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Abstract: Strain growth is a phenomenon observed in the elastic response of containment vessels 

subjected to internal blast loading, which is featured by the increased vibration amplitude of the 

vessel in a later stage. Previous studies attributed the strain growth in spherical containment vessels 

to the beating between two close vibration modes, the interactions between the vessel vibration and 

the reflected shock waves and the structural perturbation. In this paper, it is shown that nonlinear 

modal coupling is another important cause of strain growth in spherical containment vessels. Based 

on the understanding of the vibration modes in a complete spherical shell, the nonlinear modal 

coupling in the nonaxisymmetric response of complete spherical shells are studied using finite 

element method. Methods for preventing the strain growth due to nonlinear modal coupling are 

discussed, which provide guidelines for the engineering design of spherical containment vessels.  

 

Keywords: strain growth, containment vessel, spherical shell, nonaxisymmetic vibration modes, 

nonlinear modal coupling  
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1. Introduction 

Containment vessels have been widely used to contain the blast effects in civil, military and 

industrial applications (Zheng et al. 2006). One unresolved problem in the design of multiple-use 

containment vessels is the strain growth phenomenon (Nickell and Romero 2003). 

Strain growth is a phenomenon observed in the elastic response of containment vessels 

subjected to internal blast loading. The dynamic response of a containment vessel during the initial 

stage can be described by the radial breathing mode (RBM). However, transformation from RBM to 

flexural mode may occur in a later stage, leading to increased local deformation, and possibly 

unexpected local plastic deformation and accelerated fatigue failure, in containment vessels 

designed for multiple-use purpose. Therefore, it is necessary to understand the mechanisms of strain 

growth in containment vessels. 

Strain growth phenomenon was observed in 1976 (Buzukov 1976). Since then, the mechanisms 

of strain growth in spherical and cylindrical containment vessels have been widely investigated. As 

the reflected shock waves after the first peak of the blast shock wave may still be strong, strain 

growth was once attributed to the possible resonance between the reflected shock waves and the 

vibration of the vessel [i.e. (Buzukov 1980) for cylindrical shells and (Zhdan 1981) for spherical 

shells]. Karpp et al.(1983) and Abakumov et al.(1984) showed that bending responses could be 

excited by the structural perturbation and the added mass associated with the structural pertubation 

(e.g. flanges), which could introduce localised deformations. Other researchers proposed that the 

superposition (or beating) of various vibration modes with close frequencies is responsible for strain 

growth in cylindrical (Buzukov 1976, Kornev et al. 1979, Zhu et al. 1997) and spherical (Mal’tsev 

et al. 1984, Belov et al. 1984, Duffey and Romero 2003) containment vessels. Detailed 

investigations on the strain growth phenomenon have been summarized in Duffey and 

Romero(2003) and Li et al.(2008). In summary, three mechanisms have been so far proposed to 

explain the strain growth phenomenon in spherical containment vessels, i.e. (i) resonance caused by 

reflected shock waves, (ii) the influence of structural perturbation, and (iii) superposition (or 

beating) of various vibration modes with close frequencies.  

The recongnization of the above strain growth mechanisms are based on the linear responses of 

spherical containment vessels without considering the nonlinear modal coupling response. Li et 

al.(2008) and Dong et al.(2008) recently showed that the nonlinear modal coupling between the 

breathing mode and bending modes, which are excited by the dynamic unstable vibration, may also 

lead to strain growth in cylindrical containment vessels. The nonlinear modal coupling in spherical 

shells was studied by McIvor and Sonstegard(1966) and Nayfeh and Arafat(2006), which, however, 

concerned only the axisymmetric response of spherical shells. With the consideration of structural 

pertubations and the erratic response [i.e. due to the non-uniform blast loading (Baker 1960)] in 
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spherical containment vessels, the responses of a spherical containment vessel are generally 

nonaxisymmetric. Therefore, in order to fully understand the responses of spherical containment 

vessels, the nonlinear modal coupling in the nonaxisymmetric responses of spherical containment 

vessels subjected to internal blast loading should be investigated. 

The axisymmetric and nonaxisymmetric vibrational modes of spherical shells with and without 

imperfections, and the nonlinear vibrations of axisymmetric spherical shells are presented in 

Section 2. Finite element analysis on the full 3-D shell model is employed in Section 3 to study the 

nonlinear modal coupling in the nonaxisymmetric response of spherical shells subjected to internal 

impulsive loading. Based on the understanding of the strain growth mechanism due to nonlinear 

modal coupling, methods for preventing the strain growth in spherical containment vesssels are 

discussed in Section 3, which is followed by conclusions in Section 4. 

