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Adiabatic approximation for a two-level atom in
a light beam

Amandine Aftalion* and Francis Nier!

January 23, 2012

Abstract: Following the recent experimental realization of synthetic gauge
potentials, Jean Dalibard addressed the question whether the adiabatic ansatz
could be mathematically justified for a model of an atom in 2 internal states,
shone by a quasi resonant laser beam. In this paper, we derive rigorously the
asymptotic model guessed by the physicists, and show that this asymptotic
analysis contains the information about the presence of vortices. Surprisingly,
the main difficulties do not come from the nonlinear part but from the linear
Hamiltonian. More precisely, the analysis of the nonlinear minimization problem
and its asymptotic reduction to simpler ones, relies on an accurate partition of
low and high frequencies (or momenta). This requires to reconsider carefully
previous mathematical works about the adiabatic limit. Although the estimates
are not sharp, this asymptotic analysis provides a good insight about the validity
of the asymptotic picture, with respect to the size of the many parameters
initially put in the complete model.

Résumé : Suite a la réalisation expérimentale de champs de jauge artificiels,
Jean Dalibard a soulevé la question de I'approximation adiabatique pour un
modele d’atome a deux niveaux, éclairé par un faisceau laser résonnant. Dans
cet article, nous dérivons rigoureusement le modele asymptotique deviné par les
physiciens et montrons que cette analyse contient I'information sur la présence
de vortex. Les difficultés, et c¢’est une surprise, ne viennent pas du terme non
linéaire. Plus précisément, ’analyse du probleme non linéaire, et la réduction
asymptotique a un modele plus simple, reposent sur une séparation précise
des grandes et basses fréquences (ou grands et bas moments). Cela nécessite
de reconsidérer avec soin les résultats mathématiques existants sur la limite
adiabatique. Bien que les estimations ne soient pas optimales, elles fournissent
une bonne intuition sur la validité du modele asymptotique, par rapport aux
tailles des différents parametres initialement mis dans le modele.
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1 Introduction

A lot of interest, both in the mathematical and physical community, has been
devoted in the past 10 years to the study of the rotation of a Bose Einstein
condensate: experiments [MCWD1, MCWD2], theoretical works (see [Coo, Fet]
for reviews), mathematical contributions [Aft, LiSe]. In the first experimental
production of such rotating Bose Einstein condensates, a rotating laser beam
was superimposed on the magnetic trap holding the atoms in order to spin up
the condensate by creating a harmonic anisotropic rotating potential [MCWDI,
MCWD2]. Recently, a new experimental device has emerged which consists in
realizing artificial or synthetic gauge magnetic forces and leads to the formation
of vortex lattices at rest in the lab frame [LCGPS]. A colloquium [DGJO] has
analyzed in detail the artificial gauge fields and their manifestations. In order
to understand the main ingredients of the physics of geometrical gauge fields,
[DGJO] (see also [GCYRD]) study the case of a single quantum particle state
with a 2 levels internal structure. More complex systems with more than 2
internal levels are also discussed in [DGJO] but we stick here to the simpler
case of 2 levels, which contains all the mathematical difficulties. A key issue
is to determine whether one internal state can be followed adiabatically. A
question raised by Jean Dalibard is to analyze in particular whether vortex
formation may break down the adiabatic process. In [DGJO], some conditions
are provided, that we want to analyze from a mathematical point of view.
We are interested in the minimization of the energy

G
Eu@) = [ IVOP+ Vil nlo + Slolt oy

cos(fy, (x)) ek W) sin(f,, (x))
+Qn,€,< (SC)<§Z5, <e—ilpk(y) Sin(@gm (w)) _ COS(@@N (.T)) > ¢>(C27

where ¢ = (9159 € € and |6 = 01w + lonlo ). We

prescribe that the L? norm of ¢ is 1. Here ¢; and ¢, are the internal degree
of freedom of a particle: ground and excited state of the atom. It is assumed
that the atom is shone by a quasi resonant laser beam. The functions Q, ¢, (),
vr(y) and 0, (x) are given as in [DGJO] by

Qe () = nﬂ(ei) with Q(z) = /1422,
x 1

00 (2) = 0(5-) with cos(0(e)) = == $in(0(@) = —=—

where ¢ is the phase of the propagating laser beam while @ is the mixing angle.
We define

cos(f(x W) sin(0(z
M(z,y) = Q(z) <ei¢<y>(s§£1()g)(x)) —cos(Q((;c())))) . (1.1)

[\]



