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Abstract 

Accurate measurements of the forces and velocities at the boundaries of a 

dynamically loaded specimen may be obtained using split Hopkinson pressure bars 

(SHPB) or other experimental devices. However, the determination of a representative 

stress-strain curve based on these measurements can be challenging. Due to transient 

effects, the stress and strain fields are not uniform within the specimen. Several formulas 

have been proposed in the past to estimate the stress-strain curve from dynamic 

experiments. Here, we make use of the theoretical solution for the waves in an elastic 

specimen to evaluate the accuracy of these estimates. It is found that it is important to 

avoid an artificial time shift in the processing of the experimental data. Moreover, it is 

concluded that the combination of the output force based stress estimate and the average 

strain provides the best of the commonly used stress-strain curve estimates in standard 

SHPB experiments.   

Keywords:  Split Hopkinson pressure bar, dynamic material testing, stress-strain curve 

estimate, evaluation 
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1. Introduction 

Split Hopkinson Pressure Bar (SHPB) systems are commonly used to investigate the 

mechanical behavior of materials at high strain rates. The widespread use of SHPB 

systems in experimental dynamics is mainly due to the simplicity of the experimental 

procedure. The experimental technique is based on the early work of Hopkinson [1], who 

recorded a pressure-pulse profile using a slender bar. This approach has been widely 

adopted since the critical study of Davies [2]. The practical configuration consisting of a 

short specimen sandwiched between two slender bars is due to Kolsky [3]. High 

impedance bars made of steel are typically employed to perform dynamic experiments on 

metals. After being initially developed for compression tests, the technique was soon 

extended to tensile loading by Harding et al. [4] and to torsion loading by Duffy et al. [5]. 

To improve the accuracy of the measurements, wave dispersion effects in elastic and 

viscoelastic bars have been studied extensively (e.g. Davis [2], Yew and Chen [6], 

Follansbee and Franz [7], and Gorham [8], Gamby and Chaoufi [9], Wang et al. [10], 

Zhao and Gary [11], Liu and Subhash [12]). Other aspects involving the specimen 

response with regard to three-dimensional effects (e.g. Davies and Hunter [13], Dharan 

and Hauser [14], Bertholf and Karnes [15], Malinowski and Klepazko [16]) and transient 

effects (e.g. Lindholm [17], Conn [18], Bell [19], and Jahsman [20]) have also been 

investigated.  

A comprehensive review of developments in SHPB testing has been provided in the 

ASM Handbook [21]. Over the past two decades, there has also been growing interest in 

testing soft materials using viscoelastic low-impedance bars made of polymeric materials 

(e.g. Gary et al. [22], Zhao and Gary [23], Sogabe et al. [24], Sawas et al. [25]. Gray III 

and Blumenthal [26] have reviewed the SHPB testing of soft materials. The main aspects 

that determine the accuracy of measurements in SHPB compression tests can be 

classified in two types. Firstly, there are aspects related to the accuracy of the forces and 

velocities at the specimen boundaries provided by the SHPB system. These global 

quantities can be obtained from the recorded wave signals without consideration of the 

specimen. Aspects of the second type are related to assumptions concerning the bar-



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS
D. Mohr et al. (revised version, 5 Jun 2008) 

 3

specimen interaction and the specimen behavior: interface friction, lateral inertia of the 

specimen, uniaxial stress distribution, and stress equilibrium.  

The present paper focuses on the estimation of the stress-strain curve, which involves 

aspects of the second type. A common feature of most static material tests is the existence 

of a zone within the specimen, the so-called gage section, in which the stress and strain 

fields can be considered uniform. The same conceptual approach is taken in dynamic 

materials testing. However, due to the presence of waves in dynamic experiments, both 

the stress and strain fields within a specimen are seldom uniform. A dynamic material 

test should be designed such as to minimize this inherent non-uniformity, a condition 

which is typically associated with “quasi-static equilibrium”. However, when testing 

purely elastic materials such as brittle ceramics or low impedance materials, the validity 

of this assumption needs to be checked with care (e.g. Ravichandran and Subash [27], 

Song and Chen [28]). Before computers became generally available, the assumption of 

quasi-static equilibrium of the specimen had a special importance from a data processing 

point of view. This assumption allowed the measured data to be processed through real 

time analog integration (e.g. Kolsky [3]), and the stress-strain curve could be plotted in 

real time on an oscilloscope with a lasting image. This analog processing procedure 

required identical input and output bars, dispersion-free wave propagation in the bars as 

well as equilibrium of the specimen. Also, the distance between the strain gage and the 

specimen needed to be the same for the input and output bars. 