 

2. Vibrations of complete spherical shells 

Strain growth in a spherical containment vessel is closely related to the axisymmetric and 

nonaxisymmetric vibrational modes and the nonlinear vibration of the spherical shell, which will be 

introduced briefly in this section. 

 

2.1 Axisymmetric vibration of a spherical shell 

In a complete spherical shell, the axisymmetric modes are independent of the circumferential 

coordinate. Previous works have been reported in Baker(1961), Kalnins(1964) and Wilkinson(1965) 

and reviewed by Duffey and Romero(2003). When the shear and torsional responses are neglected, 

the axisymmetric vibration of a complete spherical shell has following non-dimensional frequencies 

nω  (McIvor and Sonstegard 1966, Nayfeh and Arafat 2006) 

2/1
0 )]1(2[ νω += ,                                                      (1a) 

2222222 69[)1()1)(1()1(312 ννανανανω ++±+++++−−+= nnnnn  

            2222 )1()132)(1(2)1)(3(2 ++−+++−++ nnnn ννννα  

            33222222 )1(2)49()1(2)1125)(1(2 +−+++−+++ nnnnnn αναννα  

            )22()1()1()1(2 22244 −+++−+− νναννα nnnn  

  2/1444334 ])1()1(2 ++++ nnnn ανα .                          (1b) 

where ν  is Possion’s ratio; ah 12/=α , in which h is the thickness and a is the radius of the 

spherical shell; n is the mode number.  

Equation (1b) has two branches of expressions for 2
nω , i.e., 2)( m

nω  for the positive sign (i.e. 

upper branch) and 2)( c
nω  for the negative sign (i.e. lower branch). When n=0, the mode of 
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vibration is a centrally symmetric radial motion i.e. the radial breathing mode (RBM). For each 

value of 1≥n , there are two modes corresponding to the natural frequencies m
nω  and c

nω , 

respectively. It was observed that the frequencies m
nω  are relatively independent of a/h, whereas 

the frequencies c
nω  are sensitive to the changes of a/h (McIvor and Sonstegard 1966, Nayfeh and 

Arafat 2006). McIvor and Sonstegard(1966) found that the vibration modes associated with m
nω  

are membrane modes whereas the c
nω  modes changes from membrane-dominated modes to 

bending-dominated modes as n increases. Therefore, the modes associated with frequencies m
nω  

and c
nω  are classified as membrane and composite modes, respectively. Duffey and Romero(2003) 

and Duffey et al.(2007) confirmed the existence of two branches of modes in the axisymmetric 

vibration of spherical shells using finite element analysis and experimental investigation. 

According to the relationship between the natural frequency f and the non-dimensional 

frequency ω  i.e. )2/(]})1/[({ 2/12 aEf πρνω −= , in which E is Young’s modulus and ρ is the 

density, the natural frequency of the radial breathing mode is      

)1(
2

2
1

0 νρπ −
=

E
a

f ,                                        (2a) 

and the natural frequency of the nth vibration mode is  

)1(2
1

2νρπ
ω

−
=

E
a

f nn .                                  (2b) 

 

2.2 Nonaxisymmetric vibration of complete spherical shells 

In a complete spherical shell, the nonaxisymmetric modes depend upon both the 

circumferential and longitudinal coordinates. Silbiger(1960, 1965) first studied the 

nonaxisymmetric modes of spherical shells and proposed that nonaxisymmetric modes are 

degenerate i.e. their frequencies are identical to the corresponding frequencies of axisymmetric 

modes. Silbiger(1960, 1965) explained mathematically that the eigenfunctions corresponding to the 

modes of a spherical shell are degenerate and attributed this degeneracy to the spherical symmetry 

of the shell. Silbiger(1960, 1965) pointed out that the axisymmetric modes should be defined with 

respect to a selected axis of reference. However, if a different orientation of the axis is chosen, the 

shell can vibrate in the same modes due to the symmetry, which may be independent of the 

axisymmetric modes about other reference axes even though they have the same frequency. 

