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This paper extends a recently proposed singularity analysis method to lower-mobility parallel manipulators having an articulated nacelle. Using screw theory, a twist graph is introduced in order to simplify the constraint analysis of such manipulators. Then, a wrench graph is obtained in order to represent some points at infinity on the Plücker lines of the Jacobian matrix. Using Grassmann-Cayley algebra, the rank deficiency of the Jacobian matrix amounts to the vanishing condition of the superbracket. Accordingly, the parallel singularities are expressed in three different forms involving superbrackets, meet and join operators, and vector cross and dot products, respectively. The approach is explained through the singularity analysis of the H4 robot. All the singularity conditions of this robot are enumerated and the motions associated with these singularities are characterized.

Introduction

Parallel singularities are critical configurations in which a Parallel Manipulator (PM) loses its inherent stiffness and the motion of its end-effector becomes uncontrollable. Generally, such configurations are related to the degeneracy of a wrench system expressed in a matrix form, namely, a 6 × 6 Jacobian matrix J. Accordingly, the parallel singularities of a PM correspond to the vanishing conditions of the determinant of J that can be found using either geometrical [START_REF] Merlet | Singular Configurations of Parallel Manipulators and Grassmann Geometry[END_REF], symbolic [START_REF] Angeles | The Design and Prototyping of an Innovative Schonflies Motion Generator[END_REF] or numerical methods [START_REF] Merlet | A Formal-Numerical Approach for Robust In-Workspace Singularity Detection[END_REF].

Lower-mobility PMs are suitable for a wide range of applications that require fewer than six degrees of freedom (dof ). The legs of such manipulators apply some constraint wrenches, also known as structural constraints [START_REF] Li | Mobility analysis of Lower-mobility Parallel Manipulators Based on Screw Theory[END_REF], on the end-effector. The wrench system resulting from all the constraints of the legs is called constraint wrench system of the PM, also known as platform constraint system [START_REF] Fang | Structure Synthesis of a Class of 4-DoF and 5-DoF Parallel Manipulators with Identical Limb Structures[END_REF]. In turn, the actuators apply some actuation wrenches on * Address all correspondence to this author.

the end-effector. The wrench system resulting from all the actuation wrenches of the legs is called actuation wrench system of the PM. In a general configuration, by locking actuators, the end-effector of a PM becomes fully constrained. In screw theory, a zero-pitch wrench corresponds to the Plücker coordinate vector of a finite line in the 3-dimensional projective space P 3 whereas an infinite-pitch wrench corresponds to the Plücker coordinate vector of a line at infinity in P 3 .

For a 6-dof PM, J is a 6 × 6 matrix that transforms the velocities of the actuators to the linear and angular velocities of the end-effector. Zlatanov et al. [START_REF] Zlatanov | Singularity Analysis of Mechanisms and Robots Via a Velocity-Equation Model of the Instantaneous Kinematics[END_REF] proposed an approach, using an input-output velocity relationship, to formulate a 6 × 6 Jacobian matrix for 6-dof PMs and also for lowermobility PMs whose legs and end-effector have the same dof. Nevertheless, their approach cannot provide a 6 × 6 Jacobian matrix for a more general lower-mobility PM and thus it does not allow the examination of all singular configurations of such a PM.

Based on the theory of reciprocal screws [START_REF] Ball | A Treatise On the Theory of Screws[END_REF][START_REF] Waldron | The Mobility of Linkages[END_REF][START_REF] Hunt | Kinematic Geometry of Mechanisms[END_REF][START_REF] Kong | Type Synthesis of Parallel Mechanisms[END_REF][START_REF] Amine | Constraint and Singularity Analysis of Lower-Mobility Parallel Manipulators with Parallelogram Joints[END_REF], Joshi and Tsai [START_REF] Joshi | Jacobian Analysis of Limited-DOF Parallel Manipulators[END_REF] developed a general methodology to derive a 6 × 6 Jacobian matrix J providing information about both constraint and actuation wrench systems of a lower-mobility PM. Accordingly, the rows of J for a (n < 6)-dof PM can be composed of n linearly independent actuation wrenches plus (6n) linearly independent constraint wrenches. As a result, a lower-mobility PM can exhibit two different types of parallel singularities: (i) constraint singularities [START_REF] Zlatanov | Constraint Singularities of Parallel Mechanisms[END_REF], also known as platform singularities [START_REF] Fang | Structure Synthesis of a Class of 4-DoF and 5-DoF Parallel Manipulators with Identical Limb Structures[END_REF] and (ii) actuation singularities, also called architecture singularities [START_REF] Joshi | Jacobian Analysis of Limited-DOF Parallel Manipulators[END_REF]. Constraint singularities correspond to the degeneracy of the constraint wrench system. In such configurations, the end-effector loses some constraints and gains some extra dof. On the other hand, actuation singularities occur if J is rank deficient while the constraint wrench does not degenerate.

The Grassmann-Cayley Algebra (GCA) was developed by H. Grassmann as a calculus for linear varieties. The superbracket of GCA is a determinant of six 2-extensors that are associated with six Plücker lines. Accordingly, by selecting two points on each Plücker line of J, a superbracket expression can be formulated and amounts to the determinant of J, up to scale. By exploring the foregoing superbracket thanks to the GCA operators, the singularity conditions of a PM can be obtained. In turn, Grassmann geometry provides a classification of linear varieties.

