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It has been predicted that in the presence of a sufficiently high-dissipative environment transport
in a small tunnel junction can become extremely regular, giving rise to the phenomenon of single-
electron tunneling oscillations. Recent progress in detection of high-frequency current fluctuations
and the interest in single-electron sources motivate further investigations on the expected accuracy
of the charge oscillations as a function of the impedance of the environment. In this paper we study
theoretically the charge-fluctuation spectrum at finite frequency for the system at hand, and inves-
tigate its behavior as a function of the external impedance. The evolution and the disappearance
of the single-electron oscillations peak is described by analytical and numerical methods.

I. INTRODUCTION

Coulomb blockade of voltage-biased tunnel junctions
in the presence of a dissipative environment is a well-
understood phenomenon of quantum transport (for a re-
view see for instance Ref. [1]). It has been shown that if
the impedance of the environment R is smaller than the
tunnel junction resistance Rt, but larger than the quan-
tum of resistance RQ = 2π~/e ≈ 25.8kΩ (~ being the
reduced Planck constant and e the electron charge), the
current is suppressed for bias voltage V smaller than the
Coulomb gap e/2C, associated with the capacitance C of
the junction (C is typically in the fF range). This effect
can be visible for temperatures lower than the Coulomb
charging energy e2/2C and for Rt ≫ RQ, which assures
suppression of cotunneling. In practice realizing a high-
impedance environment with a flat frequency response
till frequencies of the order of e2/2C~ is a challenging
experimental problem, as discussed in detail in Ref. [2].
Most experimental observations of Coulomb blockade
phenomena in single tunnel junctions are actually done
in an intermediate-impedance situation (R ∼ RQ), which
leads at least to clearly non-linear characteristics of the
junction; see for example Refs. [3, 4]. Nevertheless, it is
feasible to realize impedances of the order of some hun-
dreds of kΩ; for instance in the recent Ref. [5] a resis-
tance R ∼ 0.4MΩ has been realized. For these values not
only the suppression of the current at low-bias voltage
should be visible, but also an appealing effect predicted
in the 1980s [6–9]: the single-electron tunneling oscilla-
tions (SETOs).

The idea behind this effect can be understood in the
simplest way in the limit R, V → ∞ with V/R = Ib, so
that the tunnel junction is current biased. The current
slowly charges the capacitance. When V = Q/C reaches
the threshold e/2C one electron can cross the junction.
If Ib ≪ e/RtC this will happen just after V has reached
the threshold. The charge on the capacitance after the
tunneling event will be Q ≃ −e/2, and Q will start to
slowly increase again. A time ∼ e/Ib is needed before
a new electron can cross the junction and the sequence
can start again. The voltage at the junction will thus be

periodically modulated at a tunable frequency ∼ Ib/e.

Observation of this phenomenon is difficult. The im-
plementation of the required strong-impedance environ-
ment has been realized by different authors using on-
chip resistors [10–16]. An alternative approach has also
been tried by designing the environment with tunnel-
junction arrays [17, 18], exploiting the fact that a large
number of arrays reduces the stochastic nature of the
current [19]. Recently, observation of soliton-like single-
electron oscillations with this method has been reported
[20]. A similar phenomenon for superconducting Joseph-
son junctions has been predicted (Bloch oscillations) [21]
and investigated by many authors [22–25]. Arrays of dc
SQUIDs have also been exploited in this case to build
up the proper environment to obtain Coulomb block-
ade of Cooper pairs [26–28]. Reports on the observation
of Shapiro-step-like structures in microwave-irradiated
junctions constitute the present state of the art for the
experimental probe of this effect [14, 23, 29].

Progress in the detection of high-frequency current
fluctuations [30–33] can open new possibilities of obser-
vation of this phenomenon and of the crossover region,
where the oscillations are not completely established. At
the same time the possibility of generating a periodic and
frequency-tunable electric signal without any oscillating
source is an interesting opportunity and could have ap-
plications, for instance, as a motion actuator in nanome-
chanical systems or a controlled single-electron source.

It should be mentioned that Coulomb blockade is in-
stead easily observed in double tunnel junctions even in
absence of an environment. This happens since the sec-
ond tunnel junction plays the role of the large-impedance
environment suppressing quantum charge fluctuations
and preventing tunneling if the voltage is below a thresh-
old. Note however that this configuration (without envi-
ronment) will not give rise to single-electron oscillations,
but to the well known sequential transport regime. Elec-
trons hop stochastically through the first and then the
second junctions: The advantage of an ohmic environ-
ment is that it can generate (at least in principle) a stable
current source.

In this paper we study how accurate the SETOs can be
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FIG. 1. Circuit scheme of the system considered: a tunnel
junction with capacitance C and tunneling resistance Rt, bi-
ased by the constant current Ib and shunted by a resistance
Rs in parallel (right), which is equivalent to a junction bi-
ased by a voltage Vb and with a resistance R in series (left)
provided that Vb = IbR and R = Rs.

as a function of the impedance and of the bias conditions.
In order to do this we will study the charge-fluctuation
spectrum at the junction capacitance (or equivalently
the current-fluctuation spectrum through the resistance
load), and in particular the width of the peak at the
frequency ∼ Ib/e. Notwithstanding the relatively large
number of papers on this subject, some specifically ad-
dressing the dynamics of arbitrarily biased mesoscopic
tunnel junctions with an analytical approach [34–36], a
consistent calculation of these quantities is not available.
It can be useful in order to evaluate the expected effect
in view of measuring current fluctuations in this kind of
device. In this paper we show that the width of the peak
scales as the inverse of the impedance for large R/Rt.
The peak remains observable till values of R/Rt of the
order of 5.
The plan of the paper is the following. In Sec. II we

present the model describing the transport through the
junction. In Sec. III we discuss the different regimes that
the system undergoes by varying the bias voltage and the
environment resistance. In particular we obtain an an-
alytical expression for the the I-V characteristic in the
SETOs regime. In Sec. IV we calculate analytically the
charge spectrum. The results are discussed and com-
pared with numerical Monte Carlo simulations in Sec. V.
Section VI gives our conclusions.

