18), teris the meet of
three geometric entities, namely,

1. (afh) is a finite plane havings x f4 as normal vector;

2. (ecj) is the finite plane containing the finite poirds
and c and the unit vectoe. Since plangecj) con-
tains lines7i, and 734 (Fig. 5), the line at infinity of
plane(ec j) = spar{T12, 734) can be expressed &sj)
whereu = (u; 0) andu is the unit vector of a finite line
non-parallel taz and lying in plangec j), i.e., crossing
71, andTz4. Accordingly, plande c j) hasu x z as nor-
mal vector. It should be noted thatandu exist unless
T12 = T34,

amountstqfh) = (uj). Inthat case(fz x fa) || (ux z),
i.e.,fs, f4, u andz are orthogonal to a given direction;
(e) Line (db) lies in plane ££h). In such a casdfa x f1) ||
(f3 x f4);
(f) Line (db) lies in plane éc j). In such a caséfz x f1) ||
(uxz); B
(g) The intersection line of planeafh) and gc j) coin-
cides with line @b). Since planesafh) and Ec j)
contain pointa, they intersect at a line at infinity iff
they coincide. Accordingly, conditiorg) amounts to
(£h) = (uj) = (db), i.e.,(fa x fa) | (ux 2) || (f2 x F);
Let us consider the general case of Egn. (19), namely,
the intersection line of planeafh) and ¢ c j) crosses
line (db). If planes &£h) and g c j) are not coincident
(condition@)), then they will intersect at a finite lin@
directed alongy = (f3 x f4) x (u x z). Thus, the point at
infinity n = (n; 0) of line © is the intersection point of
lines ¢h) and {1 j). The finite lined crosses linedb)
iff n € (db). In that case, the lines at infinitg 1), (db)
and . j) intersect at point. As a resultn is orthogonal
to (f, x f1), (f3 x f4) and(u x 2).
On the other hand, as mentioned previousli the unit
vector of any finite line non-parallel t» and crossing
T12 and734. Thus, the conditiom_L(u x z) is true for
all possible vectorsl iff n = j, namely, ifn || z. As
a result, pointj belongs to linegdb) and (£h). We
know that in a general configuration, two fordgsand
F, are two skew lines. However, if € (db), then any
plane defined by two finite lines directed aldagndf,
will contain the unit vector. Moreover, there is a finite
line 71 directed along that crosse&; andF,. Conse-
quently,F; andF, are coplanar. Likewisd;; andF,4 are
coplanar.
Finally, condition f) implies that~; andF; lie in a plane
containing7io and, in turn 3 andF4 lie in a plane con-
taining 734.

(h)

3. (db) is the line at infinity of all parallel finite planes All possible cases of Eqn. (19) are expanded in Table 2.

containing the unit vectorfg andfy, i.e., havingfi x f
as normal vector.

An actuation singularity occurs iff terf@ of Egn. (18) van-
ishes. It amounts to the following vector form:

((f3 x f4) % (U x z)) o(faxf) = (19)

From Egs. (18) and (19), an actuation singularity of the 4-

RUU PM occurs upon each of the following cases:

(a) Plane &£h) degenerates, which happendifE h < f3 ||
f4, i.e.,F3 andF, are parallel;

(b) Plane éc j) degenerates, which happens iff poiats
andj are aligned. In that case;, = 734 andu = 0,

(c) Line (db) degenerates, which happensdf=b < f; ||
f1;

(d) Plane &fh) coincides with planegc j). Since point
a lies in plane écj), the condition(afh) = (ecj)

It should be noted that Eqgn. (19) is obtained by consider-
ing two lines7i, (crossingF; andF,) and 734 (crossingrs
andFs). Vectoru in Eqn. (19) could be written asly, i.e.,

the unit vector of a line non-parallel tband crossing lines
712 and 734. Accordingly, since a linezj; exists between
each pair of forces; andFj, the vector form of actuation
singularities can be generalized as follows:

((fi ><fj)><(fk><f|))o(u=‘j' x2)=0 (20)

where(i, j, k, 1),i# j #k#1, is a permutation ofl, 2, 3, 4)
andu}‘j| is the unit vector of a line non-parallel frrand cross-

ing 7j; and 7. Table 3 enumerates the general singularity
conditions obtained with GCA for the RUU PM as well

as their correspondence with GG, which is developed in the
next section.



Table 3. Correspondence between GCA and GG.