For Gough-Stewart PMs, the rows of J are Plücker coordinate vectors of six finite lines that are six actuation forces applied by the actuators on the end-effector. Parallel singularities of such manipulators occur when those lines become linearly dependent, i.e., when the linear variety spanned by these lines degenerates. Merlet [START_REF] Merlet | Singular Configurations of Parallel Manipulators and Grassmann Geometry[END_REF] analyzed these singularities using Grassmann geometry by using a set of geometric rules for which a linear variety of dimension n ≤ 6 degenerates. On the other hand, Ben-Horin et al. [START_REF] Ben-Horin | Singularity Analysis of Parallel Robots Based on Grassmann-Cayley Algebra[END_REF][START_REF] Ben-Horin | Singularity Analysis of a Class of Parallel Robots Based on Grassmann-Cayley Algebra[END_REF][START_REF] Ben-Horin | Application of Grassmann-Cayley Algebra to Geometrical Interpretation of Parallel Robot Singularities[END_REF] used the superbracket and the GCA operators to analyze the parallel singularities of 6-dof PMs whose legs transmit six pure forces (six finite lines) to the moving platform. In comparison with Grassmann line geometry, GCA makes it possible to work in a coordinate free manner, and therefore, to produce invariant algebraic expressions for the parallel singularities. Accordingly, all the singularity conditions of the manipulator under study can be enumerated.

However, the method proposed in [START_REF] Ben-Horin | Singularity Analysis of Parallel Robots Based on Grassmann-Cayley Algebra[END_REF][START_REF] Ben-Horin | Singularity Analysis of a Class of Parallel Robots Based on Grassmann-Cayley Algebra[END_REF][START_REF] Ben-Horin | Application of Grassmann-Cayley Algebra to Geometrical Interpretation of Parallel Robot Singularities[END_REF] cannot be applied when a line at infinity is among the six lines of J, which is the case for lower-mobility PMs with one or several limited rotational dof. Indeed, there are some infinitepitch wrenches (pure moments) among the rows of J of such manipulators. Since an infinite-pitch wrench corresponds to the Plücker coordinate vectors of a line at infinity, it cannot be represented by finite points in the superbracket. To this end, Kanaan et al. [START_REF] Kanaan | Singularity Analysis of Lower-Mobility Parallel Manipulators using Grassmann-Cayley Algebra[END_REF] presented a method to formulate a superbracket with some points at infinity and enlarged the application of GCA to lower-mobility PMs.

The main purpose of this paper is to extend the method proposed in [START_REF] Kanaan | Singularity Analysis of Lower-Mobility Parallel Manipulators using Grassmann-Cayley Algebra[END_REF] to robots with more complex kinematics such as lower-mobility PMs with an articulated nacelle. For such manipulators, the concept of twist graph is introduced in order to simplify their constraint analysis while the wrench graph is obtained in order to represent their wrenches in the projective space. This wrench graph illustrates all the geometric properties between the constraints of the manipulator and allows one to highlight the points at infinity of the superbracket. This approach can be applied to other lowermobility PMs with an articulated nacelle.

This paper is organized as follows: Section 2 recalls some properties of projective space, screw theory and GCA that are useful for the understanding of the paper. Section 3 presents the constraint analysis and the singularity analysis of the H4 robot. Finally, Section 4 enumerates all the singularity conditions of this robot and characterizes the motions associated with these singularities.

Fundamental Concepts 2.1 The 3-dimensional projective space

The 3-dimensional projective space P 3 is characterized by the affine space R 3 in addition to the plane at infinity Ω ∞ . It is noteworthy that the coordinates of a projective element are determined up to scale. A projective point has four homogeneous coordinates whereas a projective line has six Plücker coordinates represented by its Plücker coordinate vector P L = (P 4,1 , P 4,2 , P 4,3 , P 2,3 , P 3,1 , P 1,2 ) T satisfying the Grassmann Plücker relation P 4,1 P 2,3 + P 4,2 P 3,1 + P 4,3 P 1,2 = 0. The following properties highlight the relations between projective elements:

1. A finite point, A, is represented by its homogeneous coordinates vector a = (a 1 , a 2 , a 3 , 1) T , the first three coordinates being its Cartesian coordinates in R 3 ;

2. A finite line, L , is represented by its Plücker coordinates vector 1 F = (s; r × s); where s is the unit vector of L , r is the position vector of any point on L and (r × s) represents the moment of L with respect to the origin;

3. Let underlined points denote points at infinity. Any finite line, F = (s; r × s), has a unique point at infinity c = (s; 0). This point only depends on the line direction and is determined up to scale. Accordingly, if a and b are two finite points on F, then c = ba; 4. All finite lines directed along s intersect at one common point at infinity, namely, c; 5. All finite planes of normal vector m, have a common line at infinity. This line is given by: M = (0 3×1 ; m) and passes through the point at infinity on any finite line orthogonal to m; 6. Two lines at infinity M 1 = (0 3×1 ; m 1 ) and M 2 = (0 3×1 ; m 2 ) intersect at a unique point at infinity g = (m 1 × m 2 ; 0).