II. THE SYSTEM AND THE MODEL

Let us consider a tunnel junction with tunneling re-
sistance Rt ≫ RQ and associated capacitance C. The
circuit is voltage biased (at voltage Vb) at zero tempera-
ture (T = 0) in the presence of a resistor of resistance R
in series with the junction (see Fig. (1), left side). This
circuit is equivalent to one with a current source Ib and
a shunt resistor Rs in parallel to the junction, provided
Ib = Vb/R and R = Rs (see Fig. (1), right side). We
will thus use the parallel configuration to describe the
device in analogy with the previous literature [7]. It is
clear that the results can be readily converted to the volt-
age bias case. In particular note that the limit Rs → ∞
(specifically Rs ≫ Rt) describes the ideal current source.

Since we are interested in studying SETOs we need
Rs & Rt ≫ RQ. We thus assume from the outset that
Rs ≫ RQ, which allows to neglect quantum fluctuations
and treat the charge degrees of freedom classically [7].
We also assume that the environment has a flat frequency
response Z(ω) = Rs up to frequencies ~ω ≈ e2/2C. This
hypothesis, though not easy to fulfill in practice, is the
common assumption in the literature about this problem,
and allows a simpler and more transparent approach. In
this regime transport through the junction is described
by the theory currently known as orthodox Coulomb
blockade theory. Specifically the electron-tunneling rate
depends on the voltage at the junction (VJ ) as follows:

Γ(VJ ) = θ(VJ − e/2C)(VJ − e/2C)/(eRt) , (1)

where θ is the Heaviside function. [At finite temperature
the function θ(V ) is substituted by 1/(e−eV/kBT − 1).]
If (RQ ≪) Rs ≪ Rt the standard picture of Coulomb
blockade applies to the degrees of freedom of the en-
vironment: They have the time to relax to thermal
equilibrium between two electron-tunneling events. The
current-voltage characteristic in this case is then given
by IJ (VJ ) = (VJ − e/2C)θ(VJ − e/2C), exposing a clear
Coulomb gap for the current IJ through the junction.
But if Rs ∼ Rt or larger (for moderate values of the bias
voltage) the resistive environment (described for instance
by a large collection of bosonic modes) reaches thermal
equilibrium, but not the charge on the capacitance Q(t),
which needs a time τs = RsC to relax to its stationary
state. Formula (1) still holds, but with a time-dependent
voltage V (t) = Q(t)/C. The time dependence of the
charge is given by the solution of the differential equa-
tion:

Q̇ = −Q/RsC + Ib , (2)

which for an initial condition Q0 at t = 0 reads

Qf(Q0, t) = (Q0 − Ibτs)e
−t/τs + Ibτs . (3)

The stochastic problem is then completely formulated
and in the remainder of the paper we discuss the behavior
of the current and of the charge as a function of the
two relevant dimensionless parameters of the problem:
ρ = Rs/Rt and κ = (Ib − Ith)/Ith, with Ith = e/2τs
the threshold for the current to start flowing through the
tunnel junction.
The current through the junction has already been cal-

culated numerically in the very early literature [8]. We
obtained the same results by Monte Carlo simulation
and, for convenience, we reproduce the curves in Fig. (2).
The limit of infinite Rs, or ideal current source, was dis-
cussed in details in Refs. [7, 37]. There it was shown in
particular that in this limit the system is in the SETOs
regime with frequency Ib/e with an averaged voltage at
the junction given by (see [7]):

〈VJ〉 =
√

πeRt〈IJ〉
2C

. (4)
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FIG. 2. (Color online) Average current through the junction
versus average voltage for different values of the ratio ρ =
Rs/Rt. The curves evolve from the standard Coulomb block-
ade suppression (rightmost line corresponding to ρ = 0.1) to
a square root behavior (leftmost line ρ = 500). The dotted
line is the large-ρ limit of Eq. (4).

In the next section we will discuss the behavior of the sys-
tem for the intermediate regimes appearing when Rs/Rt

is not infinite, deriving in particular new analytical ex-
pressions for the SETOs frequency and I-V characteris-
tics.

III. REGIMES OF CURRENT TRANSPORT

In this section we study the evolution of the current
through the junction as a function of the current bias for
different values of the external resistance. The most in-
teresting case is when Rs/Rt is very large, we thus plot
in Fig. 3 the current on a logarithmic scale for the ex-
treme value of Rs/Rt = 5 × 102. Fig. (3) will be used
as a “map” for the rest of the section, where we will dis-
cuss how the junction evolves through the four different
regimes of transport indicated in the figure with roman
numerals from (I) to (IV). Fig. (4) shows the behavior of
Q(t) in the different regimes.