Silbiger(1960, 1965) showed that as a consequence of the spherical symmetry in spherical shells, 

the nth nonaxisymmetric modes can be obtained by superposing the nth axisymmetric modes with 

respect to different axes, in which the new nonaxisymmetric modes still have the same frequency as 
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the nth axisymmetric mode but are not symmetric with respect to any axis. For each integer n>1, 

there is one independent axisymmetric mode and 2n independent nonaxisymmetric modes, given by 

m=0 and m=1, 2…n, respectively, corresponding to the wave numbers m along the circumferential 

equator (Silbiger 1960, 1965). More precisely, 2n+1 linearly independent modes can be constructed 

from the nth axisymmetric mode in each branch. All other vibration modes, which have the same 

frequency of the nth axisymmetric mode, are the linear combinations of these 2n+1 independent 

modes (Silbiger 1960, 1965). Shah et al.(1969) and Niordson(1984) also proposed that the 

nonaxisymmetric modes of a given degree n can be obtained by superposing a number of the nth 

axisymmetric modes about different axes, if proper axes and amplititudes are chosen, in which the 

frequencies of the nth nonaxisymmetric modes are the same as the nth axisymmetric mode. 

Duffey and Romero(2003) and Duffey et al.(2007) performed finite element modal calculations 

to investigate the nonaxisymmetric vibration of spherical shells, including the effect of bending and 

shear. It was observed that for each value of n in each branch, there are 2n+1 modes in the 

nonaxisymmetric vibration, which is exactly the number predicted by Silbiger(1965). Duffey and 

Romero(2003) and Duffey et al.(2007) showed that among the 2n+1 modes for each n in each 

branch, one is the corresponding axisymmetric mode, and the other 2n modes are degenerate 

nonaxisymmetric modes. As an illustration of mode shapes, the axisymmetric and nonaxisymmetric 

modes for n=5 in the lower branch are presented in Fig.1 using an ALGOR finite element model 

(Duffey et al. 2007). It was also observed that the nonaxisymmetric modes occur in pairs, which 

differ only an angle of n/π  rigid body rotation with respected to the vertical axis (Duffey et al. 

2007). 

 

2.3 Vibration of spherical shells with imperfections 

According to Duffey and Romero(2003), a real spherical containment vessel can be treated as a 

perturbated complete spherical shell. For the vibration of spherical shells with imperfections, 

Silbiger(1965) predicted that a deviation from spherical symmetry can remove the degeneracy and 

therefore the frequencies of nth vibration modes in each branch will split into 2n+1 distinct 

frequencies. 

Niordson(1988) investigated the distribution of natural frequencies in an open thin elastic 

spherical shell and discovered that due to the asymmetry caused by the hole, the frequency 

spectrum displayed a band structure, which indicates the similar prediction as that proposed by 

Silbiger(1965). The relation between the asymmetry and bandwidth was observed, i.e. the smaller 

the asymmetry is, the narrower the band is. It was also found that the distinct frequencies in narrow 

bands are close to the frequencies of the corresponding complete spherical shell (Niordson 1988). 
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Duffey and Romero(2003) investigated the nonaxisymmetric vibration of a spherical 

containment vessel with nozzles, which can be regarded as an imperfect spherical shell. Even 

though the spherical symmetry is destroyed by the imperfection, the natural frequency of a spherical 

containment vessel calculated by ABAQUS is close to the frequency of the corresponding complete 

spherical shell (Duffey and Romero 2003), which agrees with the finding in Niordson(1988). 

According to the finite element calculations and experimental results in the vibration of imperfect 

spherical shells, Duffey and Romero(2003) and Duffey et al.(2007) demonstrated the splitting 

phenomenon predicted by Silbiger(1965) i.e. the nth vibration frequencies split into 2n+1 

independent distinct frequencies due to the deviation from spherical symmetry. 

 

2.4 Nonlinear vibration of axisymmetric spherical shells  

McIvor and Sonstegard(1966) studied the dynamic nonlinear vibration in the axisymmetric 

response of a closed spherical shell subjected to a nearly uniform radial impulse. The response of 

the closed spherical shell is a pure radial motion, i.e. radial breathing mode vibration when the shell 

is subjected to a perfectly-uniform radial impulse. However, if the impulse is slightly nonuniform 

(or equivalently, the spherical shell has imperfections), the membrane radial breathing mode may be 

dynamically unstable due to the interaction between the membrane stress and the flexural curvature 