The matrix M models the coupling between the atom and the laser. The 2 x 2
matrix M ( i V{:ky) can be diagonalized in the bases (¢4, 1_) respectively

associated Wlth the eigenvalues +Q(x),

ve=(50) o= (52) (12)

with C' = cos (% Q(ﬁ)), S = sin (%Q(\/ka)) and ¢ = /.ky. When the
particle follows adiabatically the eigenstate 1_, this corresponds to set formally
¢ = u(x,y)_, where u(z,y) € C in ;. Then u minimizes a Gross-Pitaevskii
type energy functional with a modified trapping potential called the geometrical
gauge potential. The scalar potential V, (x,y) = Vi(z,y) Idcz will be adjusted
in order to produce a harmonic potential after the addition of the geometrical
gauge potential from the adiabatic theory. We want to justify the adiabatic
approximation for states close to ¥_ and analyze the error term between the
initial and effective Hamiltonians.

After a rescaling, the parameter occurring in the experiments have the fol-
lowing orders of magnitude

k~10 | G~600 , £.~25 ., k~050,

but other values can be discussed. Conditions on the strength and spatial extent
of the artificial potential have to be prescribed in order to induce large circula-
tion. Two cases, £,k > 1 and .k < 1, can be distinguished and the problem
has to be rewritten in two different ways in order to apply semiclassical tech-
niques. In fact, we will focus on the case ¢,k > 1, corresponding to the previous
numerical values. The complete analysis is carried out in the asymptotic regime
lk — 400 but some partial results are also valid for £,k <1 or {,k — 0.

A change of scale ¢(z,y) = 4 / w z / ) A / y yields a new expression for the

energy:
[, 008 +10,08)+ V. f NCE
cos(t?(\/m ' e(VREY) sin(6( . )
+ rQ( kﬁ,«u)w’ < —ip(VELyy) SIH(Q(\/ZT,{)) —cos(8( =) Ve

ko4
+ %Wﬂ dxdy .

According to the two cases ¢k > 1 or .k < 1, we define a small parameter
¢ that allows to rescale the energy. In fact, we define rather the parameter
£2%29 where § can be taken as a first step equal to 5/2. The exponent § >
0 is a technical trick which provides the right quantitative estimates for the
adiabatic approximation with a quadratic kinetic energy term. The suitable
choice of this new parameter ¢ is discussed further down in this introduction, in
Subsections 1.1 and 1.2. The small parameter € > 0 is thus introduced according
to the two cases:



if £,k > 1, then

' kb Kkl 7
(This leads in our example to e2¥2% = 2.5 1073.)

if {.k <1, then

2
g2+2 — LS , 0>0 G. = Gk _ G g2+2, (1.3)
K

vz - 1 ,6>0 Ge = Gk _ = Gkl e, (1.4)

2r ’ Kl

We define
T 1) it ke, > 1,

_ _ | G
=) = { (1,kl,) it hl, <1. (1.5)
In both cases, this leads to

KT1E(9) = E(1) (1.6)
where
E(W) =¥, Hpin¥) + /|¢|4 dzxdy (1.7)
Ger = Grpr,e?t? (1.8)
and

HLin = _EngzTyEQA + V;;‘,T(-Ta y) + M(\l T_zxa \/ %y) ) (19)
Ver(zy) = wHV( \/ \/ (to be fixed). (1.10)

The quadratic energy (linear Hamiltonian) is

Easc@) = [ I Vo 4 Vo )l
M [E [Ty sty 1)
y T
=, Hra). (1.12)

At least when 7, = 7, = 1 and 0 = 0, this problem looks like the standard
problem of spatial adiabatic approximation studied in [Sor|, [MaSo], [MaSo2]
[PST], although it requires some adaptations because the symbols are neither
bounded nor elliptic.

We shall consider the asymptotic analysis as ¢ — 0 with uniform control
with respect to the parameters G, kf,, which allow to fix the range of validity
of the reduced models. Then we shall consider the asymptotic behaviour of
the reduced model and the whole system as ¢,k is large. Specifying the right
assumptions on V; (z,y) or V,,, possibly in a scale depending on (¢, k), is also
an issue.