A. Non SETOs regimes

Let us begin with the region indicated with (I) in
Fig. (3). For Ib < Ith the whole current flows through
the shunting resistance and the voltage at the junction

〈VJ〉I = RsIb (5)

remains below the threshold of the Coulomb blockade:
e/2C. Note that this first branch of the I-V characteris-
tic in Fig. (2) is flattened on the IJ = 0 value and it is
thus not visible.
For Ib > Ith transport through the junction becomes

possible. For Ib− Ith → 0+ one can identify a Poissonian
regime of transport (region (II) in Fig. (3)), where the

0.0001 0.001 0.01 0.1 1
I
 b

R
t
C/e

0.5

1

1.5

〈V
J〉C

/e

R
s
/R

t
=5x10

2

I
th

III.2I

II

IV

III.1

FIG. 3. (Color online) Average voltage through the junction
versus bias current in logarithmic scale (ρ = 5 × 102): Four
different transport regimes can be outlined. The solid line
gives the results of the numerical simulations, while dashed
lines represent the analytical curves given in Sec. III.
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FIG. 4. (Color online) The time behavior of the charge in
the different regimes. Extreme values of the parameters ρ and
κ have been chosen to best outline the differences.

time between tunneling events fluctuates strongly. This
is due to the fact that Γ(V ) as given by Eq. (1) vanishes
linearly near the threshold, and for very small Ib − Ith
the charge has always the time (typically τs) to reach
the saturation value Qs = Ibτs. The typical inverse time
between two tunnel events is:

1/τeff = Γ(Qs) = (Rs/Rt)(Ib − Ith)/e ≪ 1/τs . (6)

The last inequality sets also the region of existence of
the regime (II) i.e. , 0 < κ ≪ 1/ρ. The average VJ can
be readily evaluated by averaging the oscillations of the
charge Q(t) = Qs − e e−t/τs on the average time between
two tunneling events τeff + τs ≈ τeff . This gives:

〈VJ〉II = Rs [Ib(1 −Rs/Rt) + IthRs/Rt] (7)

and the curve is shown dashed in Fig. (3). Note that
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the slope changes sign at Rs/Rt = 1. We will see that
for Rs ≪ Rt this region joins continuously region (IV)
without the appearance of region (III).
It is thus convenient to discuss now the region (IV)

defined as the limit of large Ib. In this limit the junction
has a I-V characteristic of a normal resistor shifted by
the Coulomb gap. The average VJ reads then:

〈VJ〉IV =
RsRt

Rs +Rt

(

Ib +
e

2RtC

)

. (8)

This expression holds for 〈VJ〉 ≫ e/2C, i.e. for Ib/Ith ≫
(Rt + Rs)/Rs. For Rs ≫ Rt it is then clear that a large
region defined by the condition

1/ρ ≪ κ ≪ ρ (9)

exists between region (II) and region (IV). This is the
SETOs region, (III) in Fig. (3), which will be discussed
below. On the other side, for Rs ≪ Rt, one sees that
region (II) and region (IV) overlap at κ ≈ 1. Actually it
is straightforward to check that Eq. (8) expanded to first
order in Rs/Rt coincides with Eq. (7).

B. SETOs regime

Let us now discuss the single-electron oscillations
regime, defined as region (III) in Fig. (3). This region
is present only if Rs ≫ Rt and is characterized by nearly
periodic electron tunneling events, since the time between
two events is dominated by the deterministic charging
time of the capacitance. This time is typically of the
order of t⋆, defined as the time needed to charge the ca-
pacitance from Q = −e/2 to Q = e/2:

t⋆/τs = ln

(

Ib + Ith
Ib − Ith

)

= ln

(

2 + κ

κ

)

. (10)

The electrons hop just after the threshold voltage has
been reached.
A general statistical theoretical framework is presented

in Ref. [7] (and recalled in the Appendix), but its ana-
lytical solution is given there only in the ideal current
source limit (Rs/Rt → ∞). Actually in the case of the
SETOs the approach is simplified and further progress
is possible. In order to obtain these results and for the
calculation of the correlation function of the next section
it is convenient to introduce a few concepts. In Fig. (5)
the typical time dependence of the charge Q(t) in the
SETOs regime is shown. We can associate a number n
to each hopping event and define tn and τn = tn+ δτn as
the instant of time when Q(t) = e/2 and when the hop-
ping event takes places, respectively (see Fig. (5)). These
quantities fluctuate randomly, but a correlation between
tn and tn−1 exists. Inversion of Eq. (3) gives the time
needed to reach the border of the Coulomb blockade re-
gion starting from a charge Q0:

Ξ(Q0) = −τs ln

(

Ibτs − e/2

Ibτs −Q0

)

. (11)

τ τ τ
t t t
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FIG. 5. (Color online) Details of the tunneling process: tn
is the time at which the charge reaches the blockade region
border after the (n−1)th tunneling event and δτn is the time
it stays outside the border before the nth event.

The following relation between successive times tn holds:

tn − tn−1 ≡ F(δτn−1) , (12)

with

F(δτ) = δτ + Ξ
(

Qf

( e

2
, δτ
)

− e
)

= δτ − τs ln

(

κ

2 + κe−δτ/τs

)

. (13)

Let us now introduce the probability Pn(t) that n elec-
trons have tunneled through the junction at the time t.
Within the SETOs region, this quantity is different from
zero only in a small time region of the order of t⋆, and, in
particular, the above mentioned condition on the typical
hopping time implies that Pn(t) will reach 1 and then
vanish in a time much shorter than t⋆, just after Q(t)
crosses the threshold e/2. The rate equation for t ≥ tn
[Q(tn) = e/2] takes the simple form:

dPn

dt
(t) = −Γ(Qf(e/2, t)/C)Pn(t) (14)

with the initial condition Pn(tn) = 1. The solution reads:

Pn(t) = e
−

(Ibτs−e/2)

eRtC
τs

(

t−tn
τs

+e

−
t−tn
τs −1

)

. (15)

For short times (t− tn ≪ τs) it has a Gaussian form

Pn(t) ≈ exp
{

−(t− tn)
2κρ/(4τ2s )

}

(16)

with a decay time scale ∼ τs/
√
κρ ≪ t⋆ in region (III).

