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ON THE FINSLER STUCTURE OF THE TEICHMÜLLER

METRIC AND THURSTON’S ASYMMETRIC METRIC

A. PAPADOPOULOS AND W. SU

Abstract. We highlight several analogies between the Finsler (infinitesimal)
properties of Teichmüller’s metric and Thurston’s asymmetric metric on Te-
ichmüller space. Thurston defined his asymmetric metric in analogy with
Teichmüllers’ metric, as a solution to an extremal problem, which consists, in
the case of the asymmetric metric, of finding the best Lipschitz maps in the
hoomotopy class of homeomorphisms between two hyperbolic surface. (In the
Teichmüller metric case, one searches for the best quasiconformal map between
two conformal surfaces.) It turns out also that some properties of Thurston’s
asymmetric metric can be used to get new insight into Teichmüller’s metric.
In this direction, in analogy with Thurston’s formula for the Finsler norm of
a vector for the asymmetric metric that uses the hyperbolic length function,
we give a new formula for the Finsler norm of a vector for the Teichmüller
metric that uses the extremal length function. We also describe an embedding
of projective measured foliation space in the cotangent space to Teichmüller
space whose image is the boundary of the dual of the unit ball in the tangent
space representing vectors of norm one for the Finsler structure associated to
the Teichmüller metric.

AMS Mathematics Subject Classification: 32G15; 30F60; 57M50; 57N05.

Keywords: Teichmüller space; Thurston’s asymmetric metric; Teichmüller metric;
Finsler norm.

1. Introduction

Let S = Sg,n be an oriented surface of genus g ≥ 0 with n ≥ 0 punctures. We
assume that 3g−3+n > 0. The Teichmüller space T(S) of S is the space of complex
structures (or, equivalently, of complete and finite-area hyperbolic structures) on S

up to equivalence, where two such structures X and Y are considered as equivalent
if there is a conformal map (respectively, an isometry) h : (S,X) → (S, Y ) which is
homotopic to the identity map of S.

There are several natural metrics on T(S); some of them are Riemannian and
others are only Finsler. Some metrics on Teichmüller space (e.g. the Weil-Petersson
metric, and the Teichmüller metric) are strongly related to the complex structure
of that space. A Finsler metric is a length metrics where the distance between two
points is defined by minimizing lengths of peicewise C1 paths joining them and
where the length of a path is computed by integrating norms of tangent vectors.
The fact that a metric is Finsler but not Riemannian means that the norm func-
tion on each tangent space is not associated to a scalar product. In this paper, we
consider the Teichmüller metric and Thurston’s asymmetric metric. Both metrics
are Finsler, and in the case of Thurston’s asymmetric metric, the Finsler norm not
only is non-Riemannian but it is even not symmetric. These metrics are defined in
terms of distances between geometric structures on the surface (conformal struc-
tures, in the case of the Techmüller metric, and hyperbolic structures, in the case
of Thurston’s asymmetric metric). The question of comparing the various metrics
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2 A. PAPADOPOULOS AND W. SU

on T(S) is a natural one, and it was also suggested by Thurston in [32]; see also
[23].

We shall recall below the definition of Thurston’s asymmetric metric. Thurston
formulated several ideas concerning this asymmetric metric, and we shall review
some of them below. He proved some of the major results and he outlined some
other results in his paper [32]. After Thurston’s paper was circulated, questions on
the limiting behavior of stretch lines and of anti-stretch lines were considered, see
[20], [23], [30] and [31]. Stretch lines are some special geodesics of that metric, and
anti-stretch lines are stretch lines traversed in the opposite directions; we note that
since the metric is not symmetric, a geodesic traversed in the opposite direction
is not necessarily a geodesic. There were also generalizations of Thurston’s asym-
metric metric to the case of surfaces with boundary, see [14] and [15]. A renewal
of interest in this metric has emerged recently, see e.g. the papers [33], [13] and
[18]. It became also clear that among the known metrics on Teichmüller space,
the Thurston metric is the one that has an interesting analogue on outer space,
see [5]. Thus, there are very good reasons to study Thurston’s asymmetric metric.
Some analogies and some differences between Thurston’s asymmetric metric and
Teichmüller’s metric have described in the paper [23]. In the present paper, we
point out new analogies that concern the Finsler character of these metrics.

Given a set X , a function d : X → X is said to be a weak metric on X if it
satisfies all the axioms of a distance function except the symmetry axiom. The
weak metric d is said to be asymmetric if it is strictly weak, that is if there exist
two points x and y in X such that d(x, y) 6= d(y, x).

A related notion is that of a weak norm on a vector space E. This is a function
p : E → R that is nonnegative, convex and positively homegeneous. In other words,
p satisfies the following:

(1) p(x) ≥ 0 for all x ∈ E;
(2) p(λx) = λp(x) for all x ∈ E and for all λ ≥ 0;
(3) p(x1 + x2) ≤ p(x1) + p(x2) for all x1, x2 ∈ E.

