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Abstract: Many real world problems appear naturally as 

constraints satisfaction problems (CSP), for which very efficient 

algorithms are known. Most of these involve the combination of two 

techniques: some direct propagation of constraints between 

variables (with the goal of reducing their sets of possible values) 

and some kind of structured search (depth-first, breadth-first,…). 

But when such blind search is not possible or not allowed or when 

one wants a “constructive” or a “pattern-based” solution, one must 

devise more complex propagation rules instead. In this case, one 

can introduce the notion of a candidate (a “still possible” value for 

a variable). Here, we give this intuitive notion a well defined logical 

status, from which we can define the concepts of a resolution rule 

and a resolution theory. In order to keep our analysis as concrete as 

possible, we illustrate each definition with the well known Sudoku 

example. Part I proposes a general conceptual framework based on 

first order logic; with the introduction of chains and braids,  Part II 

will give much deeper results. 

Keywords: constraint satisfaction problem, knowledge engineering, 

production system, resolution rule, strategy, Sudoku solving. 

I.  INTRODUCTION 

Many real world problems, such as resource allocation, 

temporal reasoning or scheduling, naturally appear as constraint 

satisfaction problems (CSP) [1, 2]. Such problems constitute a 

main sub-area of Artificial Intelligence (AI). A CSP is defined 

by a finite number of variables with values in some fixed 

domains and a finite set of constraints (i.e. of relations they must 

satisfy); it consists of finding a value for each of these variables, 

such that they globally satisfy all the constraints.  

A CSP states the constraints a solution must satisfy, i.e. it says 

what is desired. It does not say anything about how a solution 

can be obtained. But very efficient general purpose algorithms 

are known [1], which guarantee that they will find a solution if 

any. Most of these algorithms involve the combination of two 

very different techniques: some direct propagation of constraints 

between variables (in order to reduce their sets of possible 

values) and some kind of structured search with “backtracking” 

(depth-first, breadth-first,…), consisting of trying (recursively if 

necessary) a value for a variable, propagating the consequences 

of this tentative choice and eventually reaching a solution or a 

contradiction allowing to conclude that this value is impossible.  

But, in some cases, such blind search is not possible (for 

practical reasons, e.g. one wants to simulate human behaviour 

or one is not in a simulator but in real life) or not allowed (for 

theoretical or æsthetic reasons, or because one wants to 

understand what happens, as is the case with most Sudoku 

players) or one wants a “constructive” solution.  

In such situations, it is convenient to introduce the notion of 

a candidate, i.e. of a “still possible” value for a variable. But a 

clear definition and a logical status must first be given to this 

intuitive notion. When this is done, one can define the 

concepts of a resolution rule (a logical formula in the 

“condition => action” form, which says what to do in some 

observable situation described by the condition pattern), a 

resolution theory, a resolution strategy. One can then study 

the  relation between the original CSP problem and various of 

its resolution theories. One can also introduce several 

properties a resolution theory can have, such as confluence (in 

Part II) and completeness (contrary to general purpose 

algorithms, a resolution theory cannot in general solve all the 

instances of a given CSP; evaluating its scope is thus a new 

topic in its own). This “pattern-based” approach was first 

introduced in [3], in the limited context of Sudoku solving. 

Notice that resolution rules are typical of the kind of rules 

that can be implemented in an inference engine and resolution 

theories can be seen as “production systems” [4]. See Part II. 

 

In this paper, we deal only with the case of a finite number 

of variables with ranges in finite domains and with first order 

constraints (i.e. constraints between the variables, not between 

subsets of variables). 

This paper is self-contained, both for the general concepts 

and for their illustrations with the Sudoku example, although 

deeper results specific to the introduction of chains or to this 

example will appear in Part II. Section II introduces the first 

order logical formulation of a general CSP. Section III defines 

the notion of a candidate and analyses its logical status. 

Section IV can then define resolution rules, resolution paths, 

resolution theories and the notion of a pure logic constructive 

solution. Section V explains in what sense a resolution theory 

can be incomplete even if its rules seem to express all the 

constraints in the CSP. 



