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Oscillation annealing and driver/tire load torque estimation in Electric
Power Steering Systems

J. Tordesillas Illán, V. Ciarla, and C. Canudas de Wit

Abstract— The paper presents several aspects of modeling,
observation and control towards a new generation of Electrical
Power Steering(EPS) systems. In particular we design an
optimal control to reject oscillations of the steering column,
then we device a new observer to estimate the internal state
variables of the steering column, the driver applied torque
(steering wheel torque), and the load torque (tire/ground contact
friction). Finally, we also revisited the LuGre tire dynamic
friction model by improving the transient behavior between
the sticking phases and the dynamic ones. Simulation of the
proposed control and observer are shown at the end of the
paper using the improved LuGre-tire friction model.

Index Terms— Electric Power Steering systems (EPSs), LQ
control, LuGre friction model, observer.

I. I NTRODUCTION

Nowadays, the existing Electric Power Steering systems
(EPSs) are developed basing on a general driver profile [1],
[2]. Future generation of EPSs should be able to propose a
torque assistance which may be adapted for different kinds
of driver population: young drivers, aged people, disabled
people, etc.

A first important step towards the above goals consists in
setting a control framework that includes a realistic model
of a steering column accounting for all other torque loads
involved in a real driving situation (torsion torque due to
force sensors flexibility, applied driver forces, and tire-road
contact friction forces). The control framework should also
include observers that allow to recover signals which are not
sensed and a control law that compensates for the column
flexibilities. This is completed with a booster-torque-law
(power steering torque) specific to the driver population
in question. The general architecture that we propose is
shown in Fig. 1. This paper concerns with the block 1
(observer/control), and the block 2 (tire-friction model)of
Fig. 1, with the additional contribution that the observer also
estimate the driver and load torque. The design of the specific
reference model (block 3) for non-standard drivers is under
current investigation.

The contributions of this paper are:
a) Optimal output control feedback:Based on the steer-

ing column model proposed by [3], [4], we redesign a linear
optimal control that seeks to cancel oscillation due to column
stiffness. This results in an output optimal feedback with
an observer included. In addition to cancel oscillation the
control design seeks to preserve the open-loop gain between
the applied driver torque and the motion of the steering
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wheel. In that way the low frequency feelings of the driver
will not be affected. The observer in this first version was
derived assuming that the exogenous inputs (driver and tire-
friction torques) were known.

b) Improved LuGre Tire-friction model:The dynamic
LuGre Friction model proposed in [5], [6] is here modified
to trade the transition between the stick friction component
(that dominated when vehicle is stand still), and the self-
alignment torque (produced when vehicle in motion). To
have a complete tire-friction model is mandatory to test EPS
systems.

c) Driver and load torque estimation:The observer
previously designed was extended to the case where the
exogenous inputs are unknown. This was done assuming the
standard hypothesis for observation under unknown input,
namely a slow rate of variations of these inputs. In spite
of this hypothesis, our results show that these exogenous
torques where correctly estimated with a very good precision
and very little phase lag.
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Fig. 1. General architecture of the EPSs: block 1 concerns the observer and
the control; block 2 includes the tyre-friction model and block 3 includes
the reference model.

The paper is organized following the 3 main items as
indicated above.

II. OSCILLATIONS ANNEALING

To begin with, it is essential to define the mechanical
system that we will take into account. Fig.2 shows an
explanatory schema of the system.



TABLE I

CONSTANT PARAMETERS OF THEEPSS

Symbol Value Description

Jv steering wheel inertia 0.025 [kg · m2]

Jm motor inertia 0.00033 [kg · m2]
Jc steering motor inertia neglected
Jw aggregated wheel and rack inertia neglected
k steering column stiffness 100 [N · m]

N1 vehicle steering angle to steering colon ratio 13.67
N2 motor-steering column gear ratio 17
Bv damping coeff. associated to the steering wheel 0.01 [N · s/m]
Bm damping coeff. associated to the motor axis 0.003 [N · s/m]

τv
Jv

Bv

θv

k

θs = θm/N2

Jm

Bm

N2

N1

u

τa

θm

Fig. 2. Mechanical model of the EPSs

A. Column model

The mechanical equations governing the system explained
above are (see [3])

Jvθ̈v = τv − k(θv − θs) − Bvθ̇v (1)