In this paper, to simplify terminology, we shall use in general the term norm to
denote a weak norm a,d the terms metric to denote a weak metric.

Let X and Y be now two complete hyperbolic metrics on S. In the paper [32],
Thurston defined an asymmetric metric dL on T(S) by setting

(1) dL(X,Y ) = inf
f

logLf(X,Y ),

where the infimum is taken is over all homeomorphsims f : X → Y homotopic to
the indentity map of S, and where Lf (X,Y ) is the Lipschitz constant of f , that is,

Lip(f) = sup
x 6=y∈S

dY
(

f(x), f(y)
)

dX
(

x, y
) .

We shall call this weak metric Thurston’s asymmetric metric or, for short,
Thurston’s metric.

In the same paper, Thurston proved that there is a (non-necessarily unique)
extremal Lipschitz homeomorphsim that realizes the infimum in (1). He also proved
that we have the following formula for the asymmetric metric:

(2) dL(X,Y ) = log sup
γ

ℓY (γ)

ℓX(γ)
,

where ℓX(γ) denotes the hyperbolic length of γ with respect to the metric X and
γ ranges over all essential simple closed curves on S.

Furthermore, Thurston proved that the asymmetric metric defined in (1) is
Finsler, that is, it is a length metric which is defined by integrating a weak norm
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on the tangent bundle of T(S) along paths in Teichmüller space, and taking the
minimum lengths over all peicewise C1-paths. Thurston gave an explicit formula
for the weak norm of a tangent vector V at a point X in T(S), namely,

(3) ‖V ‖L = sup
λ∈ML

dℓλ(V )

ℓλ(X)
.

Here, ML = ML(S) is the space of measured laminations on S, ℓλ : T(S) → R is
the length function on Teichmüller space associated to the measured lamination λ

and dℓλ is the differential of the function ℓλ(X) at the point X ∈ T(S).
For X in T(S) and λ in ML, we shall use the notation ℓλ(X) or ℓX(λ) to denote

the X-length of λ, depending on whether we consider the length function as a
function on Teichmüller space or on measured lamination space.

We shall present an analogue of Formula (3) for the Teichmüller metric that is
expressed in terms of extremal length, namely, we show that the Finsler weak norm
associated to the Teichmüller distance is given by the following formula:

(4) ‖V ‖E = sup
λ∈MF

dExt
1/2
λ (V )

Ext
1/2
λ (X)

.

Here, X is a conformal structure on S, considered as a point in Teichmüller space,
V is a tangent vector at the point X , MF = MF(S) is the space of measured
laminations on S, Extλ : T → R is the extremal length function associated to the
measured foliation λ and dExtλ is the differential of that function at X .

There is a more geometric version of (4) in which the tangent vector V is inter-
preted as a Beltrami differential (see Corollary 3.7 below).

The following table summarizes some analogies between notions and results as-
sociated to Thurston’s asymmetric metric and those associated to the Teichmüller
metric.

Thurston’s metric Teichmüller metric
(i) Stretch maps Teichmüller extremal maps
(ii) Stretch lines Teichmüller lines
(iii) dL(X,Y ) = log inf

f
L(f) dT (X,Y ) = log inf

f
K(f)

(iv) dL(X,Y ) = log sup
γ

ℓγ(Y )

ℓγ(X)
dT (X,Y ) = log sup

γ

Ext1/2γ (Y )

Ext1/2γ (X)

(v) ‖V ‖L = sup
λ∈ML

dℓλ(V )

ℓλ(X)
‖V ‖T = sup

λ∈MF

dExt
1/2
λ (V )

Ext
1/2
λ (X)

(vi) Thurston cataclysm coordinates The homeomorphism
X ∈ T(S) 7→ Fµ(X) ∈ MF(µ) X ∈ T(S) 7→ Fh(ΦF (X)) ∈ MF(F )

(vii) ℓλ(X) = i(λ, Fλ∗(X)) Extλ(X) = i(λ, Fh(Φλ(X)))

(viii) dℓγ(µ) =
2

π
Re < Θα, µ > dExtλ(µ) = −2Re < Φλ, µ >

(ix) The horofuction boundary is The horofuction boundary is
Thurston’s boundary Gardiner-Masur’s boundary

(x) LX(λ) =
ℓX(λ)

LX
for λ ∈ ML EX(λ) =

Ext
1/2
X (λ)

K
1/2
X

for λ ∈ ML

Most of the entries in this table are well know, some of them are known but need
explanation, and some of the them are new and proved in this paper. We now make
a few comments on all the entries.
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(i) Stretch maps arise from the extremal problem of finding the best Lipschitz
constant of maps homotopic to the identity between two hyperbolic structures on
a surface S, in much the same way as Teichmüller maps arise from the extremal
problem of finding the best quasiconformal constant of maps homotopic to the
identity between two complex structures on S.