 

 
II. THE LOGICAL THEORY ASSOCIATED WITH A CSP 

Consider a fixed CSP for n variables x1, x2, …, xn in finite 

domains X1, X2, …, Xn, with first order constraints. The CSP can 

obviously be written as a First Order Logic (FOL) theory (i.e. as 

a set of FOL axioms expressing the constraints) [1]. Thanks to 

the equivalence between FOL and Multi-Sorted First Order 

Logic (MS-FOL) [5], it can also be written as an MS-FOL 

theory. CSP solutions are in one-to-one correspondence with 

MS-FOL models of this theory. 

In MS-FOL, for each domain Xk, one introduces a sort (i.e. a 

type) Xk (there can be no confusion in using the same letter for 

the sort and the domain) and a predicate valuek(xk), with 

intended meaning “the value of the k-th variable is xk”. All the 

basic functions and predicates necessary to express the given 

constraints are defined formally as being sorted, so that one 

doesn’t have to write explicit conditions about the sorts of the 

variables mentioned in a formulæ. This has many advantages in 

practice (such as keeping formulæ short). The formulæ of our 

MS-FOL theory are defined as usual, by induction (combining 

atomic formulæ built on the above basic predicates and functions 

with logical connectives: and, or, not, typed quantifiers). We can 

always suppose that, for each value a variable can have, there is 

a constant symbol of the appropriate sort to name it. We can also 

adopt a unique names assumption for constant symbols: two 

different constant symbols of the same sort do not designate the 

same entity. However, no unique names assumption is made for 

variables. With the following Sudoku example, details missing 

in the above two paragraphs will hopefully become clearer than 

through additional logical formalism. 

A.  The Sudoku CSP 

Sudoku is generally presented as follows (Fig. 1): given a 9x9 

grid, partially filled with numbers from 1 to 9 (the “entries” or 

“clues” or “givens” of the problem), complete it with numbers 

from 1 to 9 in such a way that in each of the nine rows, in each 

of the nine columns and in each of the nine disjoint blocks of 3x3 

contiguous cells, the following property holds: there is at most 

one occurrence of each of these numbers. Notice that this is a 

special case of the Latin Squares problem (which has no 

constraints on blocks).  

It is natural to consider the three dimensional space with 

coordinates (n, r, c) and any of the 2D spaces: rc, rn and cn.  

Moreover, in rc-space, due to the constraint on blocks, it is 

convenient to introduce an alternative block-square coordinate 

system [b, s] and variables Xbs such that Xrc = Xbs whenever (r, 

c) and [b, s] are the coordinates of the same cell. For symmetry 

reasons, in addition to these variables with values in Numbers, 

we define additional Xrn, Xcn and Xbn variables, with values, 

respectively in Rows, Columns and Squares, and such that:  

Xrc = n  Xrn = c   Xcn = r    Xbn = s. 
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Figure 1: A typical Sudoku puzzle 

 

Since rows, columns and blocks play similar roles in the 

defining constraints, they will naturally appear to do so in 

many other places and it is convenient to introduce a word 

that makes no difference between them: a unit is either a row 

or a column or a block. And we say that two rc-cells share a 

unit if they are either in the same row or in the same column 

or in the same block (where “or” is non exclusive). We also 

say that these two cells are linked. It should be noticed that 

this (symmetric) relation between two cells does not depend 

in any way on the content of these cells but only on their 

place in the grid; it is therefore a straightforward and quasi 

physical notion. 

Formulating the Sudoku CSP as an MS-FOL theory is done 

in three stages: Grid Theory, General Sudoku Theory, 

Specific Sudoku Puzzle Theory. For definiteness, we consider 

standard Sudoku only, on a 9x9 grid. 

Most CSP problems can similarly be decomposed into three 

components: axioms for a general and static context (here, the 

grid) valid for all the instances of the problem, axioms for the 

general CSP constraints expressed in this context (here, the 

Sudoku constraints) and axioms for specific instances of the 

problem (here, the entries of a puzzle). 

B.  Grid Theory 

B.1 The sorts in Grid Theory 

The characteristic of MS-FOL is that it assumes the world 

of interest is composed of different types of objects, called 

sorts. In the very limited world of Grid Theory (GT) and of 

Sudoku Theory (ST), we need only five sorts: Number, Row, 

Column, Block, Square. Row, Column and Block correspond 

in the obvious way to rows, columns and blocks, whereas 

Square corresponds to the relative position of a cell in a block. 