The Gaussian form will thus be used in the following for
the analytical calculations.
From the knowledge of Pn(t) it is possible to obtain

the probability density that a hopping event takes places
at time t: P(t) = −dPn/dt, for t ≥ tn. This allows us
to calculate the average delay time 〈δτ 〉 for an electron
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to hop after the threshold e/2 has been crossed by the
charge Q(t):

〈δτ 〉 =
∫ ∞

0

dt t P(t) . (17)

In particular when Pn can be approximated by the Gaus-
sian (16) one obtains 〈δτ〉 /τs =

√

π/(κρ) with 〈δτ 〉 ≪ t⋆.
To obtain the period of the SETOs one has to average
the nonlinear expression (13): T = 〈F〉, which again in
the SETOs region simplifies to

T = t⋆ + 2 〈δτ 〉 /(2 + κ) . (18)

Let us now come back to the probability. Conservation
of the probability gives that Pn+1(t) = 1 − Pn(t). Since
in this approximation the behavior is quasiperiodic, the
charge on the capacitor for the n+1 electron is on average

Qf (e/2, t − tn − T ). (A more precise discussion on the
validity of this last average can be found in the Appendix,
where the problem is analyzed more rigorously.) The
average charge can then be computed by averaging over
a period as follows:

〈Q〉 =
∫ tn+T

tn

dt

T

[

Qf

( e

2
, t− tn

)

Pn(t)+ (19)

+ Qf

( e

2
, t− tn − T

)

Pn+1(t)

]

.

In the limit of ρ ≫ 1 only the gaussian part of the prob-
ability is relevant, and the integral gives:

〈Q〉 =Qs −
(

Qs −
e

2

)(

e
T

τs − 1
) τs
T × (20)

×
[

1−
√

π

κρ
e

1
κρ Erfc (1/

√
κρ)

]

.

Eq. (20) leads to 〈VJ 〉III = C〈Q〉. With little loss in the
accuracy Eq. (20) can be simplified to the form:

〈Q〉 ≈ e

2

[

κ+ 1− 2

(

1−
√

π

κρ

)

/ ln

(

2 + κ

κ

)]

. (21)

The analytical expressions (20), (21), and (A8) obtained
in the appendix, are compared to the Monte Carlo re-
sults in Fig. (6). These expressions describe the current
with good accuracy, and in particular they all capture
the presence of a minimum in the voltage VJ . This min-
imum signals the crossover region between two different
kinds of SETOs. We indicate them in Fig. (3) as III.1
and III.2. The latter appears for 1 ≪ κ ≪ ρ. In this
case, and in the extreme limit ρ → ∞ the SETOs period
becomes T = e/Ib, i.e. corresponds exactly to the time
needed to the ideal current source to furnish a charge e.
The saturation value for the charge (Qs) in this regime is
much larger than e/2, implying that only the linear part
of the exponential in Eq. (3) is explored. This is impor-
tant since the small fluctuations in the hopping times do
not affect the evolution equation for the next electron.
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FIG. 6. (Color online) Comparison between the differ-
ent approximations for the SETOs “nose” of the current-
voltage characteristics: Monte Carlo data (circles) are shown
against analytical calculations from Eq. (A8) (solid), Eq. (20)
(dashed), and Eq. (21) (dot-dashed).
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FIG. 7. (Color online) Scheme of the boundaries of the
transport regimes as a function of the relevant parameters:
The tunneling/shunt resistances ratio 1/ρ = Rt/Rs and the
relative distance of the current bias from the threshold κ =
(Ib − Ith)/Ith. The SETOs regime exists only in the limit
ρ ≫ 1.

One can readily verify that in the limit of an ideal cur-
rent source the charge time dependence around each tn
is Q(t) = Ib(t − ne/Ib). The non-linear corrections in-
stead add a stochastic dependence on the time evolution
of the charge. The period, for instance, does not depend
on 〈δτ〉 anymore for κ → ∞, as is clear from Eq. (18).
This extreme limit is not realistic and thus the second
term given in (18) is normally important.
Reducing the current bias, the saturation charge Qs

becomes of the order of e/2 (κ = 2Qs/e− 1 < 1) and the
non-linear behavior of Q(t) begins to correlate different
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hopping events. The charge time evolution in this regime
is characteristic and resembles a shark fin, as shown in
Fig. (4). It is also clear from (18), that in this regime the
stochastic fluctuations have the greatest impact on the
average SETOs period.
These two regimes can be identified on the current

plot Fig. (6) and in the analytical expression (21) as the
two branches joined by a minimum of the voltage. The
large bias behavior (κ ≫ 1) of (21) gives e

√

πκ/ρ /(2C),
which is the Averin-Likharev expression for the cur-
rent (4) (〈IJ 〉 ∼ Ib in this limit), while in the opposite
limit the long exponential charging time is dominating:
〈VJ 〉 ≈ (e/C)

√
π/(

√
κρ ln (2/κ)).

The overall situation is summarized in Fig. (7). Since it
is very difficult in practice to experimentally reach large
values of ρ, the plot in Fig. (7) suggests that a good
experimental choice can be κ = 1, for which the SETOs
appear for the lowest values of ρ. We will discuss in the
following the correlation function of the charge in order
to analyze quantitatively the evolution of the accuracy of
the SETOs.

