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We propose a statistical model for the random packing of frictionless polydisperse spheres in which the

complexity of the global packing is distilled into a local stochastic process. We simplify the problem by

considering the ‘‘granocentric’’ point of view of a single particle in the bulk, thereby reducing random

packing to the assembly of nearest neighbours, followed by a random choice of contacts among them.

The model is based on only two parameters, the available solid angle around each particle and the ratio

of contacts to neighbors, which are both directly obtainable from experiments or simulations. As

a result, the model analytically predicts the microscopic distributions of nearest neighbours and

contacts, the local density fluctuations as well as the global density of the packing. We find that this

granocentric view captures the essential properties of the polydisperse emulsion packing. This model

suggests a general principle of organization for random packing and provides a statistical tool for

quantifying the effect of the particle size distribution on the geometry of random packing in a variety of

contexts of industrial relevance.
I. Introduction

Particulate packings occur ubiquitously in nature, from grains in

silos to oil droplets in mayonnaise. How a set of particles

randomly assembles into a mechanically stable packing is

a problem that has puzzled scientists for centuries.1 Above

a given density, the system undergoes a jamming transition2,3 to a

mechanically stable structure. Several theoretical approaches

have been proposed to understand the physics of this transition.

For example, random packing of monodisperse spheres has been

considered in analogy with the glass transition4,5—experimen-

tally,6–8 computationally,9,10 and theoretically.11–13 Moreover,

a statistical mechanics framework for jammed matter has been

used to relate the probability distributions of microscopic

quantities in the packing to macroscopic properties of the

system.14–17 Despite these important advances, a governing

principle for the random organization of particles that predicts

their packing geometry remains unknown. The problem appears

even more challenging as soon as one advances to real particulate

systems found in nature, which are polydisperse,18 frictional,19

deformable20 and comprised of different shapes.21

In this paper, we develop a statistical framework termed the

‘‘granocentric’’ model to account for the effects of polydispersity

on packing properties. The granocentric model attempts to give

a physical intuition for the microscopic mechanism behind the
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random variety of local configurations present in the packing and

to relate the statistics of these local configurations to global

properties of the packing, such as its density. This model was

previously shown to describe the geometric properties of random

packings of polydisperse emulsion droplets.22 This study was

limited to the size distribution of the emulsion fabrication, i.e.

a log-normal distribution with a typical mean radius of �3mm

and a standard deviation of �0.7mm. The goal of the present

article is to go beyond this specific experimental verification in

order to study the limits of validity of the model using numerical

simulations to create random packings of spheres of controlled

size distributions.
A. Background

Since real particulate systems are polydisperse, accounting for

the effects of their size distribution on packing is of industrial

relevance for grain storage, drying of paints, and construction of

porous membranes to name but a few examples. While in the case

of monodisperse spheres all the randomness comes from the

positional disorder of the constituents, the size distribution in

polydisperse systems introduces an additional source of

randomness into the packing structure. To capture the effect of

polydispersity,18,23,24 several models have been proposed to esti-

mate the global packing fraction based on the particle size

distribution, either using simplified packing models,25,26 linear

packing models27,28 or a mixture packing model.28

Especially noteworthy is a simple geometric model proposed in

the early 1970s by Dodds to predict the packing fraction of

polydisperse packings by enumerating all the possible local

arrangements of spheres of different sizes. This model was first

developed for 2d packings of disks29,30 and later extended to 3d

packings of polydisperse spheres.31 Using this local point of view,

Dodds developed a combinatorial approach to estimate the

packing fraction as well as the distribution of the number of

contacts. This model is based on the assumption that each sphere
Soft Matter, 2010, 6, 2949–2959 | 2949



touches its neighbours—an assumption that is not valid for real

packings and requires a rescaling of the model predictions to

match experimental data.32 Nevertheless, Dodds’ approach pre-

sented a significant leap in understanding packings by demon-

strating that a simple local model can capture certain properties

of the packing organisation. The granocentric model developed

in this paper builds on Dodds’ idea of a local statistical

description of the packing and provides a more complete picture

of the packing structure by providing access to the distributions

of the numbers of contacts and neighbours, as well as the local

and global packing fractions. This is made possible because our

model does not make the assumption that all particles are in

contact with their neighbours.

B. Organization of the paper

The remainder of this article is organised as follows. Section II

discusses the organization of polydisperse packings, presents the

physically relevant quantities under consideration and describes

how they can be measured both in experiments and numerical

simulations. Section III lists the numerical methods employed to

simulate frictionless polydisperse packings. Section IV presents

the model in detail and comments on its results. Section V

concerns an extension of the model to local and global packing

fraction. Section VI tests the model and probes its applicability,

while Section VII offers a discussion of the model’s success in

describing experiments.

II. Polydisperse packings

A jammed packing of polydisperse spheres is achieved by suffi-

ciently increasing the global density to bring the particles in

contact with one another such that the isostatic condition is

satisfied.33,34 In the case of frictionless spheres, as considered in

this article, isostaticity is reached when the average number of

contacts per particle is larger than or equal to 2d, where d is the

spatial dimension.kThe jamming transition is defined as the point

where the packing is marginally stable, so that for three-dimen-

sional frictionless packings the mean number of contacts per

particle is 6.