1.1 Main result for the Gross-Pitaevskii energy

We shall choose the potential V; ; in (1.10) such that after the addition of the
adiabatic potential in the lower energy band, the effective potential is almost
harmonic. Namely, we assume

£2+26 oios 72 1
— 2 z
Ver(z,y) = Wv( o, /Toy)+ N 1 + T 22— 05 ra?)? + 72|
(1.13)
with the potential v chosen such that
v(z,y) = (@ + ¥ )xo(@® +9%) + (1 — xo(@® +y7)) (1.14)

xo €C3°([0,2) , 0<xy <1, xv=1on]0,1],

and fy > 0 parametrizes the shape of the quadratic potential around the origin.
With these assumptions on the potential V ;, if one chooses ¥ = u(z,y)y_,
where 9_ is the eigenfunction corresponding to —Q(x+/7,/7,) of the matrix
Qxr/Ta [ Ty) M (x\/Ta /Ty, Y\/Ty/Ts), then the linear part Hr;, in &, is formally
replaced by the scalar e2+26 [ where

H =-9*-

2
T 1
D, — i /Ty - 1.15
( Yy 12 /1+me2) +€%/va( Tz . y) ( )

In the limit 7, — 0, a natural (e, 7)-independent scalar reduced model emerges:

; 2 2
1T,y  X°+Y

En(u) = (u, [—85—(511—3) + z ]u>+g/ﬂq{2|u|4, u(z,y) € C.

Because k is large, or ¢ is small, it is natural to expect that the ground state of
E: is close, up to a unitary transform, to a vector u(x,y)t—. This is the aim of
the adiabatic theory and leads to a scalar problem. In order to get good bounds
on the energy, we need to study the limit 7,, small at the same time.

In all our work ¢y, > 0 and G > 0 are assumed to be fixed, while the
asymptotic behaviour is studied as ¢ — 0 and 7, — 0.
The quadratic part of the above energy is associated with the Hamiltonian

- 2 2
Hy, :fagf(ay—%)Mz ;y , (0< by < +00), (1.16)
1%
with the domain
Hy=SueL’R%), > |¢*Diullp2 <+o0p, q=(x,y) €R?, (1.17)
lal+18I<2

endowed with the norm || f[13, = 3,4 51<2 l¢*DSu||?, and the corresponding
distance dyy, . It is not difficult (see Section 4.2) to check that the minimization
of £y () under the constraint ||| 2 = 1, admits solutions and that the set,
Argmin £y, of ground states for £ is a bounded set of Hs .



Definition 1.1. For a functional € defined on a Hilbert space H (with +o00 as
a possible value), we set

Emin = inf E(u) and Argmin & ={u e H, E(u) = Emin and||ullp2 =1} .

ull2=1

Theorem 1.2. Fiz the constant {yv,G and 6 and assume, for some Cs =
C(£V7 G7 5) > 07

o

£20 < i .
=5
Let x = (x1,X2) be a pair of cut-off functions such that x3 + x3 = 1 on R?,

X1 € CS°(R?) and x1 = 1 in a neighborhood of 0.

There exists vy = ve,.a € (0, %] and for any given § > 0, there are constants

15 = 7(ly,G, ) >0, Cys = Cly,G,d,x) >0, and a unitary operator U=

Ul(e,7,0lyv,G,d) which guarantee the following properties

(1.18)

e The energy . introduced in (1.7) admits ground states as soon as 7, < Ts,
with B
|ga,min - 52+267’z5H,min| S 0652+257-x§ .

. . . S eiWyﬁ a4
e For any ¢ € Argmin &, written in the form ¢ = U —ig , the
e =

a .
vector a = <a+) satisfies

Cs
latllze < Coe®ry  lallae < — lallps + llalls < Cs,
xT
1 1
Ix2(7 Ja—||r2 < Cy 67
2ug

di, (X1 (1 Ja—, Argmin €x7) < Cys(ra” +),

2v9

1
lay|ne < Cse'™ | dp=(x1(rd.)a_, Argmin Ex) < Oy 5(1° + E)% .

All the constants can be chosen uniformly with respect to § € (0, o] for any
fized 69 > 0.

Remark 1.3. The proof is made in two steps: 1) the limit € — 0 corresponds
to the adiabatic limit for the linear problem and allows to replace the linear part
Hypin, of &, by the scalar g2+20 H_ given by (1.15) ; 2) the limit 7, — 0 allows
to reduce the asymptotic minimization problem to a simpler one where the linear
Hamiltonian is exactly Hy,, given by (1.16).

One main point in the proof is to have precise energy estimates for the limiting
problem. In our case, we obtain them in the limit 7, — 0, because explicit
calculations are more easily accessible when the magnetic field is constant, that
is in the case of Exmin. In theory, if one had precise energy estimates for a
general T, for the intermediate adiabatic model with the linear part ﬁ,, complete
results could be performed for general values of T, .



Remark 1.4. The exponent vy = vg, ¢ is a Lojasiewicz-Simon exponent (see
Remark 4.3 for an explanation and a.e. [Loj, BCR] for the definition of Lo-
Jjasiewicz exponents and [Sim] for its extension to PDE problems). It is % when
the Lagrange multiplier associated with w € Argmin Ey is a simple eigenvalue
of ﬁgv +G||? . There are reasons to think that it is the case for generic values
(by,G) € (0,+00) x [0, +00), namely outside a subanalytic subset of dimension
smaller than 1 (and possibly 0). Nevertheless for G = 0, there is a discrete set
of values of Oy for which Hy,, has multiple eigenvalues.