Case Singularity condition Corresponding case
GCA (i#£j#£k#]) of GG (Table 1)

(@) fi || fj condition (3b)

(b) uKl =0 condition (5b)

(©) (fi x fj) || (UK x 2) condition (5b)

(d) (fi ) || (Fie < ) conditions (5b) and (3d)
@ | (fixf) | (uklx2) | (Fxf) condition (5b)

) <(fi % £) x (fie x fi )) L(u x2) | condition (5a)

9) mj || mj || my || m conditions 1 and (5b)

7 Correspondence between Grassmann-Cayley Alge-

bra and Grassmann Geometry

There is a complementary aspect between GCA and é6 parallel.
for the singularity analysis of PMs. Mostly, some conditon
obtained with one of these approaches may not be easy to
grasp with the other one and vice versa. Therefore, in this
section, a wrench graph for each singularity condition ob-
tained with GCA is represented. Based on this wrench graph,
the GG is used to identify the rank deficiencyJaf. Let us
consider the following screw subspaces:

1. x = spariFy, F2, F3, F4, M1, M2, M3, My);
2. K12 = spariFy, F2, M1, M2, M3, My);

3. ¥ =spariFi, R, R, Fa);

4. M = sparfMy, Mz, M3, My).

Fig. 8. An actuation singularity: the two actuation forces F1 and F»

From @b1), since the four lines at infinitj;, M2, M3 and Fig. 9. An actuation singularity: all actuation forces are coplanar,

Mg pass through poirg, they generate in a general configuzongition (3d) of GG.

ration a planar pencil of lines at infinity. In turn, in a gealer

configuration the four actuation forces are mutually sked an

span a linear line variety of dimension 4. Thus, in a non- Consequently, such a configuratidn ( f2), exemplified
singular posture difns ) = 2, dim(F ) = 4, dim(%12) = 4 in Fig. 8, corresponds to condition (3b) of GG.

and din{x) = 6. However, a parallel singularity occurs(b) (uf x z) = 0. In such a case, one hasj; = 7jy and
wheneverx becomes of dimension lower than 6. Here, the (2iN®?j) = (PkN ) as illustrated in Fig. 10(b). As a
degeneracy ofc for the singularity conditions revealed by  result, the four planes; (i =1,...,4) of normal vectors
GCA in Table 3, is examined by using Table 1 and the sub- (zx fj) = m;j intersect at a common projective ling =
classesZbl), (2b2) and @d1). T passing through poin and coplanar with each of
the four actuation forces. Consequently, the latter line
crosses the four constraint moments (the planar pencil
at infinity through pointj) as well as the four actuation

(@) (fi || f;). Without loss of generality, let us consider that
f1 || f2, i.e.,b=d, as depicted in Fig. 10(a). In that

case, from 2b2), one has: spdfr, F2) = sparFi, £)
where£ = bj. Moreover, the line at infinity. passes
through poin_tl' and lies in the planar pencil contain- .
ing the four constraint moments. Accordingly, the screw
subspaces1>—which is generally of dimension 4— be-
comes of dimension 3. In other words,

1. From @bl), £ lies in the planar pencil at infinity
through pointj generated by the four constraint
moments;

2. From @b2), £, being the line at infinity of plane
(abc), lies in the planar pencil spéf, F,) of
lines in plang(abc) passing through poini.

forces. Thus, this singularity corresponds teirmgular
complexi.e., condition (5b) of GG.

(fi x f}) || (uf x 2). Without loss of generality, let us con-
sider an example of this case whén x f2) || (u x 2)
whereu = u$3. In such a case(bd) = (uj). Thus,
plane(ec j) = spar{Ti2, T34), whose line at infinity is
(uj), includes point® andd in addition to points, c, e
andg. Consequently, the two actuation fordgsandF,

lie in plane(ecj) and cross liners, directed along.
Therefore, lineTs, intersects the four actuation forces
and the four constraint moments as shown in Fig. 10(c).

As aresult, such a configuration correspondssmgu-



)

Fig. 10. Wrench graph of the 4-RUU PM for the singularity conditions given in table 3.

lar complexi.e., condition (5b) of GG.

(d) (fi xfj) || (fkxfi). Here, two cases are possible:

1. The four actuation forces are not coplanar but are
orthogonal to a given direction. In such a case,
b, d, £ andh belong to a given line at infinity, ®
namely, (bd) = (f£h) as depicted in Fig. 10(d).
Obviously, the latter line crosses the four actua-
tion forces. Furthermore, since it is a line at in-
finity, it also crosses the four constraint moments.
Consequently, such a configuration corresponds to
asingular complexi.e., condition (5b) of GG;

2. The four actuation forces are coplanar. In that
case, the screw subspaeebecomes of dimension
3, which corresponds to condition (3d) of G&ll
lines in a plane Such a configuration is illustrated
in Fig. 9.

(e) (fi xfj) || (uK x 2) || (f x f;). As mentioned previously,

this condition amounts t¢fh) = (uj) = (db). In that
case, points, h, u, j, d andb are aligned, as shown in
Fig. 10(e). Therefore, such a configuration corresponds
to asingular complexi.e., condition (5b) of GG.

