
HAL Id: hal-00641953
https://hal.science/hal-00641953

Submitted on 17 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From constraints to resolution rules, Part I : conceptual
framework
Denis Berthier

To cite this version:
Denis Berthier. From constraints to resolution rules, Part I : conceptual framework. Khaled Elleithy.
Advanced techniques in computing sciences and software engineering, Springer, pp.165-170, 2010,
978-90-481-3659-9. �10.1007/978-90-481-3660-5_28�. �hal-00641953�

https://hal.science/hal-00641953
https://hal.archives-ouvertes.fr

From Constraints to Resolution Rules

Part I : conceptual framework

Denis Berthier

Institut Telecom ; Telecom & Management SudParis

9 rue Charles Fourier, 91011 Evry Cedex, France

Abstract: Many real world problems appear naturally as

constraints satisfaction problems (CSP), for which very efficient

algorithms are known. Most of these involve the combination of two

techniques: some direct propagation of constraints between

variables (with the goal of reducing their sets of possible values)

and some kind of structured search (depth-first, breadth-first,…).

But when such blind search is not possible or not allowed or when

one wants a “constructive” or a “pattern-based” solution, one must

devise more complex propagation rules instead. In this case, one

can introduce the notion of a candidate (a “still possible” value for

a variable). Here, we give this intuitive notion a well defined logical

status, from which we can define the concepts of a resolution rule

and a resolution theory. In order to keep our analysis as concrete as

possible, we illustrate each definition with the well known Sudoku

example. Part I proposes a general conceptual framework based on

first order logic; with the introduction of chains and braids, Part II

will give much deeper results.

Keywords: constraint satisfaction problem, knowledge engineering,

production system, resolution rule, strategy, Sudoku solving.

I. INTRODUCTION

Many real world problems, such as resource allocation,

temporal reasoning or scheduling, naturally appear as constraint

satisfaction problems (CSP) [1, 2]. Such problems constitute a

main sub-area of Artificial Intelligence (AI). A CSP is defined

by a finite number of variables with values in some fixed

domains and a finite set of constraints (i.e. of relations they must

satisfy); it consists of finding a value for each of these variables,

such that they globally satisfy all the constraints.

A CSP states the constraints a solution must satisfy, i.e. it says

what is desired. It does not say anything about how a solution

can be obtained. But very efficient general purpose algorithms

are known [1], which guarantee that they will find a solution if

any. Most of these algorithms involve the combination of two

very different techniques: some direct propagation of constraints

between variables (in order to reduce their sets of possible

values) and some kind of structured search with “backtracking”

(depth-first, breadth-first,…), consisting of trying (recursively if

necessary) a value for a variable, propagating the consequences

of this tentative choice and eventually reaching a solution or a

contradiction allowing to conclude that this value is impossible.

But, in some cases, such blind search is not possible (for

practical reasons, e.g. one wants to simulate human behaviour

or one is not in a simulator but in real life) or not allowed (for

theoretical or æsthetic reasons, or because one wants to

understand what happens, as is the case with most Sudoku

players) or one wants a “constructive” solution.

In such situations, it is convenient to introduce the notion of

a candidate, i.e. of a “still possible” value for a variable. But a

clear definition and a logical status must first be given to this

intuitive notion. When this is done, one can define the

concepts of a resolution rule (a logical formula in the

“condition => action” form, which says what to do in some

observable situation described by the condition pattern), a

resolution theory, a resolution strategy. One can then study

the relation between the original CSP problem and various of

its resolution theories. One can also introduce several

properties a resolution theory can have, such as confluence (in

Part II) and completeness (contrary to general purpose

algorithms, a resolution theory cannot in general solve all the

instances of a given CSP; evaluating its scope is thus a new

topic in its own). This “pattern-based” approach was first

introduced in [3], in the limited context of Sudoku solving.

Notice that resolution rules are typical of the kind of rules

that can be implemented in an inference engine and resolution

theories can be seen as “production systems” [4]. See Part II.

In this paper, we deal only with the case of a finite number

of variables with ranges in finite domains and with first order

constraints (i.e. constraints between the variables, not between

subsets of variables).

