BioNLP Shared Task 2011 - Bacteria Gene Interactions and Renaming

To cite this version:

HAL Id: hal-00641586
https://hal.science/hal-00641586
Submitted on 16 Nov 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
BioNLP Shared Task 2011 – Bacteria Gene Interactions and Renaming

Julien Jourde¹, Alain-Pierre Manine², Philippe Veber¹, Karèn Fort³, Robert Bossy¹, Erick Alphonse², Philippe Bessières¹

¹Mathématique, Informatique et Génome – Institut National de la Recherche Agronomique
MIG INRA UR1077
F78352 Jouy-en-Josas, France
forename.lastname@jouy.inra.fr

²PredictiveDB
16, rue Alexandre Parodi
F75010 Paris, France
apmanine,alphonse@predictivedb.com

³LIPN – Université Paris-Nord/INIST CNRS UPS76 – F54514
Vandœuvre-lès-Nancy, France
karen.fort@inist.fr

Abstract

We present two related tasks of the BioNLP Shared Tasks 2011: Bacteria Gene Renaming (Rename) and Bacteria Gene Interactions (GI). We detail the objectives, the corpus specification, the evaluation metrics, and we summarize the participants’ results. Both issued from PubMed scientific literature abstracts, the Rename task aims at extracting gene name synonyms, and the GI task aims at extracting genic interaction events, mainly about gene transcriptional regulations in bacteria.

1 Introduction

The extraction of biological events from scientific literature is the most popular task in Information Extraction (IE) challenges applied to molecular biology, such as in LLL (Nédellec, 2005), BioCreative Protein-Protein Interaction Task (Krallinger et al., 2008), or BioNLP (Demner-Fushman et al., 2008). Since the BioNLP 2009 shared task (Kim et al., 2009), this field has evolved from the extraction of a unique binary interaction relation between proteins and/or genes towards a broader acceptance of biological events including localization and transformation (Kim et al., 2008). In the same way, the tasks Bacteria Gene Interactions and Bacteria Gene Renaming deal with the extraction of various molecular events capturing the mechanisms relevant to gene regulation in prokaryotes. The study of bacteria has numerous applications for health, food and industry, and overall, they are considered as organisms of choice for the recent integrative approaches in systems biology, because of their relative simplicity.

Compared to eukaryotes, they allow easier and more in-depth analysis of biological functions and of their related molecular mechanisms.

Processing literature on bacteria raises linguistic and semantic specificities that impact text analysis. First of all, gene renaming is a frequent phenomenon, especially for model bacteria. Hence, the abundance of gene synonyms that are not morphological variants is high compared to eukaryotes. The history of bacterial gene naming has led to drastic amounts of homonyms and synonyms which are often missing (or worse, erroneous) in gene databases. In particular, they often omit old gene names that are no longer used in new publications, but that are critical for exhaustive bibliography search. Polysemy makes the situation even worse, as old names frequently happen to be reused to denote different genes. A correct and complete gene synonym table is crucial to biology studies, for instance when integrating large scale experimental data using distinct nomenclatures. Indeed this information can save a lot of bibliographic research time. The Rename Task is a new task in text-mining for biology that aims at extracting explicit mentions of renaming relations. It is a critical step in gene name normalization that is needed for further extraction of biological events such as genic interactions.

Regarding stylistics, gene and protein interactions are not formulated in the same way for eukaryotes and prokaryotes. Descriptions of interactions and regulations in bacteria include more knowledge about their molecular actors and mechanisms, compared to the literature on eukaryotes. Typically in bacteria literature, the genic regulations are more
likely expressed by direct binding of the protein, while in eukaryote literature, non-genic agents related to environmental conditions are much more frequent. The bacteria GI Task is based on (Manine et al., 2010) which is a semantic re-annotation of the LLL challenge corpus (Nédellec, 2005), where the description of the GI events in a fine-grained representation includes the distinction between expression, transcription and other action events, as well as different transcription controls (e.g. regulon membership, promoter binding). The entities are not only protein agent and gene target but extend to families, complexes and DNA sites (binding sites, promoters) in order to better capture the complexity of the regulation at a molecular level. The task consists in relating the entities with the relevant relations.

