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Abstract— The problem of controlling the congestion front in
a single link road section is considered in this paper. For this
purpose, we introduce a new variable-length two-cell lumped
model composed of; one congested cell, and another in free
flow. This model has the advantage of having few states while
preserving the vehicle conservation property. This model is
used as a basis to design a simple “best-effort” controller
that regulates (at its best) the congestion front to some pre-
specified value. The control law can be implemented using only
information about the congestion front position.

I. I NTRODUCTION

The front congestion control problem consists at regulating
the front congestion to some pre-specified value in order to
avoid that the congestion overspread upstream blocking other
exit ramps (producing even largest congestion conditions),
or/and reaching critical safety sections (i.e. tunnels, intersec-
tions, etc.).

In the traffic control literature, the control can be formu-
lated either by ramp metering regulation [4], [5], [7], [8],
[9], or by variable speed limit control [6], [13]. The first
method aims at regulating the inflow on some (or several)
input ramps of the road. This control setup is highly effective
in regulating flows and densities on the main lane, at the
price of reallocate the vehicles distribution into other parts of
the network (usually at upstream location of the considered
network where demands are lowers). A complete overview
on ramp metering strategies can be found in [15]. The
second method consists in regulating the speed limits. By
this mean, the maximum capacity of the regulated section
can be modified. Lowering the speed limits will results in a
reduction of the road maximum capacity. This will reduce
the grown rate of the congestion front spreading, but it
will increase the traveling time along the free section. It is
also possible to envision the combination of both control
strategies, as reported in recent results [1], [14], [16].

In this paper we consider the problem of controlling the
congestion front in a single link highway section using
variable speed control. To this aim, we propose a new
variable-length two-cell lumped model, composed of one
congested cell and another in free flow. Compared to existing
multi-cell models with constant dimension, this model has
the advantage of having only few states (3 in total including:
2 density states for the congested and the free cells, and
one more for the evolution of the congestion front) The
model is build such that the cells are variable in length while
preserving the vehicle conservation property.
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The variable-length two-cell lumped model model is used
as a basis to design a simple “best-effort” controller that reg-
ulates (at its best) the congestion front to some pre-specified
value. The control is designed under constraints concerning
magnitude step changes, and dwell-time. The control law
discrete-time implementation only needs information on the
congestion front position. This information can be estimated
directly from camera sensors networks, or indirectly by
building a density observed based on the proposed variable-
length model. This issues will not be treated in this paper,
and are under current investigation.

The paper first recall the derivation grounds of the LWR
model with constant and multiple cells, then we introduce
our new two-cell variable-length model. The subsequent
sections presents the best-effort control design, and report
some simulations.
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Fig. 1. Variation of the fundamental diagram as a function ofthe speed
limit v; the maximum capacityϕm = ϕ(vmax) is reach for the maximum
available velocityvmax, at the critical densityρ∗(vmax). The capacity of
the section will decrease toϕm = ϕ(vmin) when the speed limit is set to its
minimum vmin . Nevertheless the critical density is increased substantially
ρ∗(vmin)

II. M ULTIPLE-CELLS, CONSTANT-LENGTH LWR MODEL

The traffic dynamics models are based on the vehicle
conservation principle. The simplest continuous macroscopic
traffic model, involving only the densityρ, is the LWR
cell transmission model introduced in [11], [17]. It is also
known under the name of cell transmission model, and it
has been shown to be consistent with hydrodynamic theory
[2]. Validation tests with real data have been reported in
[12]. The constitutive assumption of this model, motivated
by experimental data, is that the vehicles tend to travel at an
equilibrium speedv = v(ρ), whereρ represents the density
of a specific section at a specific time.



In variable speed limit control the velocity,v, in the
decongested cell, becomes the main control input that can
be actuated (under the assumption that drivers will respect–
in average–the suggested speed limits) using variable sign
panels located at the road side.

The equilibrium speed depends implicitly on the location
and on the time. Since the flow is defined asϕ(ρ) = ρv(ρ),
one can depict an equilibrium flow functionϕ = ϕ(ρ)
called the fundamental diagram. As shown in Fig. 1, the
fundamental diagram can be defined, in its simplest form, as
a triangle with its maximum atϕm = ϕ(ρ∗) describing the
maximum capacity of the road. The critical densityρ∗ defines
the boundary between the decongested and the congested
zones.ρm is the maximum density that the road can support.
The slope−w defines the speed at which congestion will
travel upstream.