Once a jammed packing has been created, its geometry is

described completely by specifying the centerpoint positions and

the sizes of every particle. This full microscopic description of the

packing geometry can then be used to characterize the local

environment around each particle by collecting statistics over all

the particles in the system. This allows for the measurement of

quantities such as the probability distributions of the number of

contacts, number of neighbours and local volume fraction

around particles of a given size in the packing. In turn these

distributions can be used to calculate global quantities, such as

the packing density. In this section we define precisely the

distributions of the number of contacts, number of neighbours

and volume fraction, and indicate how they can be measured in

experiments and numerical simulations. This begins with

a tessellation of space to analyze the packing structure, explained

next.
k Note that the presence of friction changes the local force balance and
therefore modifies the isostatic condition, which becomes hzi ¼ d + 1.
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A. Packing geometry via the Johnson-Mehl tessellation

A systematic way to analyze a packing is to define a local cell

around each particle by tessellating the system. In the present

work we use the Johnson-Mehl tessellation, also referred to as

the navigation map.35–37 The cell around a given particle in this

tessellation is defined as the region which is closer to the surface

of this particle than any other particle’s surface. For mono-

disperse packings this reduces to the usual Voronoi

construction,38 defined as the region closer to a given particle’s

centerpoint than any other particle’s centerpoint. For poly-

disperse packings the cell boundaries are no longer planes but

rather are portions of hyperboloids,37 shown in Fig. 1.
B. Contacts, neighbours and local packing fraction

The Johnson-Mehl tessellation permits us to define three quan-

tities that describe the local environment of each particle—the

number n of neighbours surrounding a given particle, the subset

of z contacts that contribute to its mechanical rigidity and the

local packing fraction flocal ¼ Vparticle/Vcell, where Vparticle is the

volume of the particle and Vcell the volume of its Johnson-Mehl

cell. This last quantity is the packing efficiency at the single

particle level, and can be measured directly. Two particles are

said to be neighbours if they have a common interface in the

Johnson-Mehl tessellation, while they are said to be in contact if

their surface-to-surface distance is exactly zero. For instance, the

particles coloured in green and blue in Fig. 1 are neighbours of

the central black particle, but only the blue particle is also in

contact. The neighbours participate in creating the local

geometric structure of a jammed system without contributing

directly to the local mechanical stability of a given central

particle.

Experimentally, imaging a refractive index-matched, jammed

emulsion identifies the contacts around a particle using Nile red

dye, which has an enhanced fluorescence at the contact points.39

The determination of the set of neighbours is done by tessellating

the reconstructed images via the navigation map. Whereas the
Fig. 1 Example of Johnson-Mehl tessellation for a set of polydisperse

disks in 2d. Note that the black particle has four neighbours (green and

blue) of which one is in contact (blue).

This journal is ª The Royal Society of Chemistry 2010



definition of contacts is sensitive to the spatial resolution of the

microscope, neighbours are unambiguously defined in the

packing.

Once we have determined the Johnson-Mehl tessellation we

can compute the mean number of contacts per particle, hzi, the

probability density of contacts Pc(z), as well as the conditional

contact number probability density around all particles of radius

rc, Pc(z|rc), with the following relations:

Pc(z) ¼
Ð

dr Pc(z|r)P(r), (1)

�
zjr
�
¼
XN
z¼0

z PcðzjrÞ; (2)

�
z
�
¼
XN
z¼0

z PcðzÞ: (3)

The isostatic limit for mechanical stability requires that hzi$ 6.33

This imposes a global constraint on the probability density of

Pc(z). However, the specific shapes of this probability density

depend on the size distribution of the particles.

In like fashion, we can compute the mean number of neigh-

bours per particle, hni, the probability density of neighbours

Pn(n), as well as the conditional neighbour number probability

density around all particles of radius rc, Pn(n|rc), with the

following relations:

Pn(n) ¼
Ð

dr Pn(n|r)P(r), (4)

�
njr
�
¼
XN
n¼0

n PnðnjrÞ; (5)

�
n
�
¼
XN
n¼0

n PnðnÞ: (6)

Note that there is no constraint on the mean number of neigh-

bours per particle.

Apart from the probability densities of neighbours and

contacts, the Johnson-Mehl tesselation also allows us to measure

the probability density of local packing fractions, defined as the

volume of the particle divided by the volume of its cell. The

global packing fraction, defined as fglobal ¼ Vmatter/Vsample, can

be computed without using a particular tessellation since

Vmatter ¼
XN

k¼1

VparticleðrkÞ; (7)

where N is the total number of particles in the sample and

Vparticle(rk) is the volume of the kth particle. However, it should be

stressed that the global packing fraction fglobal is not

hflocali ¼
ðN

0

dflocal flocalPvðflocalÞ.
III. Numerical methods

In order to test the predictions of the granocentric model, we

need to compare it to a well controlled system in which we can

easily and arbitrarily vary the particle size distribution. Doing

this experimentally poses numerous challenges; however,

numerical simulations are well suited to the creation of
This journal is ª The Royal Society of Chemistry 2010
frictionless polydisperse packings of spherical particles. Simula-

tions are done using the Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS),40 modified to allow

for arbitrarily defined polydispersities. Spherical frictionless

particles, which interact through Hertzian contact forces, are

simulated. We followed a simplified version of the infinite

temperature quench technique presented in ref. 41 to create

jammed packings. Each simulation starts with a fixed number of

particles (N ¼ 10000) whose positions are distributed randomly

within a cubic box of side length L and periodic boundary

conditions. Doing so approximates an infinite temperature

condition. The particles’ radii are drawn from a given P(r) such

that the global packing fraction f is equal to a preselected value.