2 Rename Task Description

The goal of the Rename task is illustrated by Figure 1. It consists in predicting renaming relations between text-bound gene names given as input. The only type of event is Naming where both arguments are of type Gene. The event is directed, the former and the new names are distinguished. Genes and proteins were not distinguished because of the high frequency of metonymy in renaming events. The relation to predict between genes is a Naming of a former gene name into a new one. In the example of Figure 1, YtaA, YvdP and YnzH are the former names of three proteins renamed CotI, CotQ and CotU, respectively.

We propose that, of the novel proteins YtaA, YvdP and YnzH, three new names are introduced: CotI, CotQ and CotU, respectively.

Figure 1: Examples of relations to be extracted.

2.1 Rename Task corpus

The Rename Task corpus is a set of 1,836 PubMed references of bacterial genetic and genomic studies, including title and abstract. A first set of 23,000 documents was retrieved, identifying the presence of the bacterium Bacillus subtilis in the text and/or in the MeSH terms. B. subtilis documents are particularly rich in renaming mentions. Many genes were renamed in the middle of the nineties, so that the new names matched those of the Escherichia coli homologs. The 1,843 documents the most susceptible to mention renaming were automatically filtered according to two non exclusive criteria:

1. Either the document mentions at least two gene synonyms as recorded in the fusion of seven B. subtilis gene nomenclatures. This led to a set of 703 documents.
2. Or the document contains a renaming expression from a list that we manually designed and tested (e.g. rename, also known as). It is an extension of a previous work by (Weissenbacher, 2004). A total of 1,140 new documents not included in the first set match this criteria.

About 70% of the documents (1,146) were kept in the training data set. The rest was split into the development and test sets, containing 246 and 252 documents respectively. Table 1 gives the distribution of genes and renaming relations per corpus. Gene names were automatically annotated in the documents with the nomenclature of B. subtilis. Gene names involved in renaming acts were manually curated. Among the 21,878 gene mentions in the three corpus, 680 unique names are involved in renaming relations which represents 891 occurrences of genes.

<table>
<thead>
<tr>
<th></th>
<th>Training + Dev.</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documents</td>
<td>(1,146 + 246)</td>
<td>252</td>
</tr>
<tr>
<td>Gene names</td>
<td>18,503</td>
<td>3,375</td>
</tr>
<tr>
<td>Renamings</td>
<td>373</td>
<td>88</td>
</tr>
</tbody>
</table>

Table 1: Rename Task corpus content.

2.2 Rename Task annotation and guidelines

Annotation procedure The corpus was annotated in a joint effort of MIG/INRA and INIST/CNRS. The reference annotation of the Rename Task corpus was done in two steps, a first annotation step by science information professionals of INIST with MIG initial specifications, a second checking step by people at MIG. Two annotators and a project manager were in charge of the task at INIST. The documents were annotated using the Cadixe editor1. We

1http://caderige.imag.fr/Articles/CADIXEXML-Annotation.pdf
provided to them detailed annotation guidelines that were largely modified in the process. A subset of 100 documents from the first set of 703 was annotated as a training session. This step was used to refine the guidelines according to the methodology described in (Bonneau-Maynard et al., 2005). Several inter-annotator agreements coefficients were computed to measure the discrepancy between annotators (Fort et al., 2009). With a *kappa* and *pi* scores (for more details on those, see (Artstein and Poesio, 2008)), the results can be considered satisfactory. The manual analysis of the 18 discrepancies led to enrich the annotation guidelines. The first hundreds of documents of the second set did not mention any renaming, leading to concentrate the annotation efforts on the first set. These documents actually contained renamings, but nearly exclusively concerning other kinds of biological entities (protein domains, molecules, cellular ultrastructures, etc.).

Guidelines In order to simplify the task, only short names of gene/protein/groups in *B. subtilis* were considered. Naming conventions set short names of four letters long with an upper case letter at the end for all genes (e.g. gerE) and the same names with the upper case of the initial letter (e.g. GerE) and long names for the proteins (e.g. Spore germination protein gerE). But many irregular gene names exist (e.g. tuf), which are considered as well. It also happens that gene or protein name lists are abbreviated by factorization to form a sequence. For instance queCDEF is the abbreviation of the list of gene names queC, queD, queE and queF. Such aggregations are acceptable gene names as well. In any case, these details were not needed by the task participants since the corpus was provided with tagged gene names.