Attached to each sort, there are two sets of symbols, one for 

naming constant objects of this sort, and one for naming 

variables of this sort. In the GT case, the variables for 

Numbers are n, n’, n’’, n0, n1, n2, …; the constants for 

Numbers are 1n, 2n, 3n, 4n, 5n, 6n, 7n, 8n, 9n. The variables for 

Rows are , r’, r’’, r0, r1, r2, ……; the constants for Rows are 1r, 

2r, 3r, 4r, 5r, 6r, 7r, 8r, 9r. And similarly for the other sorts. For 



 

 
each of the first five sorts, obvious axioms can express the range 

of the variable of this sort and the unique names assumption. 

In conformance with the MS-FOL conventions, a quantifier 

such as “r” (resp. “c”, “n”, …) will always mean “for any 

row r” (resp. “for any column c”, “for any number n”, …) 

B.2 Function and predicate symbols of Grid Theory 

Grid Theory has no function symbol. In addition to the five 

equality predicate symbols (=n, =r,… one for each sort), it has 

only one predicate symbol: correspondence, with arity 4 and 

signature (Row, Column, Block, Square), with intended meaning 

for atomic formulæ “correspondence(r, c, b, s)” the natural one. 

Given these basic predicates, one can define auxiliary predicates, 

considered as shorthands for longer logical formulæ:  

– same-row, with signature (Row, Column, Row, Column); 

“same-row(r1, c1, r2, c2)” is defined as a shorthand for: r1 =r r2; 

– and similarly for same-column and same-block; 

– same-cell, with signature (Row, Column, Row, Column); 

“same-cell(r1, c1, r2, c2)” is defined as a shorthand for: r1 = r r2 & 

c1 = c c2; 

As they have been defined, the auxiliary predicates same-row, 

same-column, same-block and same-cell all have the same arity 

and signature: informally, they all apply to couples of cells with 

row-column coordinates. This is very important because it 

allows to define an auxiliary predicate with the same arity and 

signature, applying to couples of cells with row-column 

coordinates, independent of the type of unit they share (we shall 

see that, most of the time, this type is irrelevant): 

– share-a-unit, with signature (Row, Column, Row, 

Column); “share-a-unit(r1, c1, r2, c2)” is defined as a shorthand 

for: same-cell(r1, c1, r2, c2) & [ same-row(r1, c1, r2, c2) or same-

column(r1, c1, r2, c2) or same-block(r1, c1, r2, c2)]. 

Of course, the intended meaning of this predicate is that 

suggested by its name: the two cells share either a row or a 

column or a block; notice that a cell is not considered as sharing 

a unit with itself. 

B.3 Axioms of Grid Theory 

In addition to the 5x36 sort axioms, Grid Theory has 81 

axioms expressing the (r, c) to [b, s] correspondence of 

coordinate systems, such as “correspondence(1r, 1c, 1b, 1s)”. 

As an exercise, one can check that this is enough to define the 

grid (modulo renamings of rows, columns, …). One can also 

check that the following formula expresses that row r intersects 

block b: cs correspondence(r, c, b, s). 

C.  General Sudoku Theory 

General Sudoku Theory (ST) is defined as an extension of 

Grid Theory. It has the same sorts as GT. In addition to the 

predicates of GT, it has the following one:  value, with signature 

(Number, Row, Column); the intended meaning of atomic 

formula “value(n, r, c)” is that number n is the value of cell 

(r, c), i.e. indifferently: Xrc = n, Xrn = c, Xcn = r or Xbn = s. It is 

convenient to introduce an auxiliary predicate value[], written 

with square braces, with signature (Number, Block, Square), 

with the same meaning as value, but in [b, s] instead of (r, c) 

coordinates; “value[n, b, s]” is defined as a shorthand for: 

rc [correspondence(r, c, b, s) & value(n, r, c)] 

C.1 Axioms of Sudoku Theory 

ST contains the axioms of GT, plus the following, written 

in a symmetrical form that will be useful in the sequel. 