Consequences and applications: One issue is whether the presence of vor-
tices (zeroes of the wave function with circulation around them) might break the
adiabatic approach. The answer contained in our theorem is that vortices of 1)
in the original problem and vortices of the ground state of the Gross-Pitaevskii
energy &g are close and that the minimization of £ provides all the informa-
tion on the defects of ¥. Indeed, the smallness of a4 in L indicates that the
vortices of ¢ and a_ are close, and the last estimate of the theorem provides
that the vortices of a_ are close to that of the Gross-Pitaevskii problem.
Numerically, in [GCYRD], the authors observe vortices in a system with
artificial gauge as presented in [DGJO] and modeled with the energy £.. They
check that the vortex pattern is close to that of the Gross-Pitaevskii energy.
If one wants to use our results, one may process in the following way: once
G is fixed, choose £y such that the minimizers of £y have vortices (detailed
conditions will be given in section 4.2). Then take 7, > 0 and £ > 0 small

enough so that the L* norm of a4 and the L distance from X(TE.)a_ to a
ground state of &g are small. In the above result, the constants are not explicitly
controlled and this control is worse and worse when § increases. So it is not
explicit for given numerical values of the parameters ¢y, G, 7., € or equivalently
ly,G, Kk, k, L, . Nevertheless it provides a framework for numerical simulations,
where the observation of vortices can be confirmed by decreasing € and 7, . The
parameters of the experiments are just at the border where our constants may
become too large to provide a reasonable approximation.

The definitions (1.3) of € and (1.5) of 7, transform the condition (1.18) into

k2 11525 1 %
(5 <)

The larger §, the better, but § must not be too large because of the value of
the constants Cs, Cs. A value of a few units for ¢ does not affect them too
much. Another reason for keeping § small is that the initial small parame-
2425

1
ter is € , while the final error estimate of dyy, (x1(72.)a—, Argmin E) (or

1
dre(x1(72 .)a—, Argmin Ep)) contains also an O(e) term.
As an example for § = g, the above relation becomes

1R _ L (Y
(kﬂn)7/3 K ) Ty = ’E— P .



1

A given precision of order € + 777, is more easily achieved by taking k small and
b = ﬁ large (for example k = 0.1, £, = 500 x 25 is better than the values
k = 50, ¢,, = 25 given in the introduction). Note also that the external potential

Ve 7, defined in (1.13) must be adjusted up to the order g2t+20 — k—’j .

1.2 Gist of the analysis

Following the general idea of the founding articles [BoFo, BoOp] of Born, Fock
and Oppenheimer, it is well known in the physics literature that a Hamiltonian

system

(EDq)2 + uo(q) (E+O(q) E_O(q)) uo(q)”

is unitarily equivalent to a diagonal Hamiltonian plus a remainder term:

£2 K(Dq —OA(q))2 v, +0A(q))2> + |X(q)|2] +R(e),

where (D,, FA;(q)) are the covariant derivatives (FA(q) is the adiabatic connec-
tion) associated with the fiber bundles u(q) ((g) and uo(q) ((8), and | X (q)?

is the Born-Huang potential.
Since [Kat] and until recently ([NeSo, MaSo, PST, PST2]), this problem has
been widely studied by mathematicians, and the remainder term is formally:

R(e) = Z e?Cij(9)(eDg,)(eDy,) + O(7).

It is smaller than €2 for bounded frequencies (or momenta) but it has the same
size as the main term for a typical frequency of order % . For a nonlinear problem
or without any information about the frequency localization of the quantum
states, it is important to estimate the error terms in the low and high frequency
regimes.

Introducing § > 0 allows to obtain at the formal level

(P o, ae) i+

Z €2+460ij (Q) (EDQi)(EDQj ) + 0(53+46) )
i,J

where the remainder term is now O(2+4%) at the typical frequency % and thus

O(£?%) times the size of the main term. Such an error estimate can be made
in the L2-sense when applied to some wave function v lying in {|p| < r}, with
p quantized into ¢D,, or more precisely fulfilling ¢ = x(eDy)y for some x €
C5e({Ipl < 2r}) with

IR(e)u]| < Oy (274 + One™) ¥l < (Cy58™)e™ 0]l -

where C'y essentially depends on the estimates of N-derivatives of ug(q), E+(q) .
For a fixed &, we choose N > 2+ 44.