Theory of Reciprocal Screws

Screw theory is suitable for the type synthesis and the study of the instantaneous motion of PMs. The principle of reciprocal screws was studied in [START_REF] Ball | A Treatise On the Theory of Screws[END_REF][START_REF] Waldron | The Mobility of Linkages[END_REF][START_REF] Hunt | Kinematic Geometry of Mechanisms[END_REF] and then developed in [START_REF] Kong | Type Synthesis of Parallel Mechanisms[END_REF][START_REF] Zlatanov | Constraint Singularities of Parallel Mechanisms[END_REF][START_REF] Mohamed | A Direct Determination of The Instantaneous Kinematics of Fully Parallel Robot Manipulators[END_REF].

A unit screw is given by $ = [s; (s 0 × s + λs)] where s is a unit vector along the screw axis, s 0 is the position vector of a point on the screw axis with respect to a reference frame and λ is the pitch of the screw. A screw of intensity ρ could be written as: $ = ρ $. A zero-pitch screw $0 = (s; r × s) corresponds to the Plücker coordinate vector of a finite line in P 3 . An infinite-pitch screw $∞ = (0 3×1 ; s) corresponds to the Plücker coordinate vector of line at infinity in P 3 .

A screw system of order n (0 ≤ n ≤ 6), also called nsystem, comprises all screws that are linearly dependent on n given linearly independent screws. The reciprocity conditions of finite-and/or infinite-pitch screws are: All screws that are reciprocal to a n-system of screws (n < 6) form a (6n)-system.

A twist is a screw representing the instantaneous motion of a rigid body, a wrench is a screw representing a system of forces and moments acting on a rigid body. A zero-pitch twist ε0 is associated with a pure rotation while an infinitepitch twist ε∞ is associated with a pure translation. A zeropitch wrench F = (s; r × s) represents a pure force whereas an infinite-pitch wrench M = (0 3×1 ; n) represents a pure moment.

In this paper, screw theory is used to determine the Jacobian matrix J of the manipulator under study. Accordingly, the reciprocity condition is applied in order to characterize, for each leg-chain of the manipulator, the constraint wrench system reciprocal to its twist system as well as the actuation wrench system obtained by locking actuators.

Grassmann-Cayley Algebra

The GCA was developed by H. Grassmann (1809-1877) as a calculus for linear varieties operating on extensors with the join "∨" and meet "∧" operators. The latter are associated with the span and intersection of vector spaces of extensors characterized with their step. In the (d = 4)-dimensional vector space V associated with P 3 , extensors of step 1, 2 and 3 represent points, lines and planes, respectively. They are also associated with subspaces of V of dimension 1, 2 and 3, respectively. The GCA makes it possible to work at the symbolic level, and therefore, to produce coordinatefree algebraic expressions for the geometric singularity conditions of spatial PMs. In this section, some properties of GCA are recalled. For further details on GCA, the reader is referred to [START_REF] Ben-Horin | Singularity Analysis of a Class of Parallel Robots Based on Grassmann-Cayley Algebra[END_REF][START_REF] White | The Bracket Ring of a Combinatorial Geometry. I[END_REF][START_REF] White | The Bracket of 2-Extensors[END_REF][START_REF] White | Grassmann-Cayley Algebra and Robotics Applications[END_REF].

The superbracket decomposition

Generally, the rows of J of a PM are Plücker coordinate vectors of six lines in P 3 . The superjoin of these six vectors in P 5 corresponds to the determinant of J up to a scalar multiple, which is the superbracket in GCA Λ(V (2) ) [START_REF] White | Grassmann-Cayley Algebra and Robotics Applications[END_REF]. Thus, a singularity occurs when these six projective lines become linearly dependent, which amounts to a superbracket equal to zero. The superbracket is an expression involving 12 points selected on these lines and can be developed into a linear combination of 24 bracket monomials y i (i = 1, . . . , 24) [START_REF] Ben-Horin | Singularity Analysis of a Class of Parallel Robots Based on Grassmann-Cayley Algebra[END_REF][START_REF] Mcmillan | Invariants of Antisymmetric Tensors[END_REF], each one being the product of three brackets of four projective points:

[ab, cd, ef, gh, ij, kl] = 24 ∑ i=1 y i (1)
These 24 bracket monomials are given in Appendix A. A bracket [abcd] is null if and only if the projective points a, b, c and d are coplanar. The bracket of four projective points is defined as the determinant of the matrix whose columns are the homogeneous coordinates of these points.

Geometric incidences in P 3

The join and meet operators were used in [START_REF] Ben-Horin | Application of Grassmann-Cayley Algebra to Geometrical Interpretation of Parallel Robot Singularities[END_REF][START_REF] Kanaan | Singularity Analysis of Lower-Mobility Parallel Manipulators using Grassmann-Cayley Algebra[END_REF] to describe many geometric incidences between elements in the projective space P 3 . For instance, the following geometric incidence developed in Appendix B is used in Sec. 3.2.

gh ∧ (abc ∧ def) = [gabc][hdef] -[habc][gdef] = [ • gabc][ • hdef] (2) 
where dotted letters stand for permuted elements as mentioned in [START_REF] White | Grassmann-Cayley Algebra and Robotics Applications[END_REF]. Equation ( 2) is equal to zero if line (gh) intersects with the intersection line of planes (abc) and (def).

