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We highlight several analogies between the Finsler (infinitesimal) properties of Teichmüller's metric and Thurston's asymmetric metric on Teichmüller space. Thurston defined his asymmetric metric in analogy with Teichmüllers' metric, as a solution to an extremal problem, which consists, in the case of the asymmetric metric, of finding the best Lipschitz maps in the hoomotopy class of homeomorphisms between two hyperbolic surface. (In the Teichmüller metric case, one searches for the best quasiconformal map between two conformal surfaces.) It turns out also that some properties of Thurston's asymmetric metric can be used to get new insight into Teichmüller's metric. In this direction, in analogy with Thurston's formula for the Finsler norm of a vector for the asymmetric metric that uses the hyperbolic length function, we give a new formula for the Finsler norm of a vector for the Teichmüller metric that uses the extremal length function. We also describe an embedding of projective measured foliation space in the cotangent space to Teichmüller space whose image is the boundary of the dual of the unit ball in the tangent space representing vectors of norm one for the Finsler structure associated to the Teichmüller metric.

Introduction

Let S = S g,n be an oriented surface of genus g ≥ 0 with n ≥ 0 punctures. We assume that 3g -3+n > 0. The Teichmüller space T(S) of S is the space of complex structures (or, equivalently, of complete and finite-area hyperbolic structures) on S up to equivalence, where two such structures X and Y are considered as equivalent if there is a conformal map (respectively, an isometry) h : (S, X) → (S, Y ) which is homotopic to the identity map of S.

There are several natural metrics on T(S); some of them are Riemannian and others are only Finsler. Some metrics on Teichmüller space (e.g. the Weil-Petersson metric, and the Teichmüller metric) are strongly related to the complex structure of that space. A Finsler metric is a length metrics where the distance between two points is defined by minimizing lengths of peicewise C 1 paths joining them and where the length of a path is computed by integrating norms of tangent vectors. The fact that a metric is Finsler but not Riemannian means that the norm function on each tangent space is not associated to a scalar product. In this paper, we consider the Teichmüller metric and Thurston's asymmetric metric. Both metrics are Finsler, and in the case of Thurston's asymmetric metric, the Finsler norm not only is non-Riemannian but it is even not symmetric. These metrics are defined in terms of distances between geometric structures on the surface (conformal structures, in the case of the Techmüller metric, and hyperbolic structures, in the case of Thurston's asymmetric metric). The question of comparing the various metrics on T(S) is a natural one, and it was also suggested by Thurston in [START_REF] Thurston | Minimal stretch maps between hyperbolic surfaces[END_REF]; see also [START_REF] Papadopoulos | Shift coordinates, stretch lines and polyhedral structures for Teichmüller space[END_REF].

We shall recall below the definition of Thurston's asymmetric metric. Thurston formulated several ideas concerning this asymmetric metric, and we shall review some of them below. He proved some of the major results and he outlined some other results in his paper [START_REF] Thurston | Minimal stretch maps between hyperbolic surfaces[END_REF]. After Thurston's paper was circulated, questions on the limiting behavior of stretch lines and of anti-stretch lines were considered, see [START_REF] Papadopoulos | On Thurston's boundary of Teichmüller space and the extension of earthquakes[END_REF], [START_REF] Papadopoulos | Shift coordinates, stretch lines and polyhedral structures for Teichmüller space[END_REF], [START_REF] Théret | On the negative convergence of Thurston's stretch lines towards the boundary of Teichmüller space[END_REF] and [START_REF] Théret | On elementary antistretch lines[END_REF]. Stretch lines are some special geodesics of that metric, and anti-stretch lines are stretch lines traversed in the opposite directions; we note that since the metric is not symmetric, a geodesic traversed in the opposite direction is not necessarily a geodesic. There were also generalizations of Thurston's asymmetric metric to the case of surfaces with boundary, see [START_REF] Liu | On length spectrum metrics and weak metrics on Teichmüller spaces of surfaces with boundary[END_REF] and [START_REF] Liu | Length spectra and the Teichmüller metric for surfaces with boundary[END_REF]. A renewal of interest in this metric has emerged recently, see e.g. the papers [START_REF] Walsh | The horoboundary and isometry groups of Thurston's Lipschitz metric[END_REF], [START_REF] Lenzhen | Bounded combinatorics and the Lipschitz metric on Teichmüller space[END_REF] and [START_REF] Liu | On the classification of mapping class actions on Thurston's asymmetric metric[END_REF]. It became also clear that among the known metrics on Teichmüller space, the Thurston metric is the one that has an interesting analogue on outer space, see [START_REF] Culler | Moduli of graphs and automorphisms of free groups[END_REF]. Thus, there are very good reasons to study Thurston's asymmetric metric. Some analogies and some differences between Thurston's asymmetric metric and Teichmüller's metric have described in the paper [START_REF] Papadopoulos | Shift coordinates, stretch lines and polyhedral structures for Teichmüller space[END_REF]. In the present paper, we point out new analogies that concern the Finsler character of these metrics.