The temperature is then quenched close to zero and nearly all of

the energy in the system is removed by allowing particles to move

away from one another along the path of steepest descent. Since

we only consider jammed packings near the jamming threshold it

was sufficient for our purposes to repeat this process over and

over, increasing the packing fraction from below the jamming

threshold in small increments (Df ¼ 0.001) until a mechanically

stable packing was found. Additional simulation results for

a range of distributions performed with this technique may be

found in the supplementary materials to our previous paper.22
IV. The granocentric model

A. Granocentric point of view

We propose a local model for random packing of polydisperse

spheres. The model describes the packing as seen from the

‘‘granocentric’’ point of view of a particle in the bulk of the

packing. From this perspective, the formation of a packing can

be seen in the following way. Starting with an initially dilute,

unjammed system and slowly increasing the particle density,

a given central particle will see more and more particles filling its

neighbourhood as defined by the Johnson-Mehl tessellation.

Eventually, all the space around this particle is occupied by

neighbours, such that it is impossible to fit an additional particle.

As the density is further increased some of the neighbours must

come into contact with the central particle, such that the particle

is mechanically constrained and the jamming threshold is

reached. These two local processes provide the physical intuition

for the development of a granocentric model for packing. Below

we first explain the underlying assumptions behind each of these

two steps, then define the mathematical framework in the next

subsections.

Physically, the limitation of space around a given particle is

due to the interparticle interaction preventing neighbouring

particles from overlapping. Clearly the space available around

each particle is determined by the arrangement of its neighbours.

In our model we introduce the solid angle Umax(rc) available

around a sphere of radius rc, as an effective parameter to describe

this geometrical congestion. These sterical effects mean that

Umax(rc) is not simply 4p as one would expect for the total solid

angle around a sphere. Its precise value will depend on the

polydispersity and the local packing structure. We will demon-

strate that the value of Umax(rc) can be self-consistently deter-

mined for a given packing.
Soft Matter, 2010, 6, 2949–2959 | 2951



Fig. 2 Examples of solid angle distributions obtained from a given P(r)

for three different central particle radii, indicated by the colour of the

markers in the inset.
We model the formation of the shell of neighbours by the

random addition of particles of radii r, characterised by the solid

angle U(rc, r) it subtends on the central particle of radius rc. We

make the assumption that the system is statistically homoge-

neous and isotropic, such that each particle in the packing sees

locally the same type of polydispersity as any other particle in the

packing. (The limits of this assumption in real polydisperse

packing will be discussed in section VI.) We therefore model the

formation of the neighbour shell by the first passage problem of

a one-dimensional random walk. The number of neighbours is

then defined as the number of steps the walk makes until the total

solid angle covered by the neighbours reaches, without crossing,

Umax(rc). We then make the additional assumption that there is

no correlation between the successive steps of this random walk:

a particle is added to the shell of neighbours if there is enough

space left, independently of the particles previously added.

In the second step, we model the selection of each contact

among the set of neighbours as an independent process. The

validity of this assumption will be justified a posteriori by the

success of the model in describing measurements. The indepen-

dent choice among neighbours means that we do not include

collective behaviour: the fact that one neighbour is in contact does

not bias the choice as to whether another will be. Based on this

assumption the determination as to whether a neighbour is in

contact is a Bernoulli trial. Thus, the probability of having

z contacts among n neighbours about a central particle of radius rc

is given by the binomial distribution with success probability p(rc).

B. Distribution of solid angle

In the granocentric model the formation of the set of neighbours

is represented by the summation of the solid angles they subtend

on a central particle. The relevant distribution characterising the

polydispersity is then the two-point distribution of solid angle U

around a central particle of radius rc. For a given central particle

radius rc, the corresponding solid angle distribution can be

obtained from the radius distribution by a change of variable as

follows. Let Sc be a sphere of radius rc. A sphere of radius r in

contact with Sc will subtend a solid angle

Uðrc; rÞ ¼ 2p 1� 1

1þ r

rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

r

rc

r0
B@

1
CA˛0; 2p: (8)

Note that U(rc, r) is bounded between 0 and 2p by construction.

The distribution of U(rc, r) can be obtained from P(r) following

the steps presented in Appendix A. Let fc(U) be the probability

density of a solid angle U(rc, r) given the sphere Sc. We then have

fcðUÞ ¼ PðrÞ
�

dU

dr
ðrc; rÞ

��1

; (9)

leading to

fcðUÞ ¼ rc

1þ U=2pð2� U=2pÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U=2pð2� U=2pÞ

p
ð1� U=2pÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U=2pð2� U=2pÞ

p

�P rc

U=p� ðU=2pÞ2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U=p� ðU=2pÞ2

q
ð1� ðU=2pÞÞ2

2
4

3
5:

(10)
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This relation, illustrated in Fig. 2, is nonlinear and maps a

distribution defined on R+ to a new distribution defined on 0, 2p.
C. Distribution of number of neighbours

Let Sc be a sphere of radius rc in the packing. We pick a sequence

of spheres characterised by the list of their radii {rk}, or equiv-

alently by the list of the solid angles they subtend on Sc, {Uk}.