This paper is self-contained, both for the general concepts

and for their illustrations with the Sudoku example, although

deeper results specific to the introduction of chains or to this

example will appear in Part II. Section II introduces the first

order logical formulation of a general CSP. Section III defines

the notion of a candidate and analyses its logical status.

Section IV can then define resolution rules, resolution paths,

resolution theories and the notion of a pure logic constructive

solution. Section V explains in what sense a resolution theory

can be incomplete even if its rules seem to express all the

constraints in the CSP.

II. THE LOGICAL THEORY ASSOCIATED WITH A CSP

Consider a fixed CSP for n variables x1, x2, …, xn in finite

domains X1, X2, …, Xn, with first order constraints. The CSP can

obviously be written as a First Order Logic (FOL) theory (i.e. as

a set of FOL axioms expressing the constraints) [1]. Thanks to

the equivalence between FOL and Multi-Sorted First Order

Logic (MS-FOL) [5], it can also be written as an MS-FOL

theory. CSP solutions are in one-to-one correspondence with

MS-FOL models of this theory.

In MS-FOL, for each domain Xk, one introduces a sort (i.e. a

type) Xk (there can be no confusion in using the same letter for

the sort and the domain) and a predicate valuek(xk), with

intended meaning “the value of the k-th variable is xk”. All the

basic functions and predicates necessary to express the given

constraints are defined formally as being sorted, so that one

doesn’t have to write explicit conditions about the sorts of the

variables mentioned in a formulæ. This has many advantages in

practice (such as keeping formulæ short). The formulæ of our

MS-FOL theory are defined as usual, by induction (combining

atomic formulæ built on the above basic predicates and functions

with logical connectives: and, or, not, typed quantifiers). We can

always suppose that, for each value a variable can have, there is

a constant symbol of the appropriate sort to name it. We can also

adopt a unique names assumption for constant symbols: two

different constant symbols of the same sort do not designate the

same entity. However, no unique names assumption is made for

variables. With the following Sudoku example, details missing

in the above two paragraphs will hopefully become clearer than

through additional logical formalism.

A. The Sudoku CSP

Sudoku is generally presented as follows (Fig. 1): given a 9x9

grid, partially filled with numbers from 1 to 9 (the “entries” or

“clues” or “givens” of the problem), complete it with numbers

from 1 to 9 in such a way that in each of the nine rows, in each

of the nine columns and in each of the nine disjoint blocks of 3x3

contiguous cells, the following property holds: there is at most

one occurrence of each of these numbers. Notice that this is a

special case of the Latin Squares problem (which has no

constraints on blocks).

It is natural to consider the three dimensional space with

coordinates (n, r, c) and any of the 2D spaces: rc, rn and cn.

Moreover, in rc-space, due to the constraint on blocks, it is

convenient to introduce an alternative block-square coordinate

system [b, s] and variables Xbs such that Xrc = Xbs whenever (r,

c) and [b, s] are the coordinates of the same cell. For symmetry

reasons, in addition to these variables with values in Numbers,

we define additional Xrn, Xcn and Xbn variables, with values,

respectively in Rows, Columns and Squares, and such that:

Xrc = n Xrn = c Xcn = r Xbn = s.

 3 1

 7 9

 1 3 2

 4 7

 1

5 4 6 7

2 8

 3

Figure 1: A typical Sudoku puzzle

Since rows, columns and blocks play similar roles in the

defining constraints, they will naturally appear to do so in

many other places and it is convenient to introduce a word

that makes no difference between them: a unit is either a row

or a column or a block. And we say that two rc-cells share a

unit if they are either in the same row or in the same column

or in the same block (where “or” is non exclusive). We also

say that these two cells are linked. It should be noticed that

this (symmetric) relation between two cells does not depend

in any way on the content of these cells but only on their

place in the grid; it is therefore a straightforward and quasi

physical notion.

Formulating the Sudoku CSP as an MS-FOL theory is done

in three stages: Grid Theory, General Sudoku Theory,

Specific Sudoku Puzzle Theory. For definiteness, we consider

standard Sudoku only, on a 9x9 grid.

Most CSP problems can similarly be decomposed into three

components: axioms for a general and static context (here, the

grid) valid for all the instances of the problem, axioms for the

general CSP constraints expressed in this context (here, the

Sudoku constraints) and axioms for specific instances of the

problem (here, the entries of a puzzle).