Most renaming relations involve couples of the same type, genes, proteins or aggregations. Only 18 relations link mixed couples of genes and proteins. In case of ambiguity, annotators would consult international gene databases and an internal INRA database to help them determine whether a given couple of names were actually synonyms.

Multiple occurrences of the same renaming relation were annotated independently, and had to be predicted. The renaming pairs are directed, the former and the new forms have to be distinguished. When the renaming order was not explicit in the document, the rule was to annotate by default the first member of the couple as the new form, and the second one as the former form. Figure 2 presents the most common forms of renaming.

Explicit renaming: ycsK should be renamed lipC

Implicit renaming: pds[k]aad

Figure 2: Common types of relations to be extracted.

Revised annotations INIST annotations were systematically checked by two experts in Bioinformatics from INRA. Mainly, encoding relations (e.g. the gene encoding sigma K (sigK)) that are not renaming cases were purged. Given the number of ambiguous annotations, we designed a detailed typology in order to justify acceptance or rejection decisions in seven different sub-cases hereafter presented. Three positive relations figure in Table 2, where the underlined names are the former names and the framed names are the new ones. Explicit renaming relations occur in 261 sentences, synonymy-like relations in 349 sentences, biological proof-based relations in 76 sentences.

Explicit renaming relation is the easiest positive case to identify. In the example, the aggregation of gene names ykvJKLM is clearly renamed by the authors as queCDEF. Although the four genes are con-

defined

PMID 15767583: Genetic analysis of ykvJKLM mutants in Acinetobacter confirmed that each was essential for queuosine biosynthesis, and the genes were renamed queCDEF.

Implicit renaming

PMID 8002615: Analysis of a suppressor mutation of sur0B20 (spo0A) mutation in Bacillus subtilis reveals that kinC encodes a histidine protein kinase.

Biological proof

PMID 1744050: DNA sequencing established that spoIII[F] and spoVB are a single monocistronic locus encoding a 518-amino-acid polypeptide with features of an integral membrane protein.

Table 2: Positive examples of the Rename Task.
cated, there is no evidence mentioned of them acting as an operon. Furthermore, despite the context involving mutants of Acinetobacter, the aggregation belongs correctly to *B. subtilis*.

Implicit renaming is an asymmetric relation since one of the synonyms is intended to replace the other one in future uses. The example presents two renaming relations between former names ssb and spo0A, and new names kinC and sur0B20, respectively. The renaming relation between ssb and kinC has a different orientation due to additional information in the reference. Like in the preceding example, the renaming is a consequence of a genetic mutation experiment. Mutation names represent an important transversal issue that is discussed below.

Biological proof is a renaming relation induced by an explicit scientific conclusion while the renaming is not, as in the example where experiments reveal that two loci spoIIIF and spoVB are in fact the same one and then become synonyms. Terms such as “allelic to” or “identical to” usually qualify such conclusions. Predicting biological proof-based relations requires some biological modeling.

The next three cases are negative (Table 3). Underlined gene and protein names are involved in a relation which is not a renaming relation.

Protein encoding relation occurs between a gene and the protein it codes for. Some mentions may look like renaming relations. The example presents the gene yeaC coding for MoxR. No member of the couple is expected to replace the other one.

Homology measures the similarity between gene or protein sequences. Most of the homology mentions involve genes or proteins from different species (orthologues). The others compare known gene or protein sequences of the same species (paralogues). This may be misleading since the similarity mention may look like biological proof-based relations, as between ParA and Soj in Table 3.

Operon, regulon or family renaming involves objects that may look like genes, proteins or simple aggregations of gene or protein names but that are perceptibly different. The objects represent more than one gene or protein and the renaming does not necessarily affect all of them. More problematic, their name may be the same as one of the genes or proteins they contain, as in the example where sigA and rpoD are operons but are also known as gene names. Here, sigA (and so rpoD) represents at least two different genes. For the sake of clarity, operons, regulons and families are rejected, even if all the genes are clearly named, as in an aggregation.

The last point concerns mutation which are frequent in Microbiology for revealing gene phenotypes. They carry information about the original gene names (e.g., rvtA11 is a mutant name created by adding 11 to rvtA). But partial names cannot be partially annotated, that is to say, the original part (rvtA) should not be annotated in the mutation name (rvtA11). Most of these names are local names, and should not be annotated because of their restricted scope. It may happen so that the mutation name is registered as a synonym in several international databases. To avoid inconsistencies, all renamings involving a mutation referenced in a database were accepted, and only biological proof-based and explicit renamings involving a strict non-null unreferenced mutation (a null mutation corresponds to a total suppression of a gene) were accepted.

