

The SWEET-HOME Project: Audio Technology in Smart Homes to improve Well-being and Reliance

MULTICOM®

- ¹LIG UMR CNRS/UJF 5217 - GETALP Team http://getalp.imag.fr - MULTICOM Team http://multicom.imag.fr ²ESIGETEL, ANASON Team
 - http://www.esigetel.fr
 - http://www.theoris.fr
 - http://www.technosens.fr
 - http://camera-contact.com

The Sweet-Home Project Context and Goals

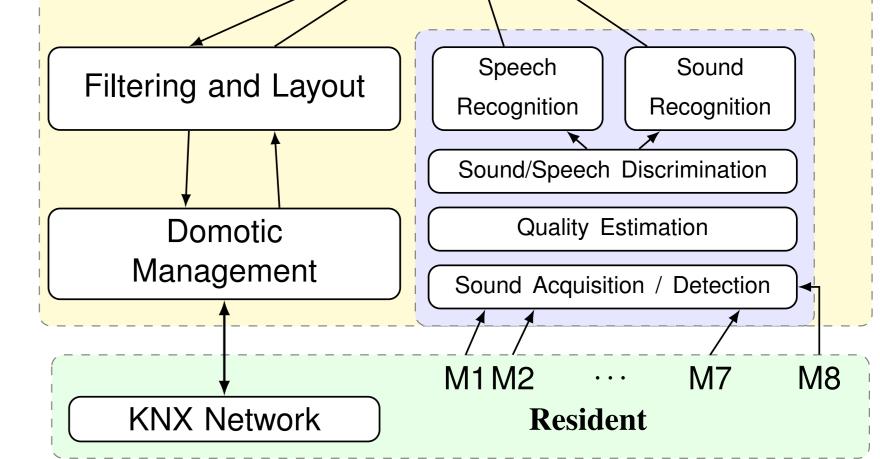
³THEORIS

⁴TECHNOSENS

⁵CAMERA-CONTACT

Audio-based interaction technology :

- to provide assistance by natural man machine interaction (voice and tactile command)
- ▶ to ease **social inclusion**
- to provide security reassurance by detecting situation of distress


	Alarm Emission			
 	Intelligent Controller			

Targeted users : elderly people who are frail but still autonomous **Qualitative user evaluation for acceptance assessment :**

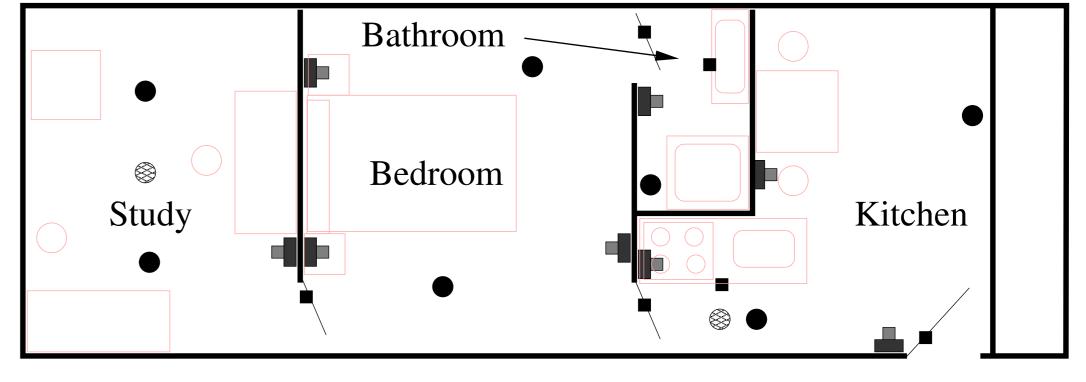
- ► 8 healthy persons, 71≤age≤88
- 7 relatives and 3 professional carers
- Interviews and wizard of Oz tests in the DOMUS smart home

(1) voice command, (2) communication with the outside world, 4 aspects considered : (3) home automation system interrupting a person's activity and (4) electronic agenda

Conclusions : Great potential of audio technology to ease daily living for elderly and frail persons

Block diagram of the SWEET-HOME system architecture

Smart Home Corpus Acquisition


Technical architecture of the flat

- ▶ DOMUS smart home, 30 m²
- ▶ 150 sensors, 7 microphones
- virtual KNX layer seen as an OSGI (Open Service Gateway Initiative) service (KNX : ISO/IEC 14543-3)

Experiment

- > 21 persons (7 women, 14 men) 38.5 \pm 13 years old (22-63, min-max)
- Activities of Daily Living in the flat

Switch Contact sensor Passive Infrared Detector • Microphone

- Total corpus duration : 36 hours
- video data (for annotation purpose only)
- audio data (7 channels)
- KNX events
- Sound annotation : Transcriber software Activities annotation : ADVENE software

Images captured during the experiment

Sound Classification

- Direct information about the resident's status : cry, snoring
- Situation disambiguation : textile handling during a wearing activity inference
- Identification of the most useful sound classes according to the project objectives
- Generic classes : water, human, electrical engine, object falls, etc.
- ► 14 sound classes
- ► GMM classifier, 16 MFCC
- SVM, Gaussian RBF kernel

Results

GMM : 92% of correct classifications, SVM : 87%

Speech Recognition

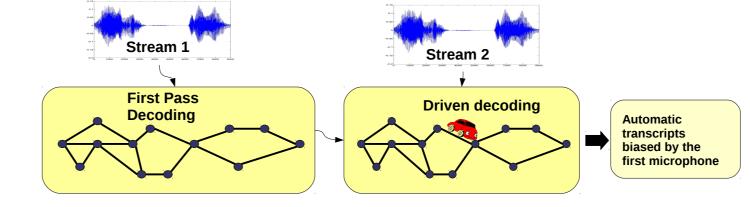
Distant Speech Corpus

• extracted from the multimodal corpus (7 channels) - 21 speakers

ASR Techniques

- 1. Speaker Adaptation
 - Maximum Likelihood Linear
- Recognizer Output Voting Error Reduction (**ROVER**)

Results


Method	WER ^{±SD}

Phase 1 (training) : 862 sentences (total : 38 minutes 46s/channel) Phase 2 (test) : 917 sentences (total: 40 minutes 27s)

Regression (**MLLR**)

2. Multichannel Analysis Signal to Noise Ratio for each $channel \implies$ BEAM-FORMING

Driven Decoding Algorithm (DDA)

Baseline	18.3-12.1
Beam Forming	$16.8^{\pm 8.3}$
DDA +SNR	11.4 ^{±5.6}
ROVER	$20.6^{\pm 8.5}$
ROVER 2c+SNR	$13.0^{\pm 6.6}$
ROVER +SNR	12.2 ^{±6.1}
DDA +SNR ROVER ROVER 2c+SNR	$\begin{array}{c} 11.4^{\pm 5.6} \\ 20.6^{\pm 8.5} \\ 13.0^{\pm 6.6} \end{array}$

Conclusion and Future Works

New Smart Home System based on Audio Technology

Current developments :

Audio Algorithms Intelligent Controller

Future Evaluation of the resulting system :

Tests planned in different homes from **fully equipped** with domotic devices to poorly equipped With elderly people

EMBC 2011 - Boston, USA

Contacts: ¹ Michel .Vacher@imag.fr - ² dan.istrate@esigetel.fr WEB SITE: http://sweet-home.imag.fr