Singularity Analysis of The H4 Robot

The H4 robot belongs to a recent family of 4-dof parallel robots designed for high-speed pick and place operations. There exists two varieties of architectures of the H4 family with either revolute or prismatic actuators [START_REF] Pierrot | H4: A New Family of 4-dof Parallel Robots[END_REF][START_REF] Pierrot | H4 Parallel Robot: Modeling, Design and Preliminary Experiments[END_REF]. The H4 robot shown in Fig. 1 is composed of four identical legs2 l i = R i -(4S) i (i = 1, . . . , 4) attached to a common base B and linked to the end-effector E by means of an articulated nacelle. The actuated joints are the R i -joints of legs l i , i = 1, . . . , 4. The axes of R 1 and R 3 (respectively R 2 and R 4 ) are directed along y (respectively x). The nacelle is composed of three bodies: (i) link b I connecting l 1 and l 2 in parallel and making a resulting chain l 12 ; (ii) link b II connecting l 3 and l 4 in parallel and making a resulting chain l 34 ; (iii) the end-effector (E) linked to b I and b II with two revolute joints R I and R II having two parallel vertical axes. Finally, the H4 robot has two compound legs:

L I = l 12 -R I and L II = l 34 -R II .
A 4S joint is composed of four links mn, mp, nq and pq connected with four spherical joints centered at m, n, p and q, respectively. According to [START_REF] Pierrot | H4: A New Family of 4-dof Parallel Robots[END_REF][START_REF] Gregorio | Determination of Singularities in Delta-Like Manipulators[END_REF], the H4 robot is designed in such a way that points m, n, p and q of a (4S) i joint, represented in Fig 2, form a parallelogram in any robot configuration. In a leg l i shown in Fig. 2, let n i denote the unit vector normal to this parallelogram and let s i and l i denote the unit vectors along lines mn and mp, respectively. Note that lines mn, pq and the axis of the actuated joint R i are parallel. Therefore, s 1 s 3 y and s 2 s 4 x. u

r q n i s i s i s i l i n i × l i R i R Fi Mi m p n q z y x
Fig. 2. Leg l i -R of the H4 robot.

Constraint analysis

Based on the results obtained in [START_REF] Amine | Constraint and Singularity Analysis of Lower-Mobility Parallel Manipulators with Parallelogram Joints[END_REF][START_REF] Zhao | Geometric Analysis of Overconstrained Parallel Manipulators with Three and Four Degrees of Freedom[END_REF], the twist system of a (4S) i joint is equivalent to the twist system of a virtual serial chain composed of two virtual revolute joints R i 1 and R i 2 , a virtual prismatic joint P i and a virtual Π i -joint 3 whose associated twists are: εi 02 = (s i ; r i n × s i ), εi 03 = (l i ; r i p × l i ), εi ∞1 = (0 3×1 ; n i ) and εi ∞2 = (0 3×1 ; l i × n i ), respectively. Accordingly, the twist graph of the H4 robot is shown in Fig. 3. It represents the independent joint twists of the legs. In this graph, lines and circles represent joints and links, respectively whereas dashed lines and dashed circles represent virtual joints and virtual links, respectively. Let εi 01 be the twist associated with R i . The constraint wrench system W i of leg

l i = R i -(4S) i (i = 1, . . . , 4 
) is reciprocal to twists εi 01 , εi 02 , εi 03 , εi ∞1 and εi ∞2 . Thus, it is a 1-system spanned by Mi such that:

M1 = (0 3×1 ; y × l 1 ) = (0 3×1 ; n 1 ) (3) M2 = (0 3×1 ; x × l 2 ) = (0 3×1 ; n 2 ) (4) M3 = (0 3×1 ; y × l 3 ) = (0 3×1 ; n 3 ) (5) M4 = (0 3×1 ; x × l 4 ) = (0 3×1 ; n 4 ) (6) 
3 A Π i -joint couples two links while allowing a relative translation along a circular trajectory [START_REF] Angeles | The Qualitative Synthesis of Parallel Manipulators[END_REF].

b I b II E B R I R II R 1 R 2 R 3 R 4 R 1 1 R 1 2 P 1 Π 1 R 2 1 R 2 2 P 2 Π 2 R 3 1 R 3 2 P 3 Π 3 R 4 1 R 4 2 P 4 Π 4
Fig. 3. Twist graph of the H4 robot.

The wrench system W 12 and the twist system T 12 of chain l 12 are4 :

W 12 = W 1 + W 2 = span( M1 , M2 ) (7) 
T 12 = W ⊥ 12 = span(ε ∞x , ε∞y , ε∞z , ε012 ) (8) 
where ε∞x = (0 3×1 ; x), ε∞y = (0 3×1 ; y) and ε∞z = (0 3×1 ; z) and the axis of ε012 is directed along n 12 = n 1 ×n 2 . Thus, this chain can be assimilated to a parallel manipulator with three translations and one rotation about an axis directed along n 12 .

Similarly for chain l 34 ,

T 34 = W ⊥ 34 = span(ε ∞x , ε∞y , ε∞z , ε034 ) (9) 
where the axis of ε034 is directed along n 34 = n 3 × n 4 .