The number of nearest neighbours to this sphere Sc is then

defined as the random number of spheres n drawn from this

sequence that can be placed about Sc, such that the total solid

angle occupied by the neighbours is as close as possible to

Umax(rc), without exceeding it. Formally, the number of neigh-

bours is defined by

Xn

k¼1

Uk # Umax and
Xnþ1

k¼1

Uk . Umax; (11)

or equivalently,

dU˛½0;Umax�;U ¼
Xn

k¼1

Uk and Unþ1. Umax � U: (12)

From the last definition it is easy to see that Pn(n|rc), the condi-

tional probability density to have n neighbours around a sphere

of radius rc, is given by the convolution product

PnðnjrcÞ ¼
ðUmax

0

dURnðUÞFrc
ðUmax � UÞ; (13)

Pn(n|rc) ¼ (Rn + Frc
)(Umax), (14)

where Rn(U) is the probability to reach U after exactly n steps,

Frc
ðwÞ ¼

ðN

w

du fcðuÞ, and + denotes the convolution product.

Taking the Laplace transform with respect to Umax, we obtain:

L[Pn(n|rc)](s) ¼L[Rn](s)L[Frc
](s), (15)

where s is the conjugate variable of Umax through the Laplace

transform and L denotes the Laplace transform operator. Using
This journal is ª The Royal Society of Chemistry 2010



Fig. 3 Representative conditional number of neighbours distribution.

The value of P(n|rc) is given by the intensity scale shown on the right. The

size of the dots corresponds to the distribution of the number of neigh-

bours in an oil-in-water emulsion, in good agreement with the model

predection.22
basic properties of the Laplace transform, and introducing the

notation

f̂ c(s) ¼ L[fc](s), (16)

we then have

L½Frc
�ðsÞ ¼ 1� f̂ cðsÞ

s
: (17)

Moreover, under the assumption that the solid angles around the

central particle are independent and identically distributed

random variables, we have

L[Rn](s) ¼ [f̂ c(s)]n, (18)

so that finally

L½PnðnjrcÞ�ðsÞ ¼
1� f̂ cðsÞ

s

�
f̂ cðsÞ

�n
; (19)

PnðnjrcÞ ¼L�1

	
1� f̂ cðsÞ

s

�
f̂ cðsÞ

�n



ðUmaxÞ; (20)
Fig. 4 Representative probability distribution of number of neighbours

predicted by model compared to observed distribution.

This journal is ª The Royal Society of Chemistry 2010
where L�1 denotes the inverse Laplace transform operator. This

prediction of P(n|rc) is presented along with experimental data in

Fig. 3. Note that the dependence on the central particle radius

comes from the fact that the solid angle distribution depends on

rc, as seen in eqn (10). In general it is not possible to compute

analytically the inverse Laplace transform in eqn (20), but this

inversion can be done numerically, for example using Mathe-

matica and a package for the numerical inversion of the Laplace

transform.42 The distribution given in eqn (19) can be integrated

over the particle radius distribution to obtain the overall number

of neighbour distributions

Pn(n) ¼
Ð

drcP(rc)Pn(n|rc), (21)

as presented in Fig. 4.
D. Estimation of Umax(rc)

Eqn (20) gives a way to estimate the parameter Umax(rc) from

measurements of the mean number of neighbours as a function

of rc. Indeed, we have

hnjrci ¼ ncðUmaxÞ ¼
XN
n¼0

nPnðnÞ; (22)

n̂cðsÞ ¼
XN
n¼0

n
1� f̂ cðsÞ

s

�
f̂ cðsÞ

�n¼ 1

s

f̂ cðsÞ
1� f̂ cðsÞ

; (23)

ncðUmaxÞ ¼L�1

	
1

s

f̂ cðsÞ
1� f̂ cðsÞ



ðUmaxÞ: (24)

By numerically solving eqn (24) the parameter Umax(rc) can be

self-consistently determined by experimental measurements of

the mean number of neighbours. In principle, the available

solid angle could depend on the central particle radius rc.

However, we can also define the averaged available solid angle
Fig. 5 Example of values obtained for Umax using eqn (24) and experi-

mental measurements of number of neighbours as a function of rc. The

red curve corresponds to the values obtained by solving eqn (24), while

the dashed line corresponds to hUmaxi x 3.68p. Note that in this

particular case the dependence of Umax(rc) on rc is negligible. The dots

correspond to the total occupied solid angle as measured in an oil-in-

water emulsion.22

Soft Matter, 2010, 6, 2949–2959 | 2953



hUmaxi ¼
Ð

drcP(rc)Umax(rc). Fig. 5 presents an example of the

values of Umax(rc) and hUmaxi obtained from an experimental

packing of oil-in-water droplets. In this particular case the

dependence of Umax on rc is negligible, Umax(rc) x hUmaxi x
3.68p. The fact that the value of Umax is smaller than the avail-

able solid angle around a sphere in empty space (4p) character-

izes the local cluttering around the central particle.
E. Distribution of number of contacting neighbours

Once we have characterized the geometry of the packing around

a central particle as described by the distribution of the number

of neighbours, we next turn to the distribution of the number of

contacting neighbours. This subset of the neighbours is respon-

sible for the mechanical stability of the packing. We make the

assumption that the selection of a set of contacting neighbours is

a local process neglecting all possible correlation: a neighbour is

or is not also a contact independently of whether any other

neighbours are contacts. Therefore the selection of contacts

among neighbours must reduce to a succession of Bernoulli

trials, each with a probability of success p(rc). Note that this

probability for a neighbour to be in contact can in principle

depend on the central particle radius.