JT θ̈s = −k(θs − θv) − N2

2
Bmθ̇s +

τa

N1

+ N2u (2)

with JT =
(

Jc + N2

2
Jm + Jw

N2
1

)

. The constants of the
model are defined in Table I, whileθv, θs and θm are,
respectively, the steering wheel, the motor-shaft and the
motor angles. BothJc and Jw are neglected for simplicity,
but to obtain more precise results it is advisable to introduce
these parameters in the calculations. Let

xT =
(

x1, x2, x3

)T
=
(

θ̇v, θ̇s, θv − θs

)T
(3)

The model can be formulated into the state-space form

ẋ = Ax + Bu + Gw

with w =
(

τv, τa

)T
and

A =







−Bv

Jv
0 − k

Jv

0 −
N2

2Bm

JT
− k

JT

1 −1 0






; B =





0
N2

JT

0



 ;

G =





1

Jv
0

0 1

N1JT

0 0



 =
[

g1 g2

]

;

(4)
It is interesting to observe how the model responds to a

variation of the torque exerted by the driver on the steering
wheel. To do this, it seems appropriate to compute the
transfer function of the steering wheel’s angular acceleration
θ̈v to the driver’s exerted torqueτv. Such a transfer function
is easily computed from the state-space matrices as follows:

Gol =
θ̈v

τv
= T (sI − A)−1G1

whereT =
(

−Bv

Jv
0 − k

Jv

)

. Fig. 3 shows the frequency
response and puts in evidence that the open loop system has
a significant peak for a frequency of about 12 Hz that cause
substantial oscillations on the steering wheel and that should
be avoided so as to improve the driving comfort.

B. Full-state optimal feedback control

To compensate the oscillations an optimal LQR controller
is designed. This controller is computed so that the state-
feedback lawu = −Kx (with K the state-feedback gain)
minimizes following cost function:

J =

∫ ∞

0

(xT Qx + ru2) dt (5)

where the constant matricesQ > 0 and r > 0 are
the weighting matrices. For the purpose of annealing the
oscillation without impact the low frequency gains of the
resulting closed loop, we can selectQ such that only the
torsion angle and its time derivative is penalized, i.e.

J =

∫ ∞

0

(q1(x1 − x2)
2 + q2x

2

3
+ ru2) dt

Normalizing this cost withr = 1, the problem is simplified
by selectingQ as

Q =





q1 −q1 0
−q1 q1 0
0 0 q2



 (6)

This results in a cost function with only two parameter to
be tuned. The closed-loop transfer function is given by the
following equation:

Gcl =
θ̈v

τv
= T (sI − (A − BK))−1G1 (7)

with A − BK the closed-loop state space matrix.
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Fig. 3. Open loop (blue) vs closed loop frequency response. Weighting
parameters are:q1 = 3 andq2 = 12, r = 1.

The benefits of this design can be observed in Fig. 3.
The resonance peak that might cause undesirable oscillations
have been eliminated thanks to the proposed optimal linear
control. Note also that the low-frequency gain has kept
unchanged.



C. Optimal ”output” feedback controller

All the calculations carried out until now assumed that
the whole set of state-space variables was measurable. In
commercial products only the motor angle and the torsion
torque are measured. This is due to the fact that installation
of these additional sensors implies an important extra cost
that should be, if possible, avoided.

The previous control problem can be reformulated by
assuming only that the motor speed (approximated from
motor position sensor) is available. This means that we
dispose of the output

y = Cx = (0, 1, 0)x = θ̇s

Assuming as before (this hypothesis will be relaxed latter)
that w is measured as well, then the proposed observer has
the following form

˙̂x = (A − LC)x̂ + Bu + Gw + Ly (8)

whereL is the observer gain to be designed. By the sepa-
ration principle, the controlK is kept as before, andL can
be designed either via pole placement method, or via the
loop-recovering strategy. In any case, it is suited that the
dynamics of the observation error˙̂x − ẋ = ė = (A − LC)e
has a fast dynamics and hence a fast convergence of the
observer towards the real states.

D. Simulation results

In order to see the performances of the proposed controller,
following simulations are carried out using as input to the
system the driver’s exerted torque profile shown in Fig. 4-a.

1) Open loop behavior:The first simulation concerns the
system in open loop. As shown at the Fig. 4-b, once the
steering wheel is released by the driver at the time instant
16s, the steering wheel suffers significant oscillations that
would cause an undesirable driving feeling and might even
be dangerous when we are in driving situations at fast speeds.

