A Bayesian marked point process for object detection. Application to MUSE hyperspectral data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

A Bayesian marked point process for object detection. Application to MUSE hyperspectral data

Résumé

Marked point processes have received a great attention in the recent years, for their ability to extract objects in large data sets as those obtained in e.g. biological studies or hyperspectral remote sensing frameworks. This paper focuses on an original Bayesian point pro- cess estimation for the detection of galaxies from the hyperspectral MUSE data 'cube'. It is shown that this approach allows to obtain a a synthetic representation of the detection problem and circumvent the computational complexity inherent to high dimensional pixel based approaches. The reversible jump Monte Carlo Markov Chain (RJ- MCMC) implemented to sample the parameters is detailed, and the results obtained on benchmark data mimicking the real instrument are provided.
Fichier principal
Vignette du fichier
icassp_2011_CCM2.pdf (151.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00642152 , version 1 (17-11-2011)

Identifiants

  • HAL Id : hal-00642152 , version 1

Citer

Aude Costard, Florent Chatelain, Olivier J.J. Michel. A Bayesian marked point process for object detection. Application to MUSE hyperspectral data. ICASSP 2011 - IEEE International Conference on Acoustics, Speech and Signal Processing, May 2011, Prague, Czech Republic. pp.SPTM-L2.6. ⟨hal-00642152⟩
236 Consultations
412 Téléchargements

Partager

More