((fi x i) x (fx x ﬂ))J_(u!‘-' x z). This is the general case

i
of Eqgn. (20). Without loss of generality, let us consider
that ((fl x f2) x (fa x f4))L(u§‘2‘ x z). As mentioned
previously, in that casds; andF; lie in a plane contain-
ing 712 and, in turn,F/3 andF4 lie in a plane containing
T34, @S shown in Fig. 10(f). As a result, the lines at in-
finity of planes spariy, F2) and sparis, F4) as well as
the lines at infinity denoting the constraint moments in-
tersect all at poinj. Thus, the foregoing lines at infinity
form a planar pencil. Following [16, 21], in such a con-
figuration, the eight wrenches of theRIJU PM lie in a



non-singular complex.e., condition (5a) of GG. 8.2 Actuation Singularities
(@) (m; || mj || mg || my). This is the condition for constraint The condition for actuation singularities obtained
singularities. In that case, two interpretations are poss$h Eqn. (20) involves the unit vector of the four actuation
ble: forces plus the normal vector of the plane defined by two
transversal lines alongbetween two actuation forces. How-

1. The screw subspace , which is generally a pla- ever, the eleven architectures of Fig. 1 are classified into t
nar pencil, degenerates into a single line, i.e., COfypes as proved in Sec. 3.2:

dition 1 of GG (Fig. 10(q)); _ . . :
2. Planesz; (i = 1,...,4) have a common normal Type 1: Figs. 1(a)-1(d) The actuation force of thith leg is
vectorm; = z x fi. Those planes are thus all par- directed along the intersection line of plangsand 7/;.

allel and have a common line at |nf|n|ty contain- In that case, the actuation singularity condition is given
ing points j, b, d, £ andh. This line crosses in Eqn. (20).

all actuation forces and all constraint momentstype 2: Figs. 1(e)-1(k) The actuation force of thih leg is
Hence, such a configuration corresponds ina parallel tom;. In that case, the actuation singularity con-
gular complexi.e., condition (5b) of GG. dition can be written as:

Consequently, the constraint singularities of the 4-

) ) kI _
RUU PM correspond to conditions 1 and (5b) of GG. ((m. X mj) x (M x m|)) o(ujx2)=0 (21)

where (i, j,k 1), i # | # k # 1, is a permutation
8 Singularity conditions of 3T1R PMs with ILS of (1,2,3,4)
The singularity analysis of the RUU PM performed in It can be noticed that for the architectures of Figs. 1(b)
Sec. 6 leads to two singularity conditions given by Egs. (1Ad 1(d) none of the four actuation forces (directed along
and (20). These conditions were obtained from the wren8h) can be parallel to another one in any robot configuration.
graph of the PM obtained in Fig. 5 and based on the existence
of a finite line parallel taz crossing two actuation forces of
two limbs of the PM. Since this is true in a general configl® Conclusions
ration for all architectures of Fig. 1, a similar wrench drap In this paper, the singularity conditions of 3T1R Paral-
can be obtained for each architecture. As a consequence,lfiéManipulators (PMs) with identical limb structures (IL.S
two singularity conditions are true for the eleven architesvere investigated through the singularity analysis of the 4
tures shown in Fig. 1. RUU PM. This singularity analysis was performed using
Moreover, the actuation singularity condition obtainefrassmann-Cayley Algebra (GCA) and Grassmann Geom-
in Eqn. (20) is valid for 3TIR PMs whose actuation force§t"Y (GG)- _ _ _
are four mutually skew lines. Indeed, a finite ling directed First, the constraint analysis was performed using screw
alongz that crosses two actuation forces can be found unldg§ory. Then a wrench graph that represents the wrenches
one of the forces is alormor the two forces are parallel and0f the 4RUU PM in the 3-dimensional projective space was
lie in a plane that does not contain thelirection. Accord- Obtained. Accordingly, a superbracket was formulated and
ingly, Eqn. (20) is the actuation singularity condition the analyze_d in o_rder to provide geometric conditions for singu
general case of 3T1R PMs with ILS which is the case for tHar configurations as well as a compact vector expression for
eleven architectures of Fig. 1 obtained from the type synth@€ Singularity locus, which is difficult to assess usingsia

sis of four-legged 3T1R PMs with ILS performedin [6]. ~ cal linear algebra tools. Then, a wrench graph representati
. . for each singularity condition was obtained to emphasiee th
The eleven architectures of Fig. 1 are compared belqw . :
. ; ; : o Inear dependence of the constraint and actuation wrenches
in terms of both constraint and actuation singularities. . .

This paper showed that the conceptwa€énch graphs very
useful to highlight the correspondence between GCA and
o - GG for the singularity analysis of lower-mobility PMs.

8.1 Constraint Singularities Finally, the singularity conditions of the RUU PM
From Eqn. (17) all architectures of Fig. 1 exhibit a conwere applied to eleven architectures of 3T1R PMs with ILS

straint singularity whenever the axes of the revolute pinto show the general aspect of the results. The foregoing ar-

non-parallel toz become parallel to each other, namelyhitectures were compared in terms of constraint and actua-

m1 || m2 | m3 || m4. However, it can be noticed that when theion singularities.

last joints of the legs of the PM are not directed alarthe

four vectoram; are fixed with respect to each other, namely,

none can be parallel to another one in any robot Configur,&chnowledgements
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