(McIvor and Sonstegard 1966). The nonlinear coupling between the radial breathing mode and 

composite modes may happen during the dynamic unstable vibration of the spherical shell. In 

addition, it was shown that a cyclic energy exchange may occur between the radial breathing mode 

and high-order composite modes. The Mathieu equation that controls the development of the nth 

composite mode is (McIvor and Sonstegard 1966) 

0)sin(/ 22 =−Ω+ nnnn bdbd τμτ , 2≥n ,                     (3) 

where nb  a non-dimensional coefficient describing the amplitude of the nth composite mode, 

τωτ 0= , in which τ  is the non-dimensional time defined as act /=τ  (t is the time) and the 

elastic wave speed )1(/ 2νρ −= Ec , and  

122
0

2
0

2 )]}1()(1[{/)( −++==Ω nnb
n

c
nn δωωω  

]})1()][(1)1()[1()]1(1)[1(2{ 222 b
n

b
n

b
n nnnnnn δαδνδν +++−++++++× ,    (4a) 

123
00 )]1()(1)[/( −++= nncv b

nn δωμ  

)}1()1(4]1)1()[1()(2)1)(1(])(1{[ 22 ++++−+++++−× nnnnnnnn b
n

b
n

b
n νδνδνδ .  (4b) 

where 0v  is the initial radial velocity and the amplitude ratio b
nδ  in Eq.(4) is (McIvor and 

Sonstegard 1966) 
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22

22

)()1)](1(1[
)1()1(1

c
n

b
n nn

nn
ωαν

ανανδ
+++−−
++−−+

= ,                          (5) 

where the non-dimensional frequencies are given in Eq.(1). It is shown that if the point ( nΩ , nμ ) is 

in the unstable region of the Mathieu stability diagram, the nonlinear modal coupling in the 

axisymmetric response of spherical shells will happen. 

Nayfeh and Arafat (2006) also showed that the internal resonances between the different types 

of modes may happen in the nonlinear vibration in the axisymmetric response of spherical shells. 

 

3. Results and analysis  

In this section, the mechanism and influential factors of the nonlinear modal coupling in the 

nonaxisymmetric response of spherical shells subjected to internal impulsive loading will be 

investigated in Sections 3.1 and 3.2, respectively, based on which the design considerations for the 

control of strain growth in spherical containment vesssels will be discussed in Section 3.3. 

 

3.1 Dynamic nonaxisymmetric responses of spherical shells subjected to internal impulsive 

loading  

In the present study, the dynamic responses of complete spherical shells subjected to internal 

impulsive loading will be studied using the finite element software LS-DYNA (Livermore Software 

Technology Corporation 1998, 2003). Since the response of the shell is elastic, isotropic lineal 

elastic model is used for the shell material. 

 

3.1.1 Numerical model description 

As shown in Section 2, nonaxisymmetric modes also exist in the elastic responses of a spherical 

shell. Therefore, all spherical shells will be modelled by three-dimensional full shells using solid 

elements. The shell is meshed into 6, 96 and 96 parts along the radial, circuferential and 

longitidunal directions, respectively, using Lagrangian method. Convergence tests have shown that 

the above mesh size can give reasonable results. Additionally, the time step used in all simulations 

will be 1 μs, which is small enough to capture the peak values. 

In the present study, the internal blast loading is assumed to be an ideal, perfectly symmetric 

loading, without considering the erratic response (i.e. the nonuniform blast loading) after the second 

shock and the additional vibration modes excited by this non-uniformity (Baker 1960). It has been 

shown that if the effect of reflected shock waves is not considered, the simplification of the blast 

loading into an impulsive loading does not influence the occurrence of strain growth caused by 

nonlinear modal coupling (Li et al. 2008). Therefore, the internal blast loading is replaced by a 

uniformly-distributed internal impulsive loading with impulse (I), which can be related to an initial 
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radial velocity (v0) by 0
Iv
hρ

= . It will be shown later that the initial velocity can be represented by 

the first peak strain defined as the maximum strain (i.e. the ratio of the maximum radial 

displacement to the radius) in the first vibration period. 

The material properties and structural dimensions of Shell 1, which is taken as the illustrative 

example in the present study, are listed in  
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Table 1.  