2.3 Rename Task evaluation procedure

The evaluation of the Rename task is given in terms of recall, precision and F-score of renaming relations. Two set of scores are given: the first set is computed by enforcing strict direction of renaming relations, the second set is computed with relaxed direction. Since the relaxed score takes into account renaming relations even if the arguments are inverted, it will necessarily be greater or equal than the strict score. The participant score is the relaxed score, the strict score is given for information. Relaxed scores are informative with respect to the ap-
The motivation of the Rename task is to keep bacteria gene synonyms tables up to date. The choice of the canonical name among synonyms for denoting a gene is done by the bacteriology community, and it may be independent of the anteriority or novelty of the name. The annotation of the reference corpus showed that the direction was not always decidable, even for a human reader. Thus, it would have been unfair to evaluate systems on the basis of unsure information.

2.4 Results of the Rename Task participants

Final submissions were received from three teams, the University of Turku (Uturku), the University of Concordia (Concordia) and the Bibliome team from MIG/INRA. Their results are summarized in Table 4. The ranking order is given by the overall F-score for relations with relaxed argument order.

<table>
<thead>
<tr>
<th>Team</th>
<th>Prec.</th>
<th>Recall</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ. of Turku</td>
<td>95.9</td>
<td>79.6</td>
<td>87.0</td>
</tr>
<tr>
<td>Concordia Univ.</td>
<td>74.4</td>
<td>65.9</td>
<td>69.9</td>
</tr>
<tr>
<td>INRA</td>
<td>57.0</td>
<td>73.9</td>
<td>64.4</td>
</tr>
</tbody>
</table>

Table 4: Participant scores at the Rename Task.

Uturku achieved the best F-score with a very high precision and a high recall. Concordia achieved the second F-score with balanced precisions and recalls. Bibliome is five points behind with a better recall but much lower precision. Both UTurku and Concordia predictions rely on dependencies (Charniak-Johnson and Stanford respectively, using McCloskey model), whereas Bibliome predictions rely on bag of words. This demonstrates the high value of dependency parsing for this task, in particular for the precision of predictions. We notice that UTurku system uses machine learning (SVM) and Concordia uses rules based on trigger words. The good results of UTurku confirms the hypothesis that gene renaming citations are highly regular in scientific literature. The most frequently missed renamings belong to the Biological Proof category (see Table 2). This is expected because the renaming is formulated as a reasoning where the conclusion is only implicit.

2.5 Discussion

The very high score of Uturku method leads us to conclude that the task can be considered as solved by a linguistic-based approach. Whereas Bibliome used an extensive nomenclature considered as exhaustive and sentence filtering using a SVM, Uturku used only two nomenclatures in synergy but with more sophisticated linguistic-based methods, in particular syntactic analyses. Bibliome methods showed that a too high dependence to nomenclatures may decrease scores if they contain compromised data. However, the use of an extensive nomenclature as done by Bibliome may complement Uturku approach and improve recall. It is also interesting that both systems do not manage renamings crossing sentence boundaries.

The good results of the renaming task will be exploited to keep synonym gene lists up to date with extensive bibliography mining. In particular this will contribute to enriching SubtiWiki, a collaborative annotation effort on *B. subtilis* (Flórez et al., 2009; Lammers et al., 2010).

3 Gene Interactions Task description

The goal of the Bacteria GI Task is illustrated by Figure 3. The genes cotB and cotC are related to their two promoters, not named here, by the relation \textit{PromoterOf}. The protein GerE is related to these promoters by the relation \textit{BindTo}. As a consequence, GerE is related to cotB and cotC by an \textit{Interaction} relation. According to (Kim et al., 2008), the need to define specialized relations replacing one unique and general interaction relation was raised in (Manine et al., 2009) for extracting genic interactions from text. An ontology describes relations and entities (Manine et al., 2008) catching a model of gene transcription to which biologists implicitly refer in their publications. Therefore, the ontology is mainly oriented towards the description of a structural model of genes, with molecular mechanisms of their transcription and associated regulations.