STrc: rcn1n2{value(n1, r, c) & value(n2, r, c)  n1 = n2} 

STrn: rnc1c2{value(n, r, c1) & value(n, r, c2)  c1 = c2} 

STcn: cnr1r2{value(n, r1, c) & value(n, r2, c)  r1 = r2} 

STbn: bns1s2{value[n, b, s1] & value[n, b, s2]  s1 = s2} 

EVrc: rcn value(n, r, c)  

EVrn: rnc value(n, r, c)  

EVcn: cnr value(n, r, c)  

EVbn: bns value[n, b, s]. 

The formal symmetries inside each of these two groups of 

four axioms must be noticed. STrc expresses that an rc-cell 

can have only one value (this is never stated explicitly, but 

this should not be forgotten). STrn (resp. STcn, STbn) expresses 

that a value can appear only once in a row (resp. a column, a 

block); these are the standard constraints. Axiom EVrc (resp. 

EVrn, EVcn and EVbn) expresses that, in a solution, every rc- 

(resp. rn-, cn and bn-) cell must have a value; these conditions 

generally remain implicit in the usual formulation of Sudoku. 

D.  Specific Sudoku Puzzle Theory 

In order to be consistent with various sets of entries, ST 

includes no axioms on specific values. With any specific 

puzzle P we can associate the axiom EP defined as the finite 

conjunction of the set of all the ground atomic formulæ 

“value(nk, ri, cj)” such that there is an entry of P asserting that 

number nk must occupy cell (ri, cj). Then, when added to the 

axioms of ST, axiom EP defines the MS-FOL theory of the 

specific puzzle P. 

From the point of view of first order logic, everything is 

said. A solution of puzzle P (if any) is a model (if any) of 

theory ST + EP. The only problem is that nothing yet is said 

about how a solution can be found. This is the reason for 

introducing candidates and resolution rules. 

III. CANDIDATES AND THEIR LOGICAL STATUS 

A.  Candidates 

If one considers the way Sudoku players solve puzzles, it 

appears that most of them introduce candidates in the form of 

“pencil marks” in the cells of the grid. Intuitively, a candidate 

is a “still possible” value for a cell; candidates in each cell are 

progressively eliminated during the resolution process.  



 

 
This very general notion can be introduced for any CSP 

problem. Unfortunately, it has no a priori meaning from the MS-

FOL point of view. The reason is not the non-monotonicity of 

candidates, i.e. that they are progressively  withdrawn whereas 

one can only add information by applying the axioms of a FOL 

theory: this could easily be dealt with by introducing non-

candidates (or impossible values) instead. The real reason is that 

the intuitive notion of a candidate (as a “still possible” value) 

and the way it is used in practice suppose a logic in which this 

idea of “still possible” is formalised. Different “states of 

knowledge” must then be considered – and this is typically the 

domain of epistemic logic. We shall therefore adopt a priori the 

following framework, supporting a natural epistemic 

interpretation of a candidate.  

For each variable xk of the CSP, let us introduce a predicate 

candk(xk) with intended meaning “the value xk from domain Xk is 

not yet known to be impossible for the k-th variable”. 

The interesting point is that we shall be able to come back to 

ordinary (though constructivist or intuitionistic) logic for 

candidates (and thus forget the complexities of epistemic logic). 

B.  Knowledge states and knowledge space 

Given a fixed CSP, define a knowledge state as any set of 

values and candidates (formally written as valuek and candk 

predicates). A knowledge state is intended to represent the 

totality of the ground atomic facts (in terms of values and 

candidates) that are present in some possible state of reasoning 

for some instance of the CSP. (Invariant background knowledge, 

such as grid facts in Sudoku, is not explicitly included).  

It should be underlined that this notion of a knowledge state 

has a very concrete and intuitive meaning: for instance, in 

Sudoku, it represents the situation on a grid with candidates at 

some point in some resolution process for some puzzle; this is 

usually named the PM, the “Pencil Marks”. (Notice that some 

knowledge states may be contradictory – so that inconsistent sets 

of entries can be dealt with).  

