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1 Introduction

Problem statement

Let d be a positive integer, (Y i , X i ) i∈Z be a R × [0, 1] d -valued stationary process on a probability space (Ω, A, P) and ρ be a given real measurable function. The unknown regression function associated to (Y i , X i ) i∈Z and ρ is defined by

g(x) = E(ρ(Y )|X = x), x = (x 1 , . . . , x d ) ∈ [0, 1] d .
In the additive regression model, the function g is considered to have an additive structure, i.e. there exist d unknown real measurable functions g 1 , . . . , g d and an unknown real number µ such that

g(x) = µ + d ℓ=1 g ℓ (x ℓ ). (1.1) 
For any ℓ ∈ {1, . . . , d}, our goal is to estimate g ℓ from n observations (Y 1 , X 1 ), . . . , (Y n , X n ) of (Y i , X i ) i∈Z .

Overview of previous work

When (Y i , X i ) i∈Z is a i.i.d. process, this additive regression model becomes the standard one. In such a case, Stone in a series of papers [START_REF] Stone | Additive regression and other nonparametric models[END_REF][START_REF] Stone | The dimensionality reduction principle for generalized additive models[END_REF][START_REF] Stone | The use of polynomial splines and their tensor products in multivariate function estimation (with discussion)[END_REF] proved that g can be estimated with the same rate of estimation error as in the one-dimensional case. The estimation of the component g ℓ has been investigated in several papers via various methods (kernel, splines, wavelets, etc.). See e.g. [START_REF] Buja | Linear smoothers and additive models (with discussion)[END_REF], [START_REF] Hastie | Generalized additive models[END_REF], [START_REF] Linton | Efficient estimation of additive nonparametric regression models[END_REF], [START_REF] Opsomer | Fitting a bivariate additive model by local polynomial regression[END_REF][START_REF] Opsomer | A fully automated bandwidth selection method for fitting additive models[END_REF], [START_REF] Amato | Adaptive wavelet series estimation in separable nonparametric regression models[END_REF], [START_REF] Amato | Fourier series approximation of separable models[END_REF], [START_REF] Sperlich | Nonparametric estimation and testing of interaction in additive models[END_REF], [START_REF] Zhang | Wavelet threshold estimation for additive regression models[END_REF], [START_REF] Sardy | and GAMlet: automatic nonlinear fitting of additive models, robust and generalized, with wavelets[END_REF] and [START_REF] Fan | Nonparametric inferences for additive models[END_REF]. In some applications, the i.i.d. assumption on the observations is too stringent. For this reason, some authors have explored the estimation of g ℓ in the dependent case. When (Y i , X i ) i∈Z is a strongly mixing process, this problem has been addressed by [START_REF] Camlong-Viot | Nonparametric and semiparametric estimation of additive models with both discrete and continuous variables under dependence[END_REF], [START_REF] Debbarh | Asymptotic normality for the wavelets estimator of the additive regression components[END_REF], and results for continuous time processes under a strong mixing condition have been obtained by [START_REF] Debbarh | Additive regression model for continuous time processes[END_REF][START_REF] Debbarh | Asymptotic normality of the additive regression components for continuous time processes[END_REF]. In particular, they have developed non-adaptive kernel estimators for g ℓ and studied its asymptotic properties.

Contributions

To the best of our knowledge, adaptive estimation of g ℓ for dependent processes has been addressed only by [START_REF] Gao | Adaptive orthogonal series estimation in additive stochastic regression models[END_REF]. The lack of results for adaptive estimation in this context motivates this work. To reach our goal, as in [START_REF] Zhang | Wavelet threshold estimation for additive regression models[END_REF], we combine the marginal integration technique introduced by [START_REF] Newey | Kernel estimation of partial means and a general variance estimator[END_REF] with wavelet methods. We capitalize on wavelets to construct an adaptive thresholding estimator and show that it attains sharp rates of convergence under mild assumptions on the smoothness of the unknown function. By adaptive, it is meant that the parameters of the estimator do not depend on the parameter(s) of the dependent process nor on those of the smoothness class of the function. In particular, this leads to a simple and easily implementable estimator.

More precisely, our wavelet estimator is based on term-by-term hard thresholding. The idea of this estimator is simple: (i) we estimate the unknown wavelet coefficients of g ℓ based on the observations; (ii) then we select the greatest ones and ignore the others; (iii) and finally we reconstruct the function estimate from the chosen wavelet coefficients on the considered wavelet basis. Adopting the minimax point of view under the L 2 risk, we prove that our adaptive estimator attains a sharp rate of convergence over Besov balls which capture a variety of smoothness features in a function including spatially inhomogeneous behavior. The attained rate corresponds to the optimal one in the i.i.d. case for the univariate regression estimation problem (up to an extra logarithmic term).

Paper organization

The rest of the paper is organized as follows. Section 2 presents our assumptions on the model. In Section 3, we describe wavelet bases on [0, 1], Besov balls and tensor product wavelet bases on [0, 1] d . Our wavelet hard thresholding estimator is detailed in Section 4. Its rate of convergence under the L 2 risk over Besov balls is established in Section 5. Section 6 provides a discussion of the relation of our result with respect to prior work. The proofs are detailed in Section 7.

Notations and assumptions

In this work, we assume the following on our model: Assumptions on the variables.

• For any i ∈ {1, . . . , n}, we set X i = (X 1,i , . . . , X d,i ). We suppose that for any i ∈ {1, . . . , n}, X 1,i , . . . , X d,i are identically distributed with the common distribution U ([0, 1]), -X 1 , . . . , X n are identically distributed with the common known density f .

• We suppose that the following identifiability condition is satisfied: for any ℓ ∈ {1, . . . , d} and i ∈ {1, . . . , n}, we have

E(g ℓ (X ℓ,i )) = 0. (2.1)
Strongly mixing assumption. Throughout this work, we use the strong mixing dependence structure on (Y i , X i ) i∈Z . For any m ∈ Z, we define the m-th strongly mixing coefficient of (Y i , X i ) i∈Z by

α m = sup (A,B)∈F (Y,X) -∞,0 ×F (Y,X) m,∞ |P(A ∩ B) -P(A)P(B)| , (2.2) 
where

F (Y,X)
-∞,0 is the σ-algebra generated by . . . , (Y -1 , X -1 ), (Y 0 , X 0 ) and F (Y,X) m,∞ is the σ-algebra generated by (Y m , X m ), (Y m+1 , X m+1 ), . . . . We suppose that there exist two constants γ > 0 and c > 0 such that, for any integer m ≥ 1,

α m ≤ γ exp(-cm).
(2.3)

Further details on strongly mixing dependence can be found in [START_REF] Bradley | Introduction to strong mixing conditions[END_REF], [START_REF] Withers | Conditions for linear processes to be strongmixing[END_REF], [START_REF] Doukhan | Mixing. Properties and Examples[END_REF], [START_REF] Modha | Minimum complexity regression estimation with weakly dependent observations[END_REF] and [START_REF] Carrasco | Mixing and moment properties of various GARCH and stochastic volatility models[END_REF].

Boundedness assumptions.

• We suppose that ρ ∈ L 1 (R) ∩ L ∞ (R), i.e. there exist constants C 1 > 0 and C 2 (supposed known) such that

∞ -∞ |ρ(y)|dy ≤ C 1 , (2.4) 
and sup y∈R |ρ(y)| ≤ C 2 .

(2.5)

• We suppose that there exists a known constant c > 0 such that inf

x∈[0,1] d f (x) ≥ c. (2.6) 
• For any m ∈ {1, . . . , n}, let f (Y 0 ,X 0 ,Ym,Xm) be the density of (Y 0 , X 0 , Y m , X m ), f (Y 0 ,X 0 ) the density of (Y 0 , X 0 ) and, for any (y, x,

y * , x * ) ∈ R × [0, 1] d × R × [0, 1] d , h m (y, x, y * , x * ) = f (Y 0 ,X 0 ,Ym,Xm) (y, x, y * , x * ) -f (Y 0 ,X 0 ) (y, x)f (Y 0 ,X 0 ) (y * , x * ).
(2.7)

We suppose that there exists a known constant C > 0 such that sup m∈{1,...,n} sup

(y,x,y * ,x * )∈R×[0,1] d ×R×[0,1] d |h m (y, x, y * , x * )| ≤ C. (2.8) 
Such boundedness assumptions are standard for the estimation of g ℓ from a strongly mixing process. See e.g. [START_REF] Debbarh | Additive regression model for continuous time processes[END_REF][START_REF] Debbarh | Asymptotic normality of the additive regression components for continuous time processes[END_REF].

3 Wavelets and Besov balls

Wavelet bases on [0, 1]

Let R be a positive integer. We consider an orthonormal wavelet basis generated by dilations and translations of the scaling and wavelet functions φ and ψ from the Daubechies family db 2R . In particular, φ and ψ have compact supports and unit L 2 -norm, and ψ has R vanishing moments, i.e. for any r ∈ {0, . . . , R -1}, x r ψ(x)dx = 0.

Define the scaled and translated version of φ and ψ

φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k).
Then, with an appropriate treatment at the boundaries, there exists an integer τ satisfying 2 τ ≥ 2R such that, for any integer j * ≥ τ , the collection [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF][START_REF] Mallat | A wavelet tour of signal processing[END_REF].

{φ j * ,k (.), k ∈ {0, . . . , 2 j * -1}; ψ j,k (.); j ∈ N-{0, . . . , j * -1}, k ∈ {0, . . . , 2 j -1}}, is an orthonormal basis of L 2 ([0, 1]) = {h : [0, 1] → R; 1 0 h 2 (x)dx < ∞}. See
Consequently, for any integer j * ≥ τ , any h ∈ L 2 ([0, 1]) can be expanded into a wavelet series as

h(x) = 2 j * -1 k=0 α j * ,k φ j * ,k (x) + ∞ j=j * 2 j -1 k=0 β j,k ψ j,k (x), x ∈ [0, 1],
where

α j,k = 1 0 h(x)φ j,k (x)dx, β j,k = 1 0 h(x)ψ j,k (x)dx. (3.1)

Besov balls

As is traditional in the wavelet estimation literature, we will investigate the performance of our estimator by assuming that the unknown function to be estimated belongs to a Besov ball. The Besov norm for a function can be related to a sequence space norm on its wavelet coefficients. More precisely, let M > 0, s ∈ (0, R), p ≥ 1 and q ≥ 1. A function h in L 2 ([0, 1]) belongs to B s p,q (M ) if, and only if, there exists a constant M * > 0 (depending on M ) such that the associated wavelet coefficients

(3.1) satisfy    ∞ j=τ    2 j(s+1/2-1/p)   2 j -1 k=0 |β j,k | p   1/p    q    1/q ≤ M * .
In this expression, s is a smoothness parameter and p and q are norm parameters. Besov spaces include many traditional smoothness spaces. For particular choices of s, p and q, Besov balls contain the standard Hölder and Sobolev balls. See [START_REF] Meyer | Wavelets and Operators[END_REF].

Wavelet tensor product bases on [0, 1] d

For the purpose of this paper, we will use compactly supported tensor product wavelet bases on [0, 1] d based on the Daubechies family. Let us briefly recall their construction. For any x = (x 1 , . . . , x d ) ∈ [0, 1] d , we construct a scaling function

Φ(x) = d v=1 φ(x v ) ,
and 2 d -1 wavelet functions

Ψ u (x) =              ψ(x u ) d v=1 v =u φ(x v ) when u ∈ {1, . . . , d}, v∈Au ψ(x v ) v ∈Au φ(x v ) when u ∈ {d + 1, . . . , 2 d -1},
where (A u ) u∈{d+1,...,2 d -1} forms the set of all non void subsets of {1, . . . , d} of cardinality greater or equal to 2. For any integer j and any k = (k 1 , . . . , k d ), define the translated and dilated versions of Φ and Ψ u as

Φ j,k (x) = 2 jd/2 Φ(2 j x 1 -k 1 , . . . , 2 j x d -k d ), Ψ j,k,u (x) = 2 jd/2 Ψ u (2 j x 1 -k 1 , . . . , 2 j x d -k d ), for any u ∈ {1, . . . , 2 d -1}.
Let D j = {0, . . . , 2 j -1} d . Then, with an appropriate treatment at the boundaries, there exists an integer τ such that the collection

{Φ τ,k , k ∈ D τ ; (Ψ j,k,u ) u∈{1,...,2 d -1} , j ∈ N -{0, . . . , τ -1}, k ∈ D j } forms an orthonormal basis of L 2 ([0, 1] d ) = {h : [0, 1] d → R; [0,1] d h 2 (x)dx < ∞}.
For any integer j * such that j * ≥ τ , a function h ∈ L 2 ([0, 1] d ) can be expanded into a wavelet series as

h(x) = k∈D j * α j * ,k Φ j * ,k (x) + 2 d -1 u=1 ∞ j=j * k∈D j β j,k,u Ψ j,k,u (x), x ∈ [0, 1] d ,
where

α j,k = [0,1] d h(x)Φ j,k (x)dx, β j,k,u = [0,1] d h(x)Ψ j,k,u (x)dx. (3.2)
4 The estimator

Wavelet coefficients estimator

The following proposition provides a wavelet decomposition of g ℓ based on the "marginal integration" method (introduced by [START_REF] Newey | Kernel estimation of partial means and a general variance estimator[END_REF]) and a tensor product wavelet basis on [0, 1] d .

Proposition 4.1 Suppose that (2.1) holds. Then, for any j * ≥ τ and ℓ ∈ {1, . . . , d}, we can write

g ℓ (x) = 2 j * -1 k=1 a j * ,k,ℓ φ j * ,k (x) + ∞ j=j * 2 j -1 k=1 b j,k,ℓ ψ j,k (x) -µ, x ∈ [0, 1],
where

a j,k,ℓ = a j,k ℓ ,ℓ = 2 -j(d-1)/2 [0,1] d g(x) k -ℓ ∈D * j Φ j,k (x)dx, (4.1) b j,k,ℓ = b j,k ℓ ,ℓ = 2 -j(d-1)/2 [0,1] d g(x) k -ℓ ∈D * j Ψ j,k,ℓ (x)dx, (4.2 
)

and k -ℓ = (k 1 , . . . , k ℓ-1 , k ℓ+1 , . . . , k d ) and D * j = {0, . . . , 2 j -1} d-1 .
Remark 4.1 Due to the definitions of g and properties of

Ψ j,k,ℓ , b j,k,ℓ is nothing but the wavelet coefficient of g ℓ , i.e. b j,k,ℓ = 1 0 g ℓ (x)ψ j,k (x)dx = β j,k . (4.3) 
Proposition 4.1 suggests that a first step to estimate g ℓ should consist in estimating the unknown coefficients a j,k,ℓ (4.1) and b j,k,ℓ (4.2). To this end, we propose the following coefficients estimators

a j,k,ℓ = a j,k ℓ ,ℓ = 2 -j(d-1)/2 1 n n i=1 ρ(Y i ) f (X i ) k -ℓ ∈D * j Φ j,k (X i ) (4.4) and b j,k,ℓ = b j,k ℓ ,ℓ = 2 -j(d-1)/2 1 n n i=1 ρ(Y i ) f (X i ) k -ℓ ∈D * j Ψ j,k,ℓ (X i ). (4.5)
These estimators enjoy powerful statistical properties. Some of them are collected in the following propositions. Proposition 4.2 (Unbiasedness) Suppose that (2.1) holds. For any j ≥ τ , ℓ ∈ {1, . . . , d} and k ∈ {0, . . . , 2 j -1}, a j,k,ℓ and b j,k,ℓ in (4.4) and (4.5) are unbiased estimators of a j,k,ℓ and b j,k,ℓ respectively. Proposition 4.3 (Moment inequality I) Suppose that the assumptions of Section 2 hold. Let j ≥ τ such that 2 j ≤ n, k ∈ {0, . . . , 2 j -1}, ℓ ∈ {1, . . . , d}. Then there exists a constant C > 0 such that

E ( a j,k,ℓ -a j,k,ℓ ) 2 ≤ C 1 n , E ( b j,k,ℓ -b j,k,ℓ ) 2 ≤ C 1 n .
Remark 4.2 In the proof of Proposition 4.3, we only need to have the existence of two constants C > 0 and q ∈ (0, 1) such that n m=1 m q α q m ≤ C < ∞. This latter inequality is obviously satisfied by (2.3). 

E ( b j,k,ℓ -b j,k,ℓ ) 4 ≤ C 2 j n .
Proposition 4.5 (Concentration inequality) Suppose that the assumptions of Section 2 hold. Let j ≥ τ such that 2 j ≤ n/(ln n) 3 , k ∈ {0, . . . , 2 j -1}, ℓ ∈ {1, . . . , d} and λ n = (ln n/n) 1/2 . Then there exist two constants C > 0 and κ > 0 such that

P | b j,k,ℓ -b j,k,ℓ | ≥ κλ n /2 ≤ C 1 n 4 .

Hard thresholding estimator

We now turn to the estimator of g ℓ from a j,k,ℓ and b j,k,ℓ as introduced in (4.4) and (4.5). Towards this goal, we will only keep the significant wavelet coefficients that are above a certain threshold according to the hard thresholding rule, and then reconstruct from these coefficients. In a compact form, this reads

g ℓ (x) = 2 τ -1 k=0 a τ,k,ℓ φ τ,k (x) + j 1 j=τ 2 j -1 k=0 b j,k,ℓ 1 {| b j,k,ℓ |≥κλn} ψ j,k (x) -µ, (4.6) 
where

µ = 1 n n i=1 ρ(Y i ). (4.7)
In , j 1 is the resolution level satisfying 2

j 1 = [n/(ln n) 3 ],
κ is a large enough constant (the one in Proposition 4.5) and

λ n = ln n n .
Note that, due to the assumptions on the model, our wavelet hard thresholding estimator (4.2) is simpler than the one of [START_REF] Zhang | Wavelet threshold estimation for additive regression models[END_REF].

Minimax upper-bound result

Theorem 5.1 below investigates the minimax rates of convergence attained by g ℓ over Besov balls under the L 2 risk. Theorem 5.1 Let ℓ ∈ {1, . . . , d}. Suppose that the assumptions of Section 2 hold. Let g ℓ be the estimator given in (4.2). Suppose that g ℓ ∈ B s p,q (M ) with q ≥ 1, {p ≥ 2 and s ∈ (0, R)} or {p ∈ [1, 2) and s ∈ (1/p, R)}. Then there exists a constant C > 0 such that

E 1 0 ( g ℓ (x) -g ℓ (x)) 2 dx ≤ C ln n n 2s/(2s+1)
.

The proof of Theorem 5.1 is based on a suitable decomposition of the L 2 risk and the statistical properties of (4.4) and (4.5) summarized in Propositions 4.2, 4.3, 4.4 and 4.5 above.

Relation to prior work

The rate (ln n/n) 2s/(2s+1) is, up to an extra logarithmic term, known to be the optimal one for the standard one-dimensional regression model with uniform random design. See e.g. [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF] and [START_REF] Tsybakov | Introduction à l'estimation non paramétrique[END_REF]. Theorem 5.1 provides an "adaptive contribution" to the results of [START_REF] Camlong-Viot | Nonparametric and semiparametric estimation of additive models with both discrete and continuous variables under dependence[END_REF], [START_REF] Debbarh | Asymptotic normality for the wavelets estimator of the additive regression components[END_REF] and [START_REF] Debbarh | Additive regression model for continuous time processes[END_REF][START_REF] Debbarh | Asymptotic normality of the additive regression components for continuous time processes[END_REF]. Furthermore, if we confine ourselves to the i.i.d. case, we recover a similar result to [32, Theorem 3] but without the condition s > max(d/2, d/p). The price to pay is more restrictive assumptions on the model (ρ is bounded from above, the density of X is known, etc.). Additionally, our estimator has a more straightforward and friendly implementation than the one in [START_REF] Zhang | Wavelet threshold estimation for additive regression models[END_REF].

Proofs

In this section, the quantity C denotes any constant that does not depend on j, k and n. Its value may change from one term to another and may depends on φ or ψ.

Technical results on wavelets

Proof of Proposition 4.1. Because of (2.5), we have g ∈ L 2 ([0, 1] d ). For any j * ≥ τ , we can expand g on our wavelet-tensor product basis as

g(x) = k∈D j * α j * ,k Φ j * ,k (x) + 2 d -1 u=1 ∞ j=j * k∈D j β j,k,u Ψ j,k,u (x), x ∈ [0, 1] d (7.1)
where

α j,k = [0,1] d g(x)Φ j,k (x)dx, β j,k,u = [0,1] d g(x)Ψ j,k,u (x)dx.
Moreover, using the "marginal integration" method based on (2.1), we can write

g ℓ (x ℓ ) = [0,1] d-1 g(x) d v=1 v =ℓ dx v -µ, x ℓ ∈ [0, 1]. (7.2) Since 1 0 φ j,k (x)dx = 2 -j/2 and 1 0 ψ j,k (x)dx = 0, observe that [0,1] d-1 Φ j * ,k (x) d v=1 v =ℓ dx v = 2 -j * (d-1)/2 φ j * ,k ℓ (x ℓ )
and

[0,1] d-1 Ψ j,k,u (x) d v=1 v =ℓ dx v = 2 -j(d-1)/2 ψ j,k ℓ (x ℓ ) if u = ℓ, 0 otherwise.
Therefore, putting (7.1) in (7.2) and writing x = x ℓ , we obtain

g ℓ (x) = k∈D j * 2 -j * (d-1)/2 α j * ,k φ j * ,k ℓ (x) + ∞ j=j * k∈D j 2 -j(d-1)/2 β j,k,ℓ ψ j,k ℓ (x) -µ.
Or, equivalently,

g ℓ (x) = 2 j * -1 k=1 a j * ,k,ℓ φ j * ,k (x) + ∞ j=j * 2 j -1 k=1 b j,k,ℓ ψ j,k (x) -µ,
where

a j,k,ℓ = a j,k ℓ ,ℓ = 2 -j(d-1)/2 [0,1] d g(x) k -ℓ ∈D * j Φ j,k (x)dx and b j,k,ℓ = b j,k ℓ ,ℓ = 2 -j(d-1)/2 [0,1] d g(x) k -ℓ ∈D * j Ψ j,k,ℓ (x)dx.
Proposition 4.1 is proved.

Proposition 7.1 For any ℓ ∈ {1, . . . , d}, j ≥ τ and k = k ℓ ∈ {0, . . . , 2 j -1}, set

h (1) j,k (x) = k -ℓ ∈D * j Φ j,k (x), h (2) 
j,k (x) = k -ℓ ∈D * j Ψ j,k,ℓ (x), x ∈ [0, 1] d .
Then there exists a constant C > 0 such that, for any a ∈ {1, 2}, sup 1) .

x∈[0,1] d |h (a) j,k (x)| ≤ C2 jd/2 , [0,1] d |h (a) j,k (x)|dx ≤ C2 -j/2 2 j(d-1)/2 and [0,1] d (h (a) j,k (x)) 2 dx = 2 j(d-
Proof:

• Since sup x∈[0,1] |φ j,k (x)| ≤ C2 j/2 and sup x∈[0,1] 2 j -1 k=0 |φ j,k (x)| ≤ C2 j/2 , we obtain sup x∈[0,1] d |h (1) j,k (x)| = ( sup x∈[0,1] |φ j,k (x)|)   sup x∈[0,1] 2 j -1 k=0 |φ j,k (x)|   d-1 ≤ C2 jd/2 . • Using 1 0 |φ j,k (x)|dx = C2 -j/2 , we obtain [0,1] d |h (1) j,k (x)|dx ≤ 1 0 |φ j,k (x)|dx   2 j -1 k=0 1 0 |φ j,k (x)|dx   d-1 = C2 -j/2 2 j(d-1)/2 . • Since, for any (u k ) k∈D j , [0,1] d k∈D j u k Φ j,k (x) 2 dx = k∈D j u 2 k , we obtain [0,1] d (h (1) j,k (x)) 2 dx = [0,1] d   k -ℓ ∈D * j Φ j,k (x)   2 dx = 2 j(d-1) .
Proceeding in a similar fashion, using sup

x∈[0,1] |ψ j,k (x)| ≤ C2 j/2 , 1 0 |ψ j,k (x)|dx = C2 -j/2 and, for any (u k ) k∈D j , [0,1] d k∈D j u k Ψ j,k,ℓ (x) 2 dx = k∈D j u 2 k
, we obtain the same results for h

(2)

j,k .
This ends the proof of Proposition 7.1.

Statistical properties of the coefficients estimators

Proof of Proposition 4.2. We have

E( a j,k,ℓ ) = 2 -j(d-1)/2 E   ρ(Y 1 ) f (X 1 ) k -ℓ ∈D * j Φ j,k (X 1 )   = 2 -j(d-1)/2 E   E(ρ(Y 1 )|X 1 ) 1 f (X 1 ) k -ℓ ∈D * j Φ j,k (X 1 )   = 2 -j(d-1)/2 E   g(X 1 ) f (X 1 ) k -ℓ ∈D * j Φ j,k (X 1 )   = 2 -j(d-1)/2 [0,1] d g(x) f (x) k -ℓ ∈D * j Φ j,k (x)f (x)dx = 2 -j(d-1)/2 [0,1] d g(x) k -ℓ ∈D * j Φ j,k (x)dx = a j,k,ℓ .
Proceeding in a similar fashion, we prove that E( b j,k,ℓ ) = b j,k,ℓ .

Proof of Proposition 4.3. For the sake of simplicity, for any i ∈ {1, . . . , n}, set

Z i = ρ(Y i ) f (X i ) k -ℓ ∈D * j Φ j,k (X i ).
Thanks to Proposition 4.2, we have

E ( a j,k,ℓ -a j,k,ℓ ) 2 = V( a j,k,ℓ ) = 2 -j(d-1) 1 n 2 V n i=1 Z i . (7.3)
An elementary covariance decomposition gives

V n i=1 Z i = nV (Z 1 ) + 2 n v=2 v-1 u=1 Cov (Z v , Z u ) ≤ nV (Z 1 ) + 2 n v=2 v-1 u=1 Cov (Z v , Z u ) . (7.4)
Using (2.5), (2.6) and Proposition 7.1, we have

V (Z 1 ) ≤ E(Z 2 1 ) ≤ sup y∈R ρ 2 (y) inf x∈[0,1] d f (x) E   1 f (X 1 )   k -ℓ ∈D * j Φ j,k (X 1 )   2   ≤ C [0,1] d 1 f (x)   k -ℓ ∈D * j Φ j,k (x)   2 f (x)dx = C [0,1] d   k -ℓ ∈D * j Φ j,k (x)   2 dx = C2 j(d-1) . (7.5)
It follows from the stationarity of (Y i , X i ) i∈Z and 2 j ≤ n that

n v=2 v-1 u=1 Cov (Z v , Z u ) = n m=1 (n -m)Cov (Z 0 , Z m ) ≤ R 1 + R 2 , (7.6) 
where

R 1 = n 2 j -1 m=1 |Cov (Z 0 , Z m )| , R 2 = n n m=2 j |Cov (Z 0 , Z m )| .
It remains to bound R 1 and R 2 .

(i) Bound for R 1 . Let, for any (y, x,

y * , x * ) ∈ R × [0, 1] d × R × [0, 1] d , h m (y, x, y * , x * ) be (2.7
). Using (2.8), (2.4) and Proposition 7.1, we obtain 1) .

|Cov (Z 0 , Z m )| = ∞ -∞ [0,1] d ∞ -∞ [0,1] d h m (y, x, y * , x * ) ×   ρ(y) f (x) k -ℓ ∈D * j Φ j,k (x) ρ(y * ) f (x * ) k -ℓ ∈D * j Φ j,k (x * )   dydxdy * dx * ≤ ∞ -∞ [0,1] d ∞ -∞ [0,1] d |h m (y, x, y * , x * )| × ρ(y) f (x) k -ℓ ∈D * j Φ j,k (x) ρ(y * ) f (x * ) k -ℓ ∈D * j Φ j,k (x * ) dydxdy * dx * ≤ C ∞ -∞ |ρ(y)|dy 2   [0,1] d k -ℓ ∈D * j Φ j,k (x) dx   2 ≤ C2 -j 2 j(d-
Therefore

R 1 ≤ Cn2 -j 2 j(d-1) 2 j = Cn2 j(d-1) . (7.7) 
(ii) Bound for R 2 . By the Davydov inequality for strongly mixing processes (see [START_REF] Davydov | The invariance principle for stationary processes[END_REF]), for any q ∈ (0, 1), we have

|Cov (Z 0 , Z m )| ≤ 10α q m E |Z 0 | 2/(1-q) 1-q ≤ 10α q m   sup y∈R |ρ(y)| inf x∈[0,1] d f (x) sup x∈[0,1] d k -ℓ ∈D * j Φ j,k (x)   2q E(Z 2 0 ) 1-q .
By (2.5), (2.6) and Proposition 7.1, we have

sup y∈R |ρ(y)| inf x∈[0,1] d f (x) sup x∈[0,1] d k -ℓ ∈D * j Φ j,k (x) ≤ C sup x∈[0,1] d k -ℓ ∈D * j Φ j,k (x) ≤ C2 jd/2 .
By (7.5), we have 1) .

E Z 2 0 ≤ C2 j(d-
Therefore

|Cov (Z 0 , Z m )| ≤ C2 qj 2 j(d-1) α q m .
Observe that ∞ m=1 m q α q m = γ q ∞ m=1 m q exp(-cqm) < ∞. Hence 1) .(7.8) Putting (7.6), (7.7) and (7.8) together, we have

R 2 ≤ Cn2 qj 2 j(d-1) n m=2 j α q m ≤ Cn2 j(d-1) n m=2 j m q α q m ≤ Cn2 j(d-
n v=2 v-1 u=1 Cov (Z v , Z u ) ≤ Cn2 j(d-1) . (7.9) 
Combining (7.3), (7.4), (7.5) and (7.9), we obtain

E ( a j,k,ℓ -a j,k,ℓ ) 2 ≤ C2 -j(d-1) 1 n 2 n2 j(d-1) = C 1 n .
Proceeding in a similar fashion, we prove that

E ( b j,k,ℓ -b j,k,ℓ ) 2 ≤ C 1 n .
This ends the proof of Proposition 4.3.

Proof of Proposition 4.4. It follows from (2.5), (2.6) and Proposition 7.1 that

| b j,k,ℓ | ≤ 2 -j(d-1)/2 1 n n i=1 |ρ(Y i )| |f (X i )| k -ℓ ∈D * j Ψ j,k,ℓ (X i ) ≤ 2 -j(d-1)/2 sup y∈R |ρ(y)| inf x∈[0,1] d f (x) sup x∈[0,1] d k -ℓ ∈D * j Ψ j,k,ℓ (x) ≤ C2 -j(d-1)/2 2 jd/2 = C2 j/2 .
Because of (2. 

|b j,k,ℓ | ≤ 2 -j(d-1)/2 [0,1] d |g(x)| k -ℓ ∈D * j Ψ j,k,ℓ (x) dx ≤ C2 -j(d-1)/2 [0,1] d k -ℓ ∈D * j Ψ j,k,ℓ (x) dx ≤ C2 -j(d-1)/2 2 -j 2 jd/2 = C2 -j/2 . (7.10) Hence | b j,k,ℓ -b j,k,ℓ | ≤ | b j,k,ℓ | + |b j,k,ℓ | ≤ C2 j/2 . (7.11)
It follows from (7.11) and Proposition 4.3 that

E ( b j,k,ℓ -b j,k,ℓ ) 4 ≤ C2 j E ( b j,k,ℓ -b j,k,ℓ ) 2 ≤ C 2 j n .
The proof of Proposition 4.4 is complete.

Proof of Proposition 4.5. Let us first state a Bernstein inequality for exponentially strongly mixing process.

Lemma 7.1 ( [START_REF] Liebscher | Estimation of the density and the regression function under mixing conditions[END_REF]) Let γ > 0, c > 0 and (Y i ) i∈Z be a stationary process with the m-th strongly mixing coefficient α m (2.2). Let n be a positive integer, h : R → C be a measurable function and, for any i ∈ Z, U i = h(Y i ).

We assume that E(U 1 ) = 0 and there exists a constant M > 0 satisfying |U 1 | ≤ M . Then, for any m ∈ {1, . . . , [n/2]} and λ > 0, we have

P 1 n n i=1 U i ≥ λ ≤ 4 exp - λ 2 n 16(D m /m + λM m/3) + 32 M λ nα m ,
where D m = max l∈{1,...,2m} V l i=1 U i .

We now apply this lemma by setting for any i ∈ {1, . . . , n},

U i = 2 -j(d-1)/2 ρ(Y i ) f (X i ) k -ℓ ∈D * j Ψ j,k,ℓ (X i ) -b j,k,ℓ .
7.3 Proof of Theorem 5.1

Using Proposition 4.1, we have

g ℓ (x) -g ℓ (x) = 2 τ -1 k=0 ( α τ,k,ℓ -α τ,k,ℓ )φ τ,k (x) + j 1 j=τ 2 j -1 k=0 ( b j,k,ℓ 1 {| b j,k,ℓ |≥κλn} -b j,k,ℓ )ψ j,k (x) - ∞ j=j 1 +1 2 j -1 k=0 b j,k,ℓ ψ j,k (x) -( µ -µ).
Using the elementary inequality: (x + y) 2 ≤ 2(x 2 + y 2 ), (x, y) ∈ R 2 , and the orthonormality of the wavelet basis, we have

E 1 0 ( g ℓ (x) -g ℓ (x)) 2 dx ≤ 2(T + U + V + W ), (7.12) 
where

T = E(( µ -µ) 2 ), U = 2 τ -1 k=0 E ( α τ,k,ℓ -α τ,k,ℓ ) 2 , V = j 1 j=τ 2 j -1 k=0 E ( b j,k,ℓ 1 {| b j,k,ℓ |≥κλn} -b j,k,ℓ ) 2 , W = ∞ j=j 1 +1 2 j -1 k=0 b 2 j,k,ℓ .
(i) Bound for T . We proceed as in the proof of Proposition 4.3. By (2.1), we have E(ρ(Y 1 )) = µ. Thanks to the stationarity of (Y i ) i∈Z , we have

T = V( µ) ≤ 1 n V(ρ(Y 1 )) + 2 1 n n m=1 |Cov (ρ(Y 0 ), ρ(Y m ))| .
Using (2.5), the Davydov inequality (see [START_REF] Davydov | The invariance principle for stationary processes[END_REF]) and (2.3), we obtain (iii) Bound for W . For q ≥ 1 and p ≥ 2, we have g ℓ ∈ B s p,q (M ) ⊆ B s 2,∞ (M ). Hence, by (4.3),

T ≤ C 1 n 1 + n m=1 α q m ≤ C 1 n ≤ C ln n n 2s/(2s+1) . ( 7 
W ≤ C ∞ j=j 1 +1 2 -2js ≤ C2 -2j 1 s ≤ C (ln n) 3 n 2s ≤ C ln n n 2s/(2s+1)
.

For q ≥ 1 and p ∈ [1, 2), we have

g ℓ ∈ B s p,q (M ) ⊆ B s+1/2-1/p 2,∞ ( 
M ). Since s > 1/p, we have s + 1/2 -1/p > s/(2s + 1). So, by (4.3), W ≤ C ∞ j=j 1 +1 2 -2j(s+1/2-1/p) ≤ C2 -2j 1 (s+1/2-1/p) ≤ C (ln n) 3 n 2(s+1/2-1/p) ≤ C ln n n 2s/(2s+1)
.

Hence, for q ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

W ≤ C ln n n 2s/(2s+1) . (7.15) 
(iv) Bound for V . We have

V = V 1 + V 2 + V 3 + V 4 , (7.16) 
where

V 1 = j 1 j=τ 2 j -1 k=0 E ( b j,k,ℓ -b j,k,ℓ ) 2 1 {| b j,k,ℓ |≥κλn} 1 {|bj,k,ℓ|<κλn/2} , V 2 = j 1 j=τ 2 j -1 k=0 E ( b j,k,ℓ -b j,k,ℓ ) 2 1 {| b j,k,ℓ |≥κλn} 1 {|bj,k,ℓ|≥κλn/2} , V 3 = j 1 j=τ 2 j -1 k=0 E b 2 j,k,ℓ 1 {| b j,k,ℓ |<κλn} 1 {|bj,k,ℓ|≥2κλn} and 
V 4 = j 1 j=τ 2 j -1 k=0 E b 2 j,k,ℓ 1 {| b j,k,ℓ |<κλn} 1 {|bj,k,ℓ|<2κλn} . 
• Bounds for V 1 and V 3 . The following inclusions hold:

| b j,k,ℓ | < κλ n , |b j,k,ℓ | ≥ 2κλ n ⊆ | b j,k,ℓ -b j,k,ℓ | > κλ n /2 , | b j,k,ℓ | ≥ κλ n , |b j,k,ℓ | < κλ n /2 ⊆ | b j,k,ℓ -b j,k,ℓ | > κλ n /2 and | b j,k,ℓ | < κλ n , |b j,k,ℓ | ≥ 2κλ n ⊆ |b j,k,ℓ | ≤ 2| b j,k,ℓ -b j,k,ℓ | . So max(V 1 , V 3 ) ≤ C j 1 j=τ 2 j -1 k=0 E ( b j,k,ℓ -b j,k,ℓ ) 2 1 {| b j,k,ℓ -b j,k,ℓ |>κλn/2} .
Applying the Cauchy-Schwarz inequality and using Propositions 4.4, 4.5 and 2 j ≤ n, we have

E ( b j,k,ℓ -b j,k,ℓ ) 2 1 {| b j,k,ℓ -b j,k,ℓ |>κλn/2} ≤ E ( b j,k,ℓ -b j,k,ℓ ) 4 1/2 P | b j,k,ℓ -b j,k,ℓ | > κλ n /2 1/2 ≤ C 2 j n 1/2 1 n 4 1/2 ≤ C 1 n 2 . Therefore max(V 1 , V 3 ) ≤ C 1 n 2 j 1 j=τ 2 j ≤ C 1 n 2 2 j 1 ≤ C 1 n ≤ C ln n n 2s/(2s+1)
. (7.17)

• Bound for V 2 . Using Proposition 4.3, we obtain

E ( b j,k,ℓ -b j,k,ℓ ) 2 ≤ C 1 n ≤ C ln n n . Hence V 2 ≤ C ln n n j 1 j=τ 2 j -1 k=0 1 {|bj,k,ℓ|>κλn/2} .
Let j 2 be the integer defined by

2 j 2 = n ln n 1/(2s+1) . ( 7 

.18)

We have

V 2 ≤ V 2,1 + V 2,2 ,
where .

V 2,1 = C ln n n j 2 j=τ 2 j -1 k=0 1 
For q ≥ 1 and p ≥ 2, we have g ℓ ∈ B s p,q (M ) ⊆ B s 2,∞ (M ). So, by (4.3),

V 2,2 ≤ C ln n nλ 2 n j 1 j=j 2 +1 2 j -1 k=0 b 2 j,k,ℓ ≤ C ∞ j=j 2 +1 2 j -1 k=0 β 2 j,k ≤ C2 -2j 2 s
≤ C ln n n 2s/(2s+1)

.

For q ≥ 1, p ∈ [1, 2) and s > 1/p, using (4. • Bound for V 4 . We have

V 4 ≤ j 1 j=τ 2 j -1 k=0 b 2 j,k,ℓ 1 {|bj,k,ℓ|<2κλn} .
Let j 2 be the integer (7.18). Then .

For q ≥ 1 and p ≥ 2, we have g ℓ ∈ B s p,q (M ) ⊆ B s 2,∞ (M ). Hence, by (4.3),

V 4,2 ≤ ∞ j=j 2 +1 2 j -1 k=0 β 2 j,k ≤ C2 -2j 2 s ≤ C ln n n 2s/(2s+1)
.

For q ≥ 1, p ∈ [1, 2) and s > 1/p, using (4. .

Thus, for q ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have .

V
The proof of Theorem 5.1 is complete.

Proposition 4 . 4 (

 44 Moment inequality II) Under the same assumptions of Proposition 4.3, there exists a constant C > 0 such that

  5), we have sup x∈[0,1] d |g(x)| ≤ C. It follows from Proposition 7.1 that

V 4 ≤ V 4 , 1 + V 4

 4414 

  3), b 2 j,k,ℓ 1 {|bj,k,ℓ|<2κλn} ≤ Cλ 2-p n |b j,k,ℓ | p = Cλ 2-p n |β j,k | p and (2s + 1)(2 -p)/2 + (s + 1/2 -1/p)p = 2s, we have V 4,2 ≤ Cλ 2-p

  3), 1 {|bj,k,ℓ|>κλn/2} ≤ C|b j,k,ℓ | p /λ p n = C|β j,k | p /λ p n and (2s + 1)(2 -p)/2 + (s + 1/2 -1/p)p = 2s, we have So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

	V 2,2 ≤ C	ln n nλ p n	j 1 j=j 2 +1	2 j -1 k=0	|β j,k | p ≤ C	ln n n	(2-p)/2	∞ j=j 2 +1	2 -j(s+1/2-1/p)p
	≤ C	ln n n	(2-p)/2	2 -j 2 (s+1/2-1/p)p ≤ C	ln n n	2s/(2s+1)	.
				V 2 ≤ C		ln n n	2s/(2s+1)	.	(7.19)

  Combining (7.12), (7.13), (7.14),(7.15) and (7.21), we have, for q ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p},

	It follows from (7.16), (7.17), (7.19) and (7.20) that
				V ≤ C	ln n n	2s/(2s+1)	.	(7.21)
	E	0	1	( g ℓ (x) -g ℓ (x)) 2 dx ≤ C	n ln n	2s/(2s+1)
				4 ≤ C	ln n n	2s/(2s+1)	.	(7.20)
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Then we can write

where U 1 , . . . , U n are identically distributed, depend on (Y i , X i ) i∈Z satisfying (2.3),

• by Proposition 4.2, we have E(U 1 ) = 0,

• using arguments similar to Proposition 4.3 with l instead of n, we prove that

• proceeding in a similar fashion to (7.11), we obtain |U 1 | ≤ C2 j/2 . Lemma 7.1 applied with the random variables U 1 , . . . , U n , λ = κλ n /2, λ n = (ln n/n) 1/2 , m = u ln n with u > 0 (chosen later), M = C2 j/2 , 2 j ≤ n/(ln n) 3 and (2.3) gives

Therefore, for large enough κ and u, we have

This ends the proof of Proposition 4.5.