Thus, the choice of a set of contacting neighbours can be seen

as a second random process choosing z contacts among the

n neighbours with a probability p(rc). Acting under this

assumption we can obtain P(z|rc), the distribution of the number

of contacts around a particle of radius rc. Therefore we have:

PcðzjrcÞ ¼
XN
n¼z

Cz
n pðrcÞzð1� pðrcÞÞn�z

PnðnjrcÞ; (25)

where Cn
z is the binomial coefficient. If we take the Laplace

transform of Pc(z|rc) with respect to Umax we find:

L½PcðzjrcÞ�ðsÞ ¼
XN
n¼z

Cz
n pzð1� pÞn�z ð1� f̂ cðsÞÞ f̂ cðsÞ

n

s
; (26)

where s is again the conjugate variable of Umax through the

Laplace transform. Since fc is a probability density, we know that

(1 � p)f̂ c(s) < 1, and the series can be summed to obtain the final

expression for the Laplace transform of Pc(z|rc):

L½PcðzjrcÞ�ðsÞ ¼
pz

½1� ð1� pÞ f̂ cðsÞ�
zþ1

L½PnðzjrcÞ�ðsÞ: (27)

This expression can be inverted numerically to obtain Pc(z|rc).
F. Estimation of p(rc)

The value of the contact probability p(rc) can be determined

using experimental or numerical data. Eqn (25) implies the

simple relation:

pðrcÞ ¼
hzjrci
hnjrci

: (28)

Note that the model makes no a priori assumptions on the nature

of the dependence of contact probability on the central particle

radius rc.
2954 | Soft Matter, 2010, 6, 2949–2959
V. Global and local packing fraction

In the previous section we have focused on the statistical

description of the packing’s connectivity. In this section we will

see that this model can be complemented by a definition of a local

cell to gain access to the statistics of local packing fraction. This

quantity gives information on the packing efficiency at the single

particle level.16,43,44 Knowing the local cells additionally gives us

access to the global packing fraction.
A. Definition of a local cell

The Johnson-Mehl tessellation gives a precise definition of

a local cell for each particle in a packing. However the properties

of a cell, in particular its volume, depend on the position of the

neighbours around the central particle: since the model thus far

does not incorporate this type of information, we need to extend

it to compute the volume of a cell. To this end, we define an

effective cell around each particle in the packing, using only

information on the number of neighbours and the number of

contacts. Note that the definition of the local cell is somewhat

arbitrary and one could imagine a number of alternate defini-

tions. What is important is to capture the essential physical

features one expects from a local cell: 1) for a given central

particle, the cell volume must increase with the number of

neighbours, and 2) for a given number of neighbours, the cell

volume increases with the fraction of non-contacting neighbours.

Feature one will be satisfied by defining the volume of a cell as

the sum of volume contributions V*(rc,rk,dk) from every neigh-

bouring particle of radius rk at a surface-to-surface distance dk

from a central particle of radius rc:

Vcell ¼ Vparticle þ
Xn

k¼1

V *ðrc; rk; dkÞ; (29)

where Vparticle ¼
4

3
pr3

c is the volume of the central particle.

Feature two will be satisfied by treating contacting neighbours

differently from non-contacting. This will be achieved by

assuming that all the contacts are at dk ¼ 0 while all the non-

contacting neighbours are at the same finite distance, dk ¼ d,

which we take to be a fraction of the mean particle radius:

d ¼ a(rc)hri. (30)

Here a(rc) is an additional adjustable parameter in our model. Its

nature, however, is quite different from that of the available solid

angle Umax(rc) or the contacting probability p(rc), since a(rc) does

not have a strong physical interpretation outside of this partic-

ular definition of the cell. In particular it is important to note that

the parameter a(rc) should not be thought of as relating to a real

physical distance between particles. It is rather a bookkeeping

parameter with which to tune the definition of a local cell, in

order to match model calculations with experimental measure-

ments. In our previous work22 we fixed the value of the parameter

a(rc) so that the mean local packing fraction obtained from the

model matches the measured mean local packing fraction.