IV. CHARGE-FLUCTUATION SPECTRUM

A quantitative measure of the accuracy of the SETOs
is given by the time correlation of the charge. This can
be defined as

S(τ) = 〈Q(t+ τ)Q(t)〉 − 〈Q(t+ τ)〉 〈Q(t)〉 , (22)

where the average is performed over a statistical ensemble
and the result does not depend on t, since the stochastic
process is stationary. Note also that this quantity is pro-
portional to the spectrum of current fluctuations through
the shunt resistance Rs: SR(τ) = S(τ)/τ2s . In the case of
voltage-biased junction (see Fig. (1)), SR gives the cur-
rent fluctuations that can be directly measured through
the load resistance R.
For perfectly periodic charge oscillations the Fourier

transform of (22) is given by a sum of Dirac delta func-
tions at ω = 2πn/T , with n integer. The non-periodic
fluctuations introduce a finite width of these peaks. The
form of S(ω) measures thus directly and with a simple
procedure the accuracy of the periodic charge transfer. In
this section we derive an analytical expression for S(ω)
that allows us to better understand the origin of the fluc-
tuations. In the next section we will compare these re-
sults to those obtained numerically by Monte Carlo sim-
ulations.
In order to calculate the Fourier transform of S(τ)

for this stationary process it is convenient to define the
charge Q(t) over a time 0 < t < Λ, with Λ ≫ T so that
many SETOs are present in a single sample of Q(t). One
can then calculate the Fourier series

Qp =

∫ Λ

0

dt

Λ
Q(t)eip

2π
Λ t , Q(t) =

∑

p

e−ip 2π
Λ tQp .

(23)

Substituting Eq. (23) into Eq. (22) and averaging over t
one obtains:

S(τ) =
∑

p

〈

|Qp|2
〉

e−ip 2π
Λ τ −Q2

0 , (24)

which can be used numerically to compute the correlation
function from the Monte Carlo data, or analytically, by
performing the limit Λ → ∞. In particular the Fourier
transform can be defined as

S(ω) =

∫ +Λ/2

−Λ/2

dτeiωτ−0+|τ |S(τ) , (25)

which gives

S(ω) =
∑

p

(
〈

|Qp|2
〉

− δp,0Q
2
0)2πδ(ω − ωp) , (26)

with ωp = 2πp/Λ. The presence of the Dirac delta func-
tions is an artifact due to the periodic extension induced
by the Fourier transform. In practice, since the frequency
scale 1/Λ is infinitesimal one can obtain the smooth func-
tion S(ω) by averaging the expression (26) for each value
of ω over a small interval 2π/Λ. This simply gives that

S(ωp) = Λ
〈

|Qp|2
〉

(27)

for p 6= 0 (Wiener-Khinchin theorem).
The problem is now reduced to the calculation of the

Fourier series of the charge. Using the definitions of tn
and τn given before in Eq. (11) and assuming that the
extrema of the time evolution of Q(t) coincide with the
two hopping events at times τ0 and τN we can write:

Qp =

N−1
∑

n=0

∫ τn+1

τn

dt

Λ
Q(t) eiωpt = (28)

=

N−1
∑

n=0

eiωpτn

∫ τn+1−τn

0

dt

Λ
Qf (e/2, t− tn+1 + τn) e

iωpt .

In the limit of well-established SETOs the integral gives
a contribution that fluctuates very little. On the con-
trary the exponentials are much more sensitive to even
small fluctuations of the tunneling times, since the phase
results from the accumulation of many different hopping
events. For this reason we expect that the upper inte-
gration limit can be substituted with the period of the
SETOs τn+1−τn ≈ T and we use Qf(e/2, t− (T −〈δτ〉))
as the average charge dependence. The Fourier transform
then takes the form:

S(ω) = NT
〈

|F (ω)|2
〉

A(ω) , (29)

where

F (ω) =
1

N

N−1
∑

n=0

eiωtn (30)
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and

A(ω) =

∣

∣

∣

∣

∣

eiω〈δτ〉

∫ T

0

dt

T Qf(e/2, t− T + 〈δτ 〉)eiωt

∣

∣

∣

∣

∣

2

. (31)

The quantity A can be readily evaluated:

A(ω) =
(eτs
2T
)2

×

×
∣

∣

∣

∣

κ+ 1

ωτs
(eiωT − 1)− κe−〈δτ〉/τs

ωτs + i
(eiωT − eT /τs)

∣

∣

∣

∣

2

.

(32)

In order to proceed we have to evaluate also the average
of F (ω). It is convenient to express the time at which one
event happens as a sum over the delays between previous
events using Eq. (12):

F (ω) =
eiωt0

N

(

1 +

N−1
∑

n=1

exp

{

iω

n−1
∑

k=0

F(δτk)

})

. (33)

Now the average of |F (ω)|2 can be performed using the
distribution function P(δτ):

〈

|F (ω)|2
〉

=
1

N

(

1 + 2Re

{

g(ω)

1− g(ω)

})

+
δF

N2
(34)

where we introduce the quantities:

g(ω) =
〈

eiωF(δτ)
〉

=

∫ ∞

0

d(δτ)P(δτ)eiωF(δτ) (35)

and δF = 2Re
{

g(gN − 1)/(1− g)2
}

, whose contribution
to S(ω) vanishes in the limit N → ∞. In conclusion we
find:

S(ω) =

(

1 + 2Re

{

g(ω)

1− g(ω)

})

T A(ω) , (36)

which constitutes the central result of this section.
We are now in the position to study the spectrum of the

charge fluctuations for the system at hand. As it can be
seen from the form of (34) the function has a singularity
for g → 1. Since

|g(ω)|2 =

∫ ∞

0

dt

∫ t

0

dt′ P(t)P(t′)2 cos(ωt) ≤ 1 , (37)

a singularity is present for ω → 0 or when the fluctuations
are negligible so that g ≈ eiω〈F(δτ)〉. This picture predicts
a series of peaks for the frequencies Ωn = 2πn/T with n
integer. Small fluctuations introduce a finite width, regu-
larizing the correlation function. The numerical integra-
tion in the expression of g(ω) is straightforward, but it
is also possible to obtain an analytical expression. Deep
in the SETOs regime P(δτ) has a gaussian behavior and
provides a short cutoff time, so that we can expand the
exponential in (35) to second order in δτ . This gives

g(ω) = eiωt⋆ × (38)

×
(

1 +
2iω

2 + κ
〈δτ〉 − κ2iω + 4ω2τs

2(2 + κ)2

〈

δτ2
〉

τs
+ . . .