B. Grid Theory

B.1 The sorts in Grid Theory

The characteristic of MS-FOL is that it assumes the world

of interest is composed of different types of objects, called

sorts. In the very limited world of Grid Theory (GT) and of

Sudoku Theory (ST), we need only five sorts: Number, Row,

Column, Block, Square. Row, Column and Block correspond

in the obvious way to rows, columns and blocks, whereas

Square corresponds to the relative position of a cell in a block.

Attached to each sort, there are two sets of symbols, one for

naming constant objects of this sort, and one for naming

variables of this sort. In the GT case, the variables for

Numbers are n, n’, n’’, n0, n1, n2, …; the constants for

Numbers are 1n, 2n, 3n, 4n, 5n, 6n, 7n, 8n, 9n. The variables for

Rows are , r’, r’’, r0, r1, r2, ……; the constants for Rows are 1r,

2r, 3r, 4r, 5r, 6r, 7r, 8r, 9r. And similarly for the other sorts. For

each of the first five sorts, obvious axioms can express the range

of the variable of this sort and the unique names assumption.

In conformance with the MS-FOL conventions, a quantifier

such as “r” (resp. “c”, “n”, …) will always mean “for any

row r” (resp. “for any column c”, “for any number n”, …)

B.2 Function and predicate symbols of Grid Theory

Grid Theory has no function symbol. In addition to the five

equality predicate symbols (=n, =r,… one for each sort), it has

only one predicate symbol: correspondence, with arity 4 and

signature (Row, Column, Block, Square), with intended meaning

for atomic formulæ “correspondence(r, c, b, s)” the natural one.

Given these basic predicates, one can define auxiliary predicates,

considered as shorthands for longer logical formulæ:

– same-row, with signature (Row, Column, Row, Column);

“same-row(r1, c1, r2, c2)” is defined as a shorthand for: r1 =r r2;

– and similarly for same-column and same-block;

– same-cell, with signature (Row, Column, Row, Column);

“same-cell(r1, c1, r2, c2)” is defined as a shorthand for: r1 = r r2 &

c1 = c c2;

As they have been defined, the auxiliary predicates same-row,

same-column, same-block and same-cell all have the same arity

and signature: informally, they all apply to couples of cells with

row-column coordinates. This is very important because it

allows to define an auxiliary predicate with the same arity and

signature, applying to couples of cells with row-column

coordinates, independent of the type of unit they share (we shall

see that, most of the time, this type is irrelevant):

– share-a-unit, with signature (Row, Column, Row,

Column); “share-a-unit(r1, c1, r2, c2)” is defined as a shorthand

for: same-cell(r1, c1, r2, c2) & [same-row(r1, c1, r2, c2) or same-

column(r1, c1, r2, c2) or same-block(r1, c1, r2, c2)].

Of course, the intended meaning of this predicate is that

suggested by its name: the two cells share either a row or a

column or a block; notice that a cell is not considered as sharing

a unit with itself.

B.3 Axioms of Grid Theory

In addition to the 5x36 sort axioms, Grid Theory has 81

axioms expressing the (r, c) to [b, s] correspondence of

coordinate systems, such as “correspondence(1r, 1c, 1b, 1s)”.

As an exercise, one can check that this is enough to define the

grid (modulo renamings of rows, columns, …). One can also

check that the following formula expresses that row r intersects

block b: cs correspondence(r, c, b, s).

C. General Sudoku Theory

General Sudoku Theory (ST) is defined as an extension of

Grid Theory. It has the same sorts as GT. In addition to the

predicates of GT, it has the following one: value, with signature

(Number, Row, Column); the intended meaning of atomic

formula “value(n, r, c)” is that number n is the value of cell

(r, c), i.e. indifferently: Xrc = n, Xrn = c, Xcn = r or Xbn = s. It is

convenient to introduce an auxiliary predicate value[], written

with square braces, with signature (Number, Block, Square),

with the same meaning as value, but in [b, s] instead of (r, c)

coordinates; “value[n, b, s]” is defined as a shorthand for:

rc [correspondence(r, c, b, s) & value(n, r, c)]

C.1 Axioms of Sudoku Theory

ST contains the axioms of GT, plus the following, written

in a symmetrical form that will be useful in the sequel.