Let us introduce the volume V* added to the volume of a local

cell due to the presence of a neighbour. We define this volume in

the following way. Let C be the cone subtended on a central

particle by a neighbouring particle in contact, and S be the
This journal is ª The Royal Society of Chemistry 2010



V *ðrc; r; dÞ ¼
pðdþ 2rÞrcð2rþ rcÞðdþ 2rcÞ3

�
� 2r3

c þ 2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rcð2rþ rcÞ
p

� r
�
r2

c þ 3r2rc þ r2
�
dþ 3r� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcð2rþ rcÞ

p �
24
�
drcð2rþ rcÞ þ ðrþ rcÞ

�
r2

c þ 2rrc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcð2rþ rcÞ

p
rc þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcð2rþ rcÞ

p ��2

� 2

3
p 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r

rc

r

1þ r

rc

0
BB@

1
CCAr3

c :
surface of the central particle. Let H0 be the surface of the

hyperboloid defined by the navigation map of the central particle

of radius rc and a neighbour of radius r with surfaces seperated

by a distance d (see Fig. 6b). The volume V* is then defined as the

portion of the cone C between the central particles surface S and

the hyperboloid H0. This volume is a function of rc, r and

d given by:

Let us consider the generic situation of a given central particle

of radius rc surrounded by n neighbours, among which z are in

contact. Let {rk}k¼1.n be the list of the neighbours’ radii,

arranged such that the z first radii correspond to the contacts.

The volume of the cell is given by:

Vcell ¼
4pr3

c

3
þ
Xz

k¼1

V *ðrc; rk; 0Þ þ
Xn

k¼zþ1

V *ðrc; rk; dÞ: (31)

B. Local packing fraction distribution

The approximation (31) of the volume of the cell permits us to

estimate the local packing fraction. Using the notation described

above the local packing fraction of a cell is simply defined as

fl ¼
Vparticle

Vcell

: (32)

We can rewrite this relation in a way that makes the calculation

of the distribution easier. For a given central particle of radius rc

surrounded by n neighbours among which z are contacts, let us

introduce the random variable

jl ¼
Vcell

Vparticle

�1 $ 0: (33)

Using eqn (6), this variable can be written as a sum,

jl ¼
Xz

k¼1

lðrc; rkÞ þ
Xn

k¼1

mðrc; rkÞ; (34)

where,

lðrc; rkÞ ¼
V *ðrc; rk; 0Þ � V *ðrc; rk; dÞ

VparticleðrcÞ
; (35)
Fig. 6 Volume contributions V* (coloured in red) for contact (a) and

neighbours at a surface-to-surface distance d (b).
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mðrc; rkÞ ¼
V *ðrc; rk; dÞ
VparticleðrcÞ

; (36)

and we used the notation VparticleðrcÞhVparticle ¼
4

3
pr3

c to stress

that this volume depends on rc. The variables l and m are two-

point random variables whose distributions can be computed

following the steps presented in Appendix A. The conditional

probability density of jl for given rc, z and n can then be obtained

following Appendix B. A simple change of variable,

fl ¼
1

jl � 1
; (37)

allows then for the estimation of the local packing distribution

for given z, n and rc, P(fl|z, n, rc). To obtain the distribution of

the local packing fraction around a particle of radius rc, we need

to average on n and z, keeping in mind that these two variables

are not independent. By construction, the probability density of

the contact number z for a given n is a binomial distribution with

success rate p(rc), B(z;n, p(rc)). We therefore have

Pðfljn; rcÞ ¼
Xn

z¼0

Bðz; n; pðrcÞÞPðfljz; n; rcÞ; (38)

PðfljrcÞ ¼
XN
n¼0

Pðfljn; rcÞPnðnjrcÞ: (39)

In the final expression, we use the neighbour number distribution

for a given central particle radius, Pn(z|rc), obtained from

eqn (20). For practical calculations, the summation in eqn (39) is

truncated at a cut-off value for n above which the distribution

Pn(n|rc) is negligible. We can compute the probability map of the
Fig. 7 Probability density map of the local packing fraction f1, as

a function of the central particle radius rc. Note that the packing is

typically more efficient around large particles.
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Fig. 8 Probability density of the local packing fraction.
local packing fraction, by a simple change of variables. This is

presented in Fig. 7. To compare with experimental and numerical

results, we can average over rc to obtain the local packing frac-

tion distribution in the sample.

The definition of the local packing fraction relies heavily on

the definition of the local cell, and therefore on the parameter a.

In our work, this parameter is fixed so that the mean local

packing fraction obtained by the model matches the mean local

packing fraction measured in our numerical simulations. The

result is presented in Fig. 8.
C. Global packing fraction

The global packing fraction is defined as

f ¼ Vtotal matter

Vtotal

¼
PN

j¼1Vparticle

�
rj

�
PN

j¼1Vcell

�
rj

� ; (40)

assuming that Vtotal ¼
PN

j¼1 VcellðrjÞ. In our model we can

replace the spatial averages by ensemble averages, leading to

�f ¼
�
VparticleðrcÞ

�
hhVcellðrcÞii

: (41)

The quantity in the denominator has to be averaged twice: first

over the various configurations for a given rc and then over rc

itself. Note that �f is not the ensemble average of the local packing

fractions:

�f s hf(rc)iP(rc). (42)

We can evaluate the global packing fraction �f using Wald’s

identity45 to compute the mean cell volume for a given rc. Starting

with the expression (31) of the cell volume written as

Vcell ¼ VparticleðrcÞ þ
Xz

k¼1

�
V *ðrc; rk; 0Þ � V *ðrc; rk; dÞ

�

þ
Pn

k¼1 V *ðrc; rk; dÞ

we first average of the neighbours’ radii leading to

hVcell|rci ¼ Vparticle(rc) + hn|rci(p(rc)hV*(rc, r, 0)|rci
+ (1 � p(rc))hV*(rc, r, d)|rci), (44)
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where we used

hz|rci ¼ p(rc)hn|rci. (45)