(ii) Stretch lines are geodesics for Thurston’s metric. A stretch line is determined
by a pair (µ, F ) where µ is a complete lamination (not necessarily measured) and
F a measured foliation transverse to µ. Thurston proved that any two points in Te-
ichmüller space can be joined by a geodesic which is a concatenation of stretch lines,
but in general such a geodesic is not unique. Furthermore, there exist geodesics
for Thurston’s metric that are not concatenations of stretch lines. This contrasts
with Teichmüller’s theorem establishing that existence and uniqueness of geodesics
joining any two distinct points, cf. [28], [29] and Ahlfor’s survery [3].

(iii) The left hand side is Thurston’s definition of Thurston’s metric, the infimum
is over all homeomorphisms f homotopic to the identity and L(f) is the Lispschitz
constant of such a homeomorphism. The right hand side is the definition of the
Teichmüller metric, the infimum is over all quasiconformal homeomorphisms f ho-
motopic to the identity and K(f) is the dilatation of such a homeomorphism.

(iv) The left hand side is another expression (also due to Thurston) of Thurston’s
metric, and the right hand side is Kerckhoff’s formula for the Teichmüller metric.

(v) Here, V is a tangent vector to Teichmüller space at a point X . The left
hand side formula is due to Thurston [32]; it is the infinitesimal form of Thurston’s
metric. The right hand side is an infinitesimal form of the Teichmüller metric, and
it is proved below (Theorem 3.6).

(vi) On the left hand side, µ is a complete geodesic lamination and the range of
the map, MF(µ), is the subspace ofMF of equivalence classes of measured foliations
that are transverse to µ. On the right hand side, F is a measured foliation, and
the range of the map, MF(F ), is the subspace of MF consisting of equivalence
classes of measured foliations that are transverse to F . The left hand side map is
a homeomorphism defined in Thurston’s paper [32]. The right hand side map is a
homeomorphism that arises from the fact that a pair F1, F2 of measured foliations
determines a unique point X ∈ T(S) and a unique quadratic differential Φ on X

such that F1 ad F2 are measure equivalent to the vertical and horizontal foliations
of Φ. Here, Fh(ΦF (X)) is the (equivalence class of the) horizontal foliation of the
quadratic differential on the Riemann surface X having F as vertical foliation.

(vii) The left hand side is an expression of the length of a complete lamination λ

as the geometric intersection with the horocyclic foliation associated to a completion
λ∗ of λ. The formula is proved in [20] for the case where λ is complete. The case
where λ is not complete follows easily from the geometric arguments used in that
proof. The right hand side formula is due to Kerckhoff, see Lemma 3.3 below.

(viii) In the left hand side formula, µ is a Beltrami differential. The formula was
given by Gardiner [7], and in this formula α is (the homotopy class of) a simple
closed curve and Θα is the Poincaré series of α, that is, a quadratic differential on
the hyperbolic surface X defined by

Θα =
∑

B∈<A>\Γ

B∗(
dz

z
)2

where Γ ⊂ PSL(2,R) is a Fuchsian group associated to X acting on the upper half-
plane H

2 and A(z) = eℓαz is the deck transformation corresponding to the simple
closed geodesic α. The right hand side formula is called Gardiner’s extremal length
variational formula (see Lemma 3.2 below).
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(ix) Walsh showed in [33] that the horofuction boundary of Thurston’s metric is
canonically identified with Thurston’s boundary. Liu and Su showed in [17] that
the horofuction boundary of the Teichmüller metric is canonically identified with
Gardiner-Masur’s boundary.

(x) Here, we choose a basepoint X0 ∈ T(S) and we fix a complete geodesic
lamination µ on S. For eachX ∈ T(S), LX is the Lipschitz constant of the extremal
Lipschitz map between X0 and X and KX is the quasiconformal dilatation of the
extremal quasiconformal map between X0 and X .

We illustrate the use of the functions LX and EX . We use Thurston’s homeo-
morphism φµ : T(S) → MF (µ) that maps each X ∈ T(S) to the horocylic foliation
Fµ(X). The definition of this homeomorphism is recalled in §2 below. We denote
the projective class of a measured foliation F by [F ]. By a result in [20], a sequence
(Xk)k≥1 in T(S) coverges to a limit [F ] ∈ PMF if and only if Fµ(Xk) tends to
infinity and [Fµ(Xk)] coverges to [F ]. We prove the following:

Proposition 1.1. If a sequence (Xk)k≥1 in T(S) coverges to a limit [F ] ∈ PMF,
then LXk

(·) converges to [F ] in the following sense:

(⋆) up to a subsequence, LXk
(·) converges to a positive multiple of i(F, ·) uniformly

on any compact subset of ML.

