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Regular control problems in the sense of the Legendre condition are defined, and second-order necessary and
sufficient optimality conditions in this class are reviewed. Adding a scalar homotopy parameter, differential
pathfollowing is introduced. The previous sufficient conditions ensure the definiteness and regularity of
the path. The role of AD for the implementation of this approach is discussed, and two examples excerpted
from quantum and space mechanics are detailed.
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1. Introduction

In [15], automatic differentiation allowed to assemble the two-point boundary value problem
embodying the first-order necessary optimality condition of an optimal control problem. Adifor
[6] was used, and sensitivities were computed using automatic differentiation (AD) again, in
connection with primitive second-order optimality conditions. This approach was given a full
treatment with the development of the cotcot code [11]. Given the data defining the control
problem, a set of Matlab routines was generated through AD so as to solve the problem by
single shooting and to systematically check conjugate point second-order conditions [9]. This
paper aims at presenting the next step, that is the addition of a layer automating differential
pathfollowing for optimal control problems depending on one scalar homotopic parameter: The
differential equation that embodies the continuation procedure is automatically generated and
numerical integration performed. The resulting code [17] relies crucially on AD to compile the
definition of the parametric control problem into a collection of Matlab Mex-files. In particular,
the core of the method is to replace shooting by the mere integration of an AD-defined ordinary
differential equation (ODE). Differential pathfollowing replaces Newton solving – except for the
computation of the starting point where shooting is still needed –, and provides numerical checks
all along the path of optimal control second-order sufficient conditions.
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The paper is organized in five sections. The first one settles the mathematical framework for
second-order necessary and sufficient conditions. The infinite-dimensional setting together with
the dynamical features typical of optimal control of ODEs have some peculiarities, and we give
a more or less self-contained overview of the necessary part along the lines of [1]. Section 2
introduces differential homotopy for the regular class of optimal control problems just defined.
The role of AD and other algorithmic issues are reviewed in Section 3. Finally, two examples
coming from ongoing research projects are treated. One in dissipative quantum control, the other
in space mechanics. In the first case, homotopy explores the change of solutions in a range
of physical parameters, while in the latter pathfollowing is used to regularize and simplify the
L1-minimization problem considered.

2. Second-order conditions for regular optimal control problems

Let us consider the following optimal control problem: Minimize the integral or Lagrange cost
functional ∫ tf

0
f 0(x(t), u(t)) dt −→ min

subject to differential constraints

ẋ(t) = f (x(t), u(t)), u(t) ∈ U, t ∈ [0, tf ]

and boundary conditions

x(0) = x0, x(tf) = xf .

The state, x, lives on an n-dimensional manifold1 X so, in local coordinates, x(t) ∈ Rn. The
control, u, belongs to an m-dimensional manifold U . Being without a boundary, U has charts
with open domains in Rm and u(t) ∈ Rm, locally. The latter is a strong restriction as typical control
problems involve control constraints, that is manifolds U with a boundary.2 Such an example is
addressed in Section 6. For the sake of simplicity, the positive final time tf is assumed to be fixed.
The data (f 0, f ) is smooth3 in (x, u). We seek a measurable, essentially bounded control so,
in coordinates, u ∈ L∞

m ([0, tf ]) = L∞([0, tf ], Rm). In order to assess the first- and second-order
necessary optimality conditions, let ū be an optimal control, and let x̄ be the associated Lipschitz
optimal trajectory defined on the whole interval [0, tf ]. We define the augmented system, which
amounts to incorporating the cost into the state. Set x̂ = (x0, x) ∈ Rn+1. Almost for all t ,

˙̂x(t) = f̂ (x̂(t), u(t)) with f̂ (x̂, u) = (f 0, f )(x, u).

Define x̂(0) = (0, x0), so the cost is retrieved as one of the components of the augmented state.
From now on, we drop the ˆ on variables to simplify notation, keeping in mind that in our context
x(t) ∈ Rn stands for (x0(t), x(t)) ∈ Rn+1, and f for (f 0, f ). What follows is a very partial
account of [1, Chapter 20–21], without the differential-geometric machinery.Among many others,
see also [8,25,28] and references therein.

For any s ∈ [0, tf ], the endpoint mapping

Fs : u %−→ x(s, u) ∈ Rn

that maps a control to the solution of

ẋ(t) = f (x(t), u(t)), x(0) = x0
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is well defined and smooth in a neighbourhood in L∞
m ([0, s]) of ū by virtue of the implicit function

theorem, and
F ′

s(ū) δu = δx(s), δu ∈ L∞
m ([0, s]),

where δx is the solution of

δẋ(t) = ∂xf (x̄(t), ū(t)) δx(t) + ∂uf (x̄(t), ū(t)) δu(t), δx(0) = 0. (1)

The first order necessary condition is obtained asserting that Ftf cannot be locally open4 at ū. We
recall the following standard (nonlinear) open mapping result.

Theorem 2.1 Let F : E → Rn be a smooth5 mapping on the Banach space E. Let u be a
non-critical point (F ′(u) is onto), then F is locally open at u.

As result, F ′
tf
(ū) cannot be onto, and there is a non-zero covector λ ∈ (Rn)∗ such that λ̄F ′

tf
(ū) =

0. This is the Lagrange rule which gives Pontryagin maximum principle in a weak form. Let p̄

be the Lipschitz solution (valued in (Rn)∗) of the adjoint equation

ṗ(t) = −p(t)∂xf (x̄(t), ū(t)), p(tf) = λ̄.

The triple (x̄, ū, p̄) is called an extremal. For any δu ∈ L∞
m ([0, tf ]),

0 = λ̄F ′
tf
(ū)δu = p̄(tf)δx(tf).

Integrating by parts, ∫ tf

0
∂uH(x̄(t), ū(t), p̄(t))δu(t) dt = 0,

where H(x, u, p) = pf (x, u) is the Hamiltonian function. Accordingly, ∂uH(x̄(t), ū(t), p̄(t)) =
0 almost everywhere on [0, tf ]. Further optimality conditions are obtained using the following
second-order open mapping theorem below.

Theorem 2.2 Let F : E → Rn be a smooth mapping on the Banach space E. Let u be a corank
one critical point of F (codim Im F ′(u) = 1), and let 0 (= λ ∈ (Rn)∗ belong to [Im F ′(u)]⊥.
If λF ′′(u) is sign-indefinite on Ker F ′(u), then F is locally open at u.

The bilinear form λF ′′(u) ∈ L (E, L (E, R)) * L2(E, E; R) is called the intrinsic second-
order derivative of F and is defined up to a scalar in the corank one case. In our situation, λ̄F ′′

tf
(ū)

has to be sign-semidefinite on Ker F ′
tf
(ū) for local optimality to hold. Given s ∈ [0, tf ], define the

symmetric (Schwarz) bilinear form Bs = λ̄F ′′(ū). By the implicit function theorem, for δu and
δv in L∞

m ([0, s])],
F ′′

s (ū)(δu, δv) = δ2x(s)

with

δ2ẋ(t) = ∂xf [t]δ2x(t) + ∂2
xxf [t](δx(t), δy(t)) + ∂2

xuf [t](δx(t), δv(t))

+ ∂2
uxf [t](δu(t), δy(t)) + ∂2

uuf [t](δu(t), δv(t)), δ2x(0) = 0,

and δx (resp. δy) associated with δu (resp. δv) according to (1). The argument [t] in partial
derivatives of f stands for (x̄(t), ū(t)) for notational convenience. Integrating by parts as before,

Bs(δu, δv) =
∫ s

0
[∂2

xxH [t](δx(t), δy(t)) + ∂2
xuH [t](δx(t), δv(t))

+ ∂2
uxH [t](δu(t), δy(t)) + ∂2

uuH [t](δu(t), δv(t))] dt
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the argument [t] standing now for (x̄(t), ū(t), p̄(t)). Since ū is essentially bounded, Bs remains
continuous on L∞

m ([0, s]) endowed with the weaker L2-norm,6 and can be continuously extended
to L2

m([0, s]) by density. We set

Ks = Ker F ′
s(ū)

‖·‖2
,

and remark that the sign-definiteness of Bs on Ker F ′
s(ū) is equivalent to the sign-semidefiniteness

on Ks of the extension of Bs to L2
m. Using the embedding of the original space into a Hilbert one to

check sign-definiteness is referred to as two-norm discrepancy [25]. On this Hilbert space, Bs ∈
L (L2

m, L (L2
m, R)) * L (L2

m) is identified with a self-adjoint operator. Similarly, the restriction
Bs|Ks of the bilinear form to Ks is identified with j ∗

Ks
BsjKs ∈ L (Ks) where jKs is the canonical

injection Ks ↪→ L2
m([0, s]) (and j ∗

Ks
its adjoint). The following assumption, known as the (strong)

Legendre condition, will ensure the negative definiteness of Bs on all L2
m([0, s]) for small enough s:

∇2
uuH(x̄(t), ū(t), p̄(t)) ≤ −αIm, t ∈ [0, tf ],

for some α > 0. Extremals verifying the Legendre condition are called regular.

Proposition 2.3 Under the Legendre condition, Bs is identified with the Fredholm operator
(−I + Rs) on L2

m([0, s]), Rs a compact operator, and is negative definite for small s.

Proof The Legendre condition implies that

−
∫ s

0
∂2
uuH [t](δu(t), δv(t)) dt

is an equivalent scalar product on L2
m([0, s]). In this identification, Bs = −I + Rs where Rs is

associated with the bilinear part

∫ s

0
[∂2

xxH [t](δx(t), δy(t)) + ∂2
xuH [t](δx(t), δv(t)) + ∂2

uxH [t](δu(t), δy(t))] dt. (2)

Now, δx = T δu where T = j ◦ T0 is the composition of the canonical injection j : H1
m([0, s]) ↪→

L2
m([0, s]) which is a compact operator [14], and of T0 ∈ L (L2

m, H1
m) which maps δu to δx. Then

T is compact on L2
m, and so is Rs as there is at least one left or right composition with T in each

term of (2). Moreover, T can be represented as the integral Hilbert–Schmidt operator

(T δu)(t) =
∫ t

0
&(t − σ )∂uf [σ ]δu(σ ) dσ,

where & is the fundamental solution of δẋ(t) = ∂xf [t]δx(t). Then, denoting | · | the equivalent
norm on L2

m, one has the estimate

Bs(δu, δu) = −|δu|2 + O(s)|δu|2, s −→ 0,

and the negative definiteness for small s follows. !

Clearly, if s ≤ t , then Bt |Kt
< 0 implies Bs|Ks < 0, hence the following definition. The first

conjugate time along the extremal, t1c, is

t1c = sup{s > 0 | Bs|Ks < 0}.
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Proposition 2.4 ([1]) Let t1c ∈ (0, tf ] for a regular extremal. Then Bt1c |Kt1c
∈ L (Kt1c

) has a
non-trivial kernel.

Conjugate times are more generally defined as times tc such that Btc |Ktc
is degenerate.

Points x̄(tc) are then referred to as conjugate points. Under the Legendre condition, the
equation ∂uH(x, u, p) = 0 can be solved in the neighbourhood of the extremal, yielding the
smooth implicit function u(x, p). Plugging u(x, p) into H defines the true Hamiltonian,
H(x, p) = H(x, u(x, p), p) (still denoted H , the number of arguments avoiding any ambiguity).
Remarkably,

˙̄x(t) = ∂pH(x̄(t), ū(t), p̄(t)) = ∂pH(x̄(t), p̄(t)),

˙̄p(t) = −∂xH(x̄(t), ū(t), p̄(t)) = −∂xH(x̄(t), p̄(t)),

which we write more compactly ˙̄z(t) = −→
H (z̄(t)), with z = (x, p) and

−→
H = (∇pH, −∇xH) the

symplectic gradient. A solution of the equation linearized along z̄, the Jacobi equation,

δż(t) = −→
H ′(z̄(t))δz(t),

is called a Jacobi field. Such a field δz = (δx, δp) is said to be vertical at time t whenever
δx(t) = 0. These notions allow us to characterize and compute conjugate times.

Proposition 2.5 An instant s ∈ (0, tf ] along a regular extremal is a conjugate time if and only
if there exists a Jacobi field δz = (δx, δp) vertical at 0 and s such that δx (≡ 0 on [0, tc].

Proof Let δu ∈ Ker Bs|Ks , such that δu (= 0. Then Bs δu must belong to K⊥
s . But Ks which is

the closure in L2
m of Ker F ′

s(ū) is also equal to Ker Gs, Gs ∈ L (L2
m, Rn) being the extension of

F ′
s(ū) to L2

m (such an extension exists and remains continuous because ū is bounded). Indeed, we
have the following:

Lemma 2.6 Let F be an everywhere dense subspace of a normed space, E, and let G be
finite-dimensional. Let u ∈ L (F, G), and let v ∈ L (E, G) be its continuous linear extension.
Then Ker v = Ker u.

Proof of Lemma One has F = Ker u ⊕ H where H * Im u and the direct sum is algebraic.
As G is finite-dimensional, the image of u is closed so, by definition of v, Im u = Im v. Hence,
E = Ker v ⊕ H algebraically. Both Ker v and H are closed, the latter being finite-dimensional, so
the direct sum is also topological in E. Readily, Ker u ⊂ Ker v, so Ker u × H ⊂ Ker v × H . Since
E = F̄ , Ker v × H = Ker u × H = Ker u × H̄ = Ker u × H , whence the conclusion. !

Thus, K⊥
s = (Ker Gs)

⊥ = Im G∗
s , and there exists ξ ∈ Rn such that, for any δv in L2

m([0, s]),

Bs(δu, δv) = (G∗
s ξ |δv)L2

m
= (ξ |Gsδv)Rn = δp(s)δy(s)

with δp being the covector-valued solution of

δṗ(t) = −δp(t)∂xf [t] − p̄(t)∂2
xxf [t]δx(t) − p̄(t)∂2

uxf [t]δu(t), δpi(s) = −ξi , i = 1, n,

and δx (resp. δy) associated to δu (resp. δv) according to (1). Integrating by parts and compensating
terms from both sides, one obtains

∫ s

0
[∂2

uuH [t](δu(t), δv(t)) + ∂2
xuH [t](δx(t), δv(t)) + ∂2

puH [t](δp(t), δv(t))] dt = 0
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for arbitrary δv so that on [0, s]

δu(t) = −(∇2
uuH [t])−1(∇2

xuH [t]δx(t) + ∇2
puH [t]δpT(t)).

Plugging this expression of δu into the differential equations of δx and δp, one verifies that
δz = (δx, δp) is a Jacobi fied. As δu belongs to Ks = Ker Gs, δx(s) = Gsδu = 0 and the field is
vertical at 0 and s. Besides, if δx ≡ 0,

0 = Bs(δu, δu) =
∫ s

0
∂2
uuH [t](δu(t), δu(t)) dt ≤ −α‖δu‖2

L2
m

by the Legendre condition, so δu would be zero, which is not. Conversely, let δz = (δx, δp) be a
Jacobi field vertical at 0 and s, δx (≡ 0. Setting

δu(t) = −(∇2
uuH [t])−1(∇2

xuH [t]δx(t) + ∇2
puH [t]δpT(t)),

one has

δẋ = ∂x(∇pH)(x̄(t), p̄(t))δ + ∂p(∇pH)(x̄(t), p̄(t))δp(t)

∂xf [t]δx(t) + ∂uf [t]δu(t), δx(0) = 0. (3)

In particular, δu ∈ Ks as δx(s) = 0. For δv ∈ Ks, using the definition of δu,

Bs(δu, δv) =
∫ s

0
[∂2

xxH [t](δx(t), δv(t)) + ∂2
uxH [t](δu(t), δy(t)) − ∂2

puH [t](δp(t), δv(t))] dt.

As

δṗ = ∂x(−∇xH)(x̄(t), p̄(t))δx(t) + ∂p(−∇xH)(x̄(t), p̄(t))δp(t)

= −δp(t)∂xf [t] − ∂2
xxf [t]δx(t) − ∂2

uuf [t]δu(t),

an integration by parts give

Bs(δu, δv) = −δp(t)δy(t)]s0 = 0

since δv ∈ Ks (so δy(0) = δy(s) = 0). Therefore, δu belongs to Ker Bs|Ks . As δu = 0 would
imply δx ≡ 0 by virtue of (3), we conclude that Bs|Ks has indeed a non-trivial kernel. !

We finally formulate the second order necessary condition for regular extremals in the corank
one analytic case.7

Theorem 2.7 [1,28] For a regular extremal associated with an analytic corank one optimal
control, the absence of conjugate times on (0, tf) is necessary for L∞-local optimality.

Proof Suppose there exists a conjugate time tc ∈ (0, tf). By definition, the kernel of Btc |Ktc is
not trivial so one can find 0 (= δu ∈ Ktc such that Btc(δu, δu) = 0. Let us define δũ ∈ Ktf as the
extension of δu by 0 on [tc, tf ], and check that it cannot belong to Ker Btf |Ktf

. If this were the case,
then one could construct as in the proof of Proposition 2.5 a Jacobi field δz̃ = (δx̃, δp̃) vertical
at 0 and tf , such that δx̃ (≡ 0 (δu (= 0, so δũ (= 0). But as

δ ˙̃x(t) = ∂xf [t]δx̃(t) + ∂uf [t]δũ(t), δx̃(tf) = 0,

δx̃ would identically vanish on [tc, tf ] (non-empty since tc < tf ). Under the assumption that ū is
analytic, the Jacobi equation has analytic data and so analytic solutions. In particular, δx̃ would
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identically vanish over [0, tf ], whence the contradiction.As δũ /∈ Ker Btf |Ktf
, one can find δṽ ∈ Ktf

such that Btf (δũ, δṽ) (= 0. Clearly, Btf (δũ, δũ) = Btc(δu, δu) = 0, so Btf takes opposite signs on
the subspace generated by δũ and δṽ. It is then indefinite on Ktf , and so must be its restriction to
Ker F ′

tc
(ū). By virtue of Theorem 2.2, since ū is a corank one critical point, Ftf is locally open at

ū which prevents the point from being a local minimizer in L∞
m ([0, tf ]). !

It is clear from the proof that in the analytic situation, if the first conjugate point t1c belongs
to (0, tf), then the following happens. Under the Legendre assumption, all operators Bs|Ks are
Fredholm and so diagonalizable on a Hilbert basis of eigenvectors. For s < t1c, all the eigenvalues
are strictly negative. For t1c, finitely many of them vanish (the kernel of a Fredholm operator is
finite-dimensional [14]). For s > t1c at least one becomes positive, ensuring sign-indefiniteness.
On the contrary, without analyticity, the kernel may remain non-trivial for s > t1c with no positive
eigenvalue appearing. The second-order intrinsic derivative may so remain negative semi-definite
on a non-empty interval of conjugate times.

In contrast with finite-dimensional optimization, one cannot obtain a sufficient condition for
optimality by a compactness argument. However, there is an even more satisfactory result asserting
local optimality in a strong sense. Coming back to the initial control problem stated at the beginning
of the section, we still assume that we have a regular extremal. Remembering that x̂ = (x0, x), the
Pontryagin maximum principle in a strong form states that, if ū is the bounded solution and x̄ the
associated Lipschitz trajectory, there exists a non-positive constant p0 and a Lipschitz function
p̄ : [0, tf ] → (Rn)∗ such that almost everywhere on [0, tf ],

ẋ(t) = ∂pH(x̄(t), ū(t), p̄(t)), ṗ(t) = −∂xH(x̄(t), ū(t), p̄(t)),

and

H(x̄(t), ū(t), p̄(t)) = max
u∈U

H(x̄(t), u, p̄(t)),

where (p0 appears as a parameter)

H(x, u, p) = p0f 0(x, u) + pf (x, u).

If the maximized Hamiltonian, (x, p) %→ maxu∈U H(x, u, p), is well defined and smooth in a
neighbourhood of z̄, then one necessarily has

H(x, p) = H(x, u(x, p), p) = max
u∈U

H(x, u, p)

on this neighbourhood under the Legendre condition (the implicit function u(x, p) being locally
the unique zero of ∂uH(x, ·, p), hence the only maximizer of H(x, ·, p)). These relations are
homogenous in (p0, p) and there are two cases: The abnormal case, p0 = 0, and the normal
one, p0 < 0. A control is said to be C 0-locally optimal whenever there exists a neighbourhood
of the associated trajectory in C 0([0, tf ], Rn) such that any other admissible trajectory8 in this
neighbourhood has a greater cost.

Theorem 2.8 For a normal regular extremal in the neighbourhood of which the maximized
Hamiltonian is smooth, the absence of conjugate time on (0, tf ] is sufficient forC 0-local optimality.

The proof is of completely different nature compared to the necessary condition. The argument
is not spectral but relies on the geometric construction of the so-called field of extremals (see [1,8]).
Summarizing, under appropriate assumptions, before first conjugate time local optimality holds
on a large C 0-neighbourhood of the trajectory, while past t1c local optimality is lost, even in small
L∞-neighbourhoods.
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3. Differential pathfollowing

Assume that we are given a family of optimal control problems parameterized by λ ∈ [0, 1] in
the form of Section 2. For each λ, we minimize

∫ tf (λ)

0
f 0(x(t), u(t), λ) dt −→ min

with fixed final time tf(λ) > 0, subject to differential constraints on the fixed manifold X,

ẋ(t) = f (x(t), u(t), λ), u(t) ∈ Uλ, t ∈ [0, tf(λ)],

and boundary conditions

x(0) = x0(λ), x(tf) = xf(λ).

As before, we assume that manifolds Uλ are without boundary, and that all the data are smooth
with respect to (x, u, λ) (resp. λ). We make the following uniform assumption:

For all λ ∈ [0, 1], there exists a normal regular extremal (xλ, uλ, pλ) in the neighbourhood
of which the maximized Hamiltonian is smooth, and along which Jacobi fields never become
vertical for t ∈ (0, tf(λ)].

See [13] for a refined analysis in the Riemannian setting. Let λ0 ∈ [0, 1]. Under our assumption,
the application

(p0, λ) %−→ x(tf(λ), x0(λ), p0, λ)

mapping (p0, λ) to the value at tf(λ) of the x-coordinate of the solution z = (x, p) to

ż(t) = −→
H (z(t), λ), t ∈ [0, tf(λ)], z(0) = (x0(λ), p0),

is a smooth implicit function in a neighbourhood of (pλ0(0), λ0). Here, H(x, p, λ) =
H(x, u(x, p, λ), p, λ) = maxu∈U H(x, u, p, λ) where u(x, p, λ) is implicitly defined thanks to
the Legendre condition. Optimal control shooting is a coordinate-dependent computation and we
must choose a fixed chart on X whose domain contains the target points xf(λ) in order to define
the homotopy function [20]. In such coordinates,

h(p0, λ) = x(tf(λ), x0(λ), p0, λ) − xf(λ)

is smooth on the previous neighbourhood, possibly shrinked so that xf(λ) stays in the chart.
Finding the solution pλ0(0) of the n-dimensional shooting equation h(·, λ0) = 0 provides us with
an extremal along which no Jacobi field becomes vertical on (0, tf(λ0)]. In particular, there is
no conjugate time on (0, tf(λ0)] and we have a C 0-locally optimal solution of optimal control
problem with parameter λ0. As target points xf(λ) must remain in the chart not only for λ close
to λ0 but for all λ ∈ [0, 1], we propose the following global framework.

Let (x, λ) %→ ϕ(x, λ) ∈ Rn be a parameterized chart defined on an open domain of the manifold
(with boundary) X × [0, 1]. The graph {(xf(λ), λ), λ ∈ [0, 1]} of xf has to be a subset of this
domain. Consider similarly the cotangent space T ∗

x0(λ) above each point of the graph of x0 to
define the fibre space

F =
⋃

λ∈[0,1]
{x0(λ)} × T ∗

x0(λ) × {λ}

which is an (n + 1)-submanifold (with a boundary) of T ∗X × [0, 1]. When the cotangent bundle
is trivial, T ∗X * X × Rn, one simply has F = Rn × [0, 1]. The homotopy can then be globally
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defined on some open subset F0 of F to Rn putting

h(z, λ) = ϕ(x(tf(λ), x0(λ), p0, λ), λ) − ϕ(xf(λ), λ), (z, λ) = (x0(λ), p0, λ) ∈ F .

By restricting F0 if necessary, one can assume that it only contains regular points of h. As 0
is a regular value of the homotopy, each connected component of h = 0 is a one-dimensional
submanifold of F0, diffeomorphic either to S1 or to a real interval. A difficult issue is to provide
sufficient conditions à la Smale [2] that ensure the existence of a component joining λ = 0 to
λ = 1. Other issues include the following, as illustrated in the trivial case, F0 = * × [0, 1] with
* an open subset of Rn. (i) Components diffeomorphic to real intervals must have their endpoints
in the topological boundary of * × [0, 1]. Such endpoints are critical points of the homotopy (the
path could otherwise be prolonged), and bifurcations may occur [2]. (ii) Besides, for a fixed λ,
one has to compare the costs associated to the zeros in each component of h(·, λ) = 0. This global
aspect is responsible for possible loss of regularity – even discontinuity – of the value function
(mapping λ to the minimum value of the cost when it exists).

The connected component of the set of zeros starting at (zλ=0(0), 0) is a differentiable curve
that we can parameterize by arc length9, s. In coordinates, c(s) = (pλ(s)(0), λ(s)) is a solution of
the differential equation

dc

ds
(s) = −→

T (c(s)), c(0) = (pλ=0(0), 0), (4)

where
−→
T (c) is the unit tangent vector defined up to orientation by

−→
T (c) ∈ Ker h′(c) (c is not

critical so the kernel is one-dimensional). As critical points are avoided, orientation is chosen so
that the sign of

det[ker h′(c)T −→
T (c)]

remains a constant. In contrast with established predictor–corrector methods (e.g. [31]), we follow
the path of zeros by merely integrating the differential equation using a high-order numerical
scheme without making any correction step.

4. Algorithmic aspects

The numerical integration of (4) uses a high order one step scheme with a variable stepsize. At
each step, the tangent vector defining the right-hand side has to be computed. This essentially
amounts to evaluating the differential of the homotopy (and then to reveal its kernel by standard
linear algebra). In coordinates,

∂p0h(p0, λ) = ∂p0x[p0, λ],
∂λh(p0, λ) = ∂tf x[p0, λ]t ′f(λ) + ∂x0x[p0, λ]x ′

0(λ) + ∂λx[p0, λ] − x ′
f(λ),

where [p0, λ] stands for (tf(λ), x0(λ), p0, λ). The derivatives of tf , x0 and xf are straightforwardly
computed by AD. As x[p0, λ] is the x-component of the solution evaluated at tf of the system
defined by the maximized Hamiltonian

∂tf x[p0, λ] = ∇pH(x[p0, λ], p[p0, λ]),

where p[p0, λ] is the p-component of the same solution at tf . For the variational derivatives ∂x0x,
∂p0x and ∂λx, the first option is to use plain finite differences. Now, it is numerically crucial in
applications to use variable stepsize methods to compute adapted discretizations thanks to the local
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error control (nested Runge–Kutta methods do so at very low cost). In this case, finite differences
are known to behave poorly as the two grids dynamically computed to evaluate, say, x[p0, λ]
and x[p0 + δp0, λ], may differ, generating an artificial non-differentiability. The workaround is
to force the grid to remain the same when evaluating for p0 + δp0. This is known as internal
numerical derivative (IND, [7]). An alternative is to use AD on the integration code. Because of
the variable stepsize, the code only defines a piecewise differentiable function, and AD actually
computes the piecewise derivative, providing the same order of precision as IND for explicit
one-step variable stepsize methods [23]. The last option is to explicitly assemble the variational
system to compute Jacobi fields.As

−→
H ′ is evaluated along the current solution, one has to integrate

simultaneously z and δz systems (2n + 4n2 dimensions to obtain the complete Jacobian with δz

a matrix of order 2n),

ż(t) = −→
H (z(t), λ), δż(t) = ∂z

−→
H (z(t), λ), z(0) = z0, δz(0) = I2n.

In the case of explicit one-step schemes with variable stepsize, AD on the integration code and
VAR (integration of the augmented variational system) are identical provided the stepsize control
in the latter case is made only on z-components (and not on (z, δz)). The same analysis holds for
the variational derivative with respect to λ.

A byproduct of any of the three approaches, IND, AD or VAR, is the computation of Jacobi
fields on [0, tf(λ)] which allows us to verify numerically the assumption of Section 3. Let δzi be
the Jacobi fields with initial conditions δzi(0) = (0, ei), i = 1, n, used to compute ∂p0x[p0, λ]
({e1, . . . , en} being the canonical basis). The assumption that no Jacobi field along the extremal
becomes vertical on (0, tf(λ)] is equivalent to check that the rank of {δxi(t), . . . , δxn(t)} is equal
to n for t ∈ (0, tf(λ)]. In practice, a sign change in the determinant of the Jacobi fields can be
monitored, with a drawback on the magnitude as the determinant is equal to the product of the
singular values, all vanishing for t = 0. A complementary test is thus to inspect the dynamics of
the smallest singular value along the reference extremal.

The hampath compiler [17] implements these ideas. It extends cotcot [9,11] by adding the
homotopy layer as described in Sections 3 and 4 and compiles a description via Fortran files of
a regular family of optimal control problem into a collection of Matlab Mex-files. The entries
are two files, hfun.f and bcfun.f defining, respectively, the smooth maximized Hamiltonian
and the boundary conditions,

H(t, x, p, λ) : R × Rn × Rn × R −→ R, b(z0, tf , zf , λ) : R2n × R × R2n × R −→ R2n.

The dynamics is not assumed to be autonomous and the final times may be left free, that is why
t and tf appear in the list of arguments of H and b, respectively. Boundary conditions are more
general than what we have described and actually allow for initial and terminal constraints defined
by proper submanifolds of the ambient manifold rather than single points (again parameterized
by λ),

x(0) ∈ X0,λ, x(tf) ∈ Xf,λ.

Pontryagin maximum asserts that transversality conditions hold

p(0) ⊥ Tx(0)X0,λ, p(tf) ⊥ Tx(tf )Xf,λ,

which, in coordinates, are translated into function b. In such a case, the absence of conjugate point
along the reference extremal is still necessary but the condition is not sharp enough and one has to
introduce focal points (see for instance [18] in the Riemannian case). The output of the compiler
is a series of Mex-functions. Among these,
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Figure 1. Overview of hampath.

expdhvfun exponentiates ∂x
−→
H , that is, integrates simultaneously the adjoint system in z an its

linearized to compute Jacobi fields. The ODE integrator is dopri5 [23] (explicit Runge–
Kutta method of order 5 with a dense output).

ssolve seeks a zero of the homotopy shooting function for a single λ. Typically, it is used to
compute the initial condition for pathfollowing. The Newton solver is hybrj [19] (modified
Powell hybrid method). The Jacobian of the shooting function is computed by the VAR
approach.

hampath follows the path of zero by merely integrating the differential equation (4).

As is clear from Figure 1 overview of the code organization, several first- and second-order
derivatives have to be generated. This is done by AD using tapenade [24]. In addition to the
derivatives listed at the beginning of the section, the symplectic gradient and its derivative (that is,
the Hessian of H up to some block permutation) are computed by AD, then are used to assemble
the adjoint system and the Jacobi one as well.

5. Example 1: quantum control

We address the energy minimization problem for two-level dissipative quantum systems [10,12].
It consists in minimizing the L2-norm of the control over a fixed transfer time tf , while steering
an initial state q0 to a final state q1. The state is q = (x, y, z) ∈ R3 and the dynamics is given by
the control system

ẋ = +x + u2z,

ẏ = −+y − u1z,

ż = γ− − γ+ + u1y − u2x.
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This system is deduced from Kossakowski–Lindblad equations describing the dynamics of
two-level dissipative quantum systems in the rotating wave approximation. Up to a proper renor-
malization, it corresponds to the Bloch equation in nuclear magnetic resonance (NMR), when the
detuning term is zero. The dissipative parameters satisfy the constraint 2+ ≥ γ+ ≥ |γ−|, and the
control is the complex function u = u1 + iu2 modelizing the action of an electromagnetic field.
The cost corresponds to the energy transfer between the control field and the internal Hamiltonian
and is an important physical issue. The Bloch ball |q| ≤ 1, which is the physical state space of
the system, is invariant for the dynamics. Such a control problem is motivated by two recent
experimental research projects. The first one concerns the control of the rotation of a molecule in
a gas phase using laser fields, while the second deals with the control of the spin dynamics by a
magnetic field in NMR.

If we use spherical coordinates x = ρ sin φ cos θ, y = ρ sin ϕ sin θ , z = ρ cos θ , then the state
equation becomes

ρ̇ = γ− cos ϕ − ρ(δ cos2 ϕ + +),

θ̇ = −v1 cot ϕ,

ϕ̇ = −γ− sin ϕ

ρ
+ δ sin ϕ cos ϕ + v2,

where δ = γ+ − + and the new control is v = eiθu = v1 + iv2. Note, in particular, that the cost
is invariant by this feedback as

∫ tf

0
(v2

1 + v2
2) dt =

∫ tf

0
(u2

1 + u2
2) dt.
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Figure 2. Energy minimization in quantum control, path of zeros. The initial adjoint state p0 ∈ (R3)∗ solution of the
shooting function is computed when the homotopic parameter + decreases from 3 to 2.
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The initial and final state are here (ρ(0), θ(0), ϕ(0)) = (1, 0, π/4) and (ρ(tf), θ(tf), ϕ(tf)) =
0.3534, 2.053, 0.6004). The final time is set to tf = 0.5. Parameters γ+ and γ− are fixed, respec-
tively, to 2 and 0.1, and we are interested here in the evolution of the solution when the parameter
+ is decreased from 3 to 2. The corresponding path of zeros is portrayed in Figure 2. Optimal
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Figure 3. Energy minimization in quantum control, controls. The two components of optimal controls for + = 3, 2.75,
2.5, 2.25 and 2 are portrayed, illustrating the change of strategy when the physical parameter γ is decreased.
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Figure 4. Energy minimization in quantum control, trajectories. Optimal trajectories in the Bloch ball are projected in
the (x, z)-plane (upper subplot) and (y, z)-plane (lower subplot) for + = 3, 2.75, 2.5, 2.25 and 2.
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Figure 5. Energy minimization in quantum control, second-order condition check. Along each extremal for + = 3,
2.75, 2.5, 2.25 and 2, three Jacobi fields are computed and the rank of {δx1(t), δx2(t), δx3(t)} is evaluated by singlular
value decomposition (SVD). The evolution of the smallest singular value σ3 is portrayed in each case (upper subplot). A
careful check shows that it remains positive on (0, tf ] (even in the neighbourhood of + = 2.1), so sufficient second-order
conditions apply and settle C 0-local optimality. The evolution of σ3(tf ) along the path, directly connected to the rank
condition of the homotopy, is also given (lower subplot).

controls and trajectories for intermediate + are represented in Figures 3 and 4. Sufficient second-
order conditions are verified by a rank test on Jacobi fields along these extremals, see Figure 5,
ensuring that we obtain C 0-local optimal solutions of the problem in the whole range of physical
parameters.

6. Example 2: Two-body control

Motivated by orbit transfer problems in space mechanics [3,27], we study the two-body controlled
equation,

q̈(t) = −µ
q(t)

|q(t)|3 + εu(t)

m
, |u| ≤ 1.

The position vector q is in R3 and we restrict ourselves to non-collision elliptic orbits,

q × q̇ (= 0, q̇2 <
2µ

|q| ,

which defines a six-dimensional state manifold here in the Cartesian coordinates. The control u

is prescribed to the unit Euclidean ball, u2
1 + u2

2 + u2
3 ≤ 1, and εu/m where m is the mass of the

second-body models the acceleration at our disposal. Typically, εu is the thrust of a spacecraft
in the central field of a planet (the first body) whose gravitation constant is µ. For small ε,
the trajectory is a perturbation of the integrable Keplerian motion. Dimension five coordinates
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associated to first integrals that describe the geometry of the osculating ellipse, plus an angular
position parameter, are well suited for numerical computations as all but the last one will be
slowly varied during the motion. The semi-latus rectum P and the eccentricity e prescribe the
shape of the ellipse. The three Euler angles, * (precession angle or ascending node longitude), i

(nutation angle or inclination), θ (proper rotation or argument of perigee), prescribe the rotation
of the orbit plane treated as a rigid body. Adding longitude, l, to define the position of the ellipse
itself (l − (* + θ) measures the polar angle with respect to semi-major axis in the orbit plane),
we obtain a complete set of coordinates. Equivalently, we choose (P, ex, ey, hx, hy, l) where the
two vectors

(ex, ey) = e(cos(* + θ), sin(* + θ)), (hx, hy) = tan
(

i

2

)
(cos *, sin *)

are oriented by the semi-major axis (eccentricity vector) and the line of nodes, respectively. In
these coordinates, the dynamics reads

ẋ(t) = F0(x(t)) + ε

m

3∑

i=1

ui(t)Fi(x(t))

with

F0(x) =
√

µ

P

W 2

P

∂

∂l
,

F1(x) =
√

P

µ

(
sin l

∂

∂ex

− cos l
∂

∂ey

)
,

F2(x) =
√

P

µ

(
2P

W

∂

∂P
+

(
cos l + ex + cos l

W

)
∂

∂ex

+
(

sin l + ey + sin l

W

)
∂

∂ey

)
,

F3(x) =
√

P

µ

(
−Zey

W

∂

∂ex

+ Zex

W

∂

∂ey

+ C cos l

2W

∂

∂hx

+ C sin l

2W

∂

∂hy

)

and
W = 1 + ex cos l + ey sin l, Z = hx sin l − hy cos l, C = 1 + h2

x + h2
y.

In contrast with Section 5, the cost functional is the L1-norm of the control,
∫ tf

0
|u(t)| dt −→ min, |u(t)| =

√
u1(t)2 + u2(t)2 + u3(t)2,

with free final time tf . Such a performance index models the fuel consumption (here with the
approximation that the mass, m, remains constant) and is much more complicated than an L2-cost
as is clear when applying the Pontryagin maximum principle.

The normal Hamiltonian to be maximized (the abnormal case is trivially eliminated here, so
we set p0 = −1) is

H(x, u, p) = −|u| + H0(x, p) + ε

m

3∑

i=1

uiHi(x, p),

where each Hi(x, p) = pFi(x) is the Hamiltonian lift of the corresponding vector field. Let us
define the two switching functions

ψ(x, p) = (H1, H2, H3)(x, p), ϕ(x, p) = −1 + ε

m
ψ(x, p).
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On the open dense subset ψ (= 0, the maximizer of H(x, ·, p) on the unit Euclidean ball is

u = ψ

|ψ | when ϕ > 0, u = 0 when ϕ < 0,

arbitrary if ϕ vanishes. As a result, the control norm is bang-bang (equal to 0 or 1), and the
problem is difficult to solve without a priori knowledge on the switching structure [26]. We
therefore propose a standard interior penalization using a logarithmic barrier [4,5] to eliminate
simultaneously the lack of regularity coming from the non-emptyness of the control set boundary
(|u| = 1) and from the non-differentiability of the cost integrand at u = 0. For α ∈ [0, 1], consider
the cost ∫ tf

0
[|u| − (1 − α) ln |u| − (1 − α) ln(1 − |u|)] dt

for u in the open pointed unit ball, 0 < |u| < 1. Moreover, we combine this approach with a
second perturbation putting

∫ tf

0
{(1 − β) + β[|u| − (1 − α) ln |u| − (1 − α) ln(1 − |u|)]} dt.

When β is zero, the cost is tf and we have the minimum time problem which is much simpler
and well studied [16]. For β = 1 and α = 1 the original problem is retrieved, while for β ∈ [0, 1]
and α < 1, we are in the regular situation described in Sections 2 and 3. Another approach would
consist in solving directly the target problem. Although second-order conditions that treat mixed
control-state constraints are available [25], this would have two disadvantages in our view. First,
one has to guess the number and location of junction points with the boundary of the constraint
(whereas following the path turns numerically to capture the structure as illustrated in Figure 7).
Moreover, these junction points set up new unknowns of the problem, making its solution even
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Figure 6. L1-minimization in two-body control, path of zeros. The initial adjoint state p0 ∈ (R6)∗ solution of the
shooting function is computed when the homotopic parameter tends to 1.
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Figure 7. L1-minimization in two-body control, norm of the controls. The norm of the three-dimensional control versus
longitude (the final longitude is fixed whereas the final time is free) is displayed for λ close to 0, λ = 0.6, and λ close to 1.
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structure has been captured and almost-switches between 0 and 1 are observed on the norm.

−40

−20

0

20

40

−40

−20

0

20

40

−5
0
5

r
1

r
2

r 3

−50 0 50
−40

−20

0

20

40

r
1

r 2

−40 −20 0 20 40

−2

−1

0

1

2

r
2

r 3

Figure 8. L1-minimization in two-body control, optimal trajectory. The trajectory (in blue) around the Earth is displayed
for λ = 0.999, in three dimensions (upper subplot), (q1, q2) and (q2, q3)-projections (lower subplots). The red arrows
indicate the control in the three-dimensional view. The action of the control is clearly located around the apogees and the
last two perigees.



194 J.-B. Caillau et al.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2
x 10

−3

λ = 0
λ = 0.01
λ = 0.02

λ = 0.6
λ = 0.93λ = 0.97
λ = 0.999

l

σ m
in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2
x 10

−3

λ

σ m
in

(t f)

Figure 9. L1-minimization in two-body control, second order condition check. Along each extremal for the previous
values of λ, six Jacobi fields are computed and the rank of {δx1(t), . . . , δx6(t)} is evaluated by SVD. The evolution of the
smallest singular value σ6 over longitude is portrayed in each case (upper subplot). As it remains positive on (0, tf (λ)],
sufficient second-order conditions apply and settle C 0-local optimality. The evolution of σ6(tf ) along the path, directly
connected to the rank condition of the homotopy, is also given (lower subplot).

costlier (for low thrusts, that is for small ε, there are hundreds of junctions). Rather than cascading
the two homotopies, we use a single continuation λ %→ (α(λ), β(λ)). The question of convergence
when α → 1 is an issue though some hints can be found in the literature (see, e.g. [29,30]). See
also [21,22] for results on this problem using another homotopy.

The results below solve a problem originally posed by the French Space Agency. A satellite of
mass m = 1500 kg around the Earth (µ = 398600.47 km3s−2) is to be transferred from an initial
low, eccentric and inclined orbit towards the geostationary one using an ε = 10 N thrust. In our
chart,

P0 = 11625 km, ex0 = 0.75, ey0 = 0, hx0 = 0.612, hy0 = 0, l0 = π rad,

Pf = 42165 km, ex f = 0, ey f = 0, hx f = 0, hy f = 0, lf = 56 rad.

Numerical simulations are displayed for λ between 0 and 1 − 1e − 3. The corresponding path
of zeros is portrayed in Figure 6. Optimal controls for intermediate λ (close to 0, or close to
1) are represented Figure 7. The trajectory for λ = 0.999 is at Figure 8. Sufficient second order
conditions are verified by a rank test on Jacobi fields along these extremals, see Figure 9, ensuring
that we obtain C 0-local optimal solutions of the problem for λ < 1.
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Notes

1. Unless otherwise specified manifolds are supposed to be C ∞-smooth.
2. This does not exclude applications with bounded controls, though, as U may be a compact submanifold. See also [15]

(U = S1) and [16] (U = S2).
3. That is C ∞-smooth.
4. A mapping between topological spaces is locally open at a point if it sends neighbourhood of the point onto

neighbourhoods of its image.
5. That is C ∞-smooth.
6. The application remains continuous though the topology is weakened because L2([0, s]) is a topological module

over L∞([0, s]).
7. In which case the manifolds X, U , and the data (f 0, f ) have to be assumed real analytic as well.
8. A trajectory with the fixed endpoints generated by a bounded control valued in U .
9. Under our assumption, the absence of conjugate point even implies that we can parameterize by λ, at least locally.
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