If the speed limits are changed during operation, the
fundamental diagram will be affected as show Fig. 1: a
decrease inv will reduce the maximum road capacityϕm

but will increase the critical densityρ∗. The net effect
of this action will be that congestions grown rate will be
reduced. If a great portion of the road is congested then the
total traveling time may be also improved. Inversely, if the
majority of the road is decongested, then the traveling time
may be increased. In cases (not studied here) when an exit
ramp is block due to the congestion arrival, further potential
improvements may be expected.

The evolution of the number of vehicles within any spatial
section(0, L), is given by the following car conservation law
in term of the number of vehicles,N , in the cell1:

d
dt
N = ϕin − ϕout, N =

∫ L

0

ρ(x, t)dx (2)

whereϕin andϕout are the input (atx = L) and output (at
x = 0) flows at the boundaries of the road section.

Consider now that the road section is divided inn-cells
of constant lengthli. Let us denote byρi density of theith

cell of the section. Then, the number of vehicles per cell is
noted asNi = ρili.

As conservation laws generate irregular flows, they cannot
be integrated numerically using standard methods (see [10],
[2]). An efficient first-order numerical method to treat such
conservation laws is the Godunov scheme [3] which is a
first order scheme that reproduce correctly the propagation
of the shock waves avoiding oscillating behavior and having
a physical interpretation. Using the Godunov mathematical
formalism, the conservation law (2) takes the following
discrete representation

1Equation (1) can be rewritten (see [11]) as a hyperbolic equation
involving only the density:

∂tρ+ ∂xϕ(ρ) = 0 (1)

The macroscopic continuous density dynamics is then given by the LWR
Cauchy problem described by (1) with the initial conditionρ(x, 0) = ρ0(x).
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Fig. 2. Schematic diagram of the two-cell variable-length model.

ρi(k + 1) = ρi(k) +
T

li

(

ϕi(k)− ϕi+1(k)
)

(3)

wherek is the time index,T is the discrete time interval2,
andϕi is the interface flow between the cellsi − 1 and i
given as:

ϕi = min{Di−1, Si} (4)

with

Di−1 = min{vi−1ρi−1, ϕm,i−1},

Si = min{ϕm,i, wi(ρm,i − ρi)}

where the demandDi−1 is the flow that can be delivered
by the cell i − 1 to the cell i while the supplySi is the
flow that can be received by the celli from the cell i − 1.
ϕm,i is the maximum flow allowed by the capacity of celli,
ρm,i is the jam density (i.e. the maximum density that can
be reached),vi corresponds to the free flow speed andwi is
the congestion wave speed in celli. All these parameters can
be the same for all the cells or allowed to vary for each cell.
In variable speed control, the value ofvi may be modified
for each cell, or for a group of them.

III. A NEW TWO-CELL VARIABLE -LENGTH MODEL

For purposes of controlling the congestion front of a road
section, we consider a section split into two cells of variable
length; a congested downstream cell of lengthl = l(t), and
an decongested (free flow) one of lengthL − l, whereL is
the total length of the considered section, see Fig. 1.

A. Vehicle conservation law

Let introduce the number of vehicles in the free (Nf ) and
in the congested (Nc) cells as lumped quantities

Nf = (L− l)ρf

Nc = lρc

beingρf , andρc the associated (lumped) densities. Following
the conservation law (2), and using the flows boundaries as

2The condition vT < l, with v the free-flow speed, is a sufficient
condition for (3) to converge.



indicated by the Godunov formalism, we get the following
model

Ṅf = min{ϕin, Sf} −min{Df , Sc} (5)

Ṅc = min{Df , Sc} −min{Dc, ϕout} (6)

where the demand and supply functions for the free flow cell
is given as

Df = min{vfρf , ϕm(vf )},

Sf = min{ϕm(vf ), wf (ρm − ρf )}

while the demand and supply function for the congested cell
are give by

Dc = min{vcρc, ϕm(vc)},

Sc = min{ϕm(vc), wc(ρm − ρc)}

ϕin, andϕout are the input and output flows respectively.
Note that in this formulation, the maximal capacityϕm(·),
is a function of the free flow velocityv that will play the
role of the control input in the subsequent formulation.