Let KS be the (possibly large, but always finite) set of all 

possible knowledge states. On KS, we define the following order 

relation: KS1 ≤ KS2 if and only if, for any constant x° (of sort X) 

one has: 

– if valueX(x°) is in KS1, then valueX(x°) is in KS2, 

– if candX(x°) is in KS2, then candX(x°) is in KS1. 

If “KS1 ≤ KS2” is intuitively interpreted as “KS2 may appear 

after KS1 in some resolution process”, these conditions express 

the very intuitive idea that values can only be added and 

candidates can only be deleted during a resolution process. 

For any instance P of the CSP (e.g. for any puzzle P), one can 

also define the initial knowledge state KSP corresponding to the 

starting point of any resolution process for P. Its values are all 

the entries of P; its candidates are all the possible values of the 

remaining variables. The set KSP = {KS / KSP ≤ KS} is thus 

the set of knowledge states one can reach when starting from 

P; we call it the epistemic model of P. 

C.  Knowledge states and epistemic logic 

The above notion of a knowledge state appears to be a 

particular case of the general concept of a possible world in 

modal logic; the order relation on the set of knowledge states 

corresponds to the accessibility relation between possible 

worlds and our notion of an epistemic model coincides with 

that of a Kripke model [6]. Let K be the “epistemic operator”, 

i.e. the formal logical operator corresponding to knowing (for 

any proposition A, KA denotes the proposition “it is known 

that A” or “the agent under consideration knows that A”). 

Then, for any proposition A, we have Hintikka’s 

interpretation of KA [7]: in any possible world compatible 

with what is known (i.e. accessible from the current one), it is 

the case that A. 

Several axiom systems have appeared for epistemic logic 

(in increasing order of strength: S4 < S4.2 < S4.3 < S4.4 < 

S5). Moreover, it is known that there is a correspondence 

between the axioms on the epistemic operator K and the 

properties of the accessibility relation between possible 

worlds (this is a form of the classical relationship between 

syntax and semantics). As the weakest S4 logic is enough for 

our purposes, we won’t get involved in the debates about the 

best axiomatisation. S4 formalises the following three axioms: 

– KA  A: “if a proposition is known then it is true” or 

“only true propositions can be known”; it means that we are 

speaking of knowledge and not of belief and this supposes the 

agent (our CSP solver) does not make false inferences; this 

axiom corresponds to the accessibility relation being reflexive 

(for all KS in KS, one has: KS ≤ KS); 

– KA  KKA: (reflection) if a proposition is known 

then it is known to be known (one is aware of what one 

knows); this axiom corresponds to the accessibility relation 

being transitive (for all KS1, KS2 and KS3 in KS, one has: if 

KS1 ≤ KS2 and KS2 ≤ KS3, then KS1 ≤ KS3); 

– K(A  B)  (KA  KB): (limited deductive closure 

of knowledge) if it is known that A  B, then if it is known 

that A, then it is known that B. In the case of CSP, this will be 

applied as follows: when a resolution rule [A  B] is known 

[K(A  B)], if its conditions [A] are known to be satisfied 

[KA] then its conclusions [B] are known to be satisfied [KB]. 

D.  Values and candidates 

As we want our resolution rules to deal with candidates, all 

our initial MS-FOL concepts must be re-interpreted in the 

context of epistemic logic. 

The entries of the problem P are not only true in the initial 

knowledge state KSP, they are known to be true in this state: 



 

 
they must be written as Kvaluek; similarly, the initial candidates 

for a variable are not only the a priori possible values for it; they 

must be interpreted as not yet known to be impossible: 

Kcand. 

Moreover, as a resolution rule must be effective, it must 

satisfy the following: a condition on the absence of a candidate 

must mean that it is effectively known to be impossible: 

Kcand; a condition on the presence of a candidate must mean 

that it is not effectively known to be impossible: Kcand; a 

conclusion on the assertion of a value must mean that this value 

becomes effectively known to be true: Kvalue; a conclusion on 

the negation of a candidate must mean that this candidate 

becomes effectively known to be impossible: Kcand. 

As a result, in a resolution rule, a predicate “valuek” will never 

appear alone but only in the construct “Kvaluek(xk)”; a predicate 

“candk” will never appear alone but only in the construct 

Kcandk (given that Kcandk is equivalent, in any modal 

theory, to Kcandk).  