With the general availability of numerical data acquisition and computer systems, 

most limitations associated with analog data processing could be overcome. For instance, 

the input and output bars no longer need to be identical; the waves do not need to be 

dispersion-free and different strain gage positions may be chosen on the input and output 

bars. Furthermore, two independent force measurements may be obtained (so-called input 

and output force) which allow the evaluation of the validity of the assumption of quasi-

static equilibrium. Knowing that specimen equilibrium is never achieved exactly, we seek 

the best of the commonly used stress-strain curve estimates in a SHPB experiment.  In the 

present paper, we therefore evaluate the accuracy of some widely used stress-strain curve 

estimates. The time shift of the waves is found to play a critical role as far as the accuracy 

is concerned. More specifically, it is found that the omission of artificial time shifts 
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provides the best stress-strain curve estimates. In other words, once the force and 

displacement histories are known at the specimen boundaries, accurate estimates of the 

stress-strain curves should be made without further shifting the signals on the time axis.  

This study is inspired by the processing of the experimental measurements obtained 

from compression tests. However, it is emphasized that we consider the SHPB apparatus 

as a device which allows us to obtain the forces and displacements at the boundaries of a 

dynamically loaded specimen. Therefore, parts of our analysis are relevant also for other 

testing systems in dynamics, for example systems combining the use of quartz load cells 

and digital image correlation based displacement measurements. Furthermore, all 

conclusions apply to dynamic compression, tension and torsion tests.    

2. Preliminaries 

In our discussion, we distinguish between “waves” and “time histories”1. A wave is 

represented by a function that depends on both the spatial coordinate x  and time t . A 

time history on the other hand is a function that depends on time only. For example, if a 

wave described by the function ),( txε  passes by the point *xx =  in space, we call the 

function ),()( ** txt εε =  a time history associated with this wave. The wave may be 

reconstructed from )(* tε , but this requires further knowledge of the mechanical system.  

Frequently, relations will be expressed in frequency space. We denote the Fourier 

transform of a time-dependent function )(tf  by )(ˆ ωf , with the transformation 

relationships ∫
∞

∞−

−= dtetff tiϖ
πω )()(ˆ

2
1  and ∫

∞

∞−
= ωω ϖ deftf ti)(ˆ)( , where ω  denotes the 

angular frequency. We recall here that the Fourier transforms of the time derivative of 

)(tf  and of the delayed function )( atf −  are )(ˆ ωωfi  and )(ˆ ωω fe ai− , respectively. 

 

                                                 
1 As the word “history” implies the notion of “time”, we frequently use the term “history” instead of “time 
history” in the sequel of this manuscript. 
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2.1. Split Hopkinson pressure bar compression test 

Figure 1 shows a schematic of a standard SHPB compression test. A cylindrical 

specimen is placed between the input and output bars. When a striker hits the free end of 

the input bar, a compressive strain wave is generated in this bar (the incident wave 

),( txiε ). When reaching the input bar/specimen interface, this wave is partially 

transmitted and partially reflected towards the input bar/striker interface (the reflected 

wave ),( txrε ). When the compressive wave inside the specimen reaches the 

specimen/output bar interface, it is partially reflected and partially transmitted into the 

output bar (the transmitted wave ),( txtε ).   

In addition to loading and supporting the specimen, the input and output bars are 

used to obtain accurate force and displacement history measurements at the bar/specimen 

interfaces. Based on strain history recordings at selected positions on the input and output 

bars, the strain waves within the bars are reconstructed and used to calculate the force and 

displacement histories at the bar/specimen interfaces. Subsequently, a stress-strain curve 

is estimated for the material of the specimen. As mentioned, the SHPB procedure 

involves key assumptions regarding: 

(1) Dispersion in the bars. The shapes and amplitudes of the waves traveling in the 

bars may change due to geometric and material dispersion. It is important to take 

these effects into account when calculating the strain histories at the bar/specimen 

interfaces based on strain history measurements at different locations. 

(2) Separation of the waves in the input bar. The strain history in the input bar is 

typically measured near the center of the bar to avoid the superposition of the 

incident and reflected waves at the measurement location. Unless signal 

deconvolution techniques are used, it is important to verify that the incident wave 

has ceased before the appearance of the reflected wave.      

(3) Planarity of the bar/specimen contact surfaces. The diameter of the specimen is 

typically smaller than those of the input and output bars. Thus, the compressive 

loading of the specimen may result in local indentations of the input and output 

bars. In other words, the bar surfaces do not remain flat which reduces the 
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accuracy of the interface displacement predictions based on 1-D wave 

propagation theory for cylindrical bars.  

(4) Correction for radial inertia and interface friction. Except for materials with 

Poisson’s ratio zero, the diameter of a cylindrical specimen changes during a 

compression test. As a result, radial inertia effects on the specimen level may 

come into play. Correction formulas have been developed in the past to correct 

for both radial inertia and bar/specimen interface friction. However, most 

dynamic compression specimens are designed to make both effects small.  