 

3.1.2 Radial breathing mode response in a complete spherical shell  

If a spherical shell is subjected to a centrally symmetric internal pressure pulse, the dynamic 

response of the shell is normally assumed to be centrally symmetric. Thus, the shell can be 

simplified into a single degree of freedom (SDoF) model with the radial displacement as the only 

degree of freedom. The SDoF response of the spherical shell is the so-called radial breathing mode 

vibration, which is controlled by (Baker 1960) 

h
tpw

dt
wd

ρ
β )(2

02

2

=+ ,                   (6)              

where w is the radial displacement; p(t) is the transient pressure pulse; β0 is the circular frequency of 

the radial breathing mode given by 00 2 fπβ = . 

In this study, the complete spherical Shell 1 is subjected to an impulsive pressure pulse causing 

a first peak strain of 0.0005. Finite element simulation results demonstrate that the radial breathing 

mode response happens, as shown by the radial displacement-time history and the frequency 

spectrum in Fig.2(a,b), in which, f0 represents the radial breathing mode frequency of the spherical 

shell. The radial breathing mode frequency shown in Fig.2(b) is 6.843 kHz, which is very close to 

the value 6.966 kHz according to the theoretical analysis using Eq.(2a). The deformed shape of 

Shell 1 shows that only the radial breathing mode shape is observed in the whole response period. 

However, the model of the radial breathing mode cannot predict the strain growth phenomenon. 

 

3.1.3 Characteristics and mechanism of nonlinear modal coupling response 

In order to understand the mechanism of the nonlinear modal coupling in the nonaxisymmetric 

responses of spherical shells, the vibration modes of Shell 1 are studied theoretically and 

numerically. According to Eq.(2), the natural frequencies of the membrane and composite modes in 

Shell 1 are calculated, as presented in Fig.3. The two branches in Fig.3 show similar characteristics 

to the results obtained by Duffey and Romero(2003). The upper and lower branches correspond to 

the membrane and composite modes, respectively. The natural frequencies of the axisymmetric and 

nonaxisymmetric vibration modes in Shell 1 are also calculated by ANSYS (ANSYS 2004), which 

agree well with the analytical results according to Eq.(2). The characteristics of the 

nonaxisymmetric vibration modes observed in ANSYS show good agreement with those described 

by Duffey and Romero(2003) and Duffey et al.(2007). 

When the complete spherical Shell 1 is subjected to a higher impulsive loading, a late-time 

increase of the response caused by nonlinear modal coupling is observed in LS-DYNA simulation. 
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When the first peak strain is 0.005 in Shell 1, the radial, circumferential and latitudinal response 

histories are presented in Figs.4-6, respectively. 

Figures 4-6 show that the response of Shell 1 in the earlier stage is a radial breathing mode 

vibration. However, after multiple cycles of vibration with the same vibration amplitude, the 

composite modes are excited, as demonstrated by the response histories in later stages in Figs.4(a), 

5 and 6 and the frequency spectrum in Fig.4(b), in which fc is the ferequency of the composite mode. 

The observed strain growth in the later stage is attributed to the nonlinear coupling between the 

breathing mode and the excited composite modes. 

In the early stage, the deformed shape of Shell 1 is the radial breathing mode shape. However, 

in the late stage when strain growth happens, some nonaxisymmetric composite modes are excited, 

as shown in the deformed shapes in Fig.7 where the paired nonaxisymmetric composite modes 

n=m=12 are observed. In order to make the motion visible, the displacement has been multiplied by 

10 in Fig.7. 

According to Eq.(4) from McIvor and Sonstegard(1966) and the theory of Mathieu functions 

(McLachlan 1947), the dynamic axisymmetric response of a spherical shell may be unstable when 

( nΩ , nμ ) is in the unstable region of the Mathieu stability diagram, especially when nΩ  is close to 

1/4 or 1. It has been shown in Section 2 that the nonaxisymmetric modes of a given degree n can be 

obtained by superposing a number of axisymmetric modes of degree n (Silbiger 1960, 1965; Shah et 

al. 1969; Niordson 1984). We propose the following postulate, i.e.  

 

Postulate-1: McIvor and Sonstegard(1966)’s analytical method for the nonlinear modal coupling 

between axisymmetric modes in a spherical shell is applicable to predict the occurrence of the 

nonlinear modal coupling between nonaxisymmetric modes in the same spherical shell.  

 

Therefore, Eqs.(3-5) will be used in the following analyses for the nonaxisymmetric responses 

of spherical shells. 

