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Abstract

A d-dimensional nonparametric additive regression model with de-

pendent observations is considered. Using the marginal integration

and the methods of wavelets, we develop a new adaptive estimator for

a component of the additive regression function. Its asymptotic prop-

erties are investigated via the minimax approach under the L2 risk

over Besov balls. We prove that it attains a sharp rate of convergence,

close to the one obtained in the one-dimensional case. In particular, it

is both independent of d and slightly deteriorated by the dependence

of the observations.
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1 Introduction

Let d be a positive integer, (Yi,Xi)i∈Z be a R × [0, 1]d-valued stationary

processes on a probability space (Ω,A,P) and ρ be a given real measurable

function. The unknown regression function associated to (Yi,Xi)i∈Z and ρ

is defined by

g(x) = E(ρ(Y )|X = x), x = (x1, . . . , xd) ∈ [0, 1]d.

The additive case is considered: there exist d unknown real measurable

functions g1, . . . , gd and an unknown real number µ such that

g(x) = µ+

d∑

ℓ=1

gℓ(xℓ). (1.1)

For any ℓ ∈ {1, . . . , d}, our goal is to estimate gℓ from n observations

(Y1,X1), . . . , (Yn,Xn) of (Yi,Xi)i∈Z.

In the case where (Yi,Xi)i∈Z is a i.i.d. process, this additive regression

model becomes the standard one. In this case, Stone [28, 29, 30] proved

that g can be estimated with the same rate of estimation error as in the one-

dimensional case. The estimation of the component gℓ has been investigated

in several papers via various methods (kernel, splines, wavelets, . . . ). See

e.g. [4], [16], [18], [23, 24], [1], [2] [27], [33], [26] and [13].

In some applications, the i.i.d. assumptions on the observations is often

too stringent. For this reason, some authors have explored the estimation

of gℓ in the dependent case. When (Yi,Xi)i∈Z is a strongly mixing process,

this problem has been addressed by [5], [9] and results for continuous time

processes under strong mixing condition have been obtained by [10, 11]. In

particular, they have developed non-adaptive kernel estimators for gℓ and

studied its asymptotic properties. However, to the best of our knowledge,

the adaptive estimation of gℓ for dependant processes has been addressed

only by [14]. The lack of results for adaptive estimation motivates this study.

To reach our goal, as in [33], we combine the marginal integration tech-

nique introduced by [22] with wavelet methods. Wavelets enable us to con-

struct adaptive estimator which attains sharp rates of convergence under
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mild assumption on the smoothness of the unknown function. For a survey

on wavelets in nonparametric estimation, we refer to [15]. In this study, we

develop a wavelet estimator based on an individual selection named “hard

thresholding”. The idea of this estimator is simple: we estimate unknown

wavelet coefficients of gℓ based on the observations, we select the greatest

and ignore the others, then we reconstruct the chosen wavelet coefficients

estimators on the considered wavelet basis. Adopting the minimax point

of view under the L2 risk over Besov balls, we prove that our adaptive es-

timator attains a sharp rate of convergence; it corresponds to the optimal

one in the i.i.d. case for the univariate regression estimation problem up

to an extra logarithmic term. And only this logarithmic term is slightly

deteriorated by the dependence assumption.

The rest of the paper is organized as follows. Section 2 presents addi-

tional assumptions on the model. In Section 3, we describe wavelet basis

on [0, 1], Besov balls and wavelets tensor-products on [0, 1]d. Our wavelet

hard thresholding estimator is defined in Section 4. Its rate of convergence

under the L2 risk over Besov balls are determined Section 5. The proofs are

postponed in Section 6.

2 Notations and assumptions

We formulate the following assumptions:

On the variables.

• For any i ∈ {1, . . . , n}, we set Xi = (X1,i, . . . ,Xd,i). We suppose

that

– for any i ∈ {1, . . . , n}, X1,i, . . . ,Xd,i are identically distributed

with the common distribution U([0, 1]),

– X1, . . . ,Xn are identically distributed with the common known

density f .

• We suppose that the following identifiability condition is satisfied:

for any ℓ ∈ {1, . . . , d} and i ∈ {1, . . . , n}, we have

E(gℓ(Xℓ,i)) = 0. (2.1)
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Strongly mixing. Throughout this work, we use the strong mixing de-

pendance structure on (Yi,Xi)i∈Z. For any m ∈ Z, we define the m-th

strongly mixing coefficient of (Yi,Xi)i∈Z by

αm = sup
(A,B)∈F

(Y,X)
−∞,0×F

(Y,X)
m,∞

|P(A ∩B)− P(A)P(B)| ,

where F
(Y,X)
−∞,0 is the σ-algebra generated by . . . , (Y−1,X−1), (Y0,X0)

and F
(Y,X)
m,∞ is the σ-algebra generated by (Ym,Xm), (Ym+1,Xm+1), . . .

We suppose that there exist three constants γ > 0, c > 0 and θ > 0

such that, for any integer m ≥ 1,

αm ≤ γ exp(−cmθ). (2.2)

Notice that, for (2.2), the standard i.i.d. case corresponds to θ → ∞.

Further details on strongly mixing dependence can be found in [3],

[32], [12], [21] and [6].

Boundedness assumptions.

• We suppose that there exists a known constant C > 0 such that

sup
y∈R

|ρ(y)| ≤ C. (2.3)

• We suppose that there exists a known constant C > 0 such that
∫ ∞

−∞
|ρ(y)|dy ≤ C. (2.4)

• We suppose that there exists a known constant c > 0 such that

inf
x∈[0,1]d

f(x) ≥ c. (2.5)

• For any m ∈ {1, . . . , n}, let f(Y0,X0,Ym,Xm) be the density of

(Y0,X0, Ym,Xm), f(Y0,X0) the density of (Y0,X0) and, for any

(y,x, y∗,x∗) ∈ R× [0, 1]d × R× [0, 1]d,

hm(y,x, y∗,x∗) =

f(Y0,X0,Ym,Xm)(y,x, y∗,x∗)− f(Y0,X0)(y,x)f(Y0,X0)(y∗,x∗).

(2.6)
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We suppose that there exists a known constant C > 0 such that

sup
m∈{1,...,n}

sup
(y,x,y∗,x∗)∈R×[0,1]d×R×[0,1]d

|hm(y,x, y∗,x∗)| ≤ C. (2.7)

Such boundedness assumptions are standard for the estimation of gℓ

from a strongly mixing process. See e.g. [10, 11].

3 Wavelets tensor-products and Besov balls

3.1 Wavelet bases on [0, 1]

Let N be a positive integer. We consider an orthonormal wavelet ba-

sis generated by dilations and translations of a ”father” Daubechies-type

wavelet φ and a ”mother” Daubechies-type wavelet ψ of the family db2N .

In particular, φ and ψ have compact supports,
∫
φ(x)dx = 1 and, for any

r ∈ {0, . . . , N − 1},
∫
xrψ(x)dx = 0.

Set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then, with an appropriate treatment at the boundaries, there exists an

integer τ satisfying 2τ ≥ 2N such that, for any integer j∗ ≥ τ , the system

{φj∗,k(.), k ∈ {0, . . . , 2j∗−1}; ψj,k(.); j ∈ N−{0, . . . , j∗−1}, k ∈ {0, . . . , 2j−1}},

is an orthonormal basis of L2([0, 1]) = {h : [0, 1] → R;
∫ 1
0 h

2(x)dx < ∞}.

See [7] and [19].

For any integer j∗ ≥ τ , any h ∈ L2([0, 1]) can be expanded into a wavelet

series as

h(x) =

2j∗−1∑

k=0

αj∗,kφj∗,k(x) +

∞∑

j=j∗

2j−1∑

k=0

βj,kψj,k(x), x ∈ [0, 1],

where

αj,k =

∫ 1

0
h(x)φj,k(x)dx, βj,k =

∫ 1

0
h(x)ψj,k(x)dx. (3.1)
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3.2 Besov balls

Let M > 0, s > 0, p ≥ 1 and q ≥ 1. A function h in L2([0, 1]) belongs to

Bs
p,q(M) if, and only if, there exists a constant M∗ > 0 (depending on M)

such that the associated wavelet coefficients (3.1) satisfy




∞∑

j=τ


2j(s+1/2−1/p)




2j−1∑

k=0

|βj,k|
p




1/p



q


1/q

≤M∗.

In this expression, s is a smoothness parameter and p and q are norm pa-

rameters. For a particular choice of s, p and q, the Besov balls contain the

standard Hölder and Sobolev balls. See [20].

3.3 Wavelet tensor-product bases on [0, 1]d

For the purpose of this paper, we use a compactly supported wavelet-tensor

product basis on [0, 1]d based on the Daubechies wavelets. For any x =

(x1, . . . , xd) ∈ [0, 1]d, we construct 2d functions as follows: a scale function

Φ(x) =

d∏

v=1

φ(xv)

and 2d − 1 wavelet functions:

Ψu(x) =





ψ(xu)

d∏

v=1
v 6=u

φ(xv) when u ∈ {1, . . . , d},

∏

v∈Au

ψ(xv)
∏

v 6∈Au

φ(xv) when u ∈ {d+ 1, . . . , 2d − 1},

where (Au)u∈{d+1,...,2d−1} forms the set of all the non void subsets of {1, . . . , d}

of cardinal superior or equal to 2.

For any integer j and any k = (k1, . . . , kd), we set

Φj,k(x) = 2jd/2Φ(2jx1 − k1, . . . , 2
jxd − kd),

for any u ∈ {1, . . . , 2d − 1},

Ψj,k,u(x) = 2jd/2Ψu(2
jx1 − k1, . . . , 2

jxd − kd).
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We set Dj = {0, . . . , 2j − 1}d. Then, with an appropriate treatment at the

boundaries, there exists an integer τ such that the system

{Φτ,k,k ∈ Dτ ; (Ψj,k,u)u∈{1,...,2d−1}, j ∈ N− {0, . . . , τ − 1}, k ∈ Dj}

forms an orthonormal basis of L2([0, 1]
d) = {h : [0, 1]d → R;

∫
[0,1]d h

2(x)dx <

∞}.

For any integer j∗ such that j∗ ≥ τ , a function h ∈ L2([0, 1]
d) can be

expanded into a wavelet series as

h(x) =
∑

k∈Dj∗

αj∗,kΦj∗,k(x) +

2d−1∑

u=1

∞∑

j=j∗

∑

k∈Dj

βj,k,uΨj,k,u(x), x ∈ [0, 1]d,

where

αj,k =

∫

[0,1]d
h(x)Φj,k(x)dx, βj,k,u =

∫

[0,1]d
h(x)Ψj,k,u(x)dx. (3.2)

For further details about wavelet bases on [0, 1]d, we refer to [7] and [19].

4 Estimators

4.1 Wavelet coefficients estimators

The following proposition present a wavelet decomposition of gℓ based on the

“marginal integration” method (introduced by [22]) and the wavelet-tensor

product basis on [0, 1]d.

Proposition 4.1 Suppose that (2.1) holds. Then, for any j∗ ≥ τ and ℓ ∈

{1, . . . , d}, we can write

gℓ(x) =
2j∗−1∑

k=1

aj∗,k,ℓφj∗,k(x) +
∞∑

j=j∗

2j−1∑

k=1

bj,k,ℓψj,k(x)− µ, x ∈ [0, 1],

where

aj,k,ℓ = aj,kℓ,ℓ = 2−j(d−1)/2

∫

[0,1]d
g(x)

∑

k−ℓ∈D
∗
j

Φj,k(x)dx, (4.1)
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bj,k,ℓ = bj,kℓ,ℓ = 2−j(d−1)/2

∫

[0,1]d
g(x)

∑

k−ℓ∈D
∗
j

Ψj,k,ℓ(x)dx (4.2)

k−ℓ = (k1, . . . , kℓ−1, kℓ+1, . . . , kd) and D
∗
j = {0, . . . , 2j − 1}d−1.

Remark that, due to the definitions of g and Ψj,k,ℓ, bj,k,ℓ is exactly the

“mother-wavelet coefficient” of gℓ i.e.

bj,k,ℓ =

∫ 1

0
gℓ(x)ψj,k(x)dx = βj,k. (4.3)

Thanks to Proposition 4.1, the first step to estimate gℓ consists in estimating

the unknown coefficients aj,k,ℓ (4.1) and bj,k,ℓ (4.2). In this study, we consider

respectively

âj,k,ℓ = âj,kℓ,ℓ = 2−j(d−1)/2 1

n

n∑

i=1

ρ(Yi)

f(Xi)

∑

k−ℓ∈D
∗
j

Φj,k(Xi) (4.4)

and

b̂j,k,ℓ = b̂j,kℓ,ℓ = 2−j(d−1)/2 1

n

n∑

i=1

ρ(Yi)

f(Xi)

∑

k−ℓ∈D
∗
j

Ψj,k,ℓ(Xi). (4.5)

These estimators enjoy powerful statistical properties. Some of them are

presented in Proposition 4.2, 4.3, 4.4 and 4.5 below.

Proposition 4.2 Suppose that (2.1) holds. For any j ≥ τ , ℓ ∈ {1, . . . , d}

and k ∈ {0, . . . , 2j − 1}, âj,k,ℓ (4.4) and b̂j,k,ℓ (4.5) are unbiased estimators

of aj,k,ℓ and bj,k,ℓ respectively.

Proposition 4.3 (Moment inequality I) Suppose that the assumptions

of Section 2 hold. Let j ≥ τ such that 2j ≤ n, k ∈ {0, . . . , 2j − 1}, ℓ ∈

{1, . . . , d}, âj,k,ℓ be (4.4) and b̂j,k,ℓ be (4.5). Then there exists a constant

C > 0 such that

E
(
(âj,k,ℓ − aj,k,ℓ)

2
)
≤ C

1

n
, E

(
(̂bj,k,ℓ − bj,k,ℓ)

2
)
≤ C

1

n
.

Mention that, in the proof of Proposition 4.3, we only need to have the

existence of two constants C > 0 and q ∈ (0, 1) such that
∑n

m=1m
qαq

m ≤

C <∞. And this inequality is obviously satisfied by (2.2).
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Proposition 4.4 (Moment inequality II) Suppose that the assumptions

of Section 2 hold. Let j ≥ τ such that 2j ≤ n, k ∈ {0, . . . , 2j − 1}, ℓ ∈

{1, . . . , d} and b̂j,k,ℓ be (4.5). Then there exists a constant C > 0 such that

E

(
(̂bj,k,ℓ − bj,k,ℓ)

4
)
≤ C

2j

n
.

Proposition 4.5 (Concentration inequality) Suppose that the assump-

tions of Section 2 hold. Let j ≥ τ such that 2j ≤ n/(lnn)1+1/θ, k ∈

{0, . . . , 2j − 1}, ℓ ∈ {1, . . . , d}, b̂j,k,ℓ be (4.5) and λn = ((lnn)1+1/θ/n)1/2.

Then there exist two constants C > 0 and κ > 0 such that

P

(
|̂bj,k,ℓ − bj,k,ℓ| ≥ κλn/2

)
≤ C

1

n4
.

4.2 Hard thresholding estimator

Let ℓ ∈ {1, . . . , d}. We investigate the estimation of gℓ by the hard thresh-

olding estimator:

ĝℓ(x) =

2τ−1∑

k=0

âτ,k,ℓφτ,k(x) +

j1∑

j=τ

2j−1∑

k=0

b̂j,k,ℓ1{|̂bj,k,ℓ|≥κλn}ψj,k(x)− µ̂,

(4.6)

x ∈ [0, 1] where âj,k,ℓ is (4.4), b̂j,k,ℓ is (4.5),

µ̂ =
1

n

n∑

i=1

ρ(Yi), (4.7)

j1 is the integer satisfying 2j1 = [n/(ln n)1+1/θ], κ is a large enough constant

(the one in Proposition 4.5) and

λn =

√
(lnn)1+1/θ

n
.

Note that, due to the assumptions on the model, our wavelet hard thresh-

olding estimator (4.6) is simpler than the one of [33]. However, contrary to

the one of [33], it takes into account the dependence of the observations. In

its construction, this is characterized by the presence of the factor θ of (2.2)

in j1 and the threshold λn.

For further details on wavelet hard thresholding estimators for standard

nonparametric estimation, we refer to [15].
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5 Result

Theorem 5.1 Let ℓ ∈ {1, . . . , d}. Suppose that the assumptions of Section

2 hold. Let ĝℓ be (4.6). Suppose that gℓ ∈ Bs
p,q(M) with q ≥ 1, {p ≥ 2 and

s > 0} or {p ∈ [1, 2) and s > 1/p}. Then there exists a constant C > 0 such

that

E

(∫ 1

0
(ĝℓ(x)− gℓ(x))

2dx

)
≤ C

(
(lnn)1+1/θ

n

)2s/(2s+1)

.

The proof of Theorem 5.1 is based on a suitable decomposition of the L2

risk and the statistical properties of (4.4) and (4.5) presented in Propositions

4.2, 4.3, 4.4 and 4.5 below.

6 Relation to prior work

The rate ((lnn)1+1/θ/n)2s/(2s+1) is the optimal one for the standard one-

dimensional regression model with uniform random design up to an extra

logarithmic term. See e.g. [15] and [31].

Theorem 5.1 provides an “adaptive contribution” to the results of [5],

[9] and [10, 11]. Furthermore, if we confine our study to the i.i.d., we

have a similar result to [33, Theorem 3] but without the condition s >

max(d/2, d/p). However, we have more restrictive assumptions on the model

(ρ is bounded from above, the density of X is known, etc.).

7 Proofs

In this section, the quantity C denotes any constant that does not depend

on j, k and n. Its value may change from one term to another and may

depends on φ or ψ.

7.1 Technical results on wavelets

Proof of Proposition 4.1. Because of (2.3), we have g ∈ L2([0, 1]
d). For

any j∗ ≥ τ , we can expand g on our wavelet-tensor product basis as
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g(x) =
∑

k∈Dj∗

αj∗,kΦj∗,k(x) +
2d−1∑

u=1

∞∑

j=j∗

∑

k∈Dj

βj,k,uΨj,k,u(x), x ∈ [0, 1]d(7.1)

where

αj,k =

∫

[0,1]d
g(x)Φj,k(x)dx, βj,k,u =

∫

[0,1]d
g(x)Ψj,k,u(x)dx.

Moreover, using the “marginal integration” method based on (2.1), we

can write

gℓ(xℓ) =

∫

[0,1]d−1

g(x)

d∏

v=1
v 6=ℓ

dxv − µ, xℓ ∈ [0, 1]. (7.2)

Since
∫ 1
0 φj,k(x)dx = 2−j/2 and

∫ 1
0 ψj,k(x)dx = 0, observe that

∫

[0,1]d−1

Φj∗,k(x)

d∏

v=1
v 6=ℓ

dxv = 2−j∗(d−1)/2φj∗,kℓ(xℓ)

and

∫

[0,1]d−1

Ψj,k,u(x)

d∏

v=1
v 6=ℓ

dxv =

{
2−j(d−1)/2ψj,kℓ(xℓ) if u = ℓ,

0 otherwise.

Therefore, putting (7.1) in (7.2) and writting x = xℓ, we obtain

gℓ(x) =
∑

k∈Dj∗

2−j∗(d−1)/2αj∗,kφj∗,kℓ(x) +

∞∑

j=j∗

∑

k∈Dj

2−j(d−1)/2βj,k,ℓψj,kℓ(x)− µ.

Or, equivalently,

gℓ(x) =
2j∗−1∑

k=1

aj∗,k,ℓφj∗,k(x) +
∞∑

j=j∗

2j−1∑

k=1

bj,k,ℓψj,k(x)− µ,

where

aj,k,ℓ = aj,kℓ,ℓ = 2−j(d−1)/2

∫

[0,1]d
g(x)

∑

k−ℓ∈D
∗
j

Φj,k(x)dx
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and

bj,k,ℓ = bj,kℓ,ℓ = 2−j(d−1)/2

∫

[0,1]d
g(x)

∑

k−ℓ∈D
∗
j

Ψj,k,ℓ(x)dx.

Proposition 4.1 is proved.

�

Proposition 7.1 For any ℓ ∈ {1, . . . , d}, j ≥ τ and k = kℓ ∈ {0, . . . , 2j −

1}, set

h
(1)
j,k(x) =

∑

k−ℓ∈D
∗
j

Φj,k(x), h
(2)
j,k(x) =

∑

k−ℓ∈D
∗
j

Ψj,k,ℓ(x), x ∈ [0, 1]d.

Then there exists a constant C > 0 such that, for any a ∈ {1, 2},

sup
x∈[0,1]d

|h
(a)
j,k (x)| ≤ C2jd/2,

∫

[0,1]d
|h

(a)
j,k (x)|dx ≤ C2−j/22j(d−1)/2

and ∫

[0,1]d
(h

(a)
j,k (x))

2dx = 2j(d−1).

Proof of Proposition 7.1.

• Since supx∈[0,1] |φj,k(x)| ≤ C2j/2 and supx∈[0,1]
∑2j−1

k=0 |φj,k(x)| ≤ C2j/2,

we obtain

sup
x∈[0,1]d

|h
(1)
j,k(x)| = ( sup

x∈[0,1]
|φj,k(x)|)


 sup

x∈[0,1]

2j−1∑

k=0

|φj,k(x)|




d−1

≤ C2jd/2.

• Using
∫ 1
0 |φj,k(x)|dx = C2−j/2, we obtain

∫

[0,1]d
|h

(1)
j,k(x)|dx ≤

(∫ 1

0
|φj,k(x)|dx

)


2j−1∑

k=0

∫ 1

0
|φj,k(x)|dx




d−1

= C2−j/22j(d−1)/2.
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• Since, for any (uk)k∈Dj
,
∫
[0,1]d

(∑
k∈Dj

ukΦj,k(x)
)2
dx =

∑
k∈Dj

u2
k
,

we obtain

∫

[0,1]d
(h

(1)
j,k(x))

2dx =

∫

[0,1]d


 ∑

k−ℓ∈D
∗
j

Φj,k(x)




2

dx = 2j(d−1).

Proceeding in a similar fashion, using supx∈[0,1] |ψj,k(x)| ≤ C2j/2,
∫ 1
0 |ψj,k(x)|dx = C2−j/2 and, for any (uk)k∈Dj

,
∫
[0,1]d

(∑
k∈Dj

ukΨj,k,ℓ(x)
)2
dx =

∑
k∈Dj

u2
k
, we obtain the same results for h

(2)
j,k .

This ends the proof of Proposition 7.1.

�

7.2 Statistical properties of the coefficients estimators

Proof of Proposition 4.2. We have

E(âj,k,ℓ) = 2−j(d−1)/2
E


 ρ(Y1)

f(X1)

∑

k−ℓ∈D
∗
j

Φj,k(X1)




= 2−j(d−1)/2
E


E(ρ(Y1)|X1)

1

f(X1)

∑

k−ℓ∈D
∗
j

Φj,k(X1)




= 2−j(d−1)/2
E


 g(X1)

f(X1)

∑

k−ℓ∈D
∗
j

Φj,k(X1)




= 2−j(d−1)/2

∫

[0,1]d

g(x)

f(x)

∑

k−ℓ∈D
∗
j

Φj,k(x)f(x)dx

= 2−j(d−1)/2

∫

[0,1]d
g(x)

∑

k−ℓ∈D
∗
j

Φj,k(x)dx = aj,k,ℓ.

Proceeding in a similar fashion, we prove that E(̂bj,k,ℓ) = bj,k,ℓ.

Proposition 4.2 is proved.

�
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Proof of Proposition 4.3. For the sake of simplicity, for any i ∈

{1, . . . , n}, set

Zi =
ρ(Yi)

f(Xi)

∑

k−ℓ∈D
∗
j

Φj,k(Xi).

Thanks to Proposition 4.2, we have

E
(
(âj,k,ℓ − aj,k,ℓ)

2
)
= V(âj,k,ℓ) = 2−j(d−1) 1

n2
V

(
n∑

i=1

Zi

)
. (7.3)

An elementary covariance decomposition gives

V

(
n∑

i=1

Zi

)
= nV (Z1) + 2

n∑

v=2

v−1∑

u=1

Cov (Zv, Zu)

≤ nV (Z1) + 2

∣∣∣∣∣

n∑

v=2

v−1∑

u=1

Cov (Zv, Zu)

∣∣∣∣∣ . (7.4)

Using (2.3), (2.5) and Proposition 7.1, we have

V (Z1) ≤ E(Z2
1 ) ≤

supy∈R ρ
2(y)

infx∈[0,1]d f(x)
E


 1

f(X1)




∑

k−ℓ∈D
∗
j

Φj,k(X1)




2


≤ C

∫

[0,1]d

1

f(x)


 ∑

k−ℓ∈D
∗
j

Φj,k(x)




2

f(x)dx

= C

∫

[0,1]d


 ∑

k−ℓ∈D
∗
j

Φj,k(x)




2

dx = C2j(d−1). (7.5)

It follows from the stationarity of (Yi,Xi)i∈Z and 2j ≤ n that

∣∣∣∣∣

n∑

v=2

v−1∑

u=1

Cov (Zv, Zu)

∣∣∣∣∣ =
∣∣∣∣∣

n∑

m=1

(n−m)Cov (Z0, Zm)

∣∣∣∣∣ ≤ R1 +R2, (7.6)

where

R1 = n
2j−1∑

m=1

|Cov (Z0, Zm)| , R2 = n
n∑

m=2j

|Cov (Z0, Zm)| .
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Bound for R1. Let, for any (y,x, y∗,x∗) ∈ R × [0, 1]d × R × [0, 1]d,

hm(y,x, y∗,x∗) be (2.6). Using (2.7), (2.4) and Proposition 7.1, we obtain

|Cov (Z0, Zm)|

=

∣∣∣∣
∫ ∞

−∞

∫

[0,1]d

∫ ∞

−∞

∫

[0,1]d
hm(y,x, y∗,x∗)×


 ρ(y)

f(x)

∑

k−ℓ∈D
∗
j

Φj,k(x)
ρ(y∗)

f(x∗)

∑

k−ℓ∈D
∗
j

Φj,k(x∗)


 dydxdy∗dx∗

∣∣∣∣

≤

∫ ∞

−∞

∫

[0,1]d

∫ ∞

−∞

∫

[0,1]d
|hm(y,x, y∗,x∗)| ×

∣∣∣∣
ρ(y)

f(x)

∣∣∣∣

∣∣∣∣∣∣

∑

k−ℓ∈D
∗
j

Φj,k(x)

∣∣∣∣∣∣

∣∣∣∣
ρ(y∗)

f(x∗)

∣∣∣∣

∣∣∣∣∣∣

∑

k−ℓ∈D
∗
j

Φj,k(x∗)

∣∣∣∣∣∣
dydxdy∗dx∗

≤ C

(∫ ∞

−∞
|ρ(y)|dy

)2


∫

[0,1]d

∣∣∣∣∣∣

∑

k−ℓ∈D
∗
j

Φj,k(x)

∣∣∣∣∣∣
dx




2

≤ C2−j2j(d−1).

Therefore

R1 ≤ Cn2−j2j(d−1)2j = Cn2j(d−1). (7.7)

Bound for R2. By the Davydov inequality for strongly mixing processes

(see [8]), for any q ∈ (0, 1), we have

|Cov (Z0, Zm)| ≤ 10αq
m

(
E

(
|Z0|

2/(1−q)
))1−q

≤ 10αq
m


 supy∈R |ρ(y)|

infx∈[0,1]d f(x)
sup

x∈[0,1]d

∣∣∣∣∣∣

∑

k−ℓ∈D
∗
j

Φj,k(x)

∣∣∣∣∣∣




2q

(
E(Z2

0 )
)1−q

.

By (2.3), (2.5) and Proposition 7.1, we have

supy∈R |ρ(y)|

infx∈[0,1]d f(x)
sup

x∈[0,1]d

∣∣∣∣∣∣

∑

k−ℓ∈D
∗
j

Φj,k(x)

∣∣∣∣∣∣
≤ C sup

x∈[0,1]d

∣∣∣∣∣∣

∑

k−ℓ∈D
∗
j

Φj,k(x)

∣∣∣∣∣∣

≤ C2jd/2.

By (7.5), we have

E
(
Z2
0

)
≤ C2j(d−1).
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Therefore

|Cov (Z0, Zm)| ≤ C2qj2j(d−1)αq
m.

Observe that
∑∞

m=1m
qαq

m = γq
∑∞

m=1m
qexp(−cqmθ) <∞. Hence

R2 ≤ Cn2qj2j(d−1)
n∑

m=2j

αq
m ≤ Cn2j(d−1)

n∑

m=2j

mqαq
m ≤ Cn2j(d−1). (7.8)

Putting (7.6), (7.7) and (7.8) together, we have

∣∣∣∣∣

n∑

v=2

v−1∑

u=1

Cov (Zv, Zu)

∣∣∣∣∣ ≤ Cn2j(d−1). (7.9)

Combining (7.3), (7.4), (7.5) and (7.9), we obtain

E
(
(âj,k,ℓ − aj,k,ℓ)

2
)
≤ C2−j(d−1) 1

n2
n2j(d−1) = C

1

n
.

Proceeding in a similar fashion, we prove that

E

(
(̂bj,k,ℓ − bj,k,ℓ)

2
)
≤ C

1

n
.

This ends the proof of Proposition 4.3.

�

Proof of Proposition 4.4. It follows from (2.3), (2.5) and Proposition

7.1 that

|̂bj,k,ℓ| ≤ 2−j(d−1)/2 1

n

n∑

i=1

|ρ(Yi)|

|f(Xi)|

∣∣∣∣∣∣

∑

k−ℓ∈D
∗
j

Ψj,k,ℓ(Xi)

∣∣∣∣∣∣

≤ 2−j(d−1)/2 supy∈R |ρ(y)|

infx∈[0,1]d f(x)
sup

x∈[0,1]d

∣∣∣∣∣∣

∑

k−ℓ∈D
∗
j

Ψj,k,ℓ(x)

∣∣∣∣∣∣

≤ C2−j(d−1)/22jd/2 = C2j/2.
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Because of (2.3), we have supx∈[0,1]d |g(x)| ≤ C. It follows from Proposition

7.1 that

|bj,k,ℓ| ≤ 2−j(d−1)/2

∫

[0,1]d
|g(x)|

∣∣∣∣∣∣

∑

k−ℓ∈D
∗
j

Ψj,k,ℓ(x)

∣∣∣∣∣∣
dx

≤ C2−j(d−1)/2

∫

[0,1]d

∣∣∣∣∣∣

∑

k−ℓ∈D
∗
j

Ψj,k,ℓ(x)

∣∣∣∣∣∣
dx

≤ C2−j(d−1)/22−j2jd/2 = C2−j/2. (7.10)

Hence

|̂bj,k,ℓ − bj,k,ℓ| ≤ |̂bj,k,ℓ|+ |bj,k,ℓ| ≤ C2j/2. (7.11)

It follows from (7.11) and Proposition 4.3 that

E

(
(̂bj,k,ℓ − bj,k,ℓ)

4
)
≤ C2jE

(
(̂bj,k,ℓ − bj,k,ℓ)

2
)
≤ C

2j

n
.

The proof of Proposition 4.4 is complete.

�

Proof of Proposition 4.5. Let us present a Bernstein inequality for

exponentially strongly mixing process. See [25] and [17, Theorem 2.1 with

(2.1)].

Lemma 7.1 ([25] and [17]) Let γ > 0, c > 0, θ > 0 and (Yi)i∈Z be a

stationary process such that, for any integer m ≥ 1, the associated m-th

strongly mixing coefficient satisfies

αm ≤ γ exp(−cmθ).

Let n be a positive integer, h : R → C be a measurable function and, for any

i ∈ Z, Ui = h(Yi). We assume that E(U1) = 0 and there exists a constant

M > 0 satisfying |U1| ≤M . Then, for any m ∈ {1, . . . , n} and λ > 4mM/n,

we have

P

(∣∣∣∣∣
1

n

n∑

i=1

Ui

∣∣∣∣∣ ≥ λ

)
≤ 4 exp

(
−

λ2n

m(64E
(
U2
1

)
+ 8λM/3)

)
+4γ

n

m
exp(−cmθ).
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For any i ∈ {1, . . . , n}, set

Ui = 2−j(d−1)/2 ρ(Yi)

f(Xi)

∑

k−ℓ∈D
∗
j

Ψj,k,ℓ(Xi)− bj,k,ℓ.

Then we can write

b̂j,k,ℓ − bj,k,ℓ =
1

n

n∑

i=1

Ui.

So

P

(
|̂bj,k,ℓ − bj,k,ℓ| ≥ κλn/2

)
= P

(∣∣∣∣∣
1

n

n∑

i=1

Ui

∣∣∣∣∣ ≥ κλn/2

)
,

where U1, . . . , Un are identically distributed, depend on (Yi,Xi)i∈Z satisfying

(2.2),

• by Proposition 4.2, we have E(U1) = 0,

• by the elementary inequality: (x+ y)2 ≤ 2(x2 + y2), (x, y) ∈ R
2, (7.5)

and (7.10), we have

E(U2
1 ) ≤ 2 2−j(d−1)

E




 ρ(Y1)

f(X1)

∑

k−ℓ∈D
∗
j

Ψj,k,ℓ(X1)




2
+ 2b2j,k,ℓ

≤ C2j(d−1)2−j(d−1) + C2−j ≤ C,

• proceeding in a similar fashion to (7.11), we obtain |U1| ≤ C2j/2.

Lemma 7.1 applied with the random variables U1, . . . , Un, λ = κλn/2, λn =

((ln n)1+1/θ/n)1/2, m = (u ln n)1/θ with u > 0 (chosen later), M = C2j/2
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and 2j ≤ n/(ln n)1+1/θ gives

P

(
|̂bj,k,ℓ − bj,k,ℓ| ≥ κλn/2

)

≤ 4 exp

(
−C

κ2λ2nn

m(1 + κλnM)

)
+ 4γ

n

m
exp(−cmθ)

≤ 4 exp

(
−C

κ2(lnn)1+1/θ

(u ln n)1/θ(1 + κ2j/2((ln n)1+1/θ/n)1/2)

)

+ 4γ
n

(u ln n)1/θ
exp(−cu ln n)

= 4 exp

(
−C

κ2 lnn

u1/θ(1 + κ2j/2((lnn)1+1/θ/n)1/2)

)
+ 4γ

1

(u ln n)1/θ
n1−cu

≤ C
(
n−Cκ2/(u1/θ(1+κ)) + n1−cu

)
.

Therefore, for large enough κ and u, we have

P

(
|̂bj,k,ℓ − bj,k,ℓ| ≥ κλn/2

)
≤ C

1

n4
.

This ends the proof of Proposition 4.5.

�

7.3 Proof of the main result

Proof of Theorem 5.1. Using Proposition 4.1, we have

ĝℓ(x)− gℓ(x)

=

2τ−1∑

k=0

(α̂τ,k,ℓ − ατ,k,ℓ)φτ,k(x) +

j1∑

j=τ

2j−1∑

k=0

(̂bj,k,ℓ1{|̂bj,k,ℓ|≥κλn} − bj,k,ℓ)ψj,k(x)

−

∞∑

j=j1+1

2j−1∑

k=0

bj,k,ℓψj,k(x)− (µ̂− µ).

Using the elementary inequality: (x+ y)2 ≤ 2(x2 + y2), (x, y) ∈ R
2, and the

orthonormality of the wavelet basis, we have

E

(∫ 1

0
(ĝℓ(x)− gℓ(x))

2dx

)
≤ 2(T + U + V +W ), (7.12)
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where

T = E((µ̂ − µ)2), U =

2τ−1∑

k=0

E
(
(α̂τ,k,ℓ − ατ,k,ℓ)

2
)
,

V =

j1∑

j=τ

2j−1∑

k=0

E

(
(̂bj,k,ℓ1{|̂bj,k,ℓ|≥κλn} − bj,k,ℓ)

2
)
, W =

∞∑

j=j1+1

2j−1∑

k=0

b2j,k,ℓ.

Bound for T . We proceed as in the proof of Proposition 4.3. By (2.1), we

have E(ρ(Y1)) = µ. Thanks to the stationarity of (Yi)i∈Z, we have

T = V(µ̂) ≤
1

n
V(ρ(Y1)) + 2

1

n

n∑

m=1

|Cov (ρ(Y0), ρ(Ym))| .

Using (2.3), the Davydov inequality (see [8]) and (2.2), we obtain

T ≤ C
1

n

(
1 +

n∑

m=1

αq
m

)
≤ C

1

n
≤ C

(
(ln n)1+1/θ

n

)2s/(2s+1)

. (7.13)

Bound for U . Using Proposition 4.3, we obtain

U ≤ C2τ
1

n
≤ C

(
(lnn)1+1/θ

n

)2s/(2s+1)

. (7.14)

Bound for W . For q ≥ 1 and p ≥ 2, we have Bs
p,q(M) ⊆ Bs

2,∞(M). Hence,

by (4.3),

W ≤ C

∞∑

j=j1+1

2−2js ≤ C2−2j1s ≤ Cn−2s ≤ C

(
(ln n)1+1/θ

n

)2s

≤ C

(
(lnn)1+1/θ

n

)2s/(2s+1)

.

For q ≥ 1 and p ∈ [1, 2), we have Bs
p,q(M) ⊆ B

s+1/2−1/p
2,∞ (M). Since s > 1/p,

we have s+ 1/2 − 1/p > s/(2s + 1). So, by (4.3),

W ≤ C
∞∑

j=j1+1

2−2j(s+1/2−1/p) ≤ C2−2j1(s+1/2−1/p)

≤ Cn−2(s+1/2−1/p) ≤ C

(
(lnn)1+1/θ

n

)2(s+1/2−1/p)

≤ C

(
(ln n)1+1/θ

n

)2s/(2s+1)

.
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Hence, for q ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

W ≤ C

(
(lnn)1+1/θ

n

)2s/(2s+1)

. (7.15)

Bound for V . We have

V = V1 + V2 + V3 + V4, (7.16)

where

V1 =

j1∑

j=τ

2j−1∑

k=0

E

(
(̂bj,k,ℓ − bj,k,ℓ)

21{|̂bj,k,ℓ|≥κλn}1{|bj,k,ℓ|<κλn/2}

)
,

V2 =

j1∑

j=τ

2j−1∑

k=0

E

(
(̂bj,k,ℓ − bj,k,ℓ)

21{|̂bj,k,ℓ|≥κλn}1{|bj,k,ℓ|≥κλn/2}

)
,

V3 =

j1∑

j=τ

2j−1∑

k=0

E

(
b2j,k,ℓ1{|̂bj,k,ℓ|<κλn}1{|bj,k,ℓ|≥2κλn}

)

and

V4 =

j1∑

j=τ

2j−1∑

k=0

E

(
b2j,k,ℓ1{|̂bj,k,ℓ|<κλn}1{|bj,k,ℓ|<2κλn}

)
.

Bounds for V1 and V3. The following inclusions hold:{
|̂bj,k,ℓ| < κλn, |bj,k,ℓ| ≥ 2κλn

}
⊆
{
|̂bj,k,ℓ − bj,k,ℓ| > κλn/2

}
,

{
|̂bj,k,ℓ| ≥ κλn, |bj,k,ℓ| < κλn/2

}
⊆
{
|̂bj,k,ℓ − bj,k,ℓ| > κλn/2

}

and
{
|̂bj,k,ℓ| < κλn, |bj,k,ℓ| ≥ 2κλn

}
⊆
{
|bj,k,ℓ| ≤ 2|̂bj,k,ℓ − bj,k,ℓ|

}
.

So

max(V1, V3) ≤ C

j1∑

j=τ

2j−1∑

k=0

E

(
(̂bj,k,ℓ − bj,k,ℓ)

21{|̂bj,k,ℓ−bj,k,ℓ|>κλn/2}

)
.

Applying the Cauchy-Schwarz inequality and using Propositions 4.4, 4.5 and

2j ≤ n, we have

E

(
(̂bj,k,ℓ − bj,k,ℓ)

21{|̂bj,k,ℓ−bj,k,ℓ|>κλn/2}

)

≤
(
E

(
(̂bj,k,ℓ − bj,k,ℓ)

4
))1/2 (

P

(
|̂bj,k,ℓ − bj,k,ℓ| > κλn/2

))1/2

≤ C

(
2j

n

)1/2(
1

n4

)1/2

≤ C
1

n2
.
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Therefore

max(V1, V3) ≤ C
1

n2

j1∑

j=τ

2j ≤ C
1

n2
2j1 ≤ C

1

n

≤ C

(
(lnn)1+1/θ

n

)2s/(2s+1)

. (7.17)

Bound for V2. Using Proposition 4.3, we obtain

E

(
(̂bj,k,ℓ − bj,k,ℓ)

2
)
≤ C

1

n
≤ C

(lnn)1+1/θ

n
.

Hence

V2 ≤ C
(lnn)1+1/θ

n

j1∑

j=τ

2j−1∑

k=0

1{|bj,k,ℓ|>κλn/2}.

Let j2 be the integer defined by

2j2 =

[(
n

(lnn)1+1/θ

)1/(2s+1)
]
. (7.18)

We have

V2 ≤ V2,1 + V2,2,

where

V2,1 = C
(lnn)1+1/θ

n

j2∑

j=τ

2j−1∑

k=0

1{|bj,k,ℓ|>κλn/2}

and

V2,2 = C
(ln n)1+1/θ

n

j1∑

j=j2+1

2j−1∑

k=0

1{|bj,k,ℓ|>κλn/2}.

We have

V2,1 ≤ C
(ln n)1+1/θ

n

j2∑

j=τ

2j ≤ C
(ln n)1+1/θ

n
2j2 ≤ C

(
(lnn)1+1/θ

n

)2s/(2s+1)

.
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For q ≥ 1 and p ≥ 2, we have Bs
p,q(M) ⊆ Bs

2,∞(M). So, by (4.3),

V2,2 ≤ C
(lnn)1+1/θ

nλ2n

j1∑

j=j2+1

2j−1∑

k=0

b2j,k,ℓ ≤ C

∞∑

j=j2+1

2j−1∑

k=0

β2j,k ≤ C2−2j2s

≤ C

(
(lnn)1+1/θ

n

)2s/(2s+1)

.

For q ≥ 1, p ∈ [1, 2) and s > 1/p, using (4.3), 1{|bj,k,ℓ|>κλn/2} ≤ C|bj,k,ℓ|
p/λpn =

C|βj,k|
p/λpn, Bs

p,q(M) ⊆ B
s+1/2−1/p
2,∞ (M) and (2s + 1)(2 − p)/2 + (s + 1/2 −

1/p)p = 2s, we have

V2,2 ≤ C
lnn

nλpn

j1∑

j=j2+1

2j−1∑

k=0

|βj,k|
p ≤ C

(
(ln n)1+1/θ

n

)(2−p)/2 ∞∑

j=j2+1

2−j(s+1/2−1/p)p

≤ C

(
(lnn)1+1/θ

n

)(2−p)/2

2−j2(s+1/2−1/p)p ≤ C

(
(ln n)1+1/θ

n

)2s/(2s+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

V2 ≤ C

(
(ln n)1+1/θ

n

)2s/(2s+1)

. (7.19)

Bound for V4. We have

V4 ≤

j1∑

j=τ

2j−1∑

k=0

b2j,k,ℓ1{|bj,k,ℓ|<2κλn}.

Let j2 be the integer (7.18). Then

V4 ≤ V4,1 + V4,2,

where

V4,1 =

j2∑

j=τ

2j−1∑

k=0

b2j,k,ℓ1{|bj,k,ℓ|<2κλn}, V4,2 =

j1∑

j=j2+1

2j−1∑

k=0

b2j,k,ℓ1{|bj,k,ℓ|<2κλn}.
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We have

V4,1 ≤ C

j2∑

j=τ

2jλ2n = C
(lnn)1+1/θ

n

j2∑

j=τ

2j ≤ C
(ln n)1+1/θ

n
2j2

≤ C

(
(lnn)1+1/θ

n

)2s/(2s+1)

.

For q ≥ 1 and p ≥ 2, we have Bs
p,q(M) ⊆ Bs

2,∞(M). Hence, by (4.3),

V4,2 ≤

∞∑

j=j2+1

2j−1∑

k=0

β2j,k ≤ C2−2j2s ≤ C

(
(lnn)1+1/θ

n

)2s/(2s+1)

.

For q ≥ 1, p ∈ [1, 2) and s > 1/p, using (4.3), b2j,k,ℓ1{|bj,k,ℓ|<2κλn} ≤

Cλ2−p
n |bj,k,ℓ|

p = Cλ2−p
n |βj,k|

p, Bs
p,q(M) ⊆ B

s+1/2−1/p
2,∞ (M) and (2s + 1)(2 −

p)/2 + (s + 1/2− 1/p)p = 2s, we have

V4,2 ≤ Cλ2−p
n

j1∑

j=j2+1

2j−1∑

k=0

|βj,k|
p = C

(
(lnn)1+1/θ

n

)(2−p)/2 j1∑

j=j2+1

2j−1∑

k=0

|βj,k|
p

≤ C

(
(lnn)1+1/θ

n

)(2−p)/2 ∞∑

j=j2+1

2−j(s+1/2−1/p)p

≤ C

(
(lnn)1+1/θ

n

)(2−p)/2

2−j2(s+1/2−1/p)p ≤ C

(
(ln n)1+1/θ

n

)2s/(2s+1)

.

Thus, for q ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

V4 ≤ C

(
(ln n)1+1/θ

n

)2s/(2s+1)

. (7.20)

It follows from (7.16), (7.17), (7.19) and (7.20) that

V ≤ C

(
(lnn)1+1/θ

n

)2s/(2s+1)

. (7.21)

Combining (7.12), (7.13), (7.14), (7.15) and (7.21), we have, for q ≥ 1,

{p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p},

E

(∫ 1

0
(ĝℓ(x)− gℓ(x))

2dx

)
≤ C

(
(lnn)1+1/θ

n

)2s/(2s+1)

.

24



The proof of Theorem 5.1 is complete.
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