Given a set X, a function d : X → X is said to be a weak metric on X if it satisfies all the axioms of a distance function except the symmetry axiom. The weak metric d is said to be asymmetric if it is strictly weak, that is if there exist two points x and y in X such that d(x, y) = d(y, x).

A related notion is that of a weak norm on a vector space E. This is a function p : E → R that is nonnegative, convex and positively homegeneous. In other words, p satisfies the following:

(1) p(x) ≥ 0 for all x ∈ E;

(2) p(λx) = λp(x) for all x ∈ E and for all λ ≥ 0;

(3) p(x 1 + x 2 ) ≤ p(x 1 ) + p(x 2 ) for all x 1 , x 2 ∈ E. In this paper, to simplify terminology, we shall use in general the term norm to denote a weak norm a,d the terms metric to denote a weak metric.

Let X and Y be now two complete hyperbolic metrics on S. In the paper [START_REF] Thurston | Minimal stretch maps between hyperbolic surfaces[END_REF], Thurston defined an asymmetric metric d L on T(S) by setting

(1) d L (X, Y ) = inf f log L f (X, Y ),
where the infimum is taken is over all homeomorphsims f : X → Y homotopic to the indentity map of S, and where

L f (X, Y ) is the Lipschitz constant of f , that is, Lip(f ) = sup x =y∈S d Y f (x), f (y) d X x, y .
We shall call this weak metric Thurston's asymmetric metric or, for short, Thurston's metric.

In the same paper, Thurston proved that there is a (non-necessarily unique) extremal Lipschitz homeomorphsim that realizes the infimum in [START_REF] Ahlfors | Conformal invariants: topics in geometric function theory[END_REF]. He also proved that we have the following formula for the asymmetric metric:

(2) d L (X, Y ) = log sup γ ℓ Y (γ) ℓ X (γ) ,
where ℓ X (γ) denotes the hyperbolic length of γ with respect to the metric X and γ ranges over all essential simple closed curves on S. Furthermore, Thurston proved that the asymmetric metric defined in (1) is Finsler, that is, it is a length metric which is defined by integrating a weak norm on the tangent bundle of T(S) along paths in Teichmüller space, and taking the minimum lengths over all peicewise C 1 -paths. Thurston gave an explicit formula for the weak norm of a tangent vector V at a point X in T(S), namely, (3)

V L = sup λ∈ML dℓ λ (V ) ℓ λ (X) .
Here, ML = ML(S) is the space of measured laminations on S, ℓ λ : T(S) → R is the length function on Teichmüller space associated to the measured lamination λ and dℓ λ is the differential of the function ℓ λ (X) at the point X ∈ T(S).

For X in T(S) and λ in ML, we shall use the notation ℓ λ (X) or ℓ X (λ) to denote the X-length of λ, depending on whether we consider the length function as a function on Teichmüller space or on measured lamination space.

We shall present an analogue of Formula (3) for the Teichmüller metric that is expressed in terms of extremal length, namely, we show that the Finsler weak norm associated to the Teichmüller distance is given by the following formula:

(4) V E = sup λ∈MF dExt 1/2 λ (V ) Ext 1/2 λ (X)
.

Here, X is a conformal structure on S, considered as a point in Teichmüller space, V is a tangent vector at the point X, MF = MF(S) is the space of measured laminations on S, Ext λ : T → R is the extremal length function associated to the measured foliation λ and dExt λ is the differential of that function at X.

There is a more geometric version of (4) in which the tangent vector V is interpreted as a Beltrami differential (see Corollary 3.7 below).

The following table summarizes some analogies between notions and results associated to Thurston's asymmetric metric and those associated to the Teichmüller metric. 

(iii) d L (X, Y ) = log inf f L(f ) d T (X, Y ) = log inf f K(f ) (iv) d L (X, Y ) = log sup γ ℓ γ (Y ) ℓ γ (X) d T (X, Y ) = log sup γ Ext 1/2 γ (Y ) Ext 1/2 γ (X) (v) V L = sup λ∈ML dℓ λ (V ) ℓ λ (X) V T = sup λ∈MF dExt 1/2 λ (V ) Ext 1/2 λ (X) (vi) Thurston cataclysm coordinates The homeomorphism X ∈ T(S) → F µ (X) ∈ MF(µ) X ∈ T(S) → F h (Φ F (X)) ∈ MF(F ) (vii) ℓ λ (X) = i(λ, F λ * (X)) Ext λ (X) = i(λ, F h (Φ λ (X))) (viii) dℓ γ (µ) = 2 π Re < Θ α , µ > dExt λ (µ) = -2Re < Φ λ , µ > (ix)
The horofuction boundary is The horofuction boundary is Thurston's boundary Gardiner-Masur's boundary

(x) L X (λ) = ℓ X (λ) L X for λ ∈ ML E X (λ) = Ext 1/2 X (λ) K 1/2 X for λ ∈ ML
Most of the entries in this table are well know, some of them are known but need explanation, and some of the them are new and proved in this paper. We now make a few comments on all the entries.