In the radial breathing mode response of a spherical shell, the maximum potential energy of the 

deformation is 

∫ −
=+=

vol

b

V
a

Ew
dVU

2

2

max

)1(
)(

2
1

ν
εσεσ φφθθ ,                  (7) 

where V is the volume of the shell material, σσσ φθ == , εεε φθ == , in which σ is the in-plane 

membrane stress, ε is the in-plane membrane strain, bwmax  is the maximum radial displacement in 

the radial breathing mode response, and θ and φ are circumferential and longitude coordinates. The 

maximum kinetic energy is 
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∫ =
∂
∂

=
vol

VvdV
t
rT 2

0
2

2
)(

2
1 ρρ ,                                (8) 

in which war += . Equating maximum values of the potential and kinetic energies and using 

)1( 2νρ −= Ec , we obtain                                               

)1(2max0 ν+=
a

w
c
v b

.                                  (9) 

According to Eq.(1a) i.e. 2/1
0 )]1(2[ νω += , the relationship between cv /0  and first peak 

strain b
maxε  in the radial breathing mode response (i.e. awbb /maxmax =ε ) is 

0max
0 ωε b

c
v

= .                                      (10) 

According to the analytical method on the axisymmetric response of spherical shells in McIvor 

and Sonstegard(1966), Mathieu diagram of Shell 1 with a first peak strain 0.005 is drawn in Fig.8, 

which shows that some composite modes are unstable in the vibration. Therefore, strain growth and 

nonaxisymmetric composite modes in Shell 1 can be observed in the spherical shell when the first 

peak strain is 0.005. The nonlinear modal coupling between the radial breathing mode and 

composite modes can be considered as another cause of strain growth in spherical containment 

vessels. 

 

3.2 Influential factors in nonlinear modal coupling response  

According to the Mathieu equation obtained by McIvor and Sonstegard(1966), the first peak 

strain and the radius-to-thickness ratio are two dominant factors influencing the strain growth 

phenomenon in spherical shells. In this section, the effects of the first peak strain and the 

radius-to-thickness ratio on the determination of the occurrence and degree of strain growth will be 

studied. 

 

3.2.1 Dimensional analysis 

In this study, the strain growth time tP is defined as the duration from the beginning to the 

moment when the maximum radial displacement appears, and the strain growth factor Kp is defined 

as the ratio of the maximum radial displacement in the whole vibration period to the first peak 

radial displacement.  

It may be assumed that the strain growth time tP depends on the material properties of the 

spherical shell, geometrical dimensions and the impulsive loading, represented by E, ρ, ν, h, a and 
b
maxε , in which the first peak strain b

maxε  can represent the impulsive loading. Therefore, 

( )b
p ahEFt max1 ,,,,, ενρ= . Relationship between tp and the two affecting factors (i.e. the first peak 
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strain and the radius-to-thickness ratio) can be obtained by the dimensional analysis, which can be 

shown in a non-dimensional expression, i.e.  

⎟
⎠
⎞

⎜
⎝
⎛= bp

a
hF

Ea

t
max2 ,,

/
εν

ρ

.                     (11) 

Equation (11) can be rewritten as 

⎟
⎠
⎞

⎜
⎝
⎛= bp

a
hF

T
t

max3
0

,, εν ,                         (12) 

in which the non-dimensional factor tp/T0, which is the ratio of the strain growth time tp to the 

fundamental period T0 of the radial breathing mode (T0=1/f0), is an approximate estimation of the 

oscillation numbers of the radial breathing mode vibration from the beginning to the moment when 

the maximum response in the strain growth stage appears. 

Similarly, the relationship between Kp and the two influential factors (i.e. the first peak strain 

and the radius-to-thickness ratio) can be expressed as a function of three non-dimensional numbers, 

i.e. 

⎟
⎠
⎞

⎜
⎝
⎛= b

P a
hFK max4 ,, εν .                        (13) 

 

3.2.2 The first peak strain 

The responses of Shell 1 under different first peak strains are calculated using LS-DYNA, as 

summarised in  

Table 2, where the first peak strains of Shell 1 are 0.0040, 0.0045, 0.0050, 0.0055 and 0.006, 

respectively.  

Relationships between tp/T0 and the first peak strain are drawn in Fig.9, which shows that strain 

growth time decreases as the first peak strain increases. However, the strain growth factors of Shell 

1 subjected to different first peak strains vary in a narrow range between 3.3 and 4.4, as shown in 

Fig.10. 