Remark 1.5. About the choice 6 > 0, another strategy could be considered
in order to optimize the exponent §, w.r.t €: under analyticity assumptions or
more generally assumptions which lead to an explicit control of Cn in terms
of N, one could think of optimizing first Cne w.r.t to N according to the
methods of [NeSo, Sor, MaSo]. As an example with Cny < N\, this would lead
to CneV < Ce— ¢ after choosing N = N(g) = [g, with some C < 1. Then
taking 6 = d(e) = —m would lead to

CCX(€2+45(€) + 67%) < QCCX€7%|"‘/)|| :

When 6(c) — oo and as compared with £2+23) considered as the order 1 term,
an O(£2149)) remainder term is almost of order 2.

We do not consider this optimization of 6 w.r.t €, with lim._,od(e) = +o0, be-
cause our initial small parameter is €212° and the final result of Theorem 1.2,

1
(the estimate about dy,(x1(72 .)a—, Argmin Exr) in the nonlinear problem), con-
tains an O(e). Hence we keep & > 0 independent of . This is why 0 is still
present in the constants of Theorem 1.2.

We need to perform a frequency (or momentum) truncation. We decompose
a general ¢ into x(eDy)¢ + (1 — x(eDy))y and use rough estimates for the part
(1—x(eDq))% which will be compensated in the minimization problem for £, by
good a priori estimates for the norm ||(1—x(eD,))y|| of the high-frequency part.
We also have to check that the unitary transform U, implementing the adiabatic
approximation, does not perturb too much the nonlinear part of £ ().

In our case, the limit ¢ — 0 leads to the Born-Oppenheimer Hamiltonians

2 i o v(/Tz.)
GOy e

which, in a second step, in the limit 7, — 0, leads to Hy, (with the sign —ix
for the lower energy band). This means that the convergence to the Born-
Oppenheimer Hamiltonian as ¢ — 0 has to be uniform w.r.t 7, € (0,1]. This
last point requires to reconsider carefully the work of [PST] by following the uni-
formity w.r.t 7 of the estimates given by Weyl-Hormander calculus ([Hor, BoLe])
for 7-dependent metrics which have uniform structural constants.

This is done for the low frequency part in Section 2 while the basic tools of
semiclassical calculus are reviewed and adapted in the Appendix A.

In Section 3 the error associated in the high-frequency part is considered, as
well as the effect of the unitary adiabatic transformation on the nonlinear term.
Once the adiabatic approximation is well justified in this rather involved frame-
work, the accurate analysis, as well as the comparison when 7, is small, of the
two reduced models (the one with Hy, and the one with ﬁ_) is carried out
in Section 4. This follows the general scheme of comparison of minimization
problems: 1) Write energy estimates; 2) Use bootstrap arguments and possibly
Lojasiewicz-Simon inequalities in order to compare the minimizers in the energy
space; 3) Use the Euler-Lagrange equations in order to get a better comparison

3



in higher regularity spaces.

In Section 5, all the information of the previous sections is gathered in order to
prove Theorem 1.2 : existence of a minimizer for £ in Proposition 5.3, key en-
ergy estimates in Proposition 5.4 and bounds for minimizers in Proposition 5.6.
Some comments and additional results are pointed out in Section 6, namely: 1)
the question of the smallness condition of € w.r.t 7, appearing in Theorem 1.2;
2) the possible extension to anisotropic nonlinearities (one would have to check
that the unitary transform implementing the adiabatic approximation does not
perturb the nonlinear part); 3) the minimization problem for excited states, i.e.
locally and approximately carried by 1 instead of ¢_; 4) the extension to the
problem of the time nonlinear dynamics of adiabatically prepared states.

2 Adiabatic approximation for the linear prob-
lem

In [PST], the adiabatic approximation is completely justified for bounded sym-
bols or when global elliptic properties of the complete matricial symbol allow
to reduce to this case after spectral truncation. Unfortunately, it is not the
case here, because the eigenvalues of the symbol of the linear part Hp;, are

eX0 7,1y P2+ Ve r (7, y) £, /7=x) . In [Sor], the adiabatic theory for unbounded

symbols is developed after stopping the complete asymptotic expansion in an
optimal way, under some analyticity assumptions, but this would be particu-
larly tricky here with divergences occurring both in the momentum and position
directions. We shall see that the sublinear divergence in position makes no dif-
ficulty after using the right Weyl-Hormander class. The quadratic divergence
in momentum, with the kinetic energy 7,7,|p|* is solved by first considering
truncated kinetic energies and using the additional scaling factor £2°, § > 0, in
front of the kinetic energy term.