(i) Stretch maps arise from the extremal problem of finding the best Lipschitz constant of maps homotopic to the identity between two hyperbolic structures on a surface S, in much the same way as Teichmüller maps arise from the extremal problem of finding the best quasiconformal constant of maps homotopic to the identity between two complex structures on S.

(ii) Stretch lines are geodesics for Thurston's metric. A stretch line is determined by a pair (µ, F ) where µ is a complete lamination (not necessarily measured) and F a measured foliation transverse to µ. Thurston proved that any two points in Teichmüller space can be joined by a geodesic which is a concatenation of stretch lines, but in general such a geodesic is not unique. Furthermore, there exist geodesics for Thurston's metric that are not concatenations of stretch lines. This contrasts with Teichmüller's theorem establishing that existence and uniqueness of geodesics joining any two distinct points, cf. [START_REF] Teichmüller | Extremale quasikonforme Abbildungen und quadratische Differentiale[END_REF], [START_REF] Teichmüller | Bestimmung der extremalen quasikonformen Abbildungen bei geschlossenen orientierten Riemannschen Flächen[END_REF] and Ahlfor's survery [START_REF] Ahlfors | Quasiconformal mappings, Teichmüller spaces, and Kleinian groups[END_REF].

(iii) The left hand side is Thurston's definition of Thurston's metric, the infimum is over all homeomorphisms f homotopic to the identity and L(f ) is the Lispschitz constant of such a homeomorphism. The right hand side is the definition of the Teichmüller metric, the infimum is over all quasiconformal homeomorphisms f homotopic to the identity and K(f ) is the dilatation of such a homeomorphism.

(iv) The left hand side is another expression (also due to Thurston) of Thurston's metric, and the right hand side is Kerckhoff's formula for the Teichmüller metric.

(v) Here, V is a tangent vector to Teichmüller space at a point X. The left hand side formula is due to Thurston [START_REF] Thurston | Minimal stretch maps between hyperbolic surfaces[END_REF]; it is the infinitesimal form of Thurston's metric. The right hand side is an infinitesimal form of the Teichmüller metric, and it is proved below (Theorem 3.6).

(vi) On the left hand side, µ is a complete geodesic lamination and the range of the map, MF(µ), is the subspace of MF of equivalence classes of measured foliations that are transverse to µ. On the right hand side, F is a measured foliation, and the range of the map, MF(F ), is the subspace of MF consisting of equivalence classes of measured foliations that are transverse to F . The left hand side map is a homeomorphism defined in Thurston's paper [START_REF] Thurston | Minimal stretch maps between hyperbolic surfaces[END_REF]. The right hand side map is a homeomorphism that arises from the fact that a pair F 1 , F 2 of measured foliations determines a unique point X ∈ T(S) and a unique quadratic differential Φ on X such that F 1 ad F 2 are measure equivalent to the vertical and horizontal foliations of Φ. Here, F h (Φ F (X)) is the (equivalence class of the) horizontal foliation of the quadratic differential on the Riemann surface X having F as vertical foliation.

(vii) The left hand side is an expression of the length of a complete lamination λ as the geometric intersection with the horocyclic foliation associated to a completion λ * of λ. The formula is proved in [START_REF] Papadopoulos | On Thurston's boundary of Teichmüller space and the extension of earthquakes[END_REF] for the case where λ is complete. The case where λ is not complete follows easily from the geometric arguments used in that proof. The right hand side formula is due to Kerckhoff, see Lemma 3.3 below.

(viii) In the left hand side formula, µ is a Beltrami differential. The formula was given by Gardiner [START_REF] Gardiner | Schiffer's interior variation and quasiconformal mapping[END_REF], and in this formula α is (the homotopy class of) a simple closed curve and Θ α is the Poincaré series of α, that is, a quadratic differential on the hyperbolic surface X defined by

Θ α = B∈<A>\Γ B * ( dz z ) 2
where Γ ⊂ PSL(2, R) is a Fuchsian group associated to X acting on the upper halfplane H 2 and A(z) = e ℓα z is the deck transformation corresponding to the simple closed geodesic α. The right hand side formula is called Gardiner's extremal length variational formula (see Lemma 3.2 below).

(ix) Walsh showed in [START_REF] Walsh | The horoboundary and isometry groups of Thurston's Lipschitz metric[END_REF] that the horofuction boundary of Thurston's metric is canonically identified with Thurston's boundary. Liu and Su showed in [START_REF] Liu | The horofunction compactification of Teichmüller space[END_REF] that the horofuction boundary of the Teichmüller metric is canonically identified with Gardiner-Masur's boundary.

(x) Here, we choose a basepoint X 0 ∈ T(S) and we fix a complete geodesic lamination µ on S. For each X ∈ T(S), L X is the Lipschitz constant of the extremal Lipschitz map between X 0 and X and K X is the quasiconformal dilatation of the extremal quasiconformal map between X 0 and X.