As mentioned before, it is assumed that the downstream
cell is congested while the upstream cell is free. This implies
that:

0 ≤ ρf ≤ ρ∗

ρ∗ < ρc ≤ ρm

From the these equations, and assuming that the input and
output flows are below the maximum admissible ones, i.e.
ϕin ≤ ϕm(vf ), ϕout ≤ ϕm(vc), then we have:

min{ϕin, Sf} = ϕin

min{Dc, ϕout} = ϕout

Therefore model (5)-(6) simplifies to:

Ṅf = ϕin − ϕn(v) (7)

Ṅc = ϕn(v)− ϕout (8)

where

ϕn(v) = ϕn(vf , vc) = min{Df , Sc}

with n = 1, 2, i.e.

ϕ1(v)
ϕ2(v)

=

{

min{vfρf , ϕm(vf )} if , Df < Sc

min{ϕm(vc), wc(ρm − ρc)} else

The model has then operational modes. Whenn = 1 the
model is say to be in the“absorption” phase as in this
condition,Df < Sc, the congested cell is able to absorb the
arriving flow making the congestion to decrease. Inversely,
the whenn = 2, there is an surplus of arriving flow at the
congestion front,Df ≥ Sc. The model is then say to be at the
“expansion” phase, as the congestion will tends to expand
upstream. The difference betweenDf , andSc will be used
as a basis to build a dynamics of the congestion front.

B. Dynamics of the congestion front

Note that at this point, the control variablev does not
explicitly appear in the vehicle conservation model above.
This will happen when the variableN will be replaced by its
relation with the density and associated length. To this aim,
the conservation model above needs to be completed with
another equation describing the evolution of the congestion
position l.

The proposed variation law forl is

l̇ = c
(

ϕ−
c − ϕ+

c

)

= c (Df − Sc)

= c (min{vfρf , ϕm(vf )}−

−min{ϕm(vc), wc(ρm − ρc)}) (9)

wherec [m/Vehicle] is a constant describing the mean spatial
occupance per vehicle on the section. It can be approximated
from the maximum density asc ≈ 1/ρm. The equation
describe the growing rate of the congestion as the product
between the difference between left (ϕ−

c = ϕf ) and right
(ϕ+

c = ϕc) flows at the congestion line, and the constantc.
Congestion will increase when the flow at the free cell is

greater than the flow at the congested one, i.e.ϕ−
c > ϕ+

c ,
and it will decrease otherwise.

Remark 1 A parallel with physical law can be made by
understanding equation(9) as a force law produced as a
consequence of the (integral of) the differential pressure
(stress) between neighborhood cells. The constantc can be
seen as the stiffness of the diaphragm supporting this stress.

Remark 2 In the context of traffic engineering, the equation
(9) can be seen as a simplification of the Rankine-Hugoniot
condition, that specify that the shock speed can be written
as

ṡ =
ϕ(ρ+)− ϕ(ρ−)

ρ+ − ρ−
=

1

ρ+ − ρ−

∫ ρ+

ρ−

ϕ′(ψ)dψ

in the context of distributed PDEs models, whereρ+, ρ− are
the right/left densities at the from congestion line, respec-
tively. Equation(9) is intended for a lumped model that will
be used for control synthesis, as show latter in the paper.

C. Implicit and explicit full model forms

The following hypothesis are adopted:
H1) The whole section has the same fundamental diagram.

That is; v = vc = vf , andw = wc = wf , wherev =
v(t) is time-varying butw is assumed to be constant.

H2) The critical densityρ∗(v), and its associated road max-
imum capacityϕm(v), are both functions ofv,

ρ∗ = ρ∗(v) =
wρm
v + w

, ϕm(v) = vρ∗ = v
wρm
v + w

but the maximum densityρm is independent ofv, see
Figure 1.

Noticing thatN = ρ · l, we have that

Ṅc = lρ̇c + l̇ρc, Ṅf = (L − l)ρ̇f − l̇ρf



the implicit form of model (2)-(9) writes as:

ρ̇f =
1

L− l

(

ϕin − ϕn(v) + l̇ρf

)

(10)

ρ̇c =
1

l

(

ϕn(v)− ϕout − l̇ρc

)

(11)

l̇ = c (min{vρf , ϕm(v)}−

−min{ϕm(v), wc(ρm − ρc)}) (12)

where ϕin, ϕout are exogenous inputs,(ρf , ρc, l) are the
state variables, andv is the control input. It should be
noted that this is a lumped and highly nonlinear model. The
model implicitly assume a separation between the free and
congested cell, i.e.ρf ∈ [0, ρ∗(v)], ρc ∈ [ρ∗(v), ρm].