The twist system of leg L I = l 12 -R I is T I = T 12 + T R I . R I is a revolute joint of axis Z I (Fig. 4), represented with the twist ε0Z I = (z; r c × z). Thus,

T I = span(ε ∞x , ε∞y , ε∞z , ε012 , ε0Z I ) (10) 
Therefore,

W I = T ⊥ I = span( MI ) ; MI = (0 3×1 ; n 12 × z) (11) 
Likewise,

W II = span( MII ) ; MII = (0 3×1 ; n 34 × z) (12) 
Finally, the constraint wrench system of the H4 robot is a 2system spanned by two infinite-pitch wrenches of directions

E a c e g Z I Z II R I R II M1 M2 M3 M4 F1 F2 F3 F4 z y
x

Ω 1 Ω 2 Ω 3 Ω 4 
Fig. 4. Constraint and actuation wrenches of the H4 robot.

orthogonal to z, as follows:

W c H4 = W I + W II = span( MI , MII ) (13) 
Accordingly, the end effector E of the robot provides three independent translations and one rotation about an axis of fixed direction along z, namely, a Schönflies motion [START_REF] Caro | The Rule-based Conceptual Design of the Architecture of Serial Schönflies-motion Generators[END_REF].

Legs l 1 and l 2 (respectively l 3 and l 4 ) are connected with R I (respectively R II ). The actuated joints of the H4 robot are the R i joints of legs l i (i = 1, . . . , 4). The actuation wrench Fi of leg l i , i = 1, 2 (respectively i = 3, 4), is a zero-pitch wrench of axis parallel to l i , intersecting axis Z I (respectively Z II ) and lying in the plane Ω i of the (4S) i joint. Consequently, Fi = (l i ; r i u × l i ) (i = 1, . . . , 4) and the actuation wrench system of the H4 robot is:

W a H4 = span( F1 , F2 , F3 , F4 ) (14) 

Superbracket of the H4 robot

The rows of the Jacobian matrix of the H4 robot can be expressed as the six unit screws MI , MII , F1 , F2 , F3 and F4 that correspond to two lines at infinity and four finite lines in P 3 , respectively. To obtain the twelve points of the superbracket of the robot, we must select two points on each of these six lines. The choice of the latter points must lead to the simplest expression of the superbracket decomposition, i.e., to a reduced number of non-zero monomials. A monomial in Eq. ( 1) is null if one of its three brackets vanishes. In turn, a bracket is null if its four projective points are coplanar. For example, a bracket taking the following form; [abca] is null.

In order to represent the lines at infinity in the superbracket, it is necessary to use points at infinity. A finite line has one unique point at infinity. Since the set of all points at infinity is a plane Ω ∞ , the bracket of four points at infinity is null. Accordingly, in case some lines at infinity are among the six Plücker lines of the robot 5 , it is convenient to include as many points at infinity as possible in the superbracket. Therefore, a finite line is represented with one finite point and its unique point at infinity. Since points at infinity cannot be shown in Fig. 4, a representation in P 3 of the wrenches of the H4 robot is given in Fig. 5. This representation is based on the properties of the projective space that are given in Sec. 2.

Let a (respectively c) denote the intersection point of F1 (respectively F2 ) and Z I and let e (respectively g) denote the intersection point of F3 (respectively F4 ) and Z II (Fig. 4). Besides, Z I and Z II are directed along z, i.e., ac and eg are parallel finite lines and they intersect in Ω ∞ at j = (z; 0), the latter being the point at infinity corresponding to z.

Let b = (l 1 ; 0), d = (l 2 ; 0), f = (l 3 ; 0) and h = (l 4 ; 0) be the points at infinity corresponding to l 1 , l 2 , l 3 and l 4 , respectively. Therefore,

F1 = ab ; F2 = cd ; F3 = ef ; F4 = gh (15) 
The finite line M1 = (0 3×1 ; y × l 1 ) passes through the points at infinity y = (y; 0) and b = (l 1 ; 0);

M1 = (0 3×1 ; y × l 1 ) = (0 3×1 ; n 1 ) = yb (16) Likewise, M2 = (0 3×1 ; x × l 2 ) = (0 3×1 ; n 2 ) = xd (17) 
Furthermore, M1 and M2 intersect at the point at infinity i = (n 12 ; 0), where

n 12 = n 1 × n 2 .
In the same vein,

M3 = (0 3×1 ; y × l 3 ) = (0 3×1 ; n 3 ) = yf (18) M4 = (0 3×1 ; x × l 4 ) = (0 3×1 ; n 4 ) = xh (19) 
Lines M3 and M4 intersect at point k = (n 34 ; 0) where

n 34 = n 3 × n 4 . Finally, MI = (0 3×1 ; n 12 × z) = ij (20) MII = (0 3×1 ; n 34 × z) = kj (21) 
From Eqs. ( 15), ( 20) and ( 21), the superbracket of the H4 robot takes the following expression:

S H4 = [ab, cd, ef, gh, ij, kj] (22) 

Superbracket decomposition

From Appendix A, S H4 is decomposed into a linear combination of 24 bracket monomials. Since the bracket of four coplanar projective points is null, the superbracket decomposition leads to 5 non-zero monomials as follows:

S H4 = -[a b c d][e f h j][g i k j] -[a bc f][d g h j][e i k j] + [a b d f][c g h j][e i k j] + [a bc h][d e f j][g i k j] -[a b d h][c e f j][g i k j] (23) 
We know that