We illustrate the use of the functions L X and E X . We use Thurston's homeomorphism φ µ : T(S) → M F (µ) that maps each X ∈ T(S) to the horocylic foliation F µ (X). The definition of this homeomorphism is recalled in §2 below. We denote the projective class of a measured foliation F by [F ]. By a result in [START_REF] Papadopoulos | On Thurston's boundary of Teichmüller space and the extension of earthquakes[END_REF], a sequence (X k ) k≥1 in T(S) coverges to a limit [F ] ∈ PMF if and only if F µ (X k ) tends to infinity and [F µ (X k )] coverges to [F ]. We prove the following: [START_REF] Fathi | Travaux de Thurston sur les surfaces[END_REF], there exists a sequence (c k ) k≥1 of positive numbers such that c k → 0 and ( 5)

Proposition 1.1. If a sequence (X k ) k≥1 in T(S) coverges to a limit [F ] ∈ PMF, then L X k (•) converges to [F ] in the following sense: (⋆) up to a subsequence, L X k (•) converges to a positive multiple of i(F, •) uniformly on any compact subset of ML. Proof. Assume that a sequence (X k ) k≥1 coverges to [F ] ∈ PMF. Let L X k = L k and F µ (X k ) = F k . From Thurston's theory
c k i(F k , λ) → i(F, λ)
for each λ ∈ ML.

By the Fundamental Lemma in [START_REF] Papadopoulos | On Thurston's boundary of Teichmüller space and the extension of earthquakes[END_REF], there is a uniform constant C > 0 such that

(6) i(F k , λ) ≤ ℓ λ (X k ) ≤ i(F k , λ) + C. Note that c k ℓ λ (X k ) ≤ c k L k ℓ λ (X 0 )
and for each L k , there is a measured lamination

λ k with ℓ λ k (X 0 ) = 1 such that L k = ℓ λ k (X k ).
As a result, we have

(7) c k ℓ λ (X k ) ℓ λ (X 0 ) ≤ c k L k ≤ c k ℓ λ k (X k ).
From ( 5), ( 6), [START_REF] Gardiner | Schiffer's interior variation and quasiconformal mapping[END_REF], it follows that c k L k is uniformly bounded from above and uniformly bounded below away from zero. It follows that, up to a subsequence, ℓ λ (X k )

L k converges to a positive multiple of i(F, λ) for each λ ∈ ML. Since pointed convergence of ℓ λ (X k ) L k , λ ∈ ML is equivalent to uniform convergence on compact subsets of ML, property (⋆) holds.

Concerning the right hand side formula in (x), a similar result was obtaind by Miyachi in [START_REF] Miyachi | Teichmüller rays and the Gardiner-Masur boundary of Teichmüller space[END_REF] : Proposition 1.2. If a sequence (X k ) k≥1 in T(S) coverges to a limit P in Gardiner-Masur's boundary, then E X k (•) converges to some function E P (•) in the following sense: Up to a subsequence, E X k (•) converges to a positive multiple of E P (•) uniformly on any compact subset of ML.

Lipschitz Norm

This section contains results of Thurston from his paper [START_REF] Thurston | Minimal stretch maps between hyperbolic surfaces[END_REF] that we will use later in this paper. We have provided proofs because at times Thurston's proofs in [START_REF] Thurston | Minimal stretch maps between hyperbolic surfaces[END_REF] are considered as sketchy.

A geodesic lamination µ on a hyperbolic surface X is said to be complete if its complementary regions are all isometric to ideal triangles. (We note that we are dealing with laminations µ that are not necessarily measured, except if specified.) Associated with (X, µ) is a measured foliation F µ (X), called the horocyclic foliation, satisfying the following three properties:

(i) F µ (X) intersects µ transversely, and in each cusp of an ideal triangle in the complement of µ, the leaves of the foliation are pieces of horocycles that make right angles with the boundary of the triangle; (ii) on the leaves of µ, the transverse measure for F µ (X) agrees with arclength; (iii) there is a nonfoliated region at the centre of each ideal triangle of S \ µ whose boundary consists of three pieces of horocycles that are pairwise tangent (see Figure 1). We denote by MF(µ) the space of measured foliations that are transverse to µ.

Thurston [START_REF] Thurston | Minimal stretch maps between hyperbolic surfaces[END_REF] proved the following fundamental result.

Theorem 2.1. The map φ µ : T(S) → MF(µ) defined by X → F µ (X) is a homeomorphism.

The stretch line directed by µ and passing through X ∈ T(S) is the curve

R ∋ t → X t = φ -1 µ (e t F µ (X)
). We call a segment of a stretch line a stretch path.

Suppose that µ is the support of a measured geodesic lamination λ. Then, for any two points X s , X t , s ≤ t on the stretch line, their Lipschitz distance d L (X s , X t ) is equal to ts, and this distance is realized by log ℓ λ (X t ) ℓ λ (X s ) .

We denote by ML the space of measured geodesic laminations on X and we let ML 1 = {λ ∈ ML | ℓ λ (X) = 1}. We may identify ML 1 with PL, the space of projective measured laminations.