All this entails that we can use well known correspondences 

of modal logic S4 with intuitionistic logic [9] and constructive 

logic [10] to “forget” the K operator (thus merely replacing 

everywhere “Kvaluek” with “valuek” and “Kcandk” with 

“candk”), provided that we consider that we are now using 

intuitionistic or constructive logic. We have thus eliminated the 

epistemic operator that first appeared necessary to give the 

notion of a candidate a well defined logical status. Said 

otherwise: at the very moderate price of using intuitionnistic or 

constructive logic, in spite of the fact that candidates can be 

given an epistemic status, no explicit epistemic operator will 

ever be needed in the logical formulation of resolution rules. 

One thing remains to be clarified: the relation between values 

and candidates. In the epistemic interpretation, a value ak for a 

variable xk is known to be true if and only if all the other 

possible values for this variable are known to be false: 

xk [Kvaluek(xk)  x’k≠ xk  Kcandk(x’k)]. 

Using the equivalence between K and K and forgetting 

the K operator as explained above, we get the value-to-

candidate-relation intuitionistic axiom, for each variable xk:  

VCRk: xk [valuek(xk)  x’k≠ xkcandk(x’k)]. 

IV.  RESOLUTION RULES AND  RESOLUTION THEORIES 

A.  General definitions 

Definiton: a formula in the MS-FOL language of a CSP is in 

the condition-action form if it is written as A  B, possibly 

surrounded with quantifiers, where A does not contain explicitly 

the “” sign and B is a conjunction of value predicates and of 

negated cand predicates (no disjunction is allowed in B); all the 

variables appearing in B must already appear in A and be 

universally quantified.  

Definitons: a formula in the condition-action form is a 

resolution rule for a CSP if it is an intuitionistically (or 

constructively) valid consequence of the CSP axioms and of 

VCR. A resolution theory for a CSP is a set of resolution 

rules. Given a resolution theory T, a resolution path in T for 

an instance P of the CSP is a sequence of knowledge states 

starting with P and such that each step is justified by a rule in 

T. A resolution theory T solves an instance P of the CSP if 

one can exhibit a resolution path in T leading to a solution. 

Notice that, contrary to the general notion of a solution of a 

CSP as any model of the associated FOL or MS-FOL theory, 

this is a restrictive definition of a solution; it can be called a 

constructive definition of a solution: a resolution theory solves 

an instance of the CSP only if it does so in the constructive 

way defined above. 

B.  The Basic Resolution Theory of a CSP 

For any CSP, there is a Universal Resolution Theory, URT, 

defined as the union of the following three types of rules, 

which are the mere re-writing of each of the VCRk axioms, 

for each sort: 

– Elementary Constraints Propagation rule for sort Xk:  

ECPk: xkxk1≠xk {valuek(xk)    candk(xk1)}; 

– “Singles” rule for sort Xk: 

Sk: xk{[candk(xk1) & xk1≠xk candk(xk1)]  valuek(xk)}. 

– Contradiction Detection for sort Xk:  

CDk: xk(value(xk) & candk(xk))  , where “” is any 

false formula. 

But for any CSP, there is also a Basic Resolution Theory, 

BRT, which is the union of URT with all the rules specific to 

this CSP expressing the direct contradictions (if any) between 

its different variables (see Part II). All the resolution theories 

we shall consider will be extensions of this BRT. 

C.  Example from Sudoku 

The BRT of the Sudoku CSP (say BSRT) consists of the 

following rules. The elementary constraints propagation 

(ECP) rules are the re-writing of the left-to-right part of 

axioms STrc, STbn, STcn and STbn in the condition-action form: 

ECP1: rcnn1≠n {value(n, r, c)    cand(n1, r, c)} 

ECP2: rncc1≠c {value(n, r, c)   cand(n, r, c1)} 

ECP3: cnrr1≠r {value(n, r, c)   cand(n, r1, c)} 

ECP4: bnss1≠s {value[n, b, s]   cand[n, b, s1)} 

Here cand[] is related to cand() in the same way as 

value[] was related to value(). 