[g i k j] = g 1 i 1 k 1 j 1 g 2 i 2 k 2 j 2 g 3 i 3 k 3 j 3 1 0 0 0 = i 1 k 1 j 1 i 2 k 2 j 2 i 3 k 3 j 3 = [e i k j] (24) 
Hence, [g i k j] is a common factor of the five monomials of Eq. ( 23) as follows:

S H4 = [g i k j]   -[a b c d][e f h j] -[a bc f][d g h j] + [a b d f][c g h j] + [a bc h][d e f j] -[a b d h][c e f j]   (25) 
From the syzygies or Grassmann-Plücker relations [START_REF] Ben-Horin | Singularity Analysis of a Class of Parallel Robots Based on Grassmann-Cayley Algebra[END_REF][START_REF] White | Grassmann-Cayley Algebra and Robotics Applications[END_REF], it follows that: 

S H4 = [g i k j] [a b d f][c g h j] -[a b d h][c e f j] (27) 
We know that j = ge, i.e., e = gj. As a result,

[c e f j] = [c (g -j) f j] = [c g f j] (28) 
Finally,

S H4 = [g i k j] [a b d f][c g h j] -[a b d h][c g f j] = [g i k j] [a b d • f][c g • h j] ( 29 
)
where dotted letters stand for the permuted elements, as mentioned in [START_REF] White | Grassmann-Cayley Algebra and Robotics Applications[END_REF].

Geometric singularity conditions of the H4 robot

From Eq. ( 29), a parallel singularity occurs when:

1. [g i k j] = 0 ⇔ [i k j] = 0 ⇔ i, j and k belong to the same projective line. According to Eq. ( 24) and since i = (n 12 ; 0), k = (n 34 ; 0) and j = (z; 0), this condition is expressed in a vector form as follows:

(n 12 × n 34 ) • z = 0 ( 30 
)
where n 12 = n 1 × n 2 and n 34 = n 3 × n 4 . In turn, n 1 = y × l 1 , n 2 = x × l 2 , n 3 = y × l 3 and n 4 = x × l 4 . Thus, Eq. ( 30) is equivalent to: 30) expresses the dependency of the two constraint moments MI = (0 3×1 ; n 12 × z) = ij and MII = (0 3×1 ; n 34 × z) = kj. Therefore, it corresponds to the constraint singularities in which the robot loses one or two constraints and gains one or two extra dof.

(y × l 1 ) × (x × l 2 ) × (y × l 3 ) × (x × l 4 ) • z = 0 (31) Equation (

[a b d

• f][c g • h j] = 0 ⇔ (a b d ∧ c g j) ∧ f h = 0 ⇔ the projective line (f h) intersects
with the intersection line of planes (a b d) and (c g j) (see Eq. ( 2)). This condition is expressed in a vector form as follows:

(l 1 × l 2 ) × (r g -r c ) × z • (l 3 × l 4 ) = 0 (32) 
Equation ( 32) corresponds to the actuation singularities, namely, configurations in which the actuators cannot control the end-effector's motion.

Motions associated with Parallel Singularities

In a constraint singularity, the motion pattern of a PM may change and its end-effector might gain some limited motion(s). On the other hand, in an actuation singularity, the actuators of a PM cannot control its end effector's motion, namely, the end-effector might generate some infinitesimal motion(s) even when the actuators are locked. In this section, the different cases of both constraint and actuation singularities are enumerated and the gained and/or the uncontrollable motions are interpreted.

Constraint singularities and gained motions

Constraint singularities correspond to the degeneracy of the constraint wrench system, which produces a change in the limited motion of the end-effector. By solving Eq. ( 30), the conditions for constraint singularities turn out to be: Accordingly, point i cannot be defined. In that case, the constraint moment MI is null and the robot gains one extra dof. Indeed, the only limited dof is the rotation about an axis directed along z × n 34 ; (b) n 3 × n 4 = 0 3×1 : this condition can be explored similarly to the previous condition; (c) n 12 × n 34 = 0 3×1 ⇔ n 12 n 34 : this happens when the intersection line of planes Ω 1 and Ω 2 becomes parallel to the intersection line of planes Ω 3 and Ω 4 . This implies that i ≡ k. Under this condition, the robot has only one constraint moment MI ≡ MII and the end-effector has only one constraint, namely, the rotation about an axis directed along6 z × n 12 ≡ z × n 34 . For example, when n 1 n 3 and n 2 n 4 . Such a configuration is illustrated in Fig. 6;(d [START_REF] Joshi | Jacobian Analysis of Limited-DOF Parallel Manipulators[END_REF] , n 34 and z are orthogonal to a same direction but not parallel to each other. In that case: MI ≡ MII and the robot gains one rotational dof.

(a) n 1 × n 2 = 0 3×1 ⇔ n 1 n 2 , i.
Table 1 illustrates the constraint singularity conditions of the H4 robot as well as the dimension of the corresponding constraint wrench system W c H4 .