Proof. Assume that a sequence (Xk)k≥1 coverges to [F ] ∈ PMF. Let LXk
= Lk

and Fµ(Xk) = Fk. From Thurston’s theory [6], there exists a sequence (ck)k≥1 of
positive numbers such that ck → 0 and

(5) cki(Fk, λ) → i(F, λ)

for each λ ∈ ML.
By the Fundamental Lemma in [20], there is a uniform constant C > 0 such that

(6) i(Fk, λ) ≤ ℓλ(Xk) ≤ i(Fk, λ) + C.

Note that

ckℓλ(Xk) ≤ ckLkℓλ(X0)

and for each Lk, there is a measured lamination λk with ℓλk
(X0) = 1 such that

Lk = ℓλk
(Xk). As a result, we have

(7)
ckℓλ(Xk)

ℓλ(X0)
≤ ckLk ≤ ckℓλk

(Xk).

From (5), (6), (7), it follows that ckLk is uniformly bounded from above and uni-

formly bounded below away from zero. It follows that, up to a subsequence, ℓλ(Xk)
Lk

converges to a positive multiple of i(F, λ) for each λ ∈ ML. Since pointed conver-

gence of ℓλ(Xk)
Lk

, λ ∈ ML is equivalent to uniform convergence on compact subsets

of ML, property (⋆) holds.
�

Concerning the right hand side formula in (x), a similar result was obtaind by
Miyachi in [19] :

Proposition 1.2. If a sequence (Xk)k≥1 in T(S) coverges to a limit P in Gardiner-
Masur’s boundary, then EXk

(·) converges to some function EP (·) in the following
sense: Up to a subsequence, EXk

(·) converges to a positive multiple of EP (·) uni-
formly on any compact subset of ML.
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2. Lipschitz Norm

This section contains results of Thurston from his paper [32] that we will use
later in this paper. We have provided proofs because at times Thurston’s proofs in
[32] are considered as sketchy.

A geodesic lamination µ on a hyperbolic surface X is said to be complete if its
complementary regions are all isometric to ideal triangles. (We note that we are
dealing with laminations µ that are not necessarily measured, except if specified.)
Associated with (X,µ) is a measured foliation Fµ(X), called the horocyclic foliation,
satisfying the following three properties:

(i) Fµ(X) intersects µ transversely, and in each cusp of an ideal triangle in the
complement of µ, the leaves of the foliation are pieces of horocycles that make
right angles with the boundary of the triangle;

(ii) on the leaves of µ, the transverse measure for Fµ(X) agrees with arclength;
(iii) there is a nonfoliated region at the centre of each ideal triangle of S \µ whose

boundary consists of three pieces of horocycles that are pairwise tangent (see
Figure 1).

horocycles

perpendicular

to the boundary

horocycle of length 1

non-foliated
region

Figure 1. The horocyclic foliation of an ideal triangle.

We denote by MF(µ) the space of measured foliations that are transverse to µ.
Thurston [32] proved the following fundamental result.

Theorem 2.1. The map φµ : T(S) → MF(µ) defined by X 7→ Fµ(X) is a homeo-
morphism.

The stretch line directed by µ and passing through X ∈ T(S) is the curve

R ∋ t 7→ Xt = φ−1
µ (etFµ(X)).

We call a segment of a stretch line a stretch path.
Suppose that µ is the support of a measured geodesic lamination λ. Then, for

any two points Xs, Xt, s ≤ t on the stretch line, their Lipschitz distance dL(Xs, Xt)
is equal to t− s, and this distance is realized by

log
ℓλ(Xt)

ℓλ(Xs)
.

We denote by ML the space of measured geodesic laminations on X and we let
ML1 = {λ ∈ ML | ℓλ(X) = 1}. We may identify ML1 with PL, the space of
projective measured laminations.

Thurston [32] introduced a Finsler structure on T(S) by defining the Finsler
norm of a tangent vector V ∈ TXT(S) by the following formula :

(8) ‖V ‖L = sup
λ∈ML

dℓλ(V )

ℓλ(X)
.
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Note that we may write
‖V ‖L = sup

λ∈ML1

dℓλ(V ).

Lemma 2.2. Let Γµ(t) be a stretch line through X with Γµ(0) = X and Γ̇µ(0) = V0.
For any measured lamination λ supported by µ (λ may be not unique), we have

‖V0‖L =
dℓλ(V0)

ℓλ(X)
.

Proof. By multiplying the transverse measure by a constant, we may assume that
ℓλ(X) = 1. The stretch map from X to Γλ(t) is a Lipschitz map with Lipschitz
constant et, and the hyperbolic length of λ in Γλ(t) is equal to et. As a result, for
any measured lamination γ ∈ ML1,

ℓγ(Γλ(t)) ≤ et.

It follows that

sup
γ∈ML1

dℓγ(V0) = dℓλ0
(V0).

�

Theorem 2.3 (Thurston [32] p. 20). ‖ · ‖L is the infinitesimal norm of Thurston’s
asymmetric distance dL.