The expression in eqn (44) can be averaged against P(rc) to

obtain the mean volume of a cell

hhVcell(rc)ii ¼
Ð

drc P(rc) hVcell|rci. (46)

The mean volume of a particle is simply given by

hVparticlei ¼
4p

3

ð
drc PðrcÞ r3

c : (47)

We finally obtain the global packing fraction as

�f ¼ 4p

3

ð
drc PðrcÞ r3

cð
drc PðrcÞ hVcell j rci

: (48)

This expression allows us to compute the global packing fraction,

starting from the distribution of radii only, once the model

parameters Umax(rc), p(rc) and a are self-consistently fixed.
VI. Limits of applicability of the model

Our model works under the assumption that the packing is

statistically homogeneous, such that the polydispersity around

each particle in the packing can be described by the same radius

distribution P(r) as the overall packing. Using this assumption,

the packing formation is described by two consecutive random

processes. The first one corresponds to the formation of the set of

neighbours around a given particle. The space around a particle

of radius rc is quantified by the available solid angle around it

Umax(rc). The formation of a set of nearest neighbours is modeled

by the first passage of a one-dimensional random walk, where the

steps are the solid angle subtended by the incoming particles on

the central particle. We do not take into account the positions of

the neighbours around the central particle, and we assume that

each step in the random walk is independent and identically

distributed. The number of neighbours n is the number of steps in

the walk before it reaches without crossing the maximum solid

angle Umax. A subset of particles in contact is then selected

among the neighbours by a succession of Bernoulli trials with

a probability of success p(rc), assuming that there is no collective

behaviour in this selection process. Although we neglect explicit

correlation in the steps of the random walk and in the formation

of contacts, it does not mean that the model neglects all corre-

lations. Actually correlations are taken into account, at least

partially, in the parameters of this effective model, namely the

available solid angle Umax(rc) and the contact probability p(rc).

In order to describe a polydisperse packing we have introduced

several fundamental assumptions:

A0 Long range disorder is dominated by local disorder due to

the particle size distribution.

A1 The packing is homogeneous: the distribution of particle

sizes around particles of size rc is identical to the overall distri-

bution of particle sizes.

A2 The neighbours are chosen independently in the random

walk.
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A3 The contacts are chosen among the neighbours indepen-

dently.

A4 A local cell about each particle can be defined as in section

V.A.

Given these assumptions, our model allows for the calculation

of the distributions of the coordination number, the number of

neighbours and the local packing fraction.

In our previous study22 we found experimental evidence to

justify two additional simplifications:

S1 The solid angle available to neighbours Umax(rc) is inde-

pendent of the central particle radius rc.

S2 The ratio of contacts to neighbours p(rc) is independent of

the central particle radius rc.

If any of the above assumptions A0–A4 become invalid then

our model may not successfully describe the packing. However, if

S1 and S2 no longer hold the model should still be successful but

will require the dependence of model parameters on the radius rc.

In the rest of this section we illustrate the limitations of this

model with several examples.
A. Monodisperse or slightly polydisperse packings

If a packing is monodisperse then there is no local disorder

due to the particle size distribution. Therefore assumption A0

is violated and our model breaks down. In such a case our

model predicts P(n|rc) to be a Dirac distribution, while

experimentally and numerically one finds a distribution with

a finite width.

More generally, we expect our model to break down if the

polydispersity is not strong enough to be the dominant source of

disorder in the packing. To probe this limit we consider packings

with log-normal size distributions with mean 1 and standard

deviation s. By reducing the value of s we can explore the

crossover from polydisperse to monodisperse and observe how

the models predictions gradually fail (Fig. 9). For this particular

family of distributions the model becomes progressively worse

for values of s below z0.09. However, one should note that the
Fig. 9 Crossover from polydisperse distributions to monodisperse

distributions probes the limits of applicability of the model. The proba-

bility distribution of number of neighbours is shown for packings with

log-normal size distributions with mean ¼ 1 and standard deviation s as

indicated. Curves shown in black are obtained from molecular dynamics

simulations while those in red show model predictions. The agreement

becomes progressively worse for values of s below z 0.09.
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crossover will depend on the details of the family of size distri-

butions under consideration.

B. Inhomogeneous packings

If a packing is non-homogeneous then assumption A1 breaks

down and the model no longer applies. In such a case each

particle sees a local environment characterized by a size distri-

bution P(r, k) where k is a variable describing the inhomogeneity.

In such a case the k dependence would have to be incorporated

into a new model to describe the packing. This may not always be

possible to do.

One common form of inhomogeneity is size segregation in

packings. Such segregation often arises from buoyancy effects

in emulsion and colloidal systems or ‘‘Brazil nut’’-like effects in

granular packings. In a layered size-segregated packing, even

though the system taken as a whole may be strongly polydisperse

each layer is only weakly polydisperse, with a radius depending

on the layer position. In this case the k parameter will be the layer

position h such that the polydispersity is described by P(r, h). If

this h dependence is propagated through the model it should be

able to describe the packing in each layer as P(n|h), P(z|h), P(f|h).