(5) Shifting of the waves. Due to the axial inertia and stiffness of the specimen, the 

force histories at the bar/specimen interfaces are not identical. Only in the case of 

quasi-static equilibrium, these differences become negligibly small. It is common 

practice to artificially shift the waves on the time axis to decrease the difference 

between the input and output force histories. In most experiments, the effect of 

shifting is more pronounced at small strains than at large strains.  

As discussed by Subhash and Ravichandran [29] in the context of SHPB testing of 

ceramics, additional assumptions regarding state of stress and strain within the specimen 

may be necessary.     

2.2. Measurement and reconstruction of the waves in the SHPB system 

Strain measurements on the bar surfaces are typically used to determine the strain 

waves in a SHPB system. Such measurements only provide the surface strain as a 

function of time at a particular location *xx =  along the bar axis, ),()( ** txt εε = . 

However, if the measured strain history is associated with a single wave of known 

propagation direction, three-dimensional single mode wave propagation theory may be 

used to reconstruct the full wave as a function of time and space. Using the Fourier 

transform of the measured strain history )(ˆ* ωε , we have the reconstructed wave  

ωωεε ϖγξ deetx tixxi
∫
∞

∞−

−= )(* *

)(ˆ),( ,        (1) 
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where 1−=γ  ( 1=γ ) for a wave traveling in the positive (negative) x-direction. The 

complex wave number is defined as )()(/)( ωαωωωξ dic −= , where the functions 

0)( >ωc  and 0)( ≥ωα d  represent the phase velocity and the damping, respectively. In a 

3-D context, both functions depend on the bar diameter as well as the viscoelastic bar 

material properties. 

Using Eq. (1), we may reconstruct the incident and reflected waves in the input bar 

and then evaluate the corresponding strain histories at the input bar/specimen interface. If 

)(taε  is the strain history recorded by a strain gage positioned at a distance a  from the 

specimen interface, the Fourier transform of the strain history )(tiε  associated with the 

incident wave at the input bar/specimen interface is represented by 

ai
ai

ae ξωεωε −= )(ˆ)(ˆ .          (2) 

Analogously, the strain history )(trε  associated with the reflected wave at the input 

bar/specimen interface is represented by 

ai
ar

ae ξωεωε )(ˆ)(ˆ = .          (3) 

These relations hold true only if there is no superposition of the incident and reflected 

waves at the location of the strain gage.  

In the output bar, the strain history associated with the transmitted wave at the 

specimen interface is given by 

bi
bt

be ξωεωε )(ˆ)(ˆ = ,          (4) 

where )(tbε  is the strain  history measured at a distance b  from the output bar/specimen 

interface. Different subscripts have been used for the wave numbers ξ  in the input and 

output bars to highlight that these may be made of different materials and/or have 

different diameters. It is emphasized that all strain histories are defined on the same time 

axis t . 

Figure 2a shows an example of strain history recordings in a SHPB experiment. At 

the input bar strain gage location, we record the strain histories associated with the 
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incident and reflected waves. Similarly, at the output bar strain gage location, we record 

the strain history associated with the transmitted wave. Figure 2b shows the strain 

histories at the bar/specimen interfaces. On the time axis, the incident wave strain history 

at the input bar/specimen interface shows non-zero values later than at the strain gage 

position. Conversely, the strain history associated with the reflected wave rises earlier to 

non-zero values. The same applies to the strain histories associated with the transmitted 

wave in the output bar.    

2.3. Forces and velocities at the bar/specimen interfaces 

Based on the strain histories at the bar/specimen interfaces, the forces acting on the 

specimen as well as the interface velocities may be calculated using 1-D theory. At the 

input bar/specimen interface, the contact force and the interface velocity are 

 [ ])()()( ttZctF riiiin εε += ,         (5) 

[ ])()()( ttctv riiin εε +−= ,    (6) 

where iii Ec ρ/=  is the wave speed, iiii cAEZ /=  is the characteristic impedance, iA  

is the cross-sectional area, iE  is the Young’s modulus,  and iρ  is the mass density. 

Similarly, we have the contact force and the velocity at the output bar/specimen interface, 

)()( tZctF tooout ε= ,     (7) 

)()( tctv toout ε−= .     (8) 

The characteristic impedance of the output bar, oZ , is defined by the corresponding 

output bar properties oA , oE  and oρ . The forces are defined as positive in tension, while 

the velocities are defined as positive in the positive direction of the x-axis.  