Thurston [START_REF] Thurston | Minimal stretch maps between hyperbolic surfaces[END_REF] introduced a Finsler structure on T(S) by defining the Finsler norm of a tangent vector V ∈ T X T(S) by the following formula :

(8) V L = sup λ∈ML dℓ λ (V ) ℓ λ (X) .
Note that we may write

V L = sup λ∈ML1 dℓ λ (V ).
Lemma 2.2. Let Γ µ (t) be a stretch line through X with Γ µ (0) = X and Γµ (0) = V 0 . For any measured lamination λ supported by µ (λ may be not unique), we have

V 0 L = dℓ λ (V 0 ) ℓ λ (X) .
Proof. By multiplying the transverse measure by a constant, we may assume that ℓ λ (X) = 1. The stretch map from X to Γ λ (t) is a Lipschitz map with Lipschitz constant e t , and the hyperbolic length of λ in Γ λ (t) is equal to e t . As a result, for any measured lamination γ ∈ ML 1 ,

ℓ γ (Γ λ (t)) ≤ e t .
It follows that sup

γ∈ML1 dℓ γ (V 0 ) = dℓ λ0 (V 0 ).
Theorem 2.3 (Thurston [START_REF] Thurston | Minimal stretch maps between hyperbolic surfaces[END_REF] p. 20). • L is the infinitesimal norm of Thurston's asymmetric distance d L .

Proof. Recall that the Finsler norm • L induces an (asymmetric) distance:

d(X, Y ) = inf Γ 1 0 Γ L ,
where the infimum is taken over all piecewise C 1 curves Γ : [0, 1] → T in Teichmüller space joining X to Y . By compactness of PML, there exists an element λ ∈ ML such that the distance d L (X, Y ) is attained at λ, that is,

d L (X, Y ) = log ℓ λ (Y ) ℓ λ (X) .
For any piecewise C 1 path Γ : [0, 1] → T(S) satisfying Γ(0) = X and Γ(1) = Y , we have

d L (X, Y ) = log ℓ λ (Y ) ℓ λ (X) = 1 0 d log ℓ λ ( Γ(t)) ≤ 1 0 Γ(t) L . Therefore, d L (X, Y ) ≤ d(X, Y ).
To prove the reverse inequality, we use a result proved by Thurston in [START_REF] Thurston | Minimal stretch maps between hyperbolic surfaces[END_REF], namely, that any two points in Teichmüller space can be connected by a finite concatenation of stretch paths, each of which stretches along some common measured geodesic lamination λ.

As a result, for any distinct X and Y in T(S), we can assume that there exists a path Γ connecting X and Y , with Γ being a concatenation Γ 1 * • • • * Γ n of stretch paths. Up to reparametrization, we may assume that each Γ i is defined on [0, 1]. Furthermore, by a result of Thurston, we may assume that each stretch path Γ i is directed by a complete geodesic lamination µ i that contains a common measured lamination λ, which is the maximally stretched lamintation from X to Y . This is a consequence of Theorem 8.2 in Thurston [START_REF] Thurston | Minimal stretch maps between hyperbolic surfaces[END_REF], in which Thurston shows that there is a unique maximal ratio-maximizing chain recurrent lamination which contains all other ratio-maximizing chain recurrent lamitations. For our purposes, we take λ to be the maximal (with respect to inclusion) measured lamination contained in µ(X, Y ).

Along each Γ i , by Lemma 2.2, we have

sup ν∈ML dℓ ν ( Γi ) ℓ ν = dℓ λ ( Γi ) ℓ λ .

Now we have

Γ Γ L = n i=1 Γi Γ L = n i=1 Γi dℓ λ ( Γi ) ℓ λ = n i=1 log ℓ λ (Γ i (1)) ℓ λ (Γ i (0)) = log ℓ λ (Y ) ℓ λ (X) .
For the last equality, note that we have Γ i (1) = Γ i+1 (0) for each i and Γ

1 (0) = X, Γ n (1) = Y . It follows that d(X, Y ) ≤ d L (X, Y ).

Teichmüller Norm

Extremal length is an tool in study of the Teichmüller metric. The notion is due to Ahlfors and Beurling [START_REF] Ahlfors | Conformal invariants and function-theoretic null-sets[END_REF], see also [START_REF] Ahlfors | Conformal invariants: topics in geometric function theory[END_REF]. We briefly recall the definition. Given a Riemann surface X, a conformal metric σ on X is a metric that is locally of the form σ(z)|dz| where z is a local holomorphic parameter and σ(z) ≥ 0 is a Borel measurable function in the local chart. We define the σ-area of X by

A(σ) = X σ 2 (z)|dz| 2 .
Given a homotopy class of simple closed curves α, its σ-length is defined by

L σ (α) = inf α ′ α ′ σ(z)|dz|,
where the infimum is taken over all essential simple closed curves α ′ in the homotopy class α. (Note that it follows from the invariance property of the expression σ(z)|dz| that the two integrals A(σ) and L σ (α) are well defined, that is, they can be computed in the holomorphic local coordinates and the value obtained does not depend on the choice of the coordinates, see [START_REF] Ahlfors | Conformal invariants: topics in geometric function theory[END_REF].)