Our problem shows an anisotropy in the position variables (x,y) . The analysis
of the linear problem can be treated in R?. Then we split the position and
momentum variables, ¢ € R? and p € R?, into:

a=(qd") . p=0.p") ¢.peR? ¢ peR" | d+d" =d,

and the pair (7., 7,) is accordingly denoted by (7/,7”) € (0, 1].

From this section, some notions and notations related with semiclassical anal-
ysis are used. In particular, the notation S,(m-,g,) refers to classes of (¢, 7)-
dependent symbols of which the seminorms are uniformly controlled w.r.t to the
parameters (g,7) € (0,&¢) x (0,1]%. For accurate definitions, we refer the reader
to appendix A where all the necessary material is reviewed and adapted for our
analysis, assuming knowledges about Fréchet spaces and generalized functions.

10



2.1 Born-Oppenheimer Hamiltonian

Consider the Hamiltonian in H. = H(q, eD,, €) with the symbol on Rzi

H(g,p,€) = 7'+ |pf(r'7" |pf?) + V(g 7,¢)

Ei(q,7e 0
52‘57’7”Ipl27(7’7”lpl2)+uo(qm€)< +(qo ) BE_(q.7e¢

)) ug(gq, 7€)

with 6 > 0 and (7/,7") € (0,1]%. The following properties, with the splitting of
variables ¢ = (¢, ¢"") € R, are assumed:

T/ ;r—,/,dq’2 A
B e 8.(() Sy T+ T
Y L
_ o
E+(qa T, E) - FE_ (anE) Z C 1< 7‘/) ) (21)
dg'? !
o = (u) "' € Su(1, — 2 4+ T My(C)),
&2 T

v €CP(R;Ry) with v =1€[0,2r2].

With these assumptions we are able to justify the Born-Oppenheimer adiabatic
approximation for § > 0, 7/, 7" € (0,1]. We shall work with the 7-dependent
metric A
T—,,d / 7_// T/T”d 2
gr = i + _dq”2+ 71)

Wz T (VT'r7p)?

T

on the phase-space R?fn, which is checked to have uniform properties w.r.t 7 €
(0,1]2 in Proposition A.9. The exact definition of the parameter dependent
Hormander symbol classes, S, (m, g-; M2(C)), is given in Appendix A (see in
particular its meaning for 7-dependent metrics in Appendix A.4). We shall use
the notation

1 .
= BRIV ©)

with the meaning of the exponent co being the same as in C* of O(e>).
Theorem 2.1. There exists a unitary operator U= U(q,eDq, 1,¢) with symbol
U(Qapv T, E) = uO(Qa T, E) + Eul(Q7p; T, E) + EQUQ(Qapv T, E) )

1
e Puy o € Su( , ,gT;Mz((C)) ,
(774 ) (V')

such that

ok 17 hpo,+(q,eDq, €) 0
U"HU = AL
( 0 hBO,*(QaEqus)

+ ¥Ry (q,eDy, 7,€) + ¥ Ro(q,eDy, 7,6) . (2.2)

11



with hpo+(q,p, 7,€) equal to

= 277" ([pFeAP + eX?) + By
d

= 207 lZ(pk T EAk)2 + |€Xk|2
k=1

+Ey, (2.3)

when V7'T"|p| < r,, and

+A, X Lk
(Xk Ak) = dug(9gruo) -
The remainder terms satisfy Ry, R2 € Su(1,g:;M2(C)) and Ry wanishes in
{\/T'T”lp| < 7”7} and those estimates are uniform w.r.t 6 € (0,00] (and T €
(0,112, € € (0,&0]).
Remark 2.2. o The remainder term is really negligible only for 6 > 0. This
is explained in Subsection 2.4.
o The (Weyl)-quantization of e2°7'7" (|pF e A|? + e X |*) + E< is nothing but
d
g2t20 10 [Z 7(8qk F iAk)2 + |Xk|2 + EL.
k=1

2.2 Second order computations for space adiabatic ap-
proximate projections of the reduced Hamiltonian

2d
q,p’

H(qvpaTaE) = fé(paT) + E+(q77_7 E)Ho(quv E) + E*(QaTaE)(l - Ho(quv E))

where Ilo(q, 7,€) = o(q, 7, €)* = o(q, 7,¢)? € M3(C), v, Ex real-valued, with
0 > 0 and the following properties:

We shall consider the matricial symbol, on R

[+
Ey e Su(( Fq/%gq‘r) , g€ Su(lagq,T§M2((C))a (2-4)

T—,,,d 12 1
with Jgr = e S + T—/dq”Q,
W& T
T//
E E >y Dy 2
+(qa7-a5) - —(anaE) el < FQ), ( 5)

fg(p,T):E26f1(\/T/T”p) , flecgo(Rd;R) , 0>0.