2.4. Wave propagation in an elastic specimen 

In the previous subsection, we expressed the interface forces and velocities in terms 

of the waves in the input and output bars. In the case of an elastic specimen, the interface 

forces and velocities may also be expressed in terms of the waves inside the specimen. 
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These relationships are obtained from the solution of the wave equation within the 

specimen. Consider a cylindrical specimen of length sl , cross-sectional area sA , Young’s 

modulus sE , mass density sρ , wave speed sss Ec ρ/= , and  characteristic impedance 

ssss cEAZ /= . As illustrated in Fig. 1, we define the origin of the spatial coordinate 

system at the center of the specimen. Following Mousavi et al. [31], we write the strain in 

the specimen as 

ss cxi
N

cxi
P eex // )(ˆ)(ˆ),(ˆ ωω ωεωεωε += − ,              (9) 

where )(ˆ ωε P  and )(ˆ ωε N  are the strains associated with the rightward and leftward 

travelling waves at the mid-section of the specimen. Thus, the force and velocity at the 

input bar/specimen interface ( 2/slx −= ) read 

[ ])(ˆ)(ˆ)(ˆ ωεβωεαω NPssin ZcF += ,   (10) 

[ ])(ˆ)(ˆ)(ˆ ωεβωεαω NPsin cv +−= ,   (11) 

with  

2/)( stie ωωα = ,   2/)( stie ωωβ −= ,    (12) 

where sss clt /=  denotes the transit time for an elastic wave propagating through the 

specimen. Analogously, we have the force and velocity at the output bar/specimen 

interface ( 2/slx = ), 

[ ])(ˆ)(ˆ)(ˆ ωεαωεβω NPssout ZcF += ,   (13) 

[ ])(ˆ)(ˆ)(ˆ ωεαωεβω NPsout cv +−= .   (14) 

In a SHPB compression experiment, the output bar may be considered semi-infinite 

(between the strain gage location and the output bar/specimen interface, there are only 

waves traveling away from the specimen during the interval of measurement). Thus, the 

output force  

)(ˆ)(ˆ ωω outoout vZF −=      (15) 
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is directly proportional to the output velocity )(ˆ ωoutv . Introducing this relation in Eqs. 

(13) and (14), we find for the frequency-dependent ratio of the two strain waves inside 

the specimen,  

sti

P

N Re ω

ωε
ωε −=

)(ˆ
)(ˆ

,    (16) 

where )/()( soso ZZZZR +−= . It is worth noting that this ratio does not depend on the 

impedance of the input bar. Equation (16) is valid for SHPB systems with different input 

and output bars.  

3. Stress-strain curve estimates 

Even though the forces and velocities at the boundaries of a dynamically loaded 

specimen can be determined to a high degree of accuracy, it can be difficult to determine 

the stress-strain curve from such data. Under static loading conditions, both the stresses 

and strains are uniform within cylindrical specimens. However, in a dynamic experiment, 

the stress and strain fields are non-uniform. As the stress and strain field variations are a 

priori unknown, exact stress and strain calculations need to be substituted by estimates. 

The challenge is to come up with accurate estimates of the stress history )(tσ  and the 

corresponding strain history )(tε  such that their combination  

)()()( 1 tt −= εσεσ o              (17) 

provides an accurate estimate of the stress-strain curve )(εσ  of the dynamically tested 

material. In the following, we investigate estimates that are widely used. 

3.1. Direct estimates 

The spatial average of the axial strain field within the specimen is chosen to estimate 

the strain history. It can be expressed in terms of the interface velocities )(tvin  and 

)(tvout  as 
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∫∫ −==
−

t

inout
s

l

ls

de
av dttvtv

l
dxtx

l
t

s

s 0

2/

2/
)]()([1),(1)( εε           (18) 

and correspondingly 

[ ])(ˆ)(ˆ1)(ˆ ωω
ω

ωε inout
s

de
av vv

li
−= .           (19) 

It is not possible to express the spatial average of the stress field in a similar manner. 

Instead, two distinct stress-time history estimates are considered. Firstly, the stress is 

estimated as the average of the forces at the input and output bar/specimen interfaces 

(which is not the same as the spatial average of the stress field), i.e.  

s

outinde
av A

tFtF
t

2
)()(

)(
+

=σ .          (20) 

In most standard SHPB experiments, we have a compressive incident wave and a 

tensile reflected wave. Thus, in terms of absolute measurements, the input force is 

determined from the difference of two strain history measurements (see Eq. (5)). As a 

result, the corresponding standard uncertainty in the input force measurement is usually 

higher than that of the output force which is directly proportional to the strain history of 

the transmitted wave (cf. Grolleau et al. [30]). Therefore, as an alternative to Eq. (20), the 

stress is frequently estimated based on the output force history only, i.e.  

s

outde
out A

tF
t

)(
)( =σ .            (21) 

Combining these two stress estimates with the average strain estimate yields two direct 

estimates of the stress-strain curve. These two estimates are called “direct estimates” as 

the original force and velocity measurements have not been artificially shifted on the time 

axis before calculating the stress-strain curve. In other words the force and velocity 

histories at the specimen interfaces are directly used to obtain the stress-strain curve.  