)

.

0 2 4 6 8 10
κ

0.2

0.4

0.6

0.8

1

Γ1 Ω
1

FIG. 8. The relative width at half height of the first noise
peak as a function of κ, given by Eq. (43), for ρ = 10.

The maximum of Re{g/(1 − g)} takes place for
Arg[g(ω)] = 0 that at lowest order in 〈δτ 〉 gives for the
position of the poles:

Ωn =
2πn

t⋆

(

1− 2 〈δτ〉
(2 + κ)t⋆

)

, (39)

coinciding at linear order in 〈δτ 〉 /τs with 2πn/T . The
phase of g (g = |g|eiφ) thus vanishes at the minimum of
Re{g/(1 − g)}, so that near this point one can write at
lowest order φ ≈ T (ω − Ωn). The relevant part of (34)
then reads:

Re

{

g

1− g

}

≈ (1− |g|)
(1− |g|)2 + φ2

, (40)

and Eq. (29) takes the simple Lorentzian form

S(ω) ≃ A(Ωn)
Γn/2

Γ2
n/4 + (ω − Ωn)2

, (41)

with the full width at half maximum Γn defined by:

Γn = 2
1− |g|
T =

4Ω2
n

T (2 + κ)2

(

〈

δτ2
〉

− 〈δτ 〉2
)

. (42)

The presence in this formula of the mean squared vari-
ance of delay in the tunneling time,

〈

(δτ − 〈δτ 〉)2
〉

,
clearly indicates that the spread in the hopping events
controls the width of the peak, as is physically expected.
One also sees that the width of the poles increases with
n. Performing the average with the gaussian distribution
we find

〈

(δτ − 〈δτ 〉)2
〉

/τ2s = 4(1−π/4)/(κρ) and for the
relative width Γn/Ωn we have the explicit expression:

Γn

Ωn
=

32π n (1− π/4)

ρ κ (2 + κ)2 ln2 [(2 + κ)/κ]
. (43)

Eq. (43) allows to study the width of the peak in the
charge-fluctuation spectrum, and thus, the accuracy of
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the SETOs. It correctly gives that Γ1/(2π/T ) ≪ 1 in
the SETOs regime (1/ρ ≪ κ ≪ ρ). It also shows (see
Fig. (8)) that the relative width Γ1/Ω1 is a monotonic
decreasing function of the bias current (κ) for a given
value of the resistance (ρ).
From Eq. (41) it is clear that within this approxima-

tion the weight of the Lorentzian peak is controlled only
by the form factor A(Ωn). Using its explicit expression
one finds that for large ρ it becomes independent of ρ:
A(Ω1) ≃ e2/

(

4π2 + ln2
[

2+κ
κ

])

. The full variation takes
place in the κ < 1 region, where the shape of Q(t) evolves
from the shark-fin to the sawtooth form. From the form
of Eq. (43) one can also see that for small κ the peak
broadens and the SETOs are washed out when Γ1 ∼ Ω1

(for κ ∼ 1/ρ). For large κ the theory instead predicts
that the relative width decreases monotonically [38]:

Γn

Ωn
=

8πn(1− π/4)

ρκ
. (44)

In this limit the SETOs disappear by a decrease of the
weight of the peak, but within our approximation this
is not seen. Actually for sufficiently large current bias
(κ ∼ ρ) there is a finite probability that a single tunnel
event is no more sufficient to bring the charge back in
the Coulomb blockade region. This is quantified by the
value of Pn(tn), which, contrary to our hypothesis, can
become smaller than 1. One can expect the theory to
roughly remain valid for the fraction of tunneling events
that leaves Q(tn) < e/2. This describes a peak that
remains sharp, but that vanishes in weight as Pn(tn).
Another interesting and relevant limit is the low-

frequency behavior of S(ω). Expanding Eq. (35) in ω
one can show that

N
〈

|F (ω)|2
〉

=
F2 − F 2

1

F 2
1

+ (45)

+ ω2 4F1F2F3 − F 2
1F4 − 3F 3

2

12F 4
1

+ . . .

where Fn = 〈Fn〉. If the fluctuations are negligible then
Fn = Fn

1 and the noise at low frequency vanishes. In
particular in our case this average takes a simple form if
the explicit expression of F is used:

N
〈

|F (ω)|2
〉

≃ 4

〈

δτ2
〉

− 〈δτ 〉2
t2⋆(2 + κ)2

(

1 +
ω2t2⋆
12

+ . . .

)

.