As shown in Section 3.1.2, the response of Shell 1 is stable when its first peak strain (0.0005) is 

small. Mathieu diagram of Shell 1 with first peak strain of 0.0005 is drawn in Fig.11, which shows 

that all the vibration modes are stable. Therefore, the dynamic unstable response may not happen in 

a spherical shell with small first peak strain, indicating that strain growth may be avoided by 

reducing the first peak strain. 
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3.2.3 The radius-to-thickness ratio  

The effect of the radius-to-thickness ratio on the occurrence of strain growth is examined by 

comparing the responses between Shell 1 and Shell 2 with the same first peak strain. In the dynamic 

response history of Shell 2, whose dimensions and material parameters are listed in Table 3, the 

nonlinear modal coupling response is not observed when the first peak strain is 0.005. According to 

McIvor and Sonstegard(1966), Mathieu diagram of Shell 2 with a first peak strain of 0.005 is drawn 

in Fig.12, which shows that all the vibration modes are stable. With the same first peak strain, strain 

growth happens in Shell 1 but not in Shell 2, indicating that the nonlinear modal coupling in 

spherical shells is controlled by choosing the proper radius-to-thickness ratio. Actually, McIvor and 

Sonstegard(1966) observed that the smaller the radius-to-thickness ratio is, the more unstable 

composite modes are. 

Predictions for the the occurrence of the dynamic unstable vibration in Figs.8, 11 and 12 based 

on McIvor and Sonstegard(1966)’s method on the axisymmetric response of spherical shells 

demonstrate good agreement with the simulation results obtained by LS-DYNA on the 

nonaxisymmetric response of spherical shells. Therefore, the numerical results support the 

Postulate-1 in Section 3.1.3. 

 

3.3 Design considerations for the control of strain growth in containment vessels 

It has been shown that the first peak strain and radius-to-thickness ratio are two dominant 

factors influencing strain growth caused by nonlinear modal coupling. Strain growth due to 

nonlinear modal coupling may be avoided by reducing the first peak strain or choosing a proper 

radius-to-thickness ratio. The occurrence of strain growth is sensitive to the radius-to-thickness ratio, 

and thus, the structural dimensions should be carefully selected. 

Combining Eq.(10) and Hooke’s law )1/( νεσ −= E , we obtain (McIvor and Sonstegard 

1966) 

)1(0
00 νω

σ
−=

Ec
v

,                                (14) 

where 0σ  is the yield stress. According to McIvor and Sonstegard(1966), the maximum value of 

E/0σ  in practical use is 0.005. Therefore, for Shell 1 with 3.0=ν , 612.10 =ω  and the 

maximum value of cv /0  is 0.005646.  

In order to study the effect of the radius-to-thickness ratio, the dynamic instabilities caused by 

nonlinear modal coupling in 81 spherical shells are examined. The radius-to-thickness ratios range 

from 20 to 100, in which the increment is 1. The values of v0/c applied on shells are 0.001, 0.002, 

0.003, 0.004, 0.005 and 0.005646, respectively. The value of (Ωn, μn) for the 81 shells with different 
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values of v0/c are calculated according to Eq.(4). Results of the dynamic instability analysis for 81 

spherical shells with different radius-to-thickness ratios and values of v0/c are presented in Fig.13, 

in which the stable and unstable regions are marked. As only six values of v0/c are chosen, the gap 

between the stable and unstable regions are marked as unknown region. It can be observed that the 

thicker spherical shells, especially those with the radius-to-thickness ratio ranging from 20 to 25, 

have less chance to show strain growth even when v0/c is very large (i.e. 0.005646 in the present 

simulation). 

Probability analyses on the dynamic instability of 81 shells are carried out, as presented in 

Table 4 and Fig.14. It shows that the overall possibility of unstable vibration in thicker shells is 

smaller, and the possibility of unstable vibration in shells with lower first peak strain is smaller. 

However, it is also interesting to observe that when values of v0/c are 0.005 and 0.005646, the 

percentages of instability of shells with a/h in the range of 38-46 are higher than those of shells with 

a/h in the range of 47-55, which indicates that the occurrence of dynamic unstable vibration is also 

a parameter sensitive problem. The considerations for the control of strain growth discussed in this 

section may provide engineering guidelines for the design of spherical containment vessels. 

 

4. Conclusions 

1. The strain growth observed in nonaxisymmetric response of a complete spherical shell subjected 

to uniformly-distributed internal blast loading can be explained by the nonlinear coupling 

between the radial breathing mode and the composite modes. 