3.2. Foot shifting 

To simplify the processing of SHPB measurements, the original measurement data 

are sometimes modified using a procedure which we refer to as “foot-shifting”. The idea 
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is to shift the strain history associated with the transmitted wave on the time axis such 

that it rises to non-zero values at the same time as the incident and reflected waves at the 

input bar/specimen interface. This procedure is illustrated in Fig. 3 which magnifies a 

detail of Fig. 2b. The “foot” of the transmitted strain history indicates the point on the 

time axis where the strain changes for the first time from zero to a non-zero value. If the 

incident and reflected waves in the input bar have been reconstructed correctly (which 

requires consideration of dispersion), the corresponding “foots” of the strain-time 

histories of the incident and reflected waves at the input bar/specimen interface will 

coincide. However, the transmitted wave at the output bar/specimen interface is delayed 

by the transit time sss clt /=  of an elastic wave travelling through the specimen. When 

using the foot-shifting procedure, the strain history associated with the transmitted wave 

is shifted on the time axis such that its “foot” coincides with that of the strain histories at 

the input bar/specimen interface. 

Formally, the foot shifting estimates may be written as follows. The average strain in 

the specimen reads ∫ −+=
t

insouts
fs

av dttvttvlt
0

)]()([)/1()(ε  which corresponds to   

[ ])(ˆ)(ˆ1)(ˆ ωω
ω

ωε ω
in

ti
out

s

fs
av vev

li
s −= .           (22) 

The corresponding stress estimate reads 

sti
out

s

fs
out eF

A
ωωωσ )(ˆ1)(ˆ = .         (23) 

The foot shifting procedure is particularly convenient when neglecting the wave 

dispersion in both the input and output bars. In this case, it is sufficient to identify the 

“foots” of all three waves in the strain histories which have been recorded at the strain 

gage locations and then shift these to the same position on the time axis in order to 

calculate the foot-shifted stress-strain curve estimates.    

3.3. Kolsky estimate 
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In the present context, the term “Kolsky estimate” is used to refer to one particular 

type of estimate that is based on assumptions presented in Kolsky [3]. Kolsky proposed 

his formulas before computers had become generally available for data processing. He 

used identical input and output bars (same length, diameter and material) and put strain 

gages at the center of each bar. Neglecting the dispersion in the bars and assuming quasi-

static equilibrium, Kolsky assumed 

)(ˆ)(ˆ)(ˆ ωεωεωε tri ≅+            (24) 

to estimate the strain as  

)(ˆ2
)(ˆ ωε

ω
ωε r

s

o
Ko li

c
−= .           (25) 

In terms of the force and velocity at the input specimen/bar interface, this strain estimate 

becomes 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−= )(ˆ)(ˆ1)(ˆ ω

ω
ω

ωε in
o

in

s
Ko v

Z
F

li
.          (26) 

At the same time, Kolsky used the output force to estimate the stress-time history. In 

other words, Kolsky’s stress estimate is the same as the output force based direct stress 

estimate (21). It is worth noting that the prescription of quasi-static equilibrium by Eq. 

(24) involves some implicit “foot shifting”. 

3.4. Summary 

In summary, we consider four distinct stress-strain curve estimates: 

(i)  Direct estimate, average force based stress and average strain: 

1)]([)()( −= tt de
av

de
avII εσεσ o             (27) 

(ii)  Direct estimate, output force based stress and average strain: 

1)]([)()( −= tt de
av

de
outIIII εσεσ o             (28) 

(iii) Foot-shifted estimate, output force based stress and average strain: 
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1)]([)()( −= tt fs
av

fs
outIIIIII εσεσ o             (29) 

(iv) Kolsky estimate, output force based stress and reflected wave based strain: 

1)]([)()( −= tt Ko
de
outIVIV εσεσ o             (30) 

Other combinations of the above estimates may be considered, e.g. evaluating Kolsky’s 

estimate based on the foot-shifted signals, combining the average force based stress with 

the Kolsky strain, etc. For the clarity of our presentation, however, we limit ourselves to 

the above four estimates.    

4. Evaluation 

It is of interest to evaluate the stress-strain curve estimates in both the elastic and 

elastic-plastic range. Here, the evaluation is limited to the elastic case where the choice of 

estimate appears to have the greatest importance. In this case, the quality of the stress-

strain curve estimates may be evaluated by comparing the apparent modulus )(ωE  with 

the real modulus sE  of the elastic specimen material. Given the Fourier transform of the 

stress history )(ˆ ωσ , and the strain-time history )(ˆ ωε , we have the apparent complex 

modulus 

( ) ( ) ( ) ( )
( )ωε
ωσωωω

ˆ
ˆ

"' =+= iEEE ,    (31) 

where )(' ωE  and )(" ωE  denote the real and imaginary parts, respectively. For a perfect 

estimate, )(' ωE  should be constant and equal the Young’s modulus, sEE =)(' ω , while 

the imaginary part should be zero, 0)(" =ωE .  