With the above notation, we define the extremal length of α on X by

Ext α (X) = sup σ L 2 σ (α) A(σ) ,
where σ(z)|dz| ranges over all conformal metrics on X satisfying 0 < A(σ) < ∞. By a result of Kerckhoff [START_REF] Kerckhoff | The asymptotic geometry of Teichmüller space[END_REF], there is a unique continuous extension of the extremal length function to the space of measured foliations MF, with Ext aγ (X) = a 2 Ext γ (X) for a > 0 and γ a homotopy class of simple closed curves on X. Recall that a tangent vector to Teichmüller space at a point X can be represented by a Beltrami differential µ = µ(z) dz dz [START_REF] Imayoshi | An Introduction to Teichmüller Spaces[END_REF]. (Note that in this section we use the letter µ to denote a Beltrami differential since this is the traditional notation, although in other sections the same letter is used to denote a lamination. Hopefully, there will be no confusion.) Using the extremal length function, we define a norm on the tangent space at X by setting: ( 9)

µ E = sup λ∈MF dExt 1/2 λ (µ) Ext 1/2 λ (X)
.

The following theorem is due to Hubbard-Masur [START_REF] Hubbard | Quadratic differentials and foliations[END_REF]; we refer to Kerckhoff [START_REF] Kerckhoff | The asymptotic geometry of Teichmüller space[END_REF] for a short proof. Theorem 3.1. For any Riemann surface X and for any foliation on X, there is exactly one quadratic differential, denoted by Φ λ , whose vertical measured foliation is measure-equivalent to λ. Lemma 3.2 (Gardiner [START_REF] Gardiner | Measured foliations and the minimal norm property for quadratic differentials[END_REF]). The extremal length function Ext λ is differentiable and we have the following formula, called the "first variational formula":

(10) dExt λ (µ) = -2Re < Φ λ , µ >,
where < Φ λ , µ > is the natural pairing

< Φ λ , µ >= X Φ λ (z)µ(z)dxdy.
The following observation is due to Kerckhoff [START_REF] Kerckhoff | The asymptotic geometry of Teichmüller space[END_REF]:

Lemma 3.3. With the above notation, (11) Ext λ 
(X) = X |Φ λ (z)|dxdy.
Proof. The proof we give here is due to Ivanov [START_REF] Ivanov | Isometries of Teichmüller spaces from the point of view of Mostow rigidity[END_REF]. We include it for completeness. By continuity and the density of weighted simple closed curve in MF, it suffices to prove [START_REF] Imayoshi | An Introduction to Teichmüller Spaces[END_REF] for the case where µ = aγ ∈ MF, where γ is (the homotopy class of) a simple closed curve and a > 0.

Let Φ be the one-cylinder Strebel differential on X determined by aγ. The complement of the vertical critical leaves of Φ is a cylinder foliated by circles isotopic to γ. Let us also set ρ = |Φ| 1/2 |dz|. Then ρ is a flat metric on S, with a finite number of singular points, which are conical singularities. Measured in the flat metric ρ, the circumference and height of the cylinder are equal to L ρ (γ) and a respectively. By a theorem of Jenkins-Strebel [START_REF] Strebel | Quadratic differentials[END_REF], the extremal length Ext X (γ) of γ is equal to

Ext γ (X) = L ρ (γ) a , where ρ = |Φ| 1/2 |dz|. The area A(ρ) = X |Φ λ (z)|dxdy of the cylinder is equal to aL ρ (γ). As a result, Ext aγ (X) = a 2 Ext γ (X) = aL ρ (γ) = A(ρ).
The next result follows from [START_REF] Ivanov | Isometries of Teichmüller spaces from the point of view of Mostow rigidity[END_REF] and [START_REF] Imayoshi | An Introduction to Teichmüller Spaces[END_REF].

Proposition 3.4. The norm µ E satisfies

(12) µ E = sup λ∈MF -Re < Φ λ , µ > X |Φ λ (z)|dxdy = sup Φ =1 Re < Φ, µ >,
where Φ varies over all holomorphic quadratic differentials Φ.

Note that we have Φ = X |Φ(z)|dxdy.

Now we consider the Teichmüller metric on T(S). We recall that it is defined by

d T (X, Y ) := 1 2 inf f log K(f )
where f : X → Y is a quasi-conformal map homotopic to the identity map of S and

K(f ) = x∈X K x (f ) 1
is the quasi-conformal dilatation of f (the sup here denotes essential supremum), with

K x (f ) = |f z (x)| + |f z (x)| |f z (x)| -|f z (x)
| being the pointwise quasiconformal dilatation at the point x ∈ X with local conformal coordinate z.