2. First peak strain and the radius-to-thickness ratio are the dominant factors influencing strain 

growth in spherical shells caused by nonlinear modal coupling. Strain growth may be avoided 

by reducing the first peak strain or choosing proper radius-to-thickness ratios.  

3. The analytical method on the axisymmetric responses of spherical shells in McIvor and 

Sonstegard(1966) may be employed to predict the occurrence of the dynamic unstable vibration 

in the nonaxisymmetric responses of spherical shells. 

4. To design a spherical shell with smaller radius-to-thickness ratio may avoid the occurrence of 

strain growth. Dynamic instability analysis results in Figs.13 and 14 may be employed to guide 

the design of spherical containment vessels.  
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Table 1 Dimensions and material parameters of Shell 1 

Mean radius a  Thickness h Young’s modulus E Poisson’s ratio ν Density ρ 

200 mm 2 mm 210 GPa 0.3 7830 kg/m3 

 
 
 
 

Table 2 Responses of complete spherical Shell 1 subjected to impulsive loadings 

First peak radial 

displacement 
First peak strain 

Maximum radial 

displacement 

Strain growth 

factor Kp 

Strain growth 

time tP 0/TtP  

0.079 cm 0.0040 0.267 cm 3.380 5.44 ms 37.9 

0.089 cm 0.0045 0.351 cm 3.944 3.17 ms 22.1 

0.099 cm 0.0050 0.375 cm 3.788 2.29 ms 16.0 

0.109 cm 0.0055 0.479 cm 4.394 2.02 ms 14.1 

0.119 cm 0.0060 0.475 cm 3.992 1.72 ms 12.0 

 
 

Table 3 Dimensions and material parameters of Shell 2 

Mean radius a  Thickness h Young’s modulus E Poisson’s ratio ν Density ρ 

41 mm 2 mm 210 GPa 0.3 7830 kg/m3 

 

Table 4 Numbers of unstable shells with different values of v0/c 

    a/h 

v0/c 
20-28 29-37 38-46 47-55 56-64 65-73 74-82 83-91 92-100 20-100 

0.001 0 0 0 0 1 1 1 1 2 6 

0.002 0 0 1 1 1 2 4 4 5 18 

0.003 0 1 3 1 3 4 5 6 6 29 

0.004 1 1 3 3 4 6 7 7 9 41 

0.005 1 2 5 3 5 7 9 9 9 50 

0.005646 1 2 5 4 6 9 9 9 9 54 
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Fig.1. Axisymmetric and nonaxisymmetric mode shapes for n=5, m=0 (axisymmetric mode) and 

m=1, 2, … 5 (non-axisymmetric modes) in lower branch (Duffey et al. 2007). 

 

(a) 

 

(b) 

Fig.2. (a) Radial displacement-time history of the response of complete spherical Shell 1 subjected 

to impulsive loading (first peak strain is 0.0005), (b) The frequency spectrum of the curve in Fig.2 

(a). 
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Fig.3. Natural frequencies of vibration modes in Shell 1 using Eq.(2). 

 

 

(a) 

 

(b) 

Fig.4. (a) Radial displacement-time history of the response of complete spherical Shell 1 subjected 

to impulsive loading (first peak strain is 0.005), (b) The frequency spectrum of the curve in Fig.4(a). 
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Fig.5. Circumferential displacement-time history of the response of complete spherical Shell 1 

subjected to impulsive loading (first peak strain is 0.005). 

 

 

 

 

 

 

 

 

Fig.6. Longitudinal displacement-time history of the response of complete spherical Shell 1 

subjected to impulsive loading (first peak strain is 0.005). 
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(a)                             (b) 
Fig.7. The deformed shapes of spherical Shell 1 from different view directions (first peak strain is 

0.005) (The displacement has been multiplied by 10). 

 
 
 
 

 
Fig.8. Mathieu diagram of Shell 1 with a first peak strain 0.005. 
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Fig.9. Relationships between tp/T0 and the first peak strain. 

 

 
Fig.10. Relationships between Kp and the first peak strain. 

 

 

 
Fig.11. Mathieu diagram of Shell 1 with a first peak strain 0.0005. 
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Fig.12. Mathieu diagram of Shell 2 with a first peak strain 0.005. 
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Fig.13. Results of the dynamic instability analysis for 81 spherical shells with various 

radius-to-thickness ratios and v0/c values. 
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Fig.14. Probability analyses on 81 shells with the various radius-to-thickness ratios and v0/c values 