Proof. Recall that the Finsler norm ‖ · ‖L induces an (asymmetric) distance:

d(X,Y ) = inf
Γ

∫ 1

0

‖Γ̇‖L,

where the infimum is taken over all piecewise C1 curves Γ : [0, 1] → T in Teichmüller
space joining X to Y .

By compactness of PML, there exists an element λ ∈ ML such that the distance
dL(X,Y ) is attained at λ, that is,

dL(X,Y ) = log
ℓλ(Y )

ℓλ(X)
.

For any piecewise C1 path Γ : [0, 1] → T(S) satisfying Γ(0) = X and Γ(1) = Y ,
we have

dL(X,Y ) = log
ℓλ(Y )

ℓλ(X)

=

∫ 1

0

d log ℓλ(Γ̇(t))

≤

∫ 1

0

‖Γ̇(t)‖L.

Therefore, dL(X,Y ) ≤ d(X,Y ).
To prove the reverse inequality, we use a result proved by Thurston in [32],

namely, that any two points in Teichmüller space can be connected by a finite con-
catenation of stretch paths, each of which stretches along some common measured
geodesic lamination λ.

As a result, for any distinct X and Y in T(S), we can assume that there exists a
path Γ connecting X and Y , with Γ being a concatenation Γ1 ∗ · · · ∗ Γn of stretch
paths. Up to reparametrization, we may assume that each Γi is defined on [0, 1].
Furthermore, by a result of Thurston, we may assume that each stretch path Γi is
directed by a complete geodesic lamination µi that contains a common measured
lamination λ, which is the maximally stretched lamintation from X to Y . This is a
consequence of Theorem 8.2 in Thurston [32], in which Thurston shows that there
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is a unique maximal ratio-maximizing chain recurrent lamination which contains
all other ratio-maximizing chain recurrent lamitations. For our purposes, we take
λ to be the maximal (with respect to inclusion) measured lamination contained in
µ(X,Y ).

Along each Γi, by Lemma 2.2, we have

sup
ν∈ML

dℓν(Γ̇i)

ℓν
=

dℓλ(Γ̇i)

ℓλ
.

Now we have
∫

Γ

‖Γ̇‖L =

n
∑

i=1

∫

Γi

‖Γ̇‖L

=
n
∑

i=1

∫

Γi

dℓλ(Γ̇i)

ℓλ

=

n
∑

i=1

log
ℓλ(Γi(1))

ℓλ(Γi(0))

= log
ℓλ(Y )

ℓλ(X)
.

For the last equality, note that we have Γi(1) = Γi+1(0) for each i and Γ1(0) =
X,Γn(1) = Y . It follows that d(X,Y ) ≤ dL(X,Y ).

�

3. Teichmüller Norm

Extremal length is an important tool in the study of the Teichmüller metric.
The notion is due to Ahlfors and Beurling [2], see also [1]. We briefly recall the
definition. Given a Riemann surface X , a conformal metric σ on X is a metric
that is locally of the form σ(z)|dz| where z is a local holomorphic parameter and
σ(z) ≥ 0 is a Borel measurable function in the local chart. We define the σ-area of
X by

A(σ) =

∫

X

σ2(z)|dz|2.

Given a homotopy class of simple closed curves α, its σ-length is defined by

Lσ(α) = inf
α′

∫

α′

σ(z)|dz|,

where the infimum is taken over all essential simple closed curves α′ in the homo-
topy class α. (Note that it follows from the invariance property of the expression
σ(z)|dz| that the two integrals A(σ) and Lσ(α) are well defined, that is, they can
be computed in the holomorphic local coordinates and the value obtained does not
depend on the choice of the coordinates, see [1].)

With the above notation, we define the extremal length of α on X by

Extα(X) = sup
σ

L2
σ(α)

A(σ)
,

where σ(z)|dz| ranges over all conformal metrics on X satisfying 0 < A(σ) < ∞.
By a result of Kerckhoff [12], there is a unique continuous extension of the

extremal length function to the space of measured foliations MF, with Extaγ(X) =
a2Extγ(X) for a > 0 and γ a homotopy class of simple closed curves on X . Recall
that a tangent vector to Teichmüller space at a point X can be represented by a
Beltrami differential µ = µ(z)dz̄dz [11]. (Note that in this section we use the letter
µ to denote a Beltrami differential since this is the traditional notation, although
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in other sections the same letter is used to denote a lamination. Hopefully, there
will be no confusion.) Using the extremal length function, we define a norm on the
tangent space at X by setting:

(9) ‖µ‖E = sup
λ∈MF

dExt
1/2
λ (µ)

Ext
1/2
λ (X)

.

The following theorem is due to Hubbard-Masur [9]; we refer to Kerckhoff [12]
for a short proof.