For conciseness, the arguments p, ¢ and the parameters 7, &, will often be omitted
in 9y f(p) and 95 E+(q) or 01l .
According to Appendix A.4, the metric

=g 4 T/T”dp2 B :—,l/dq/2 . T_qu//Q . 7_/7_//dp2
T — \T -
q < /T/T”p>2 < /:—,/,q’>2 7! < /T'T”p>2

12



has the gain function

VT Fa) ()

A(g,p) = min - : > (V7'7"p).

T T

The e-quantized version of the symbol A.(g,p) will be denoted

A= A(q,eD,).

Note that the symbols F; — E_ is elliptic in its class Sy ((y/Z-¢'), g-) , and

eTBf e S, ).

1
<\/Wp>oo7g‘r

Our aim is to compute accurately the adiabatic projection D) (q,p) = o(q, &)+
elly(q,p,e) + -+~ + "I, (¢, p, ) such that

1™ o I = 1™ 4 O+l | [H’ﬁ(n)} = 0"

The general theory presented in [PST], tells us that the asymptotic expansion
can be pushed up to n = oo, but we will do here accurate calculations up to
n = 2 (with additional information for n = 3) and then discuss the influence of
the factor €2, Those are feasible and rather easy because the kinetic energy
term and the two-level potential are simple. This allows to reconsider accurately
the arguments sketched in [PST] for the Born-Oppenheimer case with all the
technical new peculiarities of our example. Note also that in [MaSo2] chapter 10
explicit calculations have been made up to order n = 5 but in the slightly dif-
ferent framework of time-dependent Born-Oppenheimer approximation oriented
to polyatomic molecules : no use of the exponent § > 0, no divergence as ¢ — oo
and no ellipticity problem, no extra-parameter 7 and the techniques are slightly
different although still relying on semiclassical calculus.

Like in [PST], [Sor], [MaSo], [MaSo2], the calculations are first done at the
symbolic level and we write

(A(e) = Og(e")) & (677 A € Su(1,9:; M2(C))) .

For a matricial symbol A(q,p) (possibly depending on (,7)), it is convenient
to introduce the diagonal and off-diagonal parts

AP(q,p) = To(q)A(g, p)o(q) + (1 — o(q))A(g, p)(1 —Tlo(q)) (2.6)
A®P(q,p) = To(q)A(g,p)(1 —To(q)) + (1 — To(q))A(g, p)IIo(q) , (2.7

where we recall IIy(q) = I(g, 7,€) . Note the equalities

(AB)P = AP BP 4 A9P poD (AB)OP = APBOP 1 A9PBP . (2.8)

)
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The “Pauli matrix”
o3 (qa T, 5) = 2l (qa T, 5) - Id(C2 ) (29)
will also be used, with the relations

03(q) =1dc>,  o03(q)A” (g, p)os(q) = AP (q,p),
o3(q)A°P (q,p)os(q) = —A°P(q,p),
o3(q)A°P (q,p) = To(q)A(q,p)(1 — o (q)) — (1 — To(q))A(g, p)o(q) -

We are looking for
™ (q,p,7,¢) ZEJH ¢:p; 7€) € Su(l, gri M3(C)),

with HjeSu(l,gT;Mz( )

and such that

g™ — ) = Og(e"+), (2.10)
" = o (2.11)
HﬂEH(") _ H(”)ﬂH = Og(e"th). (2.12)

Like in [MaSo|, [PST], this system is solved by induction by starting from
H(O)(qapa T, 5) = HO(q,T, 5), with

Gny1 = e D [H(")ﬂgﬂ(”) — H(")} mod Os(e), (2.13)
07, = -Gy, (2.14)
Foyy = e (D) {HﬁE(H(”) + 5”“1‘15’“)
—(m™ + E"HH,?H)ﬂEH} mod Og(g)
= (4 [Hﬁfr[(”) - H(")ﬂaH} mod Ogs(e), (2.15)
P = *m sFO8 = mF 1103 (2.16)

The general theory says that the principal symbol of F,;1 is off-diagonal,
Fo = Fo_ﬂ mod Og(e), and F,,1 can be chosen so that

Fo1=F25. (2.17)

Below are the computations up to n = 2 in our specific case. In these com-
putations, we shall use Einstein’s summation rule spt* = >k sith with the
coordinates (px,¢*) or (p¥,¢*) with p¥ = p’Sy x = px like in the examples

0
|p|2 = pkpk = pkpetse’k = pkpe(;k,e s (apfs)-aq = (a;o’C fs)ék’em = (apk fs)aqk

q
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n = 0: Start with II(®) = TIy(g, 7, €) and notice 9,1y = 0 and 9,11y = (9,11)°" .
n = 1: Take

G1:H00H0—H0:0,
and TP =0.