Teichmüller's theorem states that given any X, Y ∈ T(S), there exists a unique quasi-conformal map f : X → Y , called the Teichmüller map, such that

d T (X, Y ) = 1 2 log K(f ). The Beltrami coefficient µ := ∂f ∂f is of the form µ = k Φ |Φ|
for some quadratic differential Φ on X and some constant k with 0 ≤ k < 1. In some natural coordinates given by Φ on X and for some associated quadratic differential Φ ′ on Y , the Te-

ichmüller map f is given by f (x+iy) = K 1/2 x+iK -1/2 y, where K = K(f ) = 1 + k 1 -k .
It is known that the Teichmüller metric is a Finsler metric and that between any two points in T(S) there is exactly one geodesic. A geodesic ray with initial point X is given by the one-parameter family of Riemann surfaces {X t } t≥0 , where there is a holomorphic quadratic differential Φ on X and a family of Teichmüller maps f t : X → X t , with initial Beltrami differential µ(f t ) = e 2t -1 e 2t + 1 Φ |Φ| . Here µ(f t ) is chosen such that the geodesic ray has unit speed, that is, d T (X s , X t ) = ts for all s ≤ t. We also recall the following formula due to Kerckhoff [START_REF] Kerckhoff | The asymptotic geometry of Teichmüller space[END_REF].

Theorem 3.5. Let X, Y be any two points in T(S). Then

d T (X, Y ) = 1 2 log sup λ Ext λ (Y ) Ext λ (X) ,
where λ ranges over elements in MF.

Now we can prove the following:

Theorem 3.6. The metric induced by the norm • E defined in ( 9) is the Teichmüller metric.

Proof. Denote by d E the length metric on T(S) induced by the norm µ E . For any X, Y in T(S), by Kerckhoff's formula, the Teichmüller distance is realized by

d T (X, Y ) = 1 2 log Ext λ (Y ) Ext λ (X)
for some measured foliation λ. An argument similar to the one in the first part of the proof of Theorem 2.3 shows that d T (X, Y ) ≤ d(X, Y ). For the converse, let Γ(t) be a Teichmüller geodesic connecting X and Y . We parametrize Γ with unit speed, and define it on the interval [0, T ] with T = d T (X, Y ) with Γ(0) = X and Γ(T ) = Y .

For each t in [0, T ], the Teichmüller map between X = Γ(0) and Γ(t) has quasiconformal dilatation e 2t . It follows from the geometric definition of a quasiconformal map that for any λ in MF, we have Ext λ (Γ(t)) ≤ e 2t Ext λ (Γ(0)).

Taking square roots, we get Ext

1/2 λ (Γ(t)) ≤ t 1/2 λ (Γ(0)) and then lim t→0 + Ext 1/2 λ (Γ(t)) -Ext 1/2 λ (Γ(0)) tExt 1/2 λ (Γ(t)) ≤ lim t→0 + e t Ext 1/2 λ (Γ(0)) -Ext 1/2 λ (Γ(0)) tExt 1/2 λ (Γ(t)) = lim t→0 + e t -1 t = 1.
As a result, d log Ext 

d log Ext 1/2 λ ( Γ(t)) ≤ 1 for all t ∈ R.
Considering the integral of the norm • E along Γ(t), we have

T 0 Γ(t) E ≤ T = d T (X, Y ).
This proves that d(X, Y ) ≤ d T (X, Y ).

Combining Proposition 3.4 and Theorem 3.6 , we have the following corollary.

Corollary 3.7. The Teichmüller Finsler norm, denoted by µ T , is given by

µ T = sup Φ =1 Re < Φ, µ >,
where Φ varies over all holomorphic quadratic differentials Φ.

The above result was already known and can be obtained by using the famous Reich-Strebel inequality [START_REF] Reich | Extremal quasiconformal mappings with given boundary values, Contributions to Analysis[END_REF]. The result means that the Teichmüller norm

• T is dual to the L 1 -norm Φ = X |Φ(z)|dxdy
on the cotangent space.

Convex embedding of measure foliation space using extremal length

Following a usual trend, we shall call the boundary of a convex body a convex sphere. Note that the boundary of a convex body is always homeomorphic to a sphere.

Thurston [START_REF] Thurston | Minimal stretch maps between hyperbolic surfaces[END_REF] proved that for any X ∈ T(S), the function dℓ : ML 1 → T * X T(S) defined by λ → dℓ λ embeds ML 1 as a convex sphere in the cotangent space of Teichmüller space at X containing the origin. This embedding is the dual of the boundary of the unit ball in the tangent space representing vectors of norm one for the Finsler structure associated to Thurston's metric. We prove an analogous result for the extremal length function. 

4.1. Given a point X in T(S), let PF = MF 1 = {λ ∈ MF | Ext λ (X) = 1}.
Then, the function PF → T * X T(S) defined by λ → dExt λ embeds PF as a convex sphere in T * X T(S) containing the origin. This sphere is the boundary of the dual of the ball the tangent space representing vectors of norm one for the Finsler structure associated to the Teichmüller metric.

Proof. We fix a point X in T(S). By Gardiner's formula, dExt λ (µ) = -2Re < Φ λ , µ > (see Theorem 3.1 for the notation). Kerckhoff proved that if a sequence λ n in PF converges to λ then Φ λn -Φ λ → 0 (see Page 34-35 of Kerckhoff's paper [START_REF] Kerckhoff | The asymptotic geometry of Teichmüller space[END_REF], where he proved the result for the case where each λ n is a simple closed curve. Since the subset of weighted simple closed curves is dense in MF, the result we need follows). It follows that the map dExt is continuous.