4.1. Direct estimates 

Using the elastic solution for the waves within the specimen (see Eqs. (11) and (14)), 

we write the average strain estimate (19) as 
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  ( )NP
s

inout
s

de
av ti

vv
li

εε
ω
βα

ω
ε ˆˆ]ˆˆ[1ˆ +

−
=−= .            (32) 

Also, by Eqs. (10) and (13), the average force based stress estimate (20) becomes 

( )( )NPs
de
av E εεβασ ˆˆ

2
1ˆ ++= .    (33) 

Analogously, we may make use of the exact elastic solution for the waves within the 

specimen to express the output force based stress estimate as 

)ˆˆ(ˆ Nps
de
out E εαεβσ += .     (34) 

Using the expressions for stress and strain above, we can now calculate the apparent 

complex moduli corresponding to the stress-strain curve estimates given by Eqs. (27) and 

(28). Combination of the average force based stress estimates with the average strain 

estimate yields the modulus estimate 

( )2/tan
2/

2
1

ˆ
ˆ

)(
s

s
sssde

av

de
av

I t
t

EtiEE
ω

ω
βα
βαω

ε
σ

ω =
−
+

== .        (35) 

Similarly, the modulus estimate based on the output force and the average strain becomes 

s

s
ti

s

sti
sde

av

de
out

II Re
R

t
t

eEE ω
ω

ω
ω

ε
σ

ω −
−

+
+

==
1

1
)2/sin(

2/
ˆ
ˆ

)( 2/ .        (36) 

4.2. Foot shifting 

As for the direct estimates, we make use of the exact theoretical solution for the 

waves inside the specimen to evaluate the foot-shifted estimates. Recall that the foot 

shifting corresponds to a time shift of the strain history associated with the transmitted 

wave. Using Eqs. (11) and (14) in (22), we obtain the foot-shifting based average strain 

estimate 

( )[ ]NP
ti

NP
s

fs
av

se
ti

εβεαεαεβ
ω

ε ω ˆˆˆˆ1ˆ −++−= .  (37) 

The output-force based stress estimate reads 
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( ) sti
NPs

fs
out eE ωεαεβσ ˆˆˆ += .     (38) 

Combining the strain and stress estimates, we get the corresponding foot-shifted modulus 

estimate 

)sin(/1ˆ
ˆ

)(
s

sti

os

s
fs

av

fs
out

III t
te

ZZ
EE s

ω
ω

ε
σω ω

−
== .   (39) 

4.3. Kolsky estimate 

Using Kolsky’s data processing procedure along with the exact elastic solution, the 

strain estimate reads 

⎥
⎦

⎤
⎢
⎣

⎡
+−−= )ˆˆ(ˆˆ1)(ˆ NP

o

s
NP

s
eq Z

Z
ti

εβεαεβεα
ω

ωε .  (40) 

Recall that Kolsky used the output force based direct stress estimate (37). Hence, the 

modulus estimate reads 

( ) )sin(/1ˆ
ˆ

)( 2
s

s

os

s

eq

de
out

IV t
t

ZZ
E

E
ω

ω
ε
σ

ω
−

== .   (41) 

Note that Kolsky’s formulas are applicable only to SHPB systems with identical input 

and output bar properties ( oi ZZ = ). 

4.4. Evaluation 

All modulus estimates depend on the normalized angular frequency stω . This 

dimensionless number is small within the range of significant frequencies of a typical 

SHBP compression test. For example, when testing a mm 5=sl  long steel or aluminum 

specimen, we have μs 1≅st . At the same time, the maximum frequencies in a typical 

SHPB test are smaller than kHz 1002/ <πω . Hence, we have 1.02/ ≤πω st . In other 

words, the period of the wave of highest frequency is still at least ten times larger than the 

specimen transit time st .  For evaluation purposes, we also calculate the second-order 

Taylor expansion of the estimated moduli: 
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(i)  Direct estimate, average force based stress and average strain: 

( ) ⎥⎦
⎤

⎢⎣
⎡ −≅ 2

12
11)( ssI tEE ωω             (42) 

(ii)  Direct estimate, output force based stress and average strain: 

[ ]osssII ZZtiEE /)2/(1)( ωω −≅            (43) 

(iii) Foot-shifted estimate, output force based stress and average strain: 

( )s
s

s
III ti

ZZ
E

E ωω +
−

≅ 1
/1

)(
0

           (44) 

(iv) Kolsky estimate, output force based stress and reflected wave based strain: 

( ) ⎥⎦
⎤

⎢⎣
⎡ +

−
≅ 2

2 )(
6
11

/1
)( s

os

s
IV t

ZZ
E

E ωω           (45) 

The strain and stress estimates are “in phase” when the imaginary part of the 

estimated modulus is zero. This is the case for the average force based direct estimate 

)(ωIE  and the Kolsky estimate )(ωIVE . The output force based direct estimate )(ωIIE  

has a negative imaginary part for positive frequencies. This means that the stress lags the 

strain, which corresponds to a hypothetical material that delivers energy when subjected 

to harmonic loading. Conversely, the imaginary part of )(ωIIIE  is positive for positive 

frequencies and the stress leads the strain. Thus, the foot-shifted estimate suggests a 

hypothetical material that absorbs energy.  