Another, less tractable, form of size segregation arises in

bidisperse packings with large size ratios in which the majority of

the volume is filled by large particles. Such a packing will consist of

a network of large particles decorated by small particles in the

voids. Most small particles will be in a local environment domi-

nated by small particles. Therefore the particle size distribution

about a given particle will depend on that particle’s size and the

overall geometry of packing. The propagation of this form of size

segregation through the model would require an a priori knowl-

edge of the packing structure, rendering the model superfluous.

C. Bidisperse packings

It is easy to imagine packings for which the simplifications S1 and

S2 will not hold. Simplification S1 fails in the regime of bidisperse

packings where the volume fraction of small particles is less than

that of large particles.46 In this regime the small particle effec-

tively decouple from the packing with a majority becoming

‘‘floaters’’ or ‘‘rattlers’’. Therefore the ratio of contacts to

neighbours p(r) about a small particle must necessarily be smaller

around a small particle than around a big particle. Since a floater

has on average a lower packing fraction than a particle with

many contacts the effect will be that our model overestimates the

packing fraction in this regime, leading to a packing fraction

larger than the infinite size ratio upper limit.47 However, by

abandoning the simplification that p(r) is a constant independent

of r it should be possible to accurately describe the packing and

predict the value of packing fraction in this regime.

VII. Conclusion

In this article we have presented a model with which to describe

random polydisperse packings of frictionless spheres by character-

izing the distributions of nearest neighbours, contacts, and local

packing fraction. In our model, a stable random packing is created

in two stages at the single particle level. First, the available space

around each particle is filled by a set of nearest neighbours. Second,

mechanical equilibrium is achieved by choosing some of these
Soft Matter, 2010, 6, 2949–2959 | 2957



neighbours to be in contact with the central particle. As in any

effective model there are necessarily limitations to applicability. The

fundamental condition for this model to function is that the poly-

dispersity is the dominant source of disorder in the packing.

Therefore, this model can not be applied to packings which are

highly monodisperse. As presently constructed, this model can not

describe inhomogeneous packings. Further, some of the simplifi-

cations must be abandoned to accurately characterize bidisperse

packings in the ‘‘floater’’ regime. The applicability of this model,

however, can be extended at the cost of adding additional param-

eters. For example, this model can be extended to non-homoge-

neous packings by first identifying the variable upon which the

non-homogeneity depends (e.g. height for size segregated samples)

and then running all model calculations predicated on that variable.

Turning the granocentric model into a complete theory would

require a computation of the parameters in the model from first

principles given only a radius distribution as the starting point.

Such a program is far beyond the scope of the present paper but

might be an interesting path to follow to gain a better under-

standing of the random packing of spheres.

As constructed, this model is a purely statistical description of

packings. However, it is strongly suggestive of a dynamical process

for the formation of packings. This provides an impetus to pursue

an extension of this model to describe this dynamical formation.
Appendix A: 2-Point random variable

The ‘‘granocentric’’ point of view used to construct the model

allows for all quantities to be dependent on the radius of the

central particle. As a result, most of the physical quantities

involved in the model are two-point quantities, depending both

on the radius of the central particle and on the radius of

a neighbour. In particular, this is the case for the solid angle

subtended on the central particle by a neighbour, defined by

eqn (8). Let us consider the generic case of a physical quantity

f(r, rc). The randomness coming from the radius distribution

P(r) propagates to f both through r and rc. The description of the

resulting randomness is achieved using a conditional probability

distribution.

Consider a given central particle, of radius rc. The physical

quantity f(r, rc) is then a function of one variable (r). If this

reduced function defines a change of variable then the conditional

distribution of f for a given rc, P(f|rc), is obtained from P(r) by

Pðf j rcÞ ¼
1

df=dr
Pðrðf; rcÞÞ: (A1)

This expression is used, for instance, to compute the solid angle

distribution around a given central particle fc(u), which in turn is

used to compute the contact and neighbour distributions around

a particle of radius rc. From this conditional distribution, the

distribution of f can be obtained by

P(f) ¼
Ð

drcP(f|rc)P(rc). (A2)
Appendix B: Sum of random variables

In the model, some physical quantities appear as sums of other

random variables, as is the case for the total solid angle occupied

by neighbours around a central particle, or the local volume of
2958 | Soft Matter, 2010, 6, 2949–2959
a cell defined in eqn (31). We assume that the summed variables

are independent, in order to use the following property. If x and y

are two independent random variables distributed according to

Px and Py respectively, then their sum x + y is a random variable,

distributed according to Px+y ¼ Px + Py, where + is the

convolution product. In practice, the calculation of Px+y is done

by taking the Laplace transform of the previous relation, turning

the convolution product into a simple product:

L[Px+y] ¼L[Px] � L[Py]. (B1)

As a simple extension, let us consider the particular case of

y ¼
Xn

k¼1
xk þ

Xz

j¼1
wj , where xk and wk are independent, and

all the xk are distributed according to Px and the wk according to

Pw. Then the Laplace transform of Pn, z(y), the distribution of

y for a given n and a given z is obtained from:

L[Pn,z] ¼L[Px]n � L[Pw]z. (B2)

Such an extension is useful to compute the local packing fraction

distribution, for a central particle with n neighbours among

which z are in contact, as defined in eqn (31).
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