STrc: rcn1n2{value(n1, r, c) & value(n2, r, c) n1 = n2}

STrn: rnc1c2{value(n, r, c1) & value(n, r, c2) c1 = c2}

STcn: cnr1r2{value(n, r1, c) & value(n, r2, c) r1 = r2}

STbn: bns1s2{value[n, b, s1] & value[n, b, s2] s1 = s2}

EVrc: rcn value(n, r, c)

EVrn: rnc value(n, r, c)

EVcn: cnr value(n, r, c)

EVbn: bns value[n, b, s].

The formal symmetries inside each of these two groups of

four axioms must be noticed. STrc expresses that an rc-cell

can have only one value (this is never stated explicitly, but

this should not be forgotten). STrn (resp. STcn, STbn) expresses

that a value can appear only once in a row (resp. a column, a

block); these are the standard constraints. Axiom EVrc (resp.

EVrn, EVcn and EVbn) expresses that, in a solution, every rc-

(resp. rn-, cn and bn-) cell must have a value; these conditions

generally remain implicit in the usual formulation of Sudoku.

D. Specific Sudoku Puzzle Theory

In order to be consistent with various sets of entries, ST

includes no axioms on specific values. With any specific

puzzle P we can associate the axiom EP defined as the finite

conjunction of the set of all the ground atomic formulæ

“value(nk, ri, cj)” such that there is an entry of P asserting that

number nk must occupy cell (ri, cj). Then, when added to the

axioms of ST, axiom EP defines the MS-FOL theory of the

specific puzzle P.

From the point of view of first order logic, everything is

said. A solution of puzzle P (if any) is a model (if any) of

theory ST + EP. The only problem is that nothing yet is said

about how a solution can be found. This is the reason for

introducing candidates and resolution rules.

III. CANDIDATES AND THEIR LOGICAL STATUS

A. Candidates

If one considers the way Sudoku players solve puzzles, it

appears that most of them introduce candidates in the form of

“pencil marks” in the cells of the grid. Intuitively, a candidate

is a “still possible” value for a cell; candidates in each cell are

progressively eliminated during the resolution process.

This very general notion can be introduced for any CSP

problem. Unfortunately, it has no a priori meaning from the MS-

FOL point of view. The reason is not the non-monotonicity of

candidates, i.e. that they are progressively withdrawn whereas

one can only add information by applying the axioms of a FOL

theory: this could easily be dealt with by introducing non-

candidates (or impossible values) instead. The real reason is that

the intuitive notion of a candidate (as a “still possible” value)

and the way it is used in practice suppose a logic in which this

idea of “still possible” is formalised. Different “states of

knowledge” must then be considered – and this is typically the

domain of epistemic logic. We shall therefore adopt a priori the

following framework, supporting a natural epistemic

interpretation of a candidate.

For each variable xk of the CSP, let us introduce a predicate

candk(xk) with intended meaning “the value xk from domain Xk is

not yet known to be impossible for the k-th variable”.

The interesting point is that we shall be able to come back to

ordinary (though constructivist or intuitionistic) logic for

candidates (and thus forget the complexities of epistemic logic).

B. Knowledge states and knowledge space

Given a fixed CSP, define a knowledge state as any set of

values and candidates (formally written as valuek and candk

predicates). A knowledge state is intended to represent the

totality of the ground atomic facts (in terms of values and

candidates) that are present in some possible state of reasoning

for some instance of the CSP. (Invariant background knowledge,

such as grid facts in Sudoku, is not explicitly included).

It should be underlined that this notion of a knowledge state

has a very concrete and intuitive meaning: for instance, in

Sudoku, it represents the situation on a grid with candidates at

some point in some resolution process for some puzzle; this is

usually named the PM, the “Pencil Marks”. (Notice that some

knowledge states may be contradictory – so that inconsistent sets

of entries can be dealt with).

Let KS be the (possibly large, but always finite) set of all

possible knowledge states. On KS, we define the following order

relation: KS1 ≤ KS2 if and only if, for any constant x° (of sort X)

one has:

– if valueX(x°) is in KS1, then valueX(x°) is in KS2,

– if candX(x°) is in KS2, then candX(x°) is in KS1.