The corpus roughly contains three kinds of genic

![Figure 3: Examples of relations to be extracted.](image-url)
interaction mentions, namely regulations, regulon membership and binding. The first case corresponds to interactions the mechanism of which is not explicitly given in the text. The mention only tells that the transcription of a given gene is influenced by a given protein, either positively (activation), negatively (inhibition) or in an unspecified way. The second kind of genic interaction mention (regulon membership) basically conveys the same information, using the regulon term/concept. The regulon of a gene is the set of genes that it controls. In that case, the interaction is expressed by saying that a gene is a member of some regulon. The third and last kind of mention provides with more mechanistic details on a regulation, since it describes the binding of a protein near the promoter of a target gene. This motivates the introduction of Promoter and Site entities, which correspond to DNA regions. It is thus possible to extract the architecture of a regulatory DNA region, linking a protein agent to its gene target (see Figure 3).

The set of entity types is divided into two main groups, namely 10 genic entities and 3 kinds of action (Table 5). Genic entities represent biological objects like a gene, a group of genes or a gene product. In particular, a GeneComplex annotation corresponds to an operon, which is a group of genes that are contiguous in the genome and under the control of the same promoter. The annotation GeneFamily is used to denote either genes involved in the same biological function or genes with sequence homologies. More importantly, PolymeraseComplex annotations correspond to the protein complex that is responsible for the transcription of genes. This complex includes several subunits (components), combined with a sigma factor, that recognizes specific promoters on the DNA sequence.

The second group of entities are phrases expressing either molecular processes (e.g. sequestration, dephosphorylation, etc.) or the molecular state of the bacteria (e.g. presence, activity or level of a protein). They represent some kind of action that can be performed on a genic entity. Note that transcription and expression events were tagged as specific actions, because they play a specific part in certain relations (see below).

The annotation of entities and actions was provided to the participants, and the task consisted in extracting the relations listed in Table 6.

The relations are binary and directed, and rely the entities defined above. The three kinds of interactions are represented with an Interaction annotation, linking an agent to its target. The other relations provide additional details on the regulation, like elementary components involved in the reaction (sites, promoters) and contextual information (mainly provided by the ActionTarget relations). A formal definition of relations and relation argument types can be found on the Bacteria GI Task Web page.

3.1 Bacteria Gene Interactions corpus

The source of the Bacteria GI Task corpus is a set of PubMed abstracts mainly dealing with the tran-
cription of genes in *Bacillus subtilis*. The semantic annotation, derived from the ontology of (Manine et al., 2008), contains 10 molecular entities, 3 different actions, and 10 specialized relations. This is applied to 162 sentences from the LLL set (Nédellec, 2005), which are provided with manually checked linguistic annotations (segmentation, lemmatization, syntactic dependencies). The corpus was split into 105 sentences for training, 15 for development and 42 for test. Table 7 gives the distribution of the entities and actions per corpus and Table 8 gives the distribution of the relations per corpus.

3.2 Annotation procedures and guidelines

The semantic annotation scheme was developed by two annotators through a series of independent annotations of the corpus, followed by reconciliation steps, which could involve concerted modifications (Manine et al., 2010). As a third and final stage, the corpus was reviewed and the annotation simplified to make it more appropriate to the contest. The final annotation contains 748 relations distributed in nine categories, 146 of them belonging to the test set.

The annotation scheme was generally well suited to accurately represent the meaning of the sentences in the corpus, with one notable exception. In the corpus, there is a common phrasing telling that a protein P regulates the transcription of a gene G by a given sigma factor S. In that case, the only annotated interactions are between the couples (P, G) and (S, G). This representation is not completely satisfactory, and a ternary relation involving P, S and G would have been more adequate.

Additional specific rules were needed to cope with linguistic issues. First, when the argument of a relation had coreferences, the relation was repeated for each maximally precise coreference of the argument. Second, in case of a conjunction like “sigmaA and sigmaX holoenzymes”, there should ideally be two entities (namely “sigmaA holoenzyme” and “sigmaX holoenzyme”); however, this is not easy to represent using the BioNLP format. In this situation, we grouped the two entities into a single one. These cases were rare and unlikely affected the feasibility of the task, since entities were provided in the test set.