The explicit version of this model including explicit sat-
uration functions can be introducing in the model by using
the relation Sata0(x) = min{a, x}, ∀, a > 0, x ≥ 0,

ρ̇f =
1

L− l

(

ϕin − ϕ̄n(v) + l̇ρf

)

ρ̇c =
1

l

(

ϕ̄n(v) − ϕout − l̇ρc

)

l̇ = c
(

Satϕm(v)
0 {vρf},−Satϕm(v)

0 {w(ρm − ρc)}
)

with

ϕ̄n(v) =

{

Satϕm(v)
0 {vρf} if , n = 1

Satϕm(v)
0 {w(ρm − ρc)} if , n = 2

this version of the model makes explicitly the role of the
control law v in the model; its change road maximum
capacityϕm(v), and the slope of the demand function of
the free cell.

IV. FRONT-CONGESTION REGULATION VIA VARIABLE

SPEED-LIMIT CONTROL

The problem of front-congestion regulation control via
variable speed-limit consists in finding a control law forv,
function of the model states, such that the front congestion
l can be regulated around the reference valuelr.

In this section we present several options for this design.

A. Best effort control

Let l̃ = l − lr, then usingV = l̃2/2, a Lyapunov-like
control law forv can be derived as the one that set

Df (v)− Sc +
k

c
l̃ = 0 (13)

leading toV̇ = −kl̃2.
Nevertheless if the speed limits are constrained to live in

the setU = {vmax, vmin}, then the best-effort constrained
control with respect to the metricV , will be

v∗ = min
v∈U

|Df (v)− Sc +
k

c
l̃| (14)

This problem can be solved graphically as shown in Fig. 3,
and leads to the solution

v∗ = Satvmax

vmin

(

1

ρf

[

−wρc + wρm −
k

c
l̃

])

(15)
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Fig. 3. Illustration of the optimal solution given by Equation (15).
Three cases are considered for illustration: a) the pointa corresponds to
the case whereSc − k

c
l̃ ≥ supv maxρ{ϕ(ρ)}, the optimal solution is

projected on the upper boundaries of the admissible set of solutions U,
b) the pointb corresponds case whereinfv minρ{ϕ(ρ)} < Sc − k

c
l̃ <

supv maxρ{ϕ(ρ)}, the optimal solution is 1

ρf

[

−wρc +wρm − k
c
l̃
]

, c)

the pointc corresponds to the case whereSc − k
c
l̃ ≤ infv minρ{ϕ(ρ)},

the optimal solution is projected on the lower boundaries ofthe admissible
set of solutionsU.

B. Best-effort control under dynamics and magnitude con-
straints

An alternative to the previous continuous-time state feed-
back law, is to derive a variation law forv with a prescribed
Dwell-time Ts, and a maximum steep variation∆v. This
requirement is motivated by constraints in the actuated
variable speed signal (variable speed limit actuation is more
likely to change by steps of severalKm/h). This implies
that the variation of the controlv should be constraint to
change as,

∇v(k) = v(k + 1)− v(k) ∈ V

whereV is the finite 3-valued set defined as

V = {−∆v, 0,∆v}

Let nowV (k) = l̃2(k), and l̇ be approximated as:

l(k + 1) = l(k) + cTs (Df (v(k))− Sc(k))

The constrained best-effort law can be derived by observing,
with γ(v(k), k) = cTs (Df (v(k))− Sc(k)), that

V (k + 1)− V (k) = l̃2(k + 1)− l̃2(k)

= 2l̃γ(v(k), k) + γ2(v(k), k)

As the rate of change ofv(k) is constrained to only 3-values
in V, the magnitude of the demandDf (v(k)), and hence the
magnitude ofγ(v(k), k), cannot be arbitrarily set to make
V (k) to decrease uniformly. In this context, the best effort
control is

v∗ = min
v∈U,∇v∈V

{

2l̃γ(v(k), k) + γ2(v(k), k)
}



Cases sign(γ(v(k), k)) sign(l̃(k)) ∇v(k)

a) 1 -1 0
b) 1 1 -∆v

c) -1 1 0
d) -1 -1 ∆v

TABLE I

SET OF BEST POSSIBLE SOLUTIONS OF THE CONTROL LAW(16)

which is indeed an optimization problem having constraints
implying past values of the decision variablev(k). Due
above described limitations on the admissible values for
v(k), and hence forγ, a relaxation of this problem is possible
by making the minimization problemγ-size insensitive, i.e.
making the best possible choice forv(k) so as sign ofγ be,
when possible, opposed to the one ofl̃,

min
v∈U,∇v∈V

∣

∣

∣
sign(l̃) + sign(γ(v(k), k))