(46)
We thus find that in the SETOs regime the low-frequency
noise is suppressed. Eq. (46) together with the ex-
pansion of Eq. (32) for ω → 0 allows us to evaluate
the zero-frequency Fano factor: F ≡ SJ (0)/e 〈IJ 〉 =
S(0)/τ2s e 〈IJ 〉, where SJ(ω) is the noise spectrum of the
current through the junction and the relation S(ω) =
SJ(ω)τ

2
s /(1 + ω2τ2s ) holds exactly. The reduction of the

current fluctuations in the large-ρ limit naturally leads
to sub-Poissonian noise (F < 1) vanishing for ρ → ∞:

F ≃ (4 − π)(−2 + (κ+ 1)t⋆/τs)
2

ρ κ (2 + κ)2(t⋆/τs)2
. (47)

Nevertheless this expression is only qualitatively correct,
since the analytical theory has been designed to describe
accurately the noise for frequencies around the peak of
the SETOs. This will be shown in the next section, where
we present numerical simulations.

V. NUMERICAL SIMULATIONS

In this section we show numerical results obtained by
Monte Carlo simulations for the charge-fluctuation spec-
trum. The purpose of this section is to compare these
results with the analytical calculations of the preceding
sections, valid for ρ ≫ 1 and 1/ρ ≪ κ ≪ ρ, and to ex-
plore the crossover region where the SETOs disappear.
The Monte Carlo simulations are performed by gener-

ating different realizations of the stochastic time evolu-
tion of the charge Q(t) over a time much longer than the
SETOs period. The time evolution of the charge is ob-
tained by discretizing the time on a nonuniform grid, such
that in the time interval ∆t the charge varies by a small
quantity and P = Γ(Q(t))∆t < N ≪ 1. The tunnel-
ing event is accepted or refused by generating a random
number between 0 and 1 and by comparing it to P . The
deterministic evolution of Q(t) between two events is sim-
ply given by Eq. (3). The sequence of time intervals of
deterministic evolution interspersed by tunneling times
so constructed gives the full knowledge of Q(t) and con-
stitutes the stochastic run. The square modulus of the
Fourier transform of the charge is then easily calculated
analytically piecewise, interval by interval. To obtain
the noise as from (27), just a further average over several
runs is needed. Typically N = .01, each run counts 103

tunneling events, and an average over 104 realizations is
performed.
Let us now discuss the numerical results. We begin by

comparing the form of the first peak in the noise spec-
trum. It is shown scaled by the analytically calculated
width Γ1 in Fig. (9) for different values of ρ and given
κ. The agreement is excellent. We then compare the full
ω dependence of S(ω) obtained from Eq. (36) with the
one calculated numerically. We show the comparison in
Fig. (10) for the relevant case κ = 1 (which corresponds
to the widest extension in ρ of the SETOs region) and for
ρ ranging from 200 to 10. As expected, the agreement is
very good deep in the SETOs regime, for ρ ≫ 1, and at
ρ = 10 all the essential features of the peak at ω = Ω1 are
still fairly well represented by the theory. The analytical
approximation correctly finds the main contribution to
the noise, but it tends to underestimate it far from the
peak maximum.
Let us now investigate how the SETOs disappear.

From the experimental point of view a simple parame-
ter that can be varied continuously is κ ∼ Ib. We thus
plot in Fig. (11) the evolution of S(ω) for given ρ = 10
and 100 as a function of κ. These two plots show several
interesting features. The first striking one is the reduc-
tion of the relative widths of the peaks by increasing κ.
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FIG. 9. (Color online) The noise peak at ω = Ω1 obtained
from Monte Carlo numerical simulations for values of ρ rang-
ing from 80 to 200 in steps of 10. On the x-axis the fre-
quency is shifted by Ω1 and scaled by the width Γ1 as given
by Eq. (42), on the y-axis the noise is scaled by T ρ.
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FIG. 10. (Color online) Comparison between Monte Carlo
data for the charge-fluctuation spectrum and the analytical
results obtained from Eq. (36) for different values of ρ, at
fixed bias condition κ = 1.

This is predicted by the analytical expression (43) and
the numerical calculations assess its validity even outside
the region of applicability of the analytical theory. Note
that in Fig. (11) the frequency axis is rescaled with Ω1,
thus the apparent weight of the peaks is reduced by the
scaling, but it saturates in the region κ ≪ ρ as predicted
by the analytical theory, and then starts to decrease in
the crossover region. The second visible feature is the ap-
pearance of a wide Lorentzian zero frequency peak that
remains the only structure for κ ≫ ρ. This structure
is due to the charge noise induced at the capacitance
by the Poissonian current fluctuations generated by the
tunnel junction. By solving the electromagnetic prob-
lem one finds: S(ω) = C2|Z(ω)|2e 〈IJ 〉, where e 〈IJ 〉 is
the standard tunnel junction Poissonian white noise and
Z(ω) = R‖/(1+iωR‖C), with R‖ = RsRt/(Rs+Rt), the

0.5 1 1.5 2 2.5
ω/Ω1

0

0.5

1

1.5

2

S(
ω

)/
(e

2 R
tC

)

κ=100

κ=0.1

ρ=100

0.5 1 1.5 2 2.5
ω/Ω1

0

0.5

1

1.5

2

S(
ω

)/
(e

2 R
tC

)

κ=10

κ=0.1

ρ=10

FIG. 11. (Color online) Monte Carlo spectra for different
bias conditions κ at fixed junction environment: ρ = 100
(ρ = 10) in the upper (lower) graph. Increasing κ means here
moving along a horizontal line in Fig. (7) toward the high-
bias boundary of the SETOs region and it allows us to see
how SETOs disappear.

impedance between the current source and the voltage at
the capacitance. This gives:

S(ω) =
e〈IJ 〉C2R2

s

1 + 2ρ+ ρ2(1 + ω2R2
tC

2)
, (48)

which fits our data very well (not shown).
Finally we show in Fig. (12) the evolution of S(ω) for

κ = 1 and for ρ evolving from 1 to 100. This figure gives
an idea of the expected spectrum at the optimal value
κ = 1 as a function of ρ. It turns out that already at
ρ = 3, S(ω) presents a very broad maximum and ρ = 5
is probably sufficient to observe a clear structure in S(ω).