2) Closed-loop behavior under closed-loop:The optimal
linear controller computed before has the aim to eliminate
the oscillations found in open loop thanks to the assistance
motor. As shown at the Fig. 4-c, the oscillations derived
from the release of the steering wheel have been satisfactorily
compensated by the optimal controller. The behavior of the
observer is shown by Fig. 4-d. From this figure we see that
the performance of the observer is completely satisfactory.

III. T IRE/ROAD CONTACT FRICTION TORQUE

The model used until now takes into account all the
elements that go from the steering wheel to the steering
shaft. Load torques exerted by tire/road contact need to be
consider explicitly in the model. The contact friction force
is an important element of the driving it is present in all the
different driving situations that a driver may find, and it is
the main responsible of the ultimate feeling that the driver
will feel during his driving maneuvers.

In general, models for contact forces need to be completed
with the mechanical model of the vehicle dynamics as the
states/variables between the contact forces and those of the
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Fig. 4. (a) Real driver’s steering torque used for the simulation. (b) Profile
of the steering wheel speed in open loop. (c) Profile of the steering wheel
speed in closed loop. (d) Estimation of the steering wheel speed.

vehicle dynamics are coupled. However to avoid unnecessary
complexity (implementing a complete vehicle model it is not
essential for the development of our simulations), the model
chosen is a simplified model of the tires assuming that the
normal force on them is equal to a quarter of the total weight
of the vehicle.

Fig. 5 illustrates the longitudinal and the lateral velocity
that might appear when driving under the effect of centripetal
forces. This lateral force appearing during the turning ma-
noeuvres, is the origin of the slipping, in the direction of the
so-called slipping angleβ.

So as to prove the validity of the observer, it is imple-
mented in simulation. In the bottom of fig. 4 it can be
stated that the performance of the observer is completely
satisfactory. To sum up, an observer has been calculated
such that the whole state-space has been rebuilt from both
the control input and the measurable output. Once all the
different states have been estimated, the full state feedback



carried out in section II-B is implemented obtaining very
satisfactory results.

vy vc

vx

β

Fig. 5. Forces action on the tire when turning. Slip angleβ show the
direction of the vehicle resulting velocity

The angleβ, is known to depend on the vehicle’s speed,
v as well as on the radius of curvature,ρ given by the curve
traced by the vehicle in a given moment, i.e.β(t) = f(v, ρ).
The radius of curvature can be considered as being inversely
proportional to the steering wheel angle: an infinite radius
of curvature means the vehicle is going straight and hence
the steering wheel angle is zero. For the reasons advocated
before, in our simulations a simple relation betweenβ and
the steering wheel angle weighted by the vehicle velocity is
considered.

A. Dynamic tyre friction model

We introduce here some modifications to the dynamic
LuGre Friction model proposed in [5], [6]. These modifi-
cations aim at improving the transition between the sticking
friction component (that dominates when vehicle is stand
still), and the self-alignment torque (produced when vehicle
is in motion). The most important phenomena (components)
captured by the model are:

• Sticking torqueMsticking : it is the torque that opposes
the movement of the tyres when turning them around the
vertical axis. It is especially important for low speeds
of the vehicle.

• Self-alignment torqueMself−alig : it is the torque that
appears as the vehicle speed up, and tends to rotate the
wheels around its vertical axis in order to make them
return to the straight position.

The dynamic LuGre Friction model proposed in [5], [6]
derives from a distributed friction model. It is described
by four differential equations, which capture the average
behavior of the internal friction states. To introduce this
model, let z̄i(t) (i = x, y), ẑy(t) denote the internal states
of the system:

˙̄zi(t) = vri − C0i(vr)z̄i(t) − κss
i |ωr|z̄i(t)

(i = x, y)
(9)

˙̂zy(t) =
G

FnL
vry − C0y(vr)ẑy(t)−

− νss|ωr|ẑy(t) +
|ωr|

L
z̄y(t)

(10)

where vr = [ vrx vry ]T is the vector of the relative
speeds:

vrx = ωr − vcos(β) (11)

vry = −vsin(β) (12)

with ω that corresponds to the angular velocity of the wheel
of radiusr, while v is the velocity of the vehicle andβ is
the slip angle.
The scalar functionC0i(vr) (with i = x, y) is peculiar of the
LuGre model and is given by:

C0i(vr) =
λ(vr)σ0i

µ2

ki

(13)

with

λ(vr) =
||M2

kvr||

g(vr)
(14)

In Eq. 14 we recognize the the matrix of the kinetic friction

coefficientsMk =

[

µkx 0
0 µky

]

> 0 for the motion along

the x and they directions, respectively; note also that each
parameterµki in Eq. (13) corresponds to one element on
the main diagonal of matrixMk. We find also the function
g (vr), given by:

g (vr) =

∥

∥M2

kvr

∥

∥

‖Mkvr‖
+

(
∥

∥M2

s vr

∥

∥

‖Msvr‖
−

∥

∥M2

kvr

∥

∥

‖Mkvr‖

)

e−(‖vr‖
vs

)
γ

(15)

with Ms =

[

µsx 0
0 µsy

]

> 0 that is the matrix of static

friction coefficients.
To evaluate the constantsκss

i andνss, we do the hypothesis
that the steady-state solution of the lumped model is the
same with the steady-state solution of the distributed one.
The complete expression of these parameters is given from:

κss
i =

1

|ωr|

(

vri

z̄ss
i

− C0i(vr)

)

(16)

νss =
1

|ωr|

(

1

ẑss
y

(

Gvry

FnL
+

|ωr|z̄ss
y

L

)

− C0y

)

(17)

with z̄ss
i and ẑss

y , that are the steady-states of the system;
the explicit expression for these parameters is given in the
appendix of [5].
The auto-aligning torque can be written in terms of the mean
statesz̄y(t) and ẑy(t) as follows:

Mself−alig = FnL
[

σ0y

(

1

2
z̄y(t) − ẑy(t)

)

+ σ1y

(

1

2
˙̄zy(t) − ˙̂zy(t)

)

+ σ2y

(

1

2
vry −

G

FnL

)

]

(18)

To calculate the sticking torque we introduce the last
equation

żz = φ̇ −
σ0z |φ̇|

gz(φ̇)
zz(t) (19)



TABLE II

CONSTANT PARAMETERS OF THELUGRE MODEL

Symbol Value Description

r wheel radius 0.38 [m]
v vehicle speed range from0 to 30 [km/h]
ω angular velocity of the wheel ω = v

r
[rad/s]

µkx kinetic friction coeff. x-axis 0.75
µky kinetic friction coeff. y-axis 0.75

µkz kinetic friction coeff. z-axis 0.76
µsx static friction coeff. x-axis 1.35
µsy static friction coeff. y-axis 1.40
µsz static friction coeff. z-axis 0.91
vs Stribeck relative velocity 3.96 [m/s]

φ̇s Stribeck relative velocity 74 [rad/s]
γ steady state constant 1

σ0y normalized rubber stiffness 6000 [N/m]

σ1y normalized rubber damping 0.3568 [N/m/s]

σ2y normalized viscous relative damping 0.0001 [N/m/s]

L patch length 0.15 [m]
ζL left patch length 0.0030 [m]
ζR right patch length 0.1155 [m]

Fmax max value of normal load distribution 1900 [N ]
Fn normal value of normal load distribution 249.37 [N ]
α1 coeff. for Self-Align. torque 63000 N/m
α2 coeff. for Self-Align. torque −55000 N/m
β2 coeff. for Self-Align. torque 8260 N

σ0z coeff. for Stick. torque 20
σ1z coeff. for Stick. torque 0.0023
σ2z coeff. for Stick. torque 0.0001

G load distribution function 16.83 Nm2

κss
i function used to approx. steady behavior 11.9

νss function used to approx. steady behavior −0.8

where the angular velocity of the wheel rim isφ̇ = θ̇s/N1,
and and the function

gz

(

φ̇
)

= µkz + (µsz − µkz) e
−
(

φ̇

φ̇s

)2

(20)

whereµkz and µsz are, respectively, the kinetic and static
friction coefficients across the z-axis, whileφ̇s is the Stribeck
velocity.
The sticking torque can be evaluated as follows:

Msticking = −LFn(σ0zzz(t) + σ1z żz(t) + σ2zφ̇) (21)

Hence, the total torque generated by the contact of the tyres
and the road is:

τa = Mself−alig + Msticking (22)

The parameters used in this model are reported in Table II.