Actuation singularities and uncontrolled motions

Actuation singularities correspond to the rank deficiency of J while the constraint wrench system does not degenerate. In that case, the wrenches F1 , F2 , F3 , F4 , M1 and M2 form a n < 6-system and the twists reciprocal to this system for a given actuation singularity determine the uncontrolled mo- tions of the end-effector [START_REF] Wolf | Investigation of Parallel Manipulators using Linear Complex Approximation[END_REF]. From Eq. ( 32), an actuation singularity occurs in the following cases:

d d d j j j j h h h h f f f f k k k k i i i i u Z I ≡ Z II Z I Z I Z I Z II Z II Z II R 3 R 3 R 3 R 3 Ω ∞ Ω ∞ Ω ∞ Ω ∞ F1 F1 F1 F1 F2 F2 F2 F2 F3 F3 F3 F3
(a) l 1 × l 2 = 0 ⇔ l 1 l 2 ⇔ b ≡ d: plane (a b d) degenerates into a line.
In that case, the actuation forces F1 and F2 are parallel as illustrated in Fig. 7. By applying a linear transformation [START_REF] Zhao | Geometric Analysis of Overconstrained Parallel Manipulators with Three and Four Degrees of Freedom[END_REF] the wrench system span( F1 , F2 ) is equivalent to span( F1 , MI ). Consequently, the wrench system span( F1 , F2 , MI ) degenerates. However, in that case, one can find neither a zero-pitch twist nor an infinite-pitch twist reciprocal to the six wrenches of J.

As a result, in such a configuration, the uncontrolled In that case, the line at infinity (b d) ≡ (f h) crosses all the wrenches of J. In other words, one can find an infinite pitch twist (0 3×1 ; l 1 × l 2 ) reciprocal to all the wrenches of J. Consequently, the actuators cannot control the translational dof of the end-effector along l 1 × l 2 ; (d) (r gr c ) × z = 0: in that case, line (cg) is parallel to z.

It means that axes Z I and Z II coincide. Thus, axis Z I ≡ Z II crosses all the wrenches of J as shown in Fig. 8(d).

As a result, in such a configuration, the actuators cannot control the rotational dof of the end-effector about an axis directed along z; (e) (l 1 × l 2 ) is parallel to (r gr c ) × z. In that case, points b, d, j and u = (u; 0) are aligned and l 1 , l 2 , z and u = (r gr c ) are orthogonal to a given direction. Figure 8(e) illustrates the wrench graph of the H4 robot for such a singularity. Thus, the actuation forces F1 and F2 lie in plane (c g j). Consequently, in such a configuration, one can find one finite line, namely, (z; r g ×z) that crosses all the wrenches of J. Accordingly, the uncontrolled motion of end-effector is a pure rotation about an axis directed along z; (f) (l 3 × l 4 ) is parallel to (r gr c ) × z. This case is similar to the previous one; (g) The three vectors (l 1 × l 2 ), (l 3 × l 4 ) and (r gr c ) × z are parallel to each other. In that case, points b, d, f, h, j and u = (u; 0) are aligned and l 1 , l 2 , l 3 , l 4 , z and u = (r g -r c ) are orthogonal to a given direction. Thus, the actuation forces F1 , F2 , F3 and F4 lie in plane (c g j) as shown in Fig. 8(g). Consequently, in such a configuration, one can find two projective lines (z; r g ×z) and (0 3×1 ; l 1 ×l 2 ) that cross all the wrenches of J. Accordingly, the endeffector has two uncontrolled dof : a translation along l 1 × l 2 and a rotation about an axis directed along z; (h) The three vectors (l 1 × l 2 ), (l 3 × l 4 ) and (r gr c ) × z are orthogonal to a same direction but not parallel to each other. In such a configuration, the uncontrolled motion of the end-effector corresponds to a finite-pitch twist.

Table 2 illustrates the uncontrolled motions of the H4 robot associated with the different actuation singularities.

Discussion

The main contributions of this paper is to apply the GCA for the singularity analysis of lower-mobility PMs with complex kinematics as well as the determination of the motions associated with the parallel singular configurations of such PMs. In comparison with other singularity analysis methods, the GCA provides, through the superbracket decomposition, an enumeration of all the singularity conditions. The singularity analysis of the H4 robot was performed in [START_REF] Krut | Contribution l'étude des robots parallèles légers, 3T-1R et 3T-2R, à forts débattements angulaires[END_REF][START_REF] Wu | Singularity Analysis of a Novel 4-dof Parallel Manipulator H4[END_REF] where the condition for constraint singularities expressed in Eq. ( 30) was obtained. However, the condition for actuation singularities had not been obtained in a complete and general form before, such as the one given in Eq. [START_REF] Amine | Singularity Analysis of Lower-Mobility Parallel Robots with an Articulated Nacelle[END_REF]. The results obtained with GCA for the singularity analysis of the H4 robot are consequently more general than the results obtained previously. Moreover, this paper shows that with GCA, the interpretation of singular configurations can be performed based on either a vector condition or an invariant algebraic expression between some projective points of the wrench graph.

On the other side, the constraint and singularity analysis of the H4 robot in [START_REF] Amine | Constraint and Singularity Analysis of Lower-Mobility Parallel Manipulators with Parallelogram Joints[END_REF][START_REF] Amine | Singularity Analysis of Lower-Mobility Parallel Robots with an Articulated Nacelle[END_REF] focused more on screw theory. Here, more emphasis is given on GCA, the selection of the superbracket expression and the simplification of the superbracket decomposition. Indeed, the singularity analysis is completed and all the singularity conditions are enumerated. Furthermore, the motions associated with a given singular configuration of the H4 robot are determined for the first time in this paper.