VI. CONCLUSIONS

In this paper we have studied theoretically electronic
transport in a tunnel junction in the presence of a large-
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FIG. 12. (Color online) Monte Carlo spectra for fixed bias
conditions κ = 1 and different values of ρ: The crossover
from the SETOs regime to the ρ . 1 region is shown.

resistive environment. The phenomenon of SETOs has
been predicted to appear in this system for essentially
infinite value of the external resistance, so that the junc-
tion can be seen as current biased. We investigated under
which conditions the SETOs appear for a realistic finite
value of the environment resistance. We found analytical
expressions for the current [Eq. (20)] and for the charge-
fluctuation spectrum [Eq. (29) with Eq. (42)]. Our ana-
lytical results describe very well the form of the peak in
the charge noise, which can be regarded as the hallmark
of the SETOs, since it quantifies the accuracy of the pe-
riodicity in the charge time dependence. We find that a
ratio of Rs/Rt as low as 5 can be sufficient to observe a
clear structure in S(ω) if the bias current is chosen such
that Ib ≈ 2Ith = e/RsC (this can be converted on a
condition on the voltage bias Vb ≈ e/C). This ratio can
be obtained experimentally and thus in principle SETOs
can be observed through the measurement of the current
or charge noise.
The conclusion on the possibility of observing the ef-

fect is thus optimistic. One should however keep in mind
that, following the literature on this problem, the the-
ory presented holds at low temperature (kBT ≪ e2/2C)
and neglects quantum fluctuations of the electromagnetic
modes of the environment. Thermal and quantum fluc-
tuations are expected to have a non-negligible influence
on the transport mechanism at play in the system. Their
evaluation requires a different technical approach and is
beyond the scope of the present paper.
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Appendix A: CALCULATION OF THE I-V
CHARACTERISTICS IN THE SETOs REGIME

WITH THE MASTER EQUATION APPROACH

In this Appendix we find for the I-V characteristics
expressions which take into account the spread in the
distribution probability of the charge. A full statistical
description of the behavior of the system can be given
in terms of the probability σn(Q, t) that at time t the
charge in the capacitance is Q and n charges have crossed
the junction. Conservation of the probability and the
master equation describing electron tunneling lead to the
following set of coupled partial differential equations:

∂σn(Q, t)

∂t
=

∂

∂Q

[

(Q−Qs)

τs
σn(Q, t)

]

(A1)

−Γ(Q/C)σn(Q, t) + Γ((Q + e)/C)σn−1(Q+ e, t) .

Eq. (A1) is a generalization of the equations given in
Ref. [7] to include the information on the number of elec-
trons which have tunneled. The general solution of this
equation is difficult in the presence of a finite resistance.
But in the SETOs regime we can find an explicit solu-
tion by exploiting the fact that at every cycle the charge
passes through the blocked range (−e/2 < Q < e/2). Let
us assume that at t = 0 the distribution function is:

σn(Q, 0) = δ(Q− e/2)δn,n0 . (A2)

The differential equation (A1) for σn0(Q, t) can be easily
solved, since it decouples from the others (σn0−1 = 0):

σn0(Q, t) = P (t)δ
(

Q−Qf

( e

2
, t
))

, (A3)

where P (t) = Pn(t) as given by Eq. (16) with tn = 0
and Qf is defined in Eq. (3). Once we know the solution
for σn0 we can substitute it into Eq. (A1) and find the
solution for σn0+1. This can be done by using the ansatz:

σn0+1(Q, t) =

∫

dQ′δ (Q−Qf (Q
′, t)) f(Q′, t) , (A4)

that gives

σn0+1(Q, t) = f(z(Q), t)e
t
τs , (A5)

with z(Q) = (Q − Qs)e
t
τs + Qs, and f(z(Q), t) = 0 for

z(Q) < e/2 and t > τs ln
(

1
2 − z(Q)

e

)

. The resulting dif-

ferential equation for f reads:

∂f(z(Q), t)

∂t
=
(

Qs +
e

2
+ (z(Q)−Qs)e

− t
τs

)

× (A6)

×e−
t
τs

P (t)

eRtC
δ
(

e +
(

z(Q)− e

2

)

e−
t
τs

)

.
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The equation can be integrated and gives for σn0+1(Q, t)

σn0+1(Q, t) =e
t
τs P

(

τs ln

(

1

2
− z(Q)

e

))

× (A7)

× τs
eRtC

(

e
2 −Qs

) (

z(Q) + e
2

)

(

z(Q)− e
2

)2

that is non vanishing for Q1(t) < Q < Q2(t) where
Q1(t) = Qs − e − (Qs − e/2)e−t/τs and Q2(t) = Qs −
(Qs + e/2)e−t/τs. It is interesting to note that the dis-
tribution has now a finite spread in Q induced by the
combined action of the stochastic fluctuations and of the
finite value of the resistance. This is in contrast with the

simpler approximation used in the text to evaluate the
average in Eq. (20), where we assumed that the spread
was negligible, and that a delta function could be used
to describe the distribution σn0+1.

We can now calculate the average charge on the junc-
tion during a single oscillation:

〈Q〉 =
∫ T

0

dt

T

(

Qf

( e

2
, t
)

P (t) +

∫ Q2(t)

Q1(t)

dQ Q σn0+1(Q, t)

)

.

(A8)
The numerical integration of this expression leads to the
result shown in Fig. (6).
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