B. Friction model improvements

One possible improvement of the previous model con-
cerns the the dependence of the sticking torque to the
vehicle velocity,v. In fact, it can be proved experimentally
that, as the speed of the vehicle grows, the self-alignment
torque dominates over the sticking torque, and inversely.
The previous model in its actual form, does not respect this
observation. It is then necessary to weight the sticking torque
as a function the velocity of the vehicle. Thus, a possible
modification along these observations is

Msticking = −LFn(σ0zzz + σ1z żz + σ2zφ̇)e−|v|/vk (23)

wherevk is a positive constant.

C. Dependency on the vehicle’s speed

It is also important to check if the results follow the
expected logic when we vary the vehicle’s speed. In order
to do this, several simulations were carried out for velocities
going from 0 to 30 km/h and over a range time of several
seconds, in order to see the effects at steady-state. The choice

of this speed range is due to the fact that an EPSs operate
in this range.
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Fig. 6. (a) Sticking torque for different driving speeds (b)Self-Alignment
torque for different driving speeds

The results obtained from those simulations are shown
by Fig. 6. Fig. 6(a) shows the different curves obtained
for the sticking torque for different driving speeds, while
Fig. 6(b) shows the different curves obtained for the self-
alignment torque. Results are as expected: the sticking torque
decreases exponentially as the velocity increases, so as the
contribution of the self-alignment is more important as the
speed increases.

IV. EXOGENOUS TORQUES ESTIMATION

The purpose of this section is to develop an estimator that
includes estimation of the exogenous torques that appear
in the system. Bothτv and τa are not senseda priori.
By constructing an observer for the ”extended” systems
the implementation of the previous controller can be done
under the relaxing hypothesis on the known and sensed
information. Another interesting issues, which is a side
effect, is the observer not only provide the control states
estimates but also provide an estimate of the driver delivered
torque, and the contact tire/road friction forces.

A. Extended state-space representation

Let consider that both exogenous torques are slowly time-
varying: τ̇a = τ̇v ≈ 0. The extended state-space representa-
tion with z now defined as,

z̃ =
(

θ̇v, θ̇s, θv − θs, τv, τa

)T
(24)

in which both exogenous torques are added as state variables,
is give by

˙̃z = Ãez̃ + B̃eu (25)



The state matrices for this system are shown below:

Ãe =

(

A G
O2×3 O2×2

)

; B̃e =





B
0
0



 ;

Ce =
(

C 0 0
)

(26)

If only the motor velocity is used as a available output, then
the observability matrix for this new extended system has
rank 4 in spite of dealing with a system of dimension 5.

B. Using the torsion force as a additional output

Although it has been so far considered that the only mea-
surable variable was the angular velocity of the assistance
motor, it is as well possible to measure a second signal: the
torsion force,

y2 = k(θv − θs) = kx3.

In this case, the output matrixCe of the extended system
becomes,

C̃e =

(

0 1 0 0 0
0 0 k 0 0

)

.

Computing the new resulting observability matrix, it can be
easily check that it has now full rank. The system is then
observable and it is concluded that both exogenous torques
can be correctly estimated. The method used to design the
observer’s gain is analog to the one used in section II-B,
i.e. the poles of the observer’s dynamic (matrixÃe −LeC̃e)
should be fast enough compared to those resulting from the
linear controller.
The performances of the observer have been tested in simu-
lations. The results obtained for the estimation ofτv andτa

are shown in Fig. 7(a) and Fig. 7(b). The maximum value
reached by the observation error can be reduced at the price
of increasing the observer gain. Measurement noise will limit
at certain point the maximum possible value of the observer
gain.

V. CONCLUSIONS

This paper presented simulation results of a detailed model
of an EPS system including a dynamic model that repro-
duces the physical phenomena involved in driving. From
an adequate mechanical model of the steering column, the
natural oscillations that exist were eliminated by using a
suited optimal linear control design. Furthermore,a highly
reliable modified dynamic friction model has been devised
from previous author works. This model will allow to carry
out trustworthy simulations that will be used to evaluate
the different typologies of the potential drives for the new
generation of EPSs.

Finally, a satisfactory observer for the internal state vari-
ables needed for control, but also for the exogenous torque
estimation due to the driver and tire/road friction contact
was proposed. This observer was evaluated via simulation
on the context of closed-loop showing good results and good
estimation characteristics.
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Fig. 7. (a) Real driver’s torque (solid) vs. estimated driver’s torque (dotted).
(b) Real load torque (solid) vs. estimated load torque (dotted).
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