Observe that all modulus estimates except for )(ωIE  depend on the specimen-to-

output bar impedance ratio os ZZ / . This impedance ratio determines the magnitude of the 

ratio PN εε ˆ/ˆ  of the rightward and leftward travelling waves inside the specimen (see Eq. 

(16)). In the case of 1/ =os ZZ , there is no reflection within the specimen and hence 

0ˆ =Nε . For 0/ →os ZZ , the specimen/output bar interface acts as a rigid boundary. 

Consequently, the leftward traveling wave Nε̂  is equal to Pε̂  with a delay of st . The 

evaluation of Eq. (16) yields 
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 s

os
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ZZ
e ω
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ε −
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=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ˆ
ˆ

lim
0/

.    (46) 

It is worth noting that the output force based direct modulus estimate )(ωIIE  and the 

Kolsky estimate )(ωIVE , Eqs. (36) and (41), respectively, are identical for 0/ →os ZZ , 

)sin(
)(lim)(lim

0/0/
s

s
sIVZZIIZZ t

t
EEE

osos ω
ω

ωω ==
→→

.   (47) 

This can also be seen from Eqs. (19) and (26): the only difference between these two 

estimates is in the estimation of the output velocity; however, as the output velocity is 

zero for 0/ →os ZZ , both estimates become identical. The real-valued Kolsky estimate 

)(ωIVE  is monotonic in os ZZ / . Thus, the greater the specimen/bar impedance mismatch 

(with 1/ <os ZZ ), the smaller the error in the Kolsky modulus estimate. 

In order to quantify the error in the stress-strain curve estimates, we define the 

normalized distance between the estimated complex modulus )(ωiE  and the true material 

modulus sE  

s

si
i E

EE
e

−
=

)(ω
.    (48) 

These error functions are depicted in Fig. 4 for two distinct impedance mismatches: 

(i) Large impedance mismatch ( 02.0/ =os ZZ , Fig 4a). This example corresponds to 

the testing of 10 mm diameter PMMA specimen in a mm 20  diameter steel bar 

system. 

(ii) Small impedance mismatch ( 25.0/ =os ZZ , Fig. 4b).  This configuration 

corresponds to a mm 10  diameter steel specimen in a mm 20  diameter steel bar 

system. 

Both plots show that the curves are in hierarchical order. The smallest error is observed 

for the average force based direct estimate )(ωIE  while the error for the output force 

based estimate )(ωIIE  appears to be sandwiched between the curve for )(ωIE  and the 
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Kolsky estimate )(ωIVE . The error of the foot-shifting based estimate )(ωIIIE  is the 

largest among the present estimates. It is one to two orders of magnitude larger than the 

other estimates with an error of up to 100% at high frequencies. All error functions are 

monotonic with respect to the normalized frequency stω . For the direct estimates, the 

error vanishes at low frequencies. As shown in Fig. 4 and by Eq. (45), the error of the 

Kolsky estimates does not vanish at low frequencies. The same holds true for the foot-

shifted estimate where the error at low frequencies is still larger by a factor of so ZZ /  as 

compared to the Kolsky estimate. The curves in Fig. 4a also indicate the aforementioned 

convergence of the estimates )(ωIIE  and )(ωIVE  for large impedance mismatch. It is 

concluded from the evaluation of the modulus estimates, that all of them provide 

reasonable results except the foot-shifted one. Irrespective of the specimen/bar 

impedance mismatch and frequency, the foot-shifted estimate yields poor results for the 

stress-strain relationship.  

5. Application and discussion 

The previous evaluation of the stress-strain estimates has been carried out in the 

frequency domain. The extrapolation of the error estimates from the frequency domain 

into the time domain is not straightforward. In particular, the stress-strain curve 

)()()( 1 tt −= εσεσ o  is linear only if )(ωE  is real and constant. In all other cases, this 

relationship is non-linear and the modulus needs to be estimated through linear 

interpolation of the measured stress-strain curve.  