Conclusions

This paper presented a systematic approach based on Grassmann-Cayley Algebra (GCA) to analyze the singularities of Lower-Mobility PMs with an articulated nacelle and to characterize the motion associated with a given singular configuration. The proposed approach can be considered as an extension of the method proposed in [START_REF] Kanaan | Singularity Analysis of Lower-Mobility Parallel Manipulators using Grassmann-Cayley Algebra[END_REF] to manipulators with an articulated nacelle. It was explained through the singularity analysis of the H4 robot. The results provided two geometric conditions that make it possible to enumerate and interpret all the singular configurations of the H4 robot.

The proposed approach consists of three main steps. First, the twist graph of the manipulator is obtained. This twist graph represents the independent twists between the base and the end-effector and is used in order to simplify the constraint analysis of the manipulator. Then, the wrench graph of the manipulator is obtained. This wrench graph is very useful for the singularity analysis of robots with an articulated nacelle. It represents the wrenches, obtained with the constraint analysis, in the projective space P 3 . Moreover, it allows one to select and express the points at infinity of the superbracket. Finally, the superbracket is analyzed in order to determine and interpret the parallel singularity conditions of the manipulator. These three steps can be followed to perform an exhaustive determination of the singularity conditions of lower-mobility PMs, mainly those having an articulated nacelle like the Par47 robot [START_REF] Nabat | Par4: Very High Speed Parallel Robot for Pick-and-Place[END_REF].
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 a Two zero-pitch screws are reciprocal to each other if and only if their axes are coplanar; (b) A zero-pitch screw $0 is reciprocal to an infinite-pitch screw $∞ if their directions are orthogonal to each other; (c) Two infinite-pitch screws are always reciprocal to each other.
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 1 Fig. 1. H4 robot.
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 5 Fig. 5. Wrench graph of the H4 robot in P 3 .
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  e][d f h j] = [a b c d][e f h j] + [a b c f][d e h j] + [a b c h][d f e j] + [a b c j][d f h e] (26) We know that: [d f h j] = 0, [d e h j] = [d g h j] and [d f e j] = -[d e f j]. Furthermore, points a, c and j being on the same projective line, [a b c j] = 0. Thus, -[a b c d][e f h j] -[a b c f][d g h j] + [a b c h][d e f j] = 0 Therefore,

  e., planes Ω 1 and Ω 2 are parallel and, as a consequence, n 12 = 0 3×1 . Since n 1 = y × l 1 and n 2 = x × l 2 , this condition can occur if and only if l 1 and l 2 are parallel to plane (xOy), i.e., if n 1 n 2 z. It means that points b and d belong to the line at infinity (xy), which coincides with lines M1 and M2 .
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 127 Fig. 7. An actuation singularity: l 1 l 2 .

Fig. 8 .

 8 Fig. 8. Wrench graph associated with the actuation singularity conditions (c), (d), (e) and (g).

A translation along l 1 × l 2 (A translation along l 1 ×

 21 l 2 plus a rotation about an axis directed along z motion of the end-effector is a finite-pitch twist, i.e., a combination of a translation and a rotation; (b) l 3 × l 4 = 0 ⇔ l 3 l 4 ⇔ f ≡ h: line (f h) degenerates into a point. This case can be analyzed similarly to the previous one; (c) (l 1 × l 2 ) (l 3 × l 4 ): lines (b d) and (f h) coincide and points b, d, f and h are aligned as shown in Fig. 8(c).
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 1 ) n 12 z: this can occur if n 12 = n 1 × n 2 is parallel Fig.6. A constraint singularity: (n 1 × n 2 ) (n 3 × n 4 ). Constraint singularities of the H4 robot.

	e.,

to z, i.e., if n 1 = y × l 1 and n 2 = x × l 2 are parallel to plane (xOy). This implies to have l 1 z l 2 , i.

Table 2 .

 2 Actuation singularities of the H4 robot.

In the scope of this paper, (s; r × s) denotes a Plücker coordinate vector given by s r × s .

R, S and (4S) denote a revolute joint, a spherical joint and a spatial parallelogram joint, respectively.

The notation "⊥" denotes the reciprocity of two screw systems.

In general, this is the case of lower mobility PMs with at least one limited rotational dof.

Note that all vectors are considered as unit vectors, i.e., n 12 n 34 implies that n 12 ≡ n 34 .

The commercial name of the Par4 robot is Quattro (http://www.adept.com/).

Appendices Appendix A

The 24 monomials of Eq. ( 1) are expressed below:

Appendix B Let (abc) and (def) be two extensors in V (d = 4) of steps i and j, (i = j = 3) representing two distinct planes in P 3 and let (gh) be an extensor of step k = 2 (a 2-extensor) representing a line in P 3 such that (gh) / ∈ (abc) and (gh) / ∈ (def). Now let us calculate a bracket expression of gh ∧ (abc ∧ def). Since the meet operator is associative, one has:

Since k + i > d, the meet (gh ∧ abc) is an extensor of step k + id = 1 representing the intersection point of line (gh) and plane (abc) expressed as:

Then (gh ∧ abc) ∧ def is an extensor of step 1 + jd = 0, namely, a scalar that takes the form: