

RAPID applied to the SIM-France model

Cédric H. David, Florence Habets, David R. Maidment, Zong-Liang Yang

▶ To cite this version:

Cédric H. David, Florence Habets, David R. Maidment, Zong-Liang Yang. RAPID applied to the SIM-France model. Hydrological Processes, 2011, 25 (22), pp.3412-3425. 10.1002/hyp.8070 . hal-00641722v1

HAL Id: hal-00641722 https://hal.science/hal-00641722v1

Submitted on 16 Nov 2011 (v1), last revised 18 Nov 2011 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	RAPID applied to the SIM-France model
2	
3	Cédric H. David ^{1,2,3} (cedric.david@mail.utexas.edu), Florence Habets ⁴
4	(florence.habets@mines-paristech.fr), David R. Maidment ² (maidment@mail.utexas.edu)
5	and Zong-Liang Yang ³ (<u>liang@mail.utexas.edu</u>)
6	
7	1. Centre de Géosciences, Mines Paristech, Fontainebleau, France
8	2. Center for Research in Water Resources, University of Texas at Austin, Austin, Texas,
9	USA.
10	3. Department of Geological Sciences, Jackson School of Geosciences, University of
11	Texas at Austin, Austin, Texas, USA.
12	4. UMR-7619 Sisyphe [CNRS, UPMC, Mines-Paristech], Paris, France.
13	
14	Corresponding author
15	Cédric H. David
16	Department of Geological Sciences, Jackson School of Geosciences
17	The University of Texas at Austin
18	1 University Station C1160
19	Austin, TX 78712
20	<u>cedric.david@mail.utexas.edu</u>
21	+1 512 299 7191 (cell)
22	+1 512 471 5355 (office)
23	(No fax number available)
	1

24 Abstract

25 SIM-France is a large connected atmosphere/land surface/river/groundwater modeling 26 system that simulates the water cycle throughout metropolitan France. The work 27 presented in this study investigates the replacement of the river routing scheme in SIM-28 France by a river network model called RAPID to improve the capacity to relate 29 simulated flows to river gages and to take advantage of the automated parameter 30 estimation procedure of RAPID. RAPID was run with SIM-France over a ten-year 31 period and results compared with those of the previous river routing scheme. We found 32 that while the formulation of RAPID improved the functionality of SIM-France, the flow 33 simulations are comparable in accuracy to those previously obtained by SIM-France. 34 Sub-basin parameterization was found to improve model results. A single criterion for 35 quantifying the quality of river flow simulations using several river gages globally in a 36 river network is developed that normalizes the square error of modeled flow to allow 37 equal treatment of all gaging stations regardless of the magnitude of flow. The use of this 38 criterion as the cost function for parameter estimation in RAPID allows better results than 39 by increasing the degree of spatial variability in optimization of model parameters. 40 Likewise, increased spatial variability of RAPID parameters is shown to enhance model 41 performance.

42

Keywords stream flow, hydraulic network, network matrix, parameters, estimation, dam,
quad-tree

45

46 **1. Introduction**

47 In the past two decades, several large scale river routing schemes have been used along 48 with land surface models for hydrologic modeling. Among the most notable applications 49 of large scale river routing are TRIP [Total Runoff Integrating Pathways, Ngo-Duc, et al., 50 2007; Oki and Sud, 1998], RiTHM [River-Transfer Hydrological Model, Ducharne, et 51 al., 2003], the routing model of Lohmann et al. [Lohmann, et al., 1996; 1998a; 1998b; 52 1998c; 2004; Maurer, et al., 2001], that of Wetzel [Abdulla, et al., 1996; Nijssen, et al., 53 1997; Wetzel, 1994], and that of Olivera et al. [2000]. These approaches have been used 54 along with land surface parameterization schemes to calculate river flow from runoff at 55 the regional, continental and the global scale. MODCOU [Modèle Couplé, Ledoux, et 56 al., 1989] is another model with routing capabilities that differs from the previously cited 57 models in that it has separate horizontal routing of water for land surface and within the 58 river system. MODCOU simulates flows throughout Metropolitan France (mainland 59 France and Corsica) as part of the SIM-France modeling framework [Habets, et al., 60 2008]. 61 SIM-France (SAFRAN-ISBA-MODCOU-France) is a large connected atmosphere, land 62 surface, river and groundwater model (see Figure 1) that involves coupling the national-63 scale atmospheric analysis system SAFRAN [Système d'Analyse Fournissant des 64 Renseignements Atmosphériques à la Neige, Durand, et al., 1993; Ouintana-Segui, et al., 65 2008], with the ISBA land surface model [Interactions Soil- Biosphere-Atmosphere, Boone, et al., 1999; Noilhan and Planton, 1989], and with the MODCOU 66 67 hydrogeological model [Ledoux, et al., 1989]. ISBA computes the vertical water and 68 energy balance between the land surface and the atmosphere. The improved physics of

69 the land surface parameterization of ISBA developed in Quintana-Seguí et al. [2009] that 70 consist of an exponential profile for soil hydraulic conductivity and calibration of soil 71 hydraulic conductivity and subgrid runoff are used in this study. Surface runoff and 72 deep-soil drainage are computed by ISBA and transferred to MODCOU which computes 73 the horizontal flow routing on the land surface, in rivers and in aquifers. Aquifers in 74 MODCOU are modeled within the two main river basins of France, the Seine and the 75 Rhône, which together represent 30% of the land area of France. 76 MODCOU handles the calculations of flow and volume of water within the river network 77 of SIM-France. This river network is made up of grid cells divided into a quad-tree 78 pattern and the calculations of MODCOU are made for groups of quad-tree cells. Using 79 groups of cells for calculations is advantageous for reducing computational costs but it 80 limits the modularity of MODCOU. In particular, the location and number of gaging 81 stations are difficult to modify. 82 The work presented herein investigates the impact of replacing the routing module used 83 in MODCOU by a river network model called RAPID [Routing Application for Parallel 84 Computation of Discharge, David, et al., 2011]. RAPID uses a matrix-based version of 85 the Muskingum method to calculate flow and volume of water for each reach of a river 86 network and has an automated parameter estimation procedure. RAPID therefore allows 87 greater flexibility than the routing module in MODCOU with regards to changing the

88 locations of computations in an existing domain or to running SIM on a new domain.

89 RAPID was previously applied to a GIS vector river network [*David, et al.*, 2011], and

90 the present study shows how it can also be applied to a quad-tree gridded river network.

91 In addition, RAPID is advantageous because of its ability to run in a parallel computing

92	environment. Finally, replacing the routing module of MODCOU by RAPID has already
93	allowed helping quantify river/aquifer interactions at the regional scale [Saleh, et al.,
94	2010].
95	In this paper, the original river routing of MODCOU as well as that of RAPID are briefly
96	presented followed by a ten-year application (1995-2005) of SIM-France comparing the
97	two river routing applications.
98	

99 2. Modeling framework

100 **2.1. River modeling in SIM-France**

101 The computational domain of SIM-France includes all of Metropolitan France, including

102 Corsica. Parts of Spain, Switzerland, Germany and Belgium are also included where

103 their drainage area flows through France, as shown in Figure 2. The total surface area of

104 the computational domain is $610,000 \text{ km}^2$.

105 Surface routing and river routing in SIM-France are done by MODCOU [Ledoux, et al.,

106 1989]. The surface and river networks of SIM-France and their connectivity were created

107 using a routine called HydroDem [Leblois and Sauquet, 2000] and consist of 193,861

108 surface cells and 24,264 river cells, each river cell being a particular surface cell. The

109 surface area covered by the river cells is $65,000 \text{ km}^2$. The surface network uses a quad-

110 tree structure with cell sizes of 1 km, 2 km, 4 km and 8 km. The river network has cell

111 sizes of 1 km and 2 km. The smaller quad-tree cells are used at the conference of

112 branches of the river network for better representation of the network connectivity and at

113 basin boundaries for more accurate basin surface area.

114 The connectivity between river cells is given by a table that provides for each

115 downstream river cell up to four upstream river cells. There are no loops or divergences

116 in the river network of SIM-France. The connectivity between catchments and rivers is

117 given by a table that provides for each surface cell a unique downstream cell where its

118 runoff enters the river.

119 For both surface and river routing, the calculations of flow and volume of water within

120 MODCOU are carried out using groups of cells as computing elements, therefore

121 minimizing the amount of calculations compared to computing for all cells separately.

122 These groups of cells – or isochrone zones – are based on the notion of isochronism 123 developed by Leblanc and Villeneuve [1978]. An isochrone is a line representing a 124 constant time of travel to a reference point downstream. An isochrone zone is the area 125 between two successive isochrones. This zone is represented by a set of cells which are a 126 single computational unit in MODCOU. Both the land surface isochrones and river 127 isochrones of MODCOU have three-hour time intervals, which means that the time of 128 travel between the upstream-most and the downstream-most cell in a given isochrone 129 zone is approximately three hours. All the isochrones of a given network are determined 130 using the travel time between connected cells which is estimated based on topography 131 and on the geometry of the quad-tree mesh. For surface cells and river cells, the travel time $\tau_{i,j}$ between two consecutive cells *i* and *j* is calculated using the distance 132 $d_{i,j}$ between the two cells and the slope $s_{i,j}$, as shown in Equation (1): 133

134

135
$$\tau_{i,j} = \alpha \cdot \frac{d_{i,j}}{\sqrt{s_{i,j}}}$$
(1)

136

137 where α is the inverse of a velocity. In the current version of SIM-France, a unique 138 value of α is calibrated for each major basin.

Figure 3 shows an example of the isochrone zones and connectivity between surface cells and river cells in MODCOU for the Ardèche River Basin. Figure 3a) shows the Ardèche River, its basin and three river gages. Figure 3b) shows the river isochrone zones of the Ardèche River. Figure 3c) shows the surface isochrone zones corresponding to the upstream-most river isochrone zone. Each surface cell belongs to a surface isochrone

144	zone, but only the isochrone zones corresponding to one river isochrone zone are shown
145	of Figure 3c) for clarity. The units used for isochrone zones are the number or
146	MODCOU 3-hour time steps to the outlet (here the Mediterranean). The quad-tree
147	structure of increasing resolution can be seen at the boundary of the basin in Figure 3c).
148	In MODCOU, the volume of water V^{out} that discharges across each isochrone line in a
149	computation time step is calculated differently for the surface network and for the river
150	network. For routing on the land surface, all the volume of water V available in the
151	isochrone zone is transferred to the downstream zone, as shown in Equation (2):
152	
153 154	$V^{out} = V \tag{2}$
155	For routing in the river network, V^{out} is proportional to the volume of water V available
156	within the isochrone zone as shown in Equation (3):
157	
158 159	$V^{out} = \beta \cdot V \tag{3}$
160	where $\beta \in [0,1]$ is manually calibrated and usually set constant for large basins. Equation
161	(3) can be viewed as the linear reservoir equation associated with a first-order explicit
162	development of the continuity equation. The variation of volume related to lateral inflow
163	and groundwater inflow of water are added to the volume V before calculating V^{out} . In
164	SIM-France, β has four possible values: 0.5, 0.7, 0.8 and 0.9 as shown in Figure 4.

Equation (3) is applied to isochrone zones. Hence, the volume of water within each isochrone zone needs be partitioned among its several river cells before computation of the river-aquifer exchanges. This interaction depends on the aquifer head, on the river head – assumed constant – and on the volume of water in the river cell when the river infiltrates water into the aquifer. The partitioning of water volume among all cells of an isochrone zone is done using a weighted average of the total amount of water reflecting the spatial distribution of lateral inflow in each isochrone zone.

172 This formulation has several inconsistencies, especially when the junction between two 173 streams lies in the interior of an isochrone zone. This can have a consequence in river-174 aquifer interactions, but also in the computation of river flow. Furthermore, using only 175 one set of isochrones in each basin can lead to two gages being located in one isochrone 176 zone, in which case the flow computed by MODCOU has to match the flow at two 177 different gaging stations. In order to avoid such inconsistencies, MODCOU uses a 178 unique set of isochrone zones for each gage, such that each gage is the downstream-most 179 river cell in its isochrone zone. Therefore, several flow calculations can be performed for 180 a given cell, if the given cell belongs to several isochrone zones, which is inefficient and 181 requires time consuming processing work in case of change of number or locations or 182 river gages. The work done herein aims at simplifying the river modeling done within 183 SIM-France.

184 **2.2. RAPID**

185 RAPID [*David, et al.*, 2011] is a river network model that uses a matrix-based version of
186 the Muskingum routing scheme to calculate discharge simultaneously through a river
187 network. RAPID was first applied to the Guadalupe and San Antonio River Basins in

188 Texas using a vector-based river network extracted from a geographic information

system dataset called NHDPlus [*USEPA and USGS*, 2007]. The governing equation usedin RAPID is the following:

191

192
$$(\mathbf{I} - \mathbf{C}_1 \cdot \mathbf{N}) \cdot \mathbf{Q}(t + \Delta t) = \mathbf{C}_1 \cdot \mathbf{Q}^{\mathbf{e}}(t) + \mathbf{C}_2 \cdot (\mathbf{N} \cdot \mathbf{Q}(t) + \mathbf{Q}^{\mathbf{e}}(t)) + \mathbf{C}_3 \cdot \mathbf{Q}(t)$$
(4)
193

where t is time and Δt is the river routing time step. The bolded notation is used for 194 195 vectors and matrices. All matrices are square. I is the identity matrix. N is the river network connectivity matrix which has a value of one in element $N_{i,j}$ if reach j flows 196 into reach *i* and zero elsewhere. C_1, C_2 and C_3 are parameter matrices which depend on 197 Muskingum k, x and time step Δt . $\mathbf{Q}(t)$ is a vector of outflows from river reaches, 198 199 and $\mathbf{Q}^{e}(t)$ is a vector of lateral inflows to these reaches from land surface runoff or groundwater inflow. The number of river quad-tree cells – here 24,264 – is used for 200 201 dimension of all vectors and matrices, each element of the vectors corresponding to one 202 river cell. Provided with a vector of lateral inflows $\mathbf{Q}^{\mathbf{e}}(t)$, RAPID calculates the flow and volume 203 204 of water in all reaches of a river network, therefore allowing coupling of a river network 205 to most land surface models and groundwater models. A different value for the 206 parameters k and x of the Muskingum method can be assigned for each river quad-tree 207 cell, and RAPID uses two vectors \mathbf{k} and \mathbf{x} as input which are used to compute the values of the matrices C_1, C_2 and C_3 . However, before routing with RAPID, horizontal surface 208

and subsurface routing is needed to transport runoff from a land surface cell to its

210 corresponding river cell. In the present study, this surface and subsurface routing is done

211 by MODCOU and RAPID replaces only the river modeling of MODCOU.

212 The connectivity information that already exists between the river cells in the SIM-

213 France river network is used to create the network connectivity matrix N needed by

214 RAPID and described in David et al. [2011].

215 RAPID uses an automated parameter estimation procedure which, given lateral inflow

216 **Q**^e everywhere in the river network, and gage measurements at some locations,

217 determines a best set of parameters based on a square error cost function. As in David et 218 al. [2011], the search for optimal vectors of parameters **k** and **x** is made by determining 219 two multiplying factors λ_k and λ_x such that:

220

221
$$\forall j \in [1, 24264] \qquad k_j^{\rho} = \lambda_k \cdot \frac{L_j}{c^0} \quad , \quad x_j^{\rho} = \lambda_x \cdot 0.1 \tag{5}$$

222

where *j* is the index of a quad-tree river cell, k_j^{ρ} and x_j^{ρ} are its Muskingum parameters, L_j is the flow distance within a river cell and $c^0 = 1km \cdot h^{-1} = 0.28m \cdot s^{-1}$ is a reference celerity for the flow wave. The parameters k_j^{ρ} and x_j^{ρ} are the same developed in As in David et al. [2011] and are referred to as ρ parameters in the following. In this study, the size of the side of each quad-tree river cell was used as an approximation of its flow distance. The value of λ_x is bounded by the interval [0,5] since the Muskingum method is stable only for $x \in [0.0, 0.5]$, as shown in Cunge [1969]. The two scalars λ_k and λ_x are

230	determined	such	that the	corresp	oonding	vectors	k	and	x mi	nin	nize	the	value	of	an
					<u> </u>										

- 231 optimization criteria, or cost function. At the end of the optimization procedure, one
- 232 couple (λ_k, λ_x) is determined for a given part of the network. The values of λ_k and λ_x can
- be determined for the entire study domain, or for sub-basins. If a sub-basin is located
- downstream of another sub-basin, observations at a gaging station are used to provide the
- 235 upstream flow. Therefore, the delineation of sub-basins has to be consistent with the
- location of available gage measurements.
- 237 The optimization procedure uses a line-search algorithm called the Nelder-Mead method
- 238 [Nelder and Mead, 1965] to determine the two scalars λ_k and λ_x .
- 239 The use of RAPID within SIM-France allows for flow and volume calculation at each
- 240 river cell, the river-aquifer interactions are computed more properly, and RAPID allows
- for the ready inclusion of additional river gages to be used for calibration.
- 242

243 **3. Application of RAPID in France**

244 **3.1. Optimization of RAPID parameters**

This section focuses on the optimization of RAPID parameters with various options used 245 for k_i and x_i , for the optimization cost function and for the spatial variability of the 246 247 optimization. In order to simplify the optimization procedure and to ensure its 248 repeatability, the parameter estimation of RAPID was run uncoupled from SIM-France. 249 Lateral and groundwater inflow to the river network were obtained from a simulation 250 using the standard version of SIM-France (without RAPID) augmented with improved 251 physics of the land surface parameterization of ISBA developed in Quintana-Seguí et al. 252 [2009]. Daily gage measurements from the French HYDRO database [SCHAPI, 2008] 253 were used for the parameter estimation as well as for comparison with daily-averaged 254 flow calculations. The period of interest of the present study is August 1st 1995 to July 31st 2005. However, 255 256 the parameter estimation was performed using five months of the first winter (November

 1^{st} 1995 to March 31^{st} 1996). As part of the first year (1995-1996) was used for

calibration, separate statistical results are presented for 1995-1996 and 1995-2005.

259 RAPID is run using a 30-minute time step and forced with 3-hourly lateral inflow

volumes; daily averages of computed discharge are compared with daily observations at

261 gage locations. There are 907 stations within the river network of SIM-France but only

262 493 of these have daily measurements every day during the first year (August 1st 1995 to

July 31st 1996). Amongst the 493 available stations, the best 291 were utilized for

264 optimization of RAPID parameters. The criterion used for the selection of the 291 best

stations is a Nash efficiency [*Nash and Sutcliffe*, 1970] better than 0.5 in the existing
SIM-France model (without RAPID) over 1995-1996. This selection excludes the gages
that are affected either by dams or by water diversions, and thus avoids unrealistic model
parameters due to anthropogenic modifications of river flow. Therefore, the proposed
routing scheme is optimized at locations were the previous routing scheme already
performed well.

271 The optimization is first performed on all rivers of the domain, therefore obtaining unique

values of λ_k and λ_x for all 24,264 river quad-tree cells. However, such an optimization

273 may not capture the variability between river basins and within sub-basins, due to the

274 various slopes or soil types. Therefore, the optimization procedure was also run

independently within the seven main river basins of France shown in Figure 5a) and

within the twenty sub-basins shown in Figure 5b).

285

277 In order to limit the effect of the initial state of the system at the beginning of the

278 optimization procedure, the initial flows on 01 November 1995 were estimated using a

simple run of RAPID. This estimation was obtained through running the routing model

from 01 August to 31 October 1995 with uniform values of λ_k and λ_x over the study

domain and initial flows $0 \text{ m}^3/\text{s}$ for all river cells on 01 August 1995.

282 The results of a parameter estimation procedure depend slightly on the initial guess for

283 the parameters. Therefore, three different sets of initial guesses for λ_k and λ_x were used:

284 $(\lambda_k, \lambda_x) = (2,3), (\lambda_k, \lambda_x) = (4,1)$ or $(\lambda_k, \lambda_x) = (1,1)$. The numerical values of these three

value for **k** and **x**. Each set of initial guesses leads to slightly different results for the

sets have no particular meaning and serve to start the optimization with a different initial

optimal λ_k and λ_x . Out of the three sets of optimal λ_k and λ_x that are determined for each sub-basin, only the best is kept. This selection is based on the set of parameters that leads to the smallest value of the optimization cost function.

290 Once the optimization procedure was completed, RAPID was run with SIM-France over 291 a 10-year period, from August 1995 to July 2005. This section focuses on the first year 292 while the next section studies the ten-year run. In order to compare the overall 293 performance of both routing models on the river network, the Nash efficiency and the 294 root mean square error (RMSE) were calculated for each of the 493 gaging stations over 295 1995-1996. These criteria are sorted and comparisons between the computations of 296 MODCOU and those of RAPID are shown in Figure 6. The two graphs in Figure 6 do 297 not allow comparing both models at each gaging station since the criteria are sorted, but 298 they depict the overall relative performance of both models. Table 1 shows the average 299 Nash efficiencies and RMSEs obtained by the original version of SIM-France and with 300 RAPID using various optimization procedures. During 1995-1996, 382 stations have a 301 positive efficiency using the standard version of SIM-France. The averages presented in 302 Table 1 show the best 382 values for both efficiency and RMSE, but similar patterns are 303 found for all 493 values or the best 291 values. In its original formulation, the criterion used in the optimization of RAPID is based on a 304

square error cost function ϕ_i . This function is the sum of the square errors between daily measurements $Q_i^g(t)$ and daily-averaged $\overline{Q_i}(t)$ flow computations for several river gaging stations *i* and for everyday of a given period of time $[t_o, t_f]$, as shown in

308 Equation (6).

310
$$\phi_{1}(\mathbf{k},\mathbf{x}) = \sum_{t=t_{o}}^{t=t_{f}} \sum_{i=1}^{i=291} \left[\frac{\overline{Q_{i}}(t) - Q_{i}^{g}(t)}{f} \right]^{2}$$
(6)

311

where the summation is made daily and at river cells with active gaging stations only. t_a 312 313 and t_f are respectively the first day and last day used for the calculation of ϕ_1 . 314 $i \in [1, 291]$ is the index for gaging stations. The model parameter vectors **k** and **x** are kept constant within the temporal interval $[t_o, t_f]$, and the cost function is calculated 315 316 several times with different sets of parameters during the optimization procedure. f is a scalar that allows ϕ_1 to be of the order of magnitude of 10^1 which is helpful for automated 317 optimization procedures. One can notice that, in ϕ_1 , a given fractional error (5% error 318 319 between modeled and measured flow for example) for two stations with different orders 320 of magnitude for river flow influences the cost function differently. A small fractional 321 error on a gaging station with a large flow penalizes the cost function more than the same 322 fractional error on a gaging station with small flow. The Nash efficiency E is highly 323 influenced by the difference between the model computation and the mean average flow, 324 as shown in Equation (7):

325

326
$$E = 1 - \frac{\sum_{t=t_o}^{t=t_f} \left[Q_i^s(t) - \overline{Q_i}(t) \right]^2}{\sum_{t=t_o}^{t=t_f} \left[Q_i^s(t) - \left\langle Q_i^s \right\rangle \right]^2}$$
(7)

where $\langle Q_i^g \rangle$ is the average daily flow observed at the gaging station *i* over a long the interval $[t_o, t_f]$. Therefore, the use of ϕ_1 penalizes the Nash efficiency. In order to avoid that the order of magnitude of flow at each gaging station influences their weight in the cost function, a new cost function ϕ_2 is created, as shown in Equation (8):

332

333
$$\phi_{2}(\mathbf{k},\mathbf{x}) = \sum_{t=t_{o}}^{t=t_{f}} \sum_{i=1}^{i=291} \left[\frac{\overline{Q_{i}}(t) - Q_{i}^{g}(t)}{\langle Q_{i}^{g} \rangle} \right]^{2}$$
(8)

334

The new cost function ϕ_2 results in the improvements shown in Table 1 and Figure 6 where the Nash efficiencies and RMSEs obtained with RAPID using ϕ_2 are better than with ϕ_1 . Overall, the Nash efficiencies and the RMSEs in RAPID are comparable while not as good as those obtained with the routing scheme of the original SIM-France. Therefore, the choice of the cost function is crucial to determining a set of optimal parameters. 341 In order to estimate the effect of more spatial variability in the optimization of RAPID 342 parameters, the parameter estimation was done on different basins and sub-basins. Figure 343 7 shows the sorted Nash efficiencies and RMSEs obtained with three degrees of spatial variability using ϕ_2 as the cost function. These spatial variabilities include "France" 344 which has uniform parameters over the whole domain, "basins" for the 7 river basins of 345 346 Figure 5a) (Adour, Garonne, Loire, Seine, Meuse, Rhône and Hérault) and "sub-basins" 347 where the major river basins have been divided into 20 sub-basins as shown in Figure 348 5b). The increase in spatial variability of parameters improves the efficiency while the 349 RMSE remains almost constant, but the improvement in efficiency is limited compared to that triggered by a change in the cost function. The values of parameters λ_k and λ_x 350 351 obtained with the parameter estimation procedure using the second cost function are 352 shown in Table 2.

353 The number of gaging stations in a basin can be divided by the number or river cells in 354 the basin to calculate an observability ratio O, as done in Table 2. This ratio ranges from 355 O = 22 on the Ardèche River to O = 1307 downstream of the Seine River, showing a wide 356 spread in density of observations. The Seine River, of great interest to the French 357 community, has a higher resolution and therefore more river cells in SIM-France than any 358 other basin – all the river cells are of size 1 km – which explains the lower observability ratio. Unrealistically low results are obtained for λ_k in the downstream part of the Seine 359 360 River and for the Ardèche River Basin. The former can be explained by a limited amount 361 of stations used for optimization in the downstream part of the Seine River Basin (only 362 one station). The latter may be due to either the basin being too small, or to the

363 observation ratio being too high and therefore over constraining the optimization 364 procedure. The observability ratio is therefore a driver for the quality of the optimization. 365 These unrealistic values for λ_k may partly explain why the improvement between 366 optimization for 7 basins and for 20 sub-basins is very limited. As expected, the optimization procedure converges to the largest values of the parameter λ_k for the Seine 367 368 and Loire rivers which are the slowest rivers. For each of the 7 major basins, the value of 369 λ_k is bounded by the value of λ_k for each of their corresponding sub-basins. Also, one can notice that upstream parts of a basin are usually faster (lower λ_k) than downstream 370 371 parts as can be seen for the upstream part of the Loire Basin, and for the Allier Basin 372 which are located in high topography areas. This shows that – as expected – topography 373 plays an important role in the travel time of flow waves. This motivates a final 374 experiment where RAPID model parameters are estimated based on topography as shown 375 in Equation (9).

376

$$\forall j \in [1, 24264] \qquad k_j^{\sigma} = \lambda_k \cdot \alpha \cdot \frac{d_{i,j}}{\sqrt{s_{i,j}}} \quad , \quad x_j^{\sigma} = \lambda_x \cdot 0.1 \tag{9}$$

378

This formulation of k_j^{σ} is adapted from Equation (1) which is used to determine the location of isochrone zones. In the following, the parameters k_j^{σ} and x_j^{σ} of Equation (9) are referred to as σ parameters. Table 1 shows the average efficiencies and RMSEs obtained with σ parameters using ϕ_1 and ϕ_2 uniformly over France, and with 383 σ parameters over the 7 major basins using ϕ_2 . Figure 8 shows the sorted efficiencies and RMSEs obtained with σ parameters using ϕ_1 and ϕ_2 uniformly over France. From 384 385 Table 1 and Figure 8 one can conclude that regardless of the optimization cost function 386 used, σ parameters allow to obtain better results than ρ parameters. Therefore, taking 387 topography into account in the travel time of the flow wave is advantageous. Similarly, 388 regardless of the parameters used and of the spatial resolution of the optimization, 389 optimizing using ϕ_2 allows obtaining better average results than with ϕ_1 . The average 390 results obtained using σ parameters and ϕ_2 are comparable (slightly better) than those 391 obtained by the original routing module of SIM-France. One should note however, that 392 the best stations with MODCOU are better than the best with RAPID, while the worse 393 stations in MODCOU are worse than the worst in RAPID. This suggests a flattening of the curves most likely due to equal treatment of all stations in the ϕ_2 cost function. 394 395 Finally, regardless of the cost function used in optimization or the set of parameters 396 $(\sigma \text{ and } \rho)$ basin and sub-basin optimizations have a limited effect on overall 397 performance of RAPID. This suggests that at the spatial scale of France as it is modeled 398 in SIM-France, there is little inter-basin and intra-basin variability of river routing 399 parameters.

400 **3.3. Comparison of routing schemes over 10 years**

401 Over 1995-2005, only 3 gaging stations have a full daily record. Therefore, results

402 presented in this section are using stations with gaps in observations; efficiency and

403 RMSE are calculated only at times when measurements are available. A threshold of

404 70% of daily measurements available over 1995-2005 leads to selecting 493 gaging

405 stations. These stations differ slightly from the ones used in 1995-1996. Out of the 493 406 stations that have full daily record in 1995-1996, 436 stations are included in the 1995-407 2005 period. Similarly, out of the best 291 stations that have full daily record in 1995-408 1996, 261 are included in 1995-2005. During 1995-2005, 427 out of the 493 stations 409 have a positive efficiency using the standard version of SIM-France. Table 1 shows 410 average statistics for 1995-2005 for the best 427 values for both efficiency and RMSE, 411 but similar patterns are found for all 493 values. The conclusions drawn in Section 3.2. 412 regarding the sets of parameters, the cost functions and the spatial resolution of the 413 optimization are still valid for the ten-year simulation. However, one should note that 414 over ten years, MODCOU performs slightly better than RAPID using the best set of 415 options. This may be explained by the slightly different stations used for the 5-month 416 optimization and for the ten-year study. However, five months of the first year seem to 417 be sufficient to capture RAPID parameters and allow comparable performance between 418 MODCOU and RAPID over ten years. Figure 9 shows the sorted efficiencies and 419 RMSEs obtained with MODCOU and with RAPID with σ parameters optimized uniformly over France using ϕ_2 . Globally the two models perform comparably although, 420 421 similarly to 1995-1996 results, the best stations are degraded and some stations with low 422 but positive efficiency are improved. Figure 10 shows observations and modeled 423 hydrographs during 1995-1996 and 1995-2005 for the Meuse River at Stenay (the 424 location of this station is shown in Figure 11) in which MODCOU and RAPID are almost 425 indiscernible. One should note, however, that in all the hydrographs plotted (not shown) 426 the timing of events differs slightly between the two models, none of which being

427 consistently better than the other regardless of the optimization options as expected from428 results shown in Table 1 and Figure 9.

429 Figure 11 shows a spatial comparison of efficiencies obtained over France.

430 Improvements and degradations of statistical results between MODCOU and RAPID

431 have no particular spatial patterns. Overall, the discharge simulated by MODCOU and

432 RAPID are similar in RMSE and Nash efficiency. This similarity can be explained by

433 the strong dependence of discharge calculations on the lateral inflow forcing which is the

434 same for both river routing schemes. Furthermore, the routing equations used in

MODCOU and RAPID are comparable (the linear reservoir equation in SIM-France is a simplified Muskingum equation, given x=0). The addition of RAPID to SIM-France can be regarded as advantageous since RAPID provides with flow and volume of water in all the cells of the river network and provides flexibility in the number and location of river gages, which was not the case in the original version of SIM-France.

440 3.2.

3.2. Influence of dams on river flow

441 RAPID does not have a specific physical model for treatment of dams. However, the 442 model is designed such that observations at gaging stations can easily be substituted for 443 upstream flow. This capability is not available in the routing scheme of MODCOU and 444 is useful for a gaging station located at the outlet of a dam because the flows discharging 445 from man-made infrastructures reflect human decisions. In France, the quality of flow 446 calculations of the Rhône River (at Beaucaire) is influenced by the dam at the outlet of 447 Lake Geneva. Figure 12 demonstrates the influence of forcing with observations at 448 Pougny (downstream of the dam) on the calculation of flow at the outlet of the Rhône 449 River Basin. The gaging station a Pougny is the outlet of the "Rhône upstream" basin in

- 450 Figure 5b) and is also shown on Figure 11. The first year (August 1^{st} 1995 July 31^{st}
- 451 1996) was used and RAPID was run uncoupled from MODCOU. Forcing with
- 452 observations at Lake Geneva increases the Nash Efficiency from 0.49 to 0.62 at
- 453 Beaucaire, the outlet of the Rhône basin.

455 **4.** Conclusions

456 The river routing in SIM-France is done by MODCOU which uses groups of cells called 457 isochrone zones for its computations and does not directly compute flow and volume of 458 water for each cell of its quad-tree river network. The use of isochrones limits the 459 flexibility in the number and location of river gages. The work in this paper presents the 460 replacement of the river routing module in MODCOU by the river network model called 461 RAPID. Information on the network connectivity between the quad-tree river cells of 462 SIM-France is readily available in tables that relate upstream and downstream cells. 463 These tables can be used directly to create the network matrix of RAPID. A ten-year 464 study of river flow in Metropolitan France is presented comparing RAPID and the 465 routing module of MODCOU. An automated procedure for determining optimal model 466 parameters is available in RAPID and various options for the estimation of the 467 parameters are investigated. Sub-basin optimization increases model performance but its 468 influence is much smaller than the choice of the cost function. A cost function was 469 developed that normalizes the square-error between observations at each river gage and 470 RAPID computations by the average flow at the gage. This cost function is found to 471 globally improve the Nash efficiency of computed flow in all gages. We suggest that this 472 is due to the average flow having an influence on the computation of the Nash efficiency. 473 Therefore, the use of an appropriate criterion for quantifying the quality of river flow as 474 the cost function for the optimization procedure helps the betterment of model 475 computations. Also, flow wave celerities included in the temporal parameter of the 476 Muskingum method benefit from taking into account topography when compared to a simple constant celerity formulation. Overall, the computation obtained with the addition 477

478 of RAPID are comparable to those of the original river routing module in SIM-France.

479 We consider the addition of RAPID as advantageous since flow and volume of water is

480 directly computed for each cell of the quad-tree river network. The formulation of

- 481 RAPID allows for easily substituting observed flows for the upstream calculated flow,
- 482 which is advantageous when considering a man-made infrastructure as was shown for the
- 483 Rhône River.

485 Acknowledgments

486 This work was partially supported by the French *MinesParistech*, by the French *Agence*

- 487 Nationale de la Recherche under the Vulnérabilité de la nappe du Rhin (VulNaR) project,
- 488 by the French *Programme Interdisciplinaire de Recherche sur l'Environnement de la*
- 489 Seine (PIREN-Seine) project, by the U.S. National Aeronautics and Space Administration
- 490 under the Interdisciplinary Science Project NNX07AL79G, by the U.S. National Science
- 491 Foundation under project EAR-0413265: CUAHSI Hydrologic Information Systems, and
- 492 by the American Geophysical Union under a Horton (Hydrology) Research Grant.
- 493 Thank you to Pere Quintana-Seguí for discussion about and for sharing data
- 494 corresponding to his improvements of SIM-France. Thank you to Firas Saleh and to
- 495 Céline Monteil for discussions on travel time within SIM-France. The authors are
- 496 thankful to the two anonymous reviewers and to the editor for their valuable comments
- 497 and suggestions that helped improved the original version of this manuscript.

- 499 **References**
- 500 Abdulla, F. A., D. P. Lettenmaier, E. F. Wood, and J. A. Smith (1996), Application of a
- 501 macroscale hydrologic model to estimate the water balance of the Arkansas Red River
- basin, Journal of Geophysical Research-Atmospheres, 101, 7449-7459.
- 503 Boone, A., J.-C. Calvet, J. Noilhan, and euml (1999), Inclusion of a Third Soil Layer in a
- 504 Land Surface Scheme Using the Force-Restore Method, Journal of Applied Meteorology,
- 505 38, 1611-1630.
- 506 Cunge, J. A. (1969), On the subject of a flood propagation computation method
- 507 (Muskingum method), Journal of Hydraulic Research, 7, 205-230.
- 508 David, C. H., D. R. Maidment, G.-Y. Niu, Z.-L. Yang, F. Habets, and V. Eijkhout (2011),
- 509 River network routing on the NHDPlus dataset, Journal of Hydrometeorology, tentatively
- 510 accepted on 18 January 2011.
- 511 Ducharne, A., C. Golaz, E. Leblois, K. Laval, J. Polcher, E. Ledoux, and G. de Marsily
- 512 (2003), Development of a high resolution runoff routing model, calibration and
- 513 application to assess runoff from the LMD GCM, *Journal of Hydrology*, 280, 207-228.
- 514 Durand, Y., E. Brun, L. Mérindol, G. Guyomarc'h, B. Lesaffre, and E. Martin (1993), A
- 515 meteorogical estimation of relevant parameters for snow models, Annals of Glaciology,
- 516 18, 65-71.
- 517 Habets, F., A. Boone, J. L. Champeaux, P. Etchevers, L. Franchisteguy, E. Leblois, E.
- 518 Ledoux, P. Le Moigne, E. Martin, S. Morel, J. Noilhan, P. Q. Segui, F. Rousset-
- 519 Regimbeau, and P. Viennot (2008), The SAFRAN-ISBA-MODCOU
- 520 hydrometeorological model applied over France, Journal of Geophysical Research-
- 521 Atmospheres, 113.

- 522 Leblanc, D., and J. P. Villeneuve (1978), Algorithme de schématisation des écoulements
- 523 d'un bassin versant 1-55 pp, Institut national de la recherche scientifique, Québec.
- 524 Leblois, E., and E. Sauquet (2000), Grid elevation models in hydrology. Part 2:
- 525 HydroDem technical note, 80 pp, Cemagref, Lyon.
- 526 Ledoux, E., G. Girard, G. de Marsily, J. P. Villeneuve, and J. Deschenes (1989), Spatially
- 527 Distributed Modeling: Conceptual Approach, Coupling Surface Water and Groundwater,
- 528 in Unsaturated Flow in Hydrologic Modeling Theory and Practice, edited by H. J.
- 529 Morel-Seytoux, pp. 435-454, Kluwer Academic Publishers.
- 530 Lohmann, D., R. NolteHolube, and E. Raschke (1996), A large-scale horizontal routing
- 531 model to be coupled to land surface parametrization schemes, *Tellus Series a-Dynamic*
- 532 *Meteorology and Oceanography*, 48, 708-721.
- 533 Lohmann, D., D. P. Lettenmaier, X. Liang, E. F. Wood, A. Boone, S. Chang, F. Chen, Y.
- J. Dai, C. Desborough, R. E. Dickinson, Q. Y. Duan, M. Ek, Y. M. Gusev, F. Habets, P.
- 535 Irannejad, R. Koster, K. E. Mitchell, O. N. Nasonova, J. Noilhan, J. Schaake, A.
- 536 Schlosser, Y. P. Shao, A. B. Shmakin, D. Verseghy, K. Warrach, P. Wetzel, Y. K. Xue,
- 537 Z. L. Yang, and Q. C. Zeng (1998a), The Project for Intercomparison of Land-surface
- 538 Parameterization Schemes (PILPS) phase 2(c) Red-Arkansas River basin experiment: 3.
- 539 Spatial and temporal analysis of water fluxes, Global and Planetary Change, 19, 161-
- 540 179.
- 541 Lohmann, D., E. Raschke, B. Nijssen, and D. P. Lettenmaier (1998b), Regional scale
- 542 hydrology: I. Formulation of the VIC-2L model coupled to a routing model, *Hydrological*
- 543 Sciences Journal-Journal Des Sciences Hydrologiques, 43, 131-141.

- 544 Lohmann, D., E. Raschke, B. Nijssen, and D. P. Lettenmaier (1998c), Regional scale
- 545 hydrology: II. Application of the VIC-2L model to the Weser River, Germany,
- 546 *Hydrological Sciences Journal-Journal Des Sciences Hydrologiques*, 43, 143-158.
- 547 Lohmann, D., K. E. Mitchell, P. R. Houser, E. F. Wood, J. C. Schaake, A. Robock, B. A.
- 548 Cosgrove, J. Sheffield, Q. Y. Duan, L. F. Luo, R. W. Higgins, R. T. Pinker, and J. D.
- 549 Tarpley (2004), Streamflow and water balance intercomparisons of four land surface
- 550 models in the North American Land Data Assimilation System project, *Journal of*
- 551 Geophysical Research-Atmospheres, 109, 1-22.
- 552 Maurer, E. P., G. M. O'Donnell, D. P. Lettenmaier, and J. O. Roads (2001), Evaluation of
- 553 the land surface water budget in NCEP/NCAR and NCEP/DOE reanalyses using an off-
- 554 line hydrologic model, Journal of Geophysical Research-Atmospheres, 106, 17841-
- 555 17862.
- 556 Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models
- 557 part I -- A discussion of principles, *Journal of Hydrology*, *10*, 282-290.
- 558 Nelder, J. A., and R. Mead (1965), A Simplex Method for Function Minimization, The
- 559 *Computer Journal*, 7, 308-313.
- 560 Ngo-Duc, T., T. Oki, and S. Kanae (2007), A variable streamflow velocity method for
- 561 global river routing model: model description and preliminary results, *Hydrol. Earth Syst.*
- 562 Sci. Discuss., 4, 4389-4414.
- 563 Nijssen, B., D. P. Lettenmaier, X. Liang, S. W. Wetzel, and E. F. Wood (1997),
- 564 Streamflow simulation for continental-scale river basins, *Water Resources Research*, 33,
- 565 711-724.

- 566 Noilhan, J., and S. Planton (1989), A Simple Parameterization of Land Surface Processes
- 567 for Meteorological Models, *Monthly Weather Review*, 117, 536-549.
- 568 Oki, T., and Y. C. Sud (1998), Design of Total Runoff Integrating Pathways (TRIP) A
- 569 Global River Channel Network, *Earth Interactions*, 2, 1-35.
- 570 Olivera, F., J. Famiglietti, and K. Asante (2000), Global-scale flow routing using a
- 571 source-to-sink algorithm, *Water Resources Research*, *36*, 2197-2207.
- 572 Quintana-Segui, P., P. Le Moigne, Y. Durand, E. Martin, F. Habets, M. Baillon, C.
- 573 Canellas, L. Franchisteguy, and S. Morel (2008), Analysis of near-surface atmospheric
- 574 variables: Validation of the SAFRAN analysis over France, Journal of Applied
- 575 *Meteorology and Climatology*, 47, 92-107.
- 576 Quintana-Segui, P., E. Martin, F. Habets, and J. Noilhan (2009), Improvement,
- 577 calibration and validation of a distributed hydrological model over France, *Hydrol. Earth*
- 578 Syst. Sci., 13, 163-181.
- 579 Saleh, F. S. M., N. Flipo, F. Habets, A. Ducharne, L. Oudin, M. Poulin, P. Viennot, and
- 580 E. Ledoux (2010), CONTRIBUTION OF 1D RIVER FLOW MODELING TO THE
- 581 QUANTIFICATION OF STREAM-AQUIFER INTERACTIONS IN A REGIONAL
- 582 HYDROLOGICAL MODEL, paper presented at XVIII International Conference on
- 583 Computational Methods in Water Resources (CMWR 2010)
- 584 CMWR 2010, Barcelona.
- 585 SCHAPI (2008), Banque HYDRO, Service Central d'Hydrométéorologie et d'Appui à la
- 586 Prévision des Inondations available online at <u>http://www.hydro.eaufrance.fr/index.php</u>.
- 587 USEPA, and USGS (2007), NHDPlus User Guide, available online at
- 588 <u>http://www.horizon-systems.com/nhdplus/documentation.php</u>.

- 589 Wetzel, S. (1994), A hydrological model for predicting the effects of climate change, 85
- 590 pp, Princeton University, Princeton.
- 591
- 592

593 Table 1 Average efficiencies and average root mean square errors for MODCOU and for RAPID with 7 different sets of

parameters. Best 382 values for 1995-1996 and best 427 values for 1995-2005.

				1995-1996		1995-2005				
				Best 382 values		Best 427 values				
Vector of parameters used in optimization	Optimization cost function	Spatial optimization	Model	Average efficiency	Average RMSE	Average efficiency	Average RMSE			
N/A	N/A	N/A	MODCOU	0.617	8.37	0.650	12.67			
ρ	ϕ_1	France	RAPID	0.581	8.85	0.614	13.64			
ρ	ϕ_2	France	RAPID	0.611	8.39	0.638	13.07			
ρ	φ ₂	7 basins	RAPID	0.615	8.40	0.640	13.06			
ρ	φ ₂	20 sub-basins	RAPID	0.615	8.38	0.637	13.04			
σ	φ ₁	France	RAPID	0.602	8.63	0.632	13.25			
σ	φ ₂	France	RAPID	0.620	8.37	0.647	12.91			
σ	φ ₂	7 basins	RAPID	0.624	8.32	0.646	12.92			

Basin	Sub-basin	Number of river cells	Number of stations	Observa- bility ratio	$\begin{array}{c} Optimized \\ \lambda_k \end{array}$	$\begin{array}{c} Optimized \\ \lambda_x \end{array}$	Basin	Sub- basin	Number of river cells	Number of stations	Observa- bility ratio	$\begin{array}{c} Optimized \\ \lambda_k \end{array}$	$\begin{array}{c} Optimized \\ \lambda_x \end{array}$
France	all basin	24264	291	83.4	0.366	0.237	Loire	Loire downstre am	1763	25	70.5	0.436	0.091
Adour	all basin	666	9	74.0	0.375	0.313	Seine	all basin	5115	41	124.8	0.531	0.234
Garonne	all basin	2985	58	51.5	0.294	0.009	Seine	Seine upstream	2919	30	97.3	0.579	0.145
Garonne	Garonne upstream	558	5	111.6	0.160	0.420	Seine	Oise	889	10	88.9	0.469	3.766
Garonne	Tarn	356	8	44.5	0.152	0.674	Seine	Seine downstre am	1307	1	1307.0	0.031	4.984
Garonne	Lot	369	10	36.9	0.394	0.113	Meuse	all basin	832	3	277.3	0.383	0.059
Garonne	Dordogne	431	12	35.9	0.356	0.056	Rhône	all basin	3426	51	67.2	0.256	0.118
Garonne	Garonne downstream	1271	23	55.3	0.375	0.313	Rhône	Saône	1043	32	32.6	0.236	0.007
Loire	all basin	4138	88	47.0	0.414	0.197	Rhône	Ardèche	66	3	22.0	0.000	0.156
Loire	Vienne	706	20	35.3	0.386	0.145	Rhône	Rhône upstream	279	1	279.0	0.500	4.750
Loire	Allier	458	17	26.9	0.308	2.670	Rhône	Rhône downstre am	2038	15	135.9	0.403	0.076
Loire	Loire upstream	541	12	45.1	0.391	0.305	Hérault	Hérault	101	3	33.7	0.375	4.813
Loire	Loir	670	14	47.9	0.453	0.273							

596 Table 2 Results of optimization procedure using ρ parameters and the ϕ_2 cost function

Captions to illustrations

603 Figure 1 Structure of SIM-France, from Habets et al. [2008]

Figure 2 France and computational domain of SIM-France

609 Figure 3 Surface and river isochrone zones in Ardèche Basin in MODCOU within

610 SIM-France

611

- 613 Figure 4 Map of the parameter β used for river routing in MODCOU within SIM-
- 614 France
- 615

617 Figure 5 Basins treated independently during optimization of RAPID parameters in

618 SIM-France. a) Seven major river basins. b) Twenty sub-basins

using the original cost function ϕ_1 and using the new cost function ϕ_2

for the year 1995-1996 with ρ parameters using the new cost function ϕ_2

631 Figure 8 Effect of set of parameters ρ and σ for RAPID on RMSEs and efficiencies

632 for the year 1995-1996 using the new cost function ϕ_2 uniformly over France

636 using the new cost function ϕ_2

638 Figure 10 Comparison of 1995-1996 and 1995-2005 hydrographs for the Meuse

639 River at Stenay obtained by MODCOU and RAPID with σ parameters optimized

640 uniformly over France using the new cost function ϕ_2

643 between RAPID using σ parameters optimized uniformly over France using the new cost

644 function ϕ_2 and MODCOU

647 Figure 12 Comparison of RAPID discharge calculation at the outlet of the Rhône

648 River (at Beaucaire) with and without forcing at the outlet of Lake Geneva (at Pougny).