Next compute

e M [HE To(q,e) — Ho(q, )i H]

e [t o (g, ) — To(q, €)8° f-]
= —i0p, feOpIlg mod Os(e),

and take
Fy = —i0p, f-0,:Tlg = —i0y, f-(0,-110)°7
0

and T =Tl + % 03(9:Tl0) "

with
1) 1
e, = Mag(aqkno)(m € Su( ,gT;/\/lg((C)) .
E. —E_

(\ Fa ) (VT T"p)>
n = 2: Consider now

e2Gy = OWEn® — 1M mod Og(e?)
= HQﬂEHO — HQ + 5(HOﬁEH1 + HlﬁEHQ) — H1 + 52H1ﬂ8H1 mod OS(EB) .

According to (A.3), with Ip#Il, = Iy and with
oIl + I 1Ty = 0P 09P + 9P =1, ,

we can take .
Gy = Z [—quﬂoapkl'[l + 8pkH16qu0] + H% .

The first term —0d,x 1oy, 111, with Einstein’s summation rule, equals
OpTloOp Il = — ol (5 11100, (9, 110)0
—0gr1o0p, I, = *m(qk 0)" " 03(04¢110)

52
Zapkpefa

0200 o) (0 Tho)

while the second term + (9, I11) (0, Ilo) gives the same result.
The third term II? is given by

H% = %@(8qu0)0[)03(8qu0)@3

% (0 100) (9, T0p) -

15



Hence the diagonal second order correction is given by
(By — ELYIY = (B — B_)03Ga
= — [(Op £) O, fo) + (Ex — E-)(0y, p, fo) 03] (94 10) (Dge o)

and satisfies
1

(\/ Zrd ) (V77" p)*

Consider now I19P: By referring to (2.17), F» can be chosen as the off-diagonal
part of e=2 [H§fII() — IV H] which, according to the previous steps and
(A.3), equals

e~2np e Su( ,QT;M2(C)) :

PksPe PksPe

1
— < 02 HO Tl = 02 1002, H |
1
+ 5 [0p HOp 11y — O HOp 11y — 0 1110 H + 01110, H]  mod Og(e) .
(2.18)

Pk,Pe Pk,Pe
term of (2.18) vanishes.

Similarly the factor 9,.II; appearing in the second term of (2.18) contains three
terms

Since 92, H = (92, f-) as a scalar symbol commutes with a;kq[ Il , the first

O (Ey — B)

_ % = (O fe)
8qk-H1 = (2 (E+ — E_)2

(s — E-)
(O fe)
(s — E)

0—3(8pgfs)(aqfno) + (aqk 0'3)((9qu0)

03(8§kqg1_[0) 5

where the second one is diagonal (Remember o5(q, 7,¢) = 2I(q, 7,¢) — Idc2) .
Since 0,, H = 0p, f- is diagonal, we get

1 oD
Z [apkHaqkﬂl + 6qu16pk H]

_ o
= (Opy f) (Op, f=)o3 (O [(Ey — E-) 710, 10])
In the quantity —aqk HO, 11, — apknlaqk H, the derivatives

i(az%kpe fs)
(Ey —E-)

D

6pkH1 = 0’3(aquQ)OD

are off-diagonal factors, while
O H = (00 EL)g + (00 E_)(1 — o) + (B4 — E_)(9,115)°" .
With the two equalities,

(6qk E+)H00’3 (8qu0) + o3 (8qu0)(6qk E+)H0 = (6qk E+)og(6qu0) R
(aqu_)(l — HQ)Ug(aquQ) + Ug(aqzno)(aqu_)(l — HO) = (8qu_)ag(6qu0) ,

16



we get

1 OD 62 fa
5 [0 10, T 4.0, 100, 1]%7 = P20, (B +- )3 (0T
This leads to
_ OD
Fy = (0p, f)(0p, f)o3 (Ogr [(E4 — E-)"10,110))
02 oy fe
_ ﬁ(&]k (Bt + E,))og(aqeﬂo) .

and

" = _% (0 [(B4 — EZ)10,011)) 7"
akafa
3(E, — ) O (Br + B-))(0pTo),

with
1

(\/ F ) VT T7p)>

e~2a9P e Su( ,gT;/\/lg((C)) )

We have almost proved the

Proposition 2.3. The pseudodifferential operator f[(s) = f[(q,EDq, g) given by
H(qapa E) = HO(qa 5) + EHI (qapa 5) + 521_[2((1,]