Theorem 3.1. For any Riemann surface X and for any measured foliation λ on X,
there is exactly one quadratic differential, denoted by Φλ, whose vertical measured
foliation is measure-equivalent to λ.

Lemma 3.2 (Gardiner [8]). The extremal length function Extλ is differentiable
and we have the following formula, called the “first variational formula”:

(10) dExtλ(µ) = −2Re < Φλ, µ >,

where < Φλ, µ > is the natural pairing

< Φλ, µ >=

∫∫

X

Φλ(z)µ(z)dxdy.

The following observation is due to Kerckhoff [12]:

Lemma 3.3. With the above notation,

(11) Extλ(X) =

∫∫

X

|Φλ(z)|dxdy.

Proof. The proof we give here is due to Ivanov [10]. We include it for completeness.
By continuity and the density of weighted simple closed curve in MF, it suffices

to prove (11) for the case where µ = aγ ∈ MF, where γ is (the homotopy class of)
a simple closed curve and a > 0.

Let Φ be the one-cylinder Strebel differential on X determined by aγ. The
complement of the vertical critical leaves of Φ is a cylinder foliated by circles isotopic
to γ. Let us also set ρ = |Φ|1/2|dz|. Then ρ is a flat metric on S, with a finite
number of singular points, which are conical singularities. Measured in the flat
metric ρ, the circumference and height of the cylinder are equal to Lρ(γ) and a

respectively. By a theorem of Jenkins-Strebel [27], the extremal length ExtX(γ) of
γ is equal to

Extγ(X) =
Lρ(γ)

a
,

where ρ = |Φ|1/2|dz|.
The area A(ρ) =

∫∫

X |Φλ(z)|dxdy of the cylinder is equal to aLρ(γ). As a result,

Extaγ(X) = a2Extγ(X) = aLρ(γ) = A(ρ).

�

The next result follows from (10) and (11).

Proposition 3.4. The norm ‖µ‖E satisfies

(12) ‖µ‖E = sup
λ∈MF

−Re < Φλ, µ >
∫∫

X
|Φλ(z)|dxdy

= sup
‖Φ‖=1

Re < Φ, µ >,

where Φ varies over all holomorphic quadratic differentials Φ.
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Note that we have ‖Φ‖ =
∫∫

X |Φ(z)|dxdy.

Now we consider the Teichmüller metric on T(S). We recall that it is defined by

dT (X,Y ) :=
1

2
inf
f

logK(f)

where f : X → Y is a quasi-conformal map homotopic to the identity map of S
and

K(f) = sup
x∈X

Kx(f) ≥ 1

is the quasi-conformal dilatation of f (the sup here denotes essential supremum),
with

Kx(f) =
|fz(x)| + |fz̄(x)|

|fz(x)| − |fz̄(x)|

being the pointwise quasiconformal dilatation at the point x ∈ X with local con-
formal coordinate z.

Teichmüller’s theorem states that given any X,Y ∈ T(S), there exists a unique
quasi-conformal map f : X → Y , called the Teichmüller map, such that

dT (X,Y ) =
1

2
logK(f).

The Beltrami coefficient µ :=
∂̄f

∂f
is of the form µ = k

Φ̄

|Φ|
for some quadratic dif-

ferential Φ on X and some constant k with 0 ≤ k < 1. In some natural coordinates
given by Φ on X and for some associated quadratic differential Φ′ on Y , the Te-

ichmüller map f is given by f(x+iy) = K1/2x+iK−1/2y, whereK = K(f) =
1 + k

1− k
.

It is known that the Teichmüller metric is a Finsler metric and that between any
two points in T(S) there is exactly one geodesic. A geodesic ray with initial point
X is given by the one-parameter family of Riemann surfaces {Xt}t≥0, where there
is a holomorphic quadratic differential Φ on X and a family of Teichmüller maps

ft : X → Xt, with initial Beltrami differential µ(ft) =
e2t − 1

e2t + 1

Φ̄

|Φ|
. Here µ(ft) is

chosen such that the geodesic ray has unit speed, that is, dT (Xs, Xt) = t− s for all
s ≤ t. We also recall the following formula due to Kerckhoff [12].

Theorem 3.5. Let X,Y be any two points in T(S). Then

dT (X,Y ) =
1

2
log sup

λ

Extλ(Y )

Extλ(X)
,

where λ ranges over elements in MF.

Now we can prove the following:

Theorem 3.6. The metric induced by the norm ‖ · ‖E defined in (9) is the Te-
ichmüller metric.

Proof. Denote by dE the length metric on T(S) induced by the norm ‖µ‖E. For
any X,Y in T(S), by Kerckhoff’s formula, the Teichmüller distance is realized by

dT (X,Y ) =
1

2
log

Extλ(Y )

Extλ(X)

for some measured foliation λ. An argument similar to the one in the first part of
the proof of Theorem 2.3 shows that dT (X,Y ) ≤ d(X,Y ).