∣

∣

∣

an approximated solution of this problem results in

v(k + 1) = Satvmax
vmin

(

v(k)−
∆v

2

[

sign(γ(v(k), k)) + sign(l̃)
]

)

(16)
the rationality of this solution can be explained by looking
the Table I, where four cases can be identified:

The first two cases(a)−(b) correspond to situations where
the demand in the free cell is greater than the supply at the
congested cell, implying a grow in the congestion-front, i.e.
l̇ > 0 as show Eq.-(12). In this case, the ”best control action”
is:
a) to keep the speed limits constant, (∇v = 0) when the

front congestion is below the reference value (l < lr),
and

b) to take a corrective action by reducing the speed limit
velocity by an amount∆v during a time periodTs,
when the front congestion is above the reference value
(l > lr).

The last two cases(c)− (d) concerns situations where the
congestion front is likely to decrease i.e.l̇ < 0. In this case,
the ”best control action” is:
c) to keep the speed limits constant (∇v = 0), if the

congestion front is already larger than its reference
(l > lr), and

d) to increase the speed limits (∇v = ∆v) if the congestion
front is below its reference value (l < lr).

C. Implementation issues

It is worth to note that the implementation of this controller
requires the measure of the sign of the error distancel̃, and
the sign ofγ. From Eq.(12) we see that sign(γ) = sign(l̇),
therefore, the control law (16) has the following alternative
representation,which simplify its implementation

v(k + 1) = Satvmax

vmin
(v(k)− (17)

−
∆v

2

[

sign(l(k + 1)− l(k)) + sign(l̃(k))
]

)

Then, by measuring onlyl(k), and the above control can
be implemented.
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Fig. 4. Congestion front regulation via variable speed limit. The upper
figure shows the time-evolution of the controlv. The lower figures compares
the line frontl obtained using variable-speed limit control (continuous line),
to the one obtained without regulation (dashed lines).

V. SIMULATION RESULTS

The simulated example concerns a road section of length
L = 8 [Km], with input/output flows (ϕin, ϕout). The
characteristic curve is represented by the constant values;
(w = 16 [Km/h], ρm = 200 [veh/Km]),while the section
capacity and its associated critical density,ϕm(v), ρ∗(v),
are function of the selected speed limitv. The relaxation
constant isc = 0.008 [Km/veh]. The control parameters
are: the Dwell timeTs = 2[min], the variable speed limit set
U = {vmax = 110, vmin = 70} [Km/h], and its associated
steep change∆v = 10 [Km/h].

The input flow is selected asϕin = 1800 + 200 cos(15t),
andϕout = 1800. In this example there are phases where
the input flow is larger than than output flow causing a
congestion increase. There are also other phases when the
congestion will tends to decrease. The objective here is to
regulate the congestion front, as best as possible, to the value
of lr = 1 [Km]. Simulation are shown in Fig. 4. The upper
figure show the speed regulation values as produced by the
control law. The lower curve shows the time-evolution of the



congestion front when this controller is used, and compares
the case when non speed limit regulation are used, and the
regulation speed limit are fixed tov = 110 [Km/h]. It can
be observed that the case with variable speed limits preserve
the congestion close to the desired reference value.

VI. CONCLUSIONS

In this paper we treated the problem of front congestions
control. For this, we have introduced a new traffic lumped
model with only two cells (one free, and another congested)
the cells have variable length, and a variation law for the front
congestion completes the 3-dimensional model. In opposition
to fixed-length cell models that are commonly represented
by a set of linear state-dependent switching systems, our
model results in a lower dimensional nonlinear system which
solutions are continuous.

Based on this model, we have designed a “best-effort”
control strategy using variable speed limits. The notion of
best effort control is here linked to the physical variable
speed limit constraints which limits its size and as well as
its rate variation. This results in a relative simple control
in closed-form that can be implemented by using only
information about the front congestion location.
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