3.3 Gene Interactions evaluation procedure

The training and development corpora with the reference annotations were made available to participants by December, 1st on the BioNLP shared Task pages together with evaluation software. The test corpus with the entity annotations has been made available by March, 1st. The participants sent the predicted annotations to the BioNLP shared Task organizers by March, 10th. The evaluation results were computed and provided to the participants and on the Web site the same day. The participants are evaluated and ranked according to two scores: F-score for all event types together, and F-score for the *Interaction* event type. In order for a predicted event to count as a hit, both arguments must be the same as in the reference in the right order and the event type must be the same as in the reference.
3.4 Results of GI Task participants

There was only one participant, whose results are shown in Tables 9 and 10. Some relations were not significantly represented in the test set and thus the corresponding results should be considered with caution. This is the case for RegulonMember and TranscriptionFrom, only represented two times each in the test. The lowest recall, 17%, obtained for the SiteOf relation is explained by its low representation in the corpus: most of the test errors come from a difficult sentence with coreferences.

The recall of 56% for the Interaction relation certainly illustrates the heterogeneity of this category, gathering mentions of interactions at large, as well as precise descriptions of gene regulations. For instance, Figure 4 shows a complex instance where all of the interactions were missed. Surprisingly, we also found false negatives in rather trivial examples (“ykuD was transcribed by SigK RNA polymerase from T4 of sporulation.”). Uturku used an SVM-based approach for extraction, and it is thus delicate to account for the false negatives in a simple and concise way.

<table>
<thead>
<tr>
<th>Event</th>
<th>U. Turku scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Precision</td>
<td>85</td>
</tr>
<tr>
<td>Global Recall</td>
<td>71</td>
</tr>
<tr>
<td>Global F-score</td>
<td>77</td>
</tr>
<tr>
<td>Interaction Precision</td>
<td>75</td>
</tr>
<tr>
<td>Interaction Recall</td>
<td>56</td>
</tr>
<tr>
<td>Interaction F-score</td>
<td>64</td>
</tr>
</tbody>
</table>

Table 9: University of Turku global scores.

<table>
<thead>
<tr>
<th>Event</th>
<th>Prec.</th>
<th>Rec.</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>85</td>
<td>71</td>
<td>77</td>
</tr>
<tr>
<td>ActionTarget</td>
<td>94</td>
<td>92</td>
<td>93</td>
</tr>
<tr>
<td>BindTo</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Interaction</td>
<td>75</td>
<td>56</td>
<td>64</td>
</tr>
<tr>
<td>PromoterDependence</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>PromoterOf</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>RegulonDependence</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>RegulonMember</td>
<td>100</td>
<td>50</td>
<td>67</td>
</tr>
<tr>
<td>SiteOf</td>
<td>100</td>
<td>17</td>
<td>29</td>
</tr>
<tr>
<td>TranscriptionBy</td>
<td>67</td>
<td>50</td>
<td>57</td>
</tr>
<tr>
<td>TranscriptionFrom</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 10: University of Turku scores for each relation.

The addition of ClpX to in vitro transcription reactions resulted in the stimulation of RNAP holoenzyme activity, but sigmaH-RNAP was observed to be more sensitive to ClpX-dependent stimulation than sigmaA-RNAP.

Figure 4: Examples of three missed interactions.

3.5 Discussion

The GI corpus was previously used in a relation extraction work (Manine et al, 2009) based on Inductive Logic Programming (Muggleton and Raedt, 1994). However a direct comparison of the results is not appropriate here since the annotations were partially revised, and the evaluation setting was different (leave-one-out in Manine’s work, test set in the challenge).

Nevertheless, we note similar tendencies if we compare relative results between relations. In particular, it was also found in Manine’s paper that SiteOf, TranscriptionBy and Interaction are the most difficult relations to extract. It is also worth to mention that both approaches rely on syntactic dependencies, and use the curated dependencies provided in the corpus. Interestingly, the approach by the University of Turku reports a slightly lower F-measure with dependencies calculated by the Charniak parser (about 1%, personal communication). This information is especially important in order to consider a production setting.

4 Conclusion

The quality of results for both challenges suggests that current methods are mature enough to be used in semi-automatic strategies for genome annotation, where they could efficiently assist biological experts involved in collaborative annotation efforts (Lammers et al., 2010). However, the false positive rate, notably for the Interaction relation, is still too high for the extraction results to be used as a reliable source of information without a curation step.

Acknowledgments

We thank Françoise Tisserand and Bernard Talercio (INIST) for their work on the Rename corpus, and the QUAERO Programme funded by OSEO (French agency for innovation) for its support.
References