Moreover, since the pairing between quadratic differentials and harmonic Beltrami differentials is nondegenerate [START_REF] Imayoshi | An Introduction to Teichmüller Spaces[END_REF], if dExt λ = dExt λ ′ , then Φ λ = Φ λ ′ . This means that λ = λ ′ . Therefore, the map dExt is injective.

Let dExt(PF) be the image of PF under the map dExt, that is,

dExt(PF) = {dExt λ ∈ T * X T(S) | λ ∈ PF}.
Since PF is homeomorphic to a sphere, by invariance of domain, dExt(PF) is open and dExt is a homeomorphism between PF and dExt(PF).

For any λ ∈ PF, consider the Beltrami differential

V λ = - Φ λ 2|Φ λ | .
It is a tangent vector in T X T(S). By Gardiner's formula,

dExt λ (V λ ) = -2Re < Φ λ , - Φ λ 2|Φ λ | > = X |Φ λ |dxdy = Ext λ (X) = 1.
As a result, the derivative dExt λ in the direction V λ is 1. Using Hölder's inequality, for any γ ∈ PF, we have

dExt γ (V λ ) = Φ γ Φ λ |Φ λ | dxdy ≤ X |Φ γ |dxdy = Ext γ (X) = 1.
Moreover, equality holds if and only if γ = λ. Therefore, the derivative dExt γ (V λ ) of any other γ ∈ PF is strictly less than 1. Denote by C(dExt(PF)) the convex hull of dExt(PF) in T * X T(S). Thus, V λ defines a non-constant linear functional on the cotangent space which attains its maximal value on C(dExt(PF)) at dExt λ . As a result, dExt λ is an extreme point of the convex set C(dExt(PF)).

We now use Thurston's argument in his proof of Theorem 5.1 of [START_REF] Thurston | Minimal stretch maps between hyperbolic surfaces[END_REF]. The set of extreme points of any convex set is a sphere of some dimension. Since the dimension of dExt(PF) is one less than the dimension of T * X T(S), the set of extremal points of C(dExt(PF)) coincides with dExt(PF). As a result, dExt(PF) is a convex sphere. To see that the convex set C(dExt(PF)) contains the origin in its interior, note that since this convex hull has a nonempty interior, there must be at least one line through the origin of T * X T(S) which intersects dExt(PF) in at least two points. For each of these points, there is a linear functional which attains its positive maximum value there. It follows that 0 must separate the two points, so 0 is a convex combination of them.

Comparison between the Lipschitz and Teichmüller norms

From an inequality called Wolpert's inequality [START_REF] Wolpert | The length spectra as moduli for compact Riemann surfaces[END_REF], we have d L ≤ 2d T . (In fact, the inequality is contained in Sorvali's paper [START_REF] Sorvali | On the dilatation of isomorphisms between covering groups[END_REF], and it was rediscovered by Wolpert. ) Choi and Rafi [START_REF] Choi | Comparison between Teichmüller and Lipschitz metrics[END_REF] proved that the two metrics are quasi-isometric in any thick part of the Teichmüller space, but that are (X n ), (Y n ) in the thin part, with d L (X n , Y n ) → 0.

It is interesting to compare the Lipschitz norm and the Teichmüller norm. In particular, we ask the following: Question 5.1. Determine a function C(ǫ) such that

V L ≤ V T ≤ C(ǫ) V L
for any V ∈ T X T(S) and for all X ∈ T ǫ (S), the ǫ-thick part of T(S).

Since V L (respectively V T ) is given by the logarithmic derivative of the hyperbolic (respectively extremal) length function of measured laminations, a further study of the relation between hyperbolic and extremal length may give the answer to the above question. Question 5.2. Consider the length-spectrum metric d ls on T(S). This can be defined as a symmetrization of Thurston's metric 1 , by the formula

d ls (X, Y ) = max{log sup γ ℓ Y (γ) ℓ X (γ) , log sup γ ℓ X (γ) ℓ Y (γ) } = max{d L (X, Y ), d L (Y, X)}.
Is the length-spectrum metric d ls a Finsler metric ? If yes, give a formula for the infinitesimal norm of a vector on Teichmüller space with respect to this Finsler structure.

There are comparisons between the length-spectrum metric and the Teichmüller metric. It was shown by Liu and Su [START_REF] Liu | Almost-isometry between Teichmüller metric and length-spectra metric on moduli space[END_REF] that the divergence of d ls and d T is only caused by the action of the mapping class group. In fact, they showed that d ls and d T are "almost" isometric on the moduli space and that the two metrics on the moduli space determine the same asymptotic cone. Question 5.3. One can also seek for results analogous to those presented here for the weak metric L * dual to Thurston's metric, that is, the weak metric on Teichmüller space defined by L * (X, Y ) = L(Y, X), as well as for the length spectrum metric d ls on the same space.
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 1 Figure 1. The horocyclic foliation of an ideal triangle.
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