To illustrate the error in the different stress-strain curve estimates in the time domain, 

we performed a one-dimensional numerical simulation of a SHPB experiment on a 

PMMA specimen ( MPa 5000=sE , 3g/cm 2.1=sρ , mm 20=sD , mm 20=sl ). The 

SHPB systems comprises mm 20  diameter steel input and output bars 

( GPa 210=bE , 3g/cm 8.7=sρ ); the corresponding input and output strain gages are 

positioned at mm 1505=a  and mm 800=b  from the specimen/bar interfaces. We 

generated an incident wave with rise time μs 50  that imitates a striker impact at m/s 5 .  
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The strain histories at the strain gage locations associated with the incident, reflected 

and transmitted waves are depicted in Fig. 2a. The corresponding strain histories at the 

specimen/bar interfaces have been reconstructed in Fig. 2b. The strain signals just appear 

at different times since they have been evaluated at different locations. Subsequently, we 

evaluate the strain and stress history estimates according to the different formulas given 

in Section 4. Figure 5 summarizes the corresponding stress-strain curves. The black solid 

line depicts the average force based direct stress estimate de
avσ  as a function of the 

average strain estimate de
avε . As predicted by the frequency space analysis, this curve 

provides the best representation of the response of the linear elastic material. The plot of 

the output force based direct stress estimate de
outσ  as a function of the average direct strain 

estimate (dashed line) also provides a good approximation of the linear stress-strain 

curve. The specimen-to-output bar impedance ratio is relatively small ( 06.0/ =os ZZ ). 

Consequently, the Kolsky estimate closely follows the output force based direct estimate, 

as predicted by the theoretical analysis in the frequency space. The plot of the foot-

shifting based stress-strain curve confirms the conclusion of the theoretical analysis: the 

foot-shifted estimate provides the least accurate representation of the stress-strain curve 

and deviates substantially from the linear stress-strain relationship predicted by the other 

estimates.   

Recall that all theoretical estimates are independent of the amplitude of the incident 

wave and therefore of the impact velocity. The effect of impact velocity only enters the 

problem in an indirect manner. SHPB experiments have shown that the striker impact 

velocity changes the frequency spectrum of the incident wave, i.e. the higher the loading 

velocity the higher the maximum frequency content. This is due to the circumstance that 

the contact surfaces at the striker/input bar interface are neither perfectly flat nor 

perfectly aligned in real experiments. As the error increases monotonically in stω , a 

lower estimation accuracy is expected for higher impact velocities. The specimen length 

is another variable which enters the problem indirectly. Recall that the transit time st  is 

proportional to the specimen length. Hence, based on the same argument as for the 
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frequency content, we may conclude that the estimation error increases for longer 

specimens.   

All conclusions regarding the quality of the stress-strain curve estimates are expected 

to hold true in both the elastic and plastic range of a dynamic experiment. It has been 

demonstrated that the use of the average strain in combination with either the average 

force based stress or output force based stress provides the best estimate of the stress-

strain curve in the elastic case. In the plastic case, the variations of the stress and strain 

fields along the specimen axis are anticipated to be even smaller than in the elastic case. 

Consequently, we also recommend the direct estimates to approximate the stress-strain 

curve in the plastic case, while other methods should be used with care.     

6. Conclusions 

Different formulas have been proposed in the literature to estimate the stress-strain 

curve based on the forces and displacements at the boundary of a dynamically loaded 

specimen. A theoretical analysis is performed which makes use of the exact transient 

solution for a dynamically loaded elastic specimen. The results demonstrate that the so-

called direct estimates, which are based on the force and displacement time histories at 

the specimen boundaries without artificial time shifts, provide the most accurate 

estimates of the stress-strain curve. Unless accurate input force measurements are 

available, the combination of the average strain with the output force based stress 

estimate is recommended for standard SHPB experiments. 
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Figures 
 
 
 
 
 
 
 
 
 

 
 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 1. Schematic of conventional SHPB test set-up with detail of specimen. The input 

and output bar strain gages are positioned at a distance of a and b from the respective 

specimen/bar interfaces. 
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(a) 

 

 
(b) 

 

Figure 2. Strain histories of the incident wave (solid red line), the reflected wave (dashed 

red line) and the transmitted wave (solid blue line) at different locations in the input bar 

(red curves) and output bar (blue curves): (a) at the positions of the strain gages, (b) at the 

bar/specimen interfaces.     
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Figure 3. Beginning of the strain histories at the bar/specimen interfaces (detail of Fig. 

2b). The dashed blue line shows the strain history of the transmitted wave after shifting 

the beginning of this wave in time (so-called “foot shifting”) such that all strain histories 

begin simultaneously.   
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Figure 4. Modulus errors as a function of the normalized angular frequency for different 

stress-strain curve estimates: (a) large impedance mismatch, (b) small impedance 

mismatch.  
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Figure 5. Plot of the estimated stress strain curves for a dynamic compression experiment 

on PMMA 

 