If “KS1 ≤ KS2” is intuitively interpreted as “KS2 may appear

after KS1 in some resolution process”, these conditions express

the very intuitive idea that values can only be added and

candidates can only be deleted during a resolution process.

For any instance P of the CSP (e.g. for any puzzle P), one can

also define the initial knowledge state KSP corresponding to the

starting point of any resolution process for P. Its values are all

the entries of P; its candidates are all the possible values of the

remaining variables. The set KSP = {KS / KSP ≤ KS} is thus

the set of knowledge states one can reach when starting from

P; we call it the epistemic model of P.

C. Knowledge states and epistemic logic

The above notion of a knowledge state appears to be a

particular case of the general concept of a possible world in

modal logic; the order relation on the set of knowledge states

corresponds to the accessibility relation between possible

worlds and our notion of an epistemic model coincides with

that of a Kripke model [6]. Let K be the “epistemic operator”,

i.e. the formal logical operator corresponding to knowing (for

any proposition A, KA denotes the proposition “it is known

that A” or “the agent under consideration knows that A”).

Then, for any proposition A, we have Hintikka’s

interpretation of KA [7]: in any possible world compatible

with what is known (i.e. accessible from the current one), it is

the case that A.

Several axiom systems have appeared for epistemic logic

(in increasing order of strength: S4 < S4.2 < S4.3 < S4.4 <

S5). Moreover, it is known that there is a correspondence

between the axioms on the epistemic operator K and the

properties of the accessibility relation between possible

worlds (this is a form of the classical relationship between

syntax and semantics). As the weakest S4 logic is enough for

our purposes, we won’t get involved in the debates about the

best axiomatisation. S4 formalises the following three axioms:

– KA A: “if a proposition is known then it is true” or

“only true propositions can be known”; it means that we are

speaking of knowledge and not of belief and this supposes the

agent (our CSP solver) does not make false inferences; this

axiom corresponds to the accessibility relation being reflexive

(for all KS in KS, one has: KS ≤ KS);

– KA KKA: (reflection) if a proposition is known

then it is known to be known (one is aware of what one

knows); this axiom corresponds to the accessibility relation

being transitive (for all KS1, KS2 and KS3 in KS, one has: if

KS1 ≤ KS2 and KS2 ≤ KS3, then KS1 ≤ KS3);

– K(A B) (KA KB): (limited deductive closure

of knowledge) if it is known that A B, then if it is known

that A, then it is known that B. In the case of CSP, this will be

applied as follows: when a resolution rule [A B] is known

[K(A B)], if its conditions [A] are known to be satisfied

[KA] then its conclusions [B] are known to be satisfied [KB].

D. Values and candidates

As we want our resolution rules to deal with candidates, all

our initial MS-FOL concepts must be re-interpreted in the

context of epistemic logic.

The entries of the problem P are not only true in the initial

knowledge state KSP, they are known to be true in this state:

they must be written as Kvaluek; similarly, the initial candidates

for a variable are not only the a priori possible values for it; they

must be interpreted as not yet known to be impossible:

Kcand.

Moreover, as a resolution rule must be effective, it must

satisfy the following: a condition on the absence of a candidate

must mean that it is effectively known to be impossible:

Kcand; a condition on the presence of a candidate must mean

that it is not effectively known to be impossible: Kcand; a

conclusion on the assertion of a value must mean that this value

becomes effectively known to be true: Kvalue; a conclusion on

the negation of a candidate must mean that this candidate

becomes effectively known to be impossible: Kcand.

As a result, in a resolution rule, a predicate “valuek” will never

appear alone but only in the construct “Kvaluek(xk)”; a predicate

“candk” will never appear alone but only in the construct

Kcandk (given that Kcandk is equivalent, in any modal

theory, to Kcandk).

All this entails that we can use well known correspondences

of modal logic S4 with intuitionistic logic [9] and constructive

logic [10] to “forget” the K operator (thus merely replacing

everywhere “Kvaluek” with “valuek” and “Kcandk” with

“candk”), provided that we consider that we are now using

intuitionistic or constructive logic. We have thus eliminated the

epistemic operator that first appeared necessary to give the

notion of a candidate a well defined logical status. Said

otherwise: at the very moderate price of using intuitionnistic or

constructive logic, in spite of the fact that candidates can be

given an epistemic status, no explicit epistemic operator will

ever be needed in the logical formulation of resolution rules.

One thing remains to be clarified: the relation between values

and candidates. In the epistemic interpretation, a value ak for a

variable xk is known to be true if and only if all the other

possible values for this variable are known to be false:

xk [Kvaluek(xk) x’k≠ xk Kcandk(x’k)].

Using the equivalence between K and K and forgetting

the K operator as explained above, we get the value-to-

candidate-relation intuitionistic axiom, for each variable xk:

VCRk: xk [valuek(xk) x’k≠ xkcandk(x’k)].

IV. RESOLUTION RULES AND RESOLUTION THEORIES

A. General definitions

Definiton: a formula in the MS-FOL language of a CSP is in

the condition-action form if it is written as A B, possibly

surrounded with quantifiers, where A does not contain explicitly

the “” sign and B is a conjunction of value predicates and of

negated cand predicates (no disjunction is allowed in B); all the

variables appearing in B must already appear in A and be

universally quantified.

Definitons: a formula in the condition-action form is a

resolution rule for a CSP if it is an intuitionistically (or

constructively) valid consequence of the CSP axioms and of

VCR. A resolution theory for a CSP is a set of resolution

rules. Given a resolution theory T, a resolution path in T for

an instance P of the CSP is a sequence of knowledge states

starting with P and such that each step is justified by a rule in

T. A resolution theory T solves an instance P of the CSP if

one can exhibit a resolution path in T leading to a solution.

Notice that, contrary to the general notion of a solution of a

CSP as any model of the associated FOL or MS-FOL theory,

this is a restrictive definition of a solution; it can be called a

constructive definition of a solution: a resolution theory solves

an instance of the CSP only if it does so in the constructive

way defined above.

B. The Basic Resolution Theory of a CSP

For any CSP, there is a Universal Resolution Theory, URT,

defined as the union of the following three types of rules,

which are the mere re-writing of each of the VCRk axioms,

for each sort:

– Elementary Constraints Propagation rule for sort Xk:

ECPk: xkxk1≠xk {valuek(xk) candk(xk1)};

– “Singles” rule for sort Xk:

Sk: xk{[candk(xk1) & xk1≠xk candk(xk1)] valuek(xk)}.

– Contradiction Detection for sort Xk:

CDk: xk(value(xk) & candk(xk)) , where “” is any

false formula.

But for any CSP, there is also a Basic Resolution Theory,

BRT, which is the union of URT with all the rules specific to

this CSP expressing the direct contradictions (if any) between

its different variables (see Part II). All the resolution theories

we shall consider will be extensions of this BRT.

C. Example from Sudoku

The BRT of the Sudoku CSP (say BSRT) consists of the

following rules. The elementary constraints propagation

(ECP) rules are the re-writing of the left-to-right part of

axioms STrc, STbn, STcn and STbn in the condition-action form:

ECP1: rcnn1≠n {value(n, r, c) cand(n1, r, c)}

ECP2: rncc1≠c {value(n, r, c) cand(n, r, c1)}

ECP3: cnrr1≠r {value(n, r, c) cand(n, r1, c)}

ECP4: bnss1≠s {value[n, b, s] cand[n, b, s1)}

Here cand[] is related to cand() in the same way as

value[] was related to value().

The well-known rules for Singles (“Naked-Singles” and

“Hidden-Singles”) are the re-writing of the right-to-left part of

the same axioms:

NS: rcn{ [cand(n, r, c) & n1≠n cand(n1, r, c)]

 value(n, r, c)}

HSrn: rnc{ [cand(n, r, c) & c1≠c cand(n, r, c1)]

 value(n, r, c)}

HScn: cnr{ [cand(n, r, c) & r1≠r cand(n, r1, c)]

 value(n, r, c)}

HSbn: bns{ [cand’[n, b, s] & s1≠s cand’[n, b, s1]]

 value’[n, b, s]}

Axioms EV have a special translation, with meaning: if there

is a (rc-, rn- cn- or bn-) cell for which no value remains possible,

then the problem has no solution:

CDrc: rcn[value(n, r, c) & cand(n, r, c)] .

CDrn: rnc[value(n, r, c) & cand(n, r, c)] .

CDcn: cnr[value(n, r, c) & cand(n, r, c)] .

CDbn: bns[value’(n, b, s) & cand’(n, b, s)] .

V. COMPLETENESS

A. Completeness

Now that the main concepts are defined, we can ask: what

does it mean for a Resolution Theory T for a given CSP to be

“complete”? Notice that all the results that can be produced (i.e.

all the values that can be asserted and all the candidates that can

be eliminated) when a resolution theory T is applied to a given

instance P of the CSP are logical consequences of theory T EP

(where EP is the conjunction of the entries for P); these results

must be valid for any solution for P (i.e. for any model of T

EP). Therefore a resolution theory can only solve instances of the

CSP that have a unique solution and one can give three sensible

definitions of the completeness of T: 1) it solves all the instances

that have a unique solution; 2) for any instance, it finds all the

values common to all its solutions; 3) for any instance, it finds all

the values common to all its solutions and it eliminates all the

candidates that are excluded by any solution.

Obviously, the third definition implies the second, which

implies the first, but whether the converse of any of these two

implications is true in general remains an open question.

B. Why a Basic Resolution Theory may not be enough

In the case of Sudoku, one may think that the obvious

resolution rules of BSRT are enough to solve any puzzle. After

all, don’t they express all that there is in the axioms? It is

important to understand in what sense they are not enough and

why.

These rules are not enough because our notion of a solution

within a resolution theory T a priori restricts them to being used

constructively; said otherwise, we look only for models of T

obtained constructively from the rules in T; but a solution of a

CSP is any model of the original axioms, whether it is obtained

in a constructive way or not (it may need some “guessing”).

To evaluate how far these rules are from being enough, they

have been implemented in an inference engine (CLIPS) and a

statistical analysis has been made on tens of thousands of

randomly generated puzzles. It shows that they can solve 42%

of the minimal puzzles (“minimal” means “has a unique

solution and has several solutions if any entry is deleted”;

statistics would be meaningless without this condition).

VI. CONCLUSION

We have proposed a general conceptual framework for

approximating a constraint satisfaction problem with

constructive resolution theories in which the intuitive notion

of a candidate is given a simple and well defined logical status

with an underlying epistemic meaning. We have given a

detailed illustration of these concepts with the Sudoku CSP.

We have explained why a resolution theory, even though it

seems to express all the constraints of the CSP, may not be

complete.

One may ask: is using a resolution theory more efficient

(from a computational point of view) than combining

elementary constraints propagation with blind search? In the

Sudoku example, our simulations (see Part II) show that the

answer is clearly negative; moreover, as there exist very

efficient general purpose search algorithms, we think this

answer is general. But, instead of setting the focus on

computational efficiency, as is generally the case, our

approach sets the focus on constructiveness of the solution.

Another general question remains open: how “close” can one

approximate a CSP with a well chosen resolution theory? We

have no general answer. But, in Part II of this paper, we shall

define elaborated resolution theories, give a meaning to the

word “close” and provide detailed results for the Sudoku CSP.

REFERENCES

[1] E.P.K. Tsang, Foundations of Constraint Satisfaction, Academic Press,

1993.

[2] H.W. Guesgen & J. Herztberg, A Perspective of Constraint-Based

Reasoning, Lecture Notes in Artificial Intelligence, Springer, 1992.

[3] D. Berthier: The Hidden Logic of Sudoku, Lulu Publishers, May 2007.

[4] L. Brownston, R. Farrell & E. Kant, Programming Expert Systems in

OPS5, Addison-Wesley, 1985.

[5] K. Meinke & J. Tucker: Many-Sorted Logic and its Applications, Wiley,

1993.

[6] S. Kripke: Semantical Analysis of Modal Logic, Zeitchrift für

Mathematische Logic und Grundlagen der Matematik, Vol. 9, pp. 67-96,

1973.

[7] J. Hintikka: Knowledge and Belief: an Introduction to the Logic of the

Two Notions, Cornell University Press, 1962.

[8] J. Moschovakis: Intuitionistic Logic, Stanford Encyclopedia of

Phylosophy, 2006.

[9] M.C. Fititng, Intuitionistic Logic, Model Theory and Forcing, North

Holland, 1969.

[10] D. Bridges & L. Vita: Techniques of Constructive Analysis, Springer,

2006.