The well-known rules for Singles (“Naked-Singles” and 

“Hidden-Singles”) are the re-writing of the right-to-left part of 

the same axioms: 

NS: rcn{ [cand(n, r, c) & n1≠n cand(n1, r, c)] 

 value(n, r, c)} 



 

 
HSrn: rnc{ [cand(n, r, c) & c1≠c cand(n, r, c1)] 

 value(n, r, c)} 

HScn: cnr{ [cand(n, r, c) & r1≠r cand(n, r1, c)] 

 value(n, r, c)} 

HSbn: bns{ [cand’[n, b, s] & s1≠s  cand’[n, b, s1] ] 

 value’[n, b, s]} 

Axioms EV have a special translation, with meaning: if there 

is a (rc-, rn- cn- or bn-) cell for which no value remains possible, 

then the problem has no solution: 

CDrc: rcn[value(n, r, c) & cand(n, r, c)]  . 

CDrn: rnc[value(n, r, c) & cand(n, r, c)]  . 

CDcn: cnr[value(n, r, c) & cand(n, r, c)]  . 

CDbn: bns[value’(n, b, s) & cand’(n, b, s)]  . 

V.  COMPLETENESS 

A.  Completeness 

Now that the main concepts are defined, we can ask: what 

does it mean for a Resolution Theory T for a given CSP to be 

“complete”? Notice that all the results that can be produced (i.e. 

all the values that can be asserted and all the candidates that can 

be eliminated) when a resolution theory T is applied to a given 

instance P of the CSP are logical consequences of theory T  EP 

(where EP is the conjunction of the entries for P); these results 

must be valid for any solution for P (i.e. for any model of T  

EP). Therefore a resolution theory can only solve instances of the 

CSP that have a unique solution and one can give three sensible 

definitions of the completeness of T: 1) it solves all the instances 

that have a unique solution; 2) for any instance, it finds all the 

values common to all its solutions; 3) for any instance, it finds all 

the values common to all its solutions and it eliminates all the 

candidates that are excluded by any solution. 

Obviously, the third definition implies the second, which 

implies the first, but whether the converse of any of these two 

implications is true in general remains an open question. 

B.  Why a Basic Resolution Theory may not be enough 

In the case of Sudoku, one may think that the obvious 

resolution rules of BSRT are enough to solve any puzzle. After 

all, don’t they express all that there is in the axioms? It is 

important to understand in what sense they are not enough and 

why. 

These rules are not enough because our notion of a solution 

within a resolution theory T a priori restricts them to being used 

constructively; said otherwise, we look only for models of T 

obtained constructively from the rules in T; but a solution of a 

CSP is any model of the original axioms, whether it is obtained 

in a constructive way or not (it may need some “guessing”). 

To evaluate how far these rules are from being enough, they 

have been implemented in an inference engine (CLIPS) and a 

statistical analysis has been made on tens of thousands of 

randomly generated puzzles. It shows that they can solve 42% 

of the minimal puzzles (“minimal” means “has a unique 

solution and has several solutions if any entry is deleted”; 

statistics would be meaningless without this condition). 

VI.  CONCLUSION 

We have proposed a general conceptual framework for 

approximating a constraint satisfaction problem with 

constructive resolution theories in which the intuitive notion 

of a candidate is given a simple and well defined logical status 

with an underlying epistemic meaning. We have given a 

detailed illustration of these concepts with the Sudoku CSP. 

We have explained why a resolution theory, even though it 

seems to express all the constraints of the CSP, may not be 

complete. 

One may ask: is using a resolution theory more efficient 

(from a computational point of view) than combining 

elementary constraints propagation with blind search? In the 

Sudoku example, our simulations (see Part II) show that the 

answer is clearly negative; moreover, as there exist very 

efficient general purpose search algorithms, we think this 

answer is general. But, instead of setting the focus on 

computational efficiency, as is generally the case, our 

approach sets the focus on constructiveness of the solution. 

Another general question remains open: how “close” can one 

approximate a CSP with a well chosen resolution theory? We 

have no general answer. But, in Part II of this paper, we shall 

define elaborated resolution theories, give a meaning to the 

word “close” and provide detailed results for the Sudoku CSP. 
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