For the converse, let Γ(t) be a Teichmüller geodesic connecting X and Y . We
parametrize Γ with unit speed, and define it on the interval [0, T ] with T = dT (X,Y )
with Γ(0) = X and Γ(T ) = Y .
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For each t in [0, T ], the Teichmüller map between X = Γ(0) and Γ(t) has quasi-
conformal dilatation e2t. It follows from the geometric definition of a quasiconformal
map that for any λ in MF, we have

Extλ(Γ(t)) ≤ e2tExtλ(Γ(0)).

Taking square roots, we get

Ext
1/2
λ (Γ(t)) ≤ etExt

1/2
λ (Γ(0))

and then

lim
t→0+

Ext
1/2
λ (Γ(t)) − Ext

1/2
λ (Γ(0))

tExt
1/2
λ (Γ(t))

≤ lim
t→0+

etExt
1/2
λ (Γ(0))− Ext

1/2
λ (Γ(0))

tExt
1/2
λ (Γ(t))

= lim
t→0+

et − 1

t
= 1.

As a result, d log Ext
1/2
λ (Γ̇(0)) ≤ 1 and then

d log Ext
1/2
λ (Γ̇(t)) ≤ 1

for all t ∈ R.
Considering the integral of the norm ‖ · ‖E along Γ(t), we have

∫ T

0

‖Γ̇(t)‖E ≤ T = dT (X,Y ).

This proves that d(X,Y ) ≤ dT (X,Y ). �

Combining Proposition 3.4 and Theorem 3.6 , we have the following corollary.

Corollary 3.7. The Teichmüller Finsler norm, denoted by ‖µ‖T , is given by

‖µ‖T = sup
‖Φ‖=1

Re < Φ, µ >,

where Φ varies over all holomorphic quadratic differentials Φ.

The above result was already known and can be obtained by using the famous
Reich-Strebel inequality [26]. The result means that the Teichmüller norm ‖ · ‖T is
dual to the L1-norm

‖Φ‖ =

∫∫

X

|Φ(z)|dxdy

on the cotangent space.

4. Convex embedding of measure foliation space using extremal

length

Following a usual trend, we shall call the boundary of a convex body a convex
sphere. Note that the boundary of a convex body is always homeomorphic to a
sphere.

Thurston [32] proved that for any X ∈ T(S), the function dℓ : ML1 → T∗
XT(S)

defined by λ 7→ dℓλ embeds ML1 as a convex sphere in the cotangent space of
Teichmüller space at X containing the origin. This embedding is the dual of the
boundary of the unit ball in the tangent space representing vectors of norm one
for the Finsler structure associated to Thurston’s metric. We prove an analogous
result for the extremal length function.
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Theorem 4.1. Given a point X in T(S), let PF = MF1 = {λ ∈ MF | Extλ(X) =
1}. Then, the function PF → T∗

XT(S) defined by λ 7→ dExtλ embeds PF as a
convex sphere in T∗

XT(S) containing the origin. This sphere is the boundary of
the dual of the unit ball in the tangent space representing vectors of norm one for
the Finsler structure associated to the Teichmüller metric.

Proof. We fix a point X in T(S). By Gardiner’s formula,

dExtλ(µ) = −2Re < Φλ, µ >

(see Theorem 3.1 for the notation). Kerckhoff proved that if a sequence λn in PF

converges to λ then ‖Φλn
− Φλ‖ → 0 (see Page 34-35 of Kerckhoff’s paper [12],

where he proved the result for the case where each λn is a simple closed curve.
Since the subset of weighted simple closed curves is dense in MF, the result we
need follows). It follows that the map dExt is continuous.

Moreover, since the pairing between quadratic differentials and harmonic Bel-
trami differentials is nondegenerate [11], if dExtλ = dExtλ′ , then Φλ = Φλ′ . This
means that λ = λ′. Therefore, the map dExt is injective.

Let dExt(PF) be the image of PF under the map dExt, that is,

dExt(PF) = {dExtλ ∈ T∗
XT(S) | λ ∈ PF}.

Since PF is homeomorphic to a sphere, by invariance of domain, dExt(PF) is open
and dExt is a homeomorphism between PF and dExt(PF).

For any λ ∈ PF, consider the Beltrami differential

Vλ = −
Φλ

2|Φλ|
.

It is a tangent vector in TXT(S). By Gardiner’s formula,

dExtλ(Vλ) = −2Re < Φλ,−
Φλ

2|Φλ|
>

=

∫∫

X

|Φλ|dxdy = Extλ(X) = 1.

As a result, the derivative dExtλ in the direction Vλ is 1. Using Hölder’s inequality,
for any γ ∈ PF, we have

dExtγ(Vλ) =

∫∫

Φγ
Φλ

|Φλ|
dxdy

≤

∫∫

X

|Φγ |dxdy = Extγ(X) = 1.

Moreover, equality holds if and only if γ = λ. Therefore, the derivative dExtγ(Vλ)
of any other γ ∈ PF is strictly less than 1. Denote by C(dExt(PF)) the convex hull
of dExt(PF) in T∗

XT(S). Thus, Vλ defines a non-constant linear functional on the
cotangent space which attains its maximal value on C(dExt(PF)) at dExtλ. As a
result, dExtλ is an extreme point of the convex set C(dExt(PF)).

We now use Thurston’s argument in his proof of Theorem 5.1 of [32]. The set of
extreme points of any convex set is a sphere of some dimension. Since the dimension
of dExt(PF) is one less than the dimension of T∗

XT(S), the set of extremal points of
C(dExt(PF)) coincides with dExt(PF). As a result, dExt(PF) is a convex sphere.
To see that the convex set C(dExt(PF)) contains the origin in its interior, note
that since this convex hull has a nonempty interior, there must be at least one line
through the origin of T∗

XT(S) which intersects dExt(PF) in at least two points.
For each of these points, there is a linear functional which attains its positive
maximum value there. It follows that 0 must separate the two points, so 0 is a
convex combination of them. �
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5. Comparison between the Lipschitz and Teichmüller norms

From an inequality called Wolpert’s inequality [34], we have dL ≤ 2dT . (In
fact, the inequality is contained in Sorvali’s paper [25], and it was rediscovered by
Wolpert. ) Choi and Rafi [4] proved that the two metrics are quasi-isometric in
any thick part of the Teichmüller space, but that there are sequences (Xn), (Yn) in
the thin part, with dL(Xn, Yn) → 0.

It is interesting to compare the Lipschitz norm and the Teichmüller norm. In
particular, we ask the following:

Question 5.1. Determine a function C(ǫ) such that

‖V ‖L ≤ ‖V ‖T ≤ C(ǫ)‖V ‖L

for any V ∈ TXT(S) and for all X ∈ Tǫ(S), the ǫ-thick part of T(S).

Since ‖V ‖L (respectively ‖V ‖T ) is given by the logarithmic derivative of the hy-
perbolic (respectively extremal) length function of measured laminations, a further
study of the relation between hyperbolic and extremal length may give the answer
to the above question.

Question 5.2. Consider the length-spectrum metric dls on T(S). This can be
defined as a symmetrization of Thurston’s metric1, by the formula

dls(X,Y ) = max{log sup
γ

ℓY (γ)

ℓX(γ)
, log sup

γ

ℓX(γ)

ℓY (γ)
}

= max{dL(X,Y ), dL(Y,X)}.

Is the length-spectrum metric dls a Finsler metric ? If yes, give a formula for
the infinitesimal norm of a vector on Teichmüller space with respect to this Finsler
structure.

There are comparisons between the length-spectrum metric and the Teichmüller
metric. It was shown by Liu and Su [16] that the divergence of dls and dT is only
caused by the action of the mapping class group. In fact, they showed that dls and
dT are “almost” isometric on the moduli space and that the two metrics on the
moduli space determine the same asymptotic cone.

Question 5.3. One can also seek for results analogous to those presented here
for the weak metric L∗ dual to Thurston’s metric, that is, the weak metric on
Teichmüller space defined by

L∗(X,Y ) = L(Y,X),

as well as for the length spectrum metric dls on the same space.
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edition), Astérisque, vol. 66–67.

[7] F. Gardiner, Schiffer’s interior variation and quasiconformal mapping, Duke Math. J. 42
(1975), 371–380.

[8] F. Gardiner, Measured foliations and the minimal norm property for quadratic differentials,
Acta. Math. 152 (1984), 57–76.

[9] J. Hubbard and H. Masur, Quadratic differentials and foliations, Acta. Math. 142 (1979),
221–274.

[10] N. V. Ivanov, Isometries of Teichmüller spaces from the point of view of Mostow rigidity,
Amer. Math. Soc. Transl. Ser. 2, 202 (2001) , 131–149.

[11] Y. Imayoshi and M. Taniguchi, An Introduction to Teichmüller Spaces. Springer 1992.
[12] S. Kerckhoff, The asymptotic geometry of Teichmüller space, Topology 19 (1980), 23–41.
[13] A. Lenzhen, K. Rafi and J. Tao, Bounded combinatorics and the Lipschitz metric on Te-

ichmüller space, to appear in Geometriae Dedicata.
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[18] L. Liu, A. Papadopoulos, W. Su and G. Théret, On the classification of mapping class actions
on Thurston’s asymmetric metric, preprint, 2011, submitted.

[19] H. Miyachi, Teichmüller rays and the Gardiner-Masur boundary of Teichmüller space, Geom.
Dedicata 137 (2008), 113–141.

[20] A. Papadopoulos, On Thurston’s boundary of Teichmüller space and the extension of earth-
quakes, Topology and its Application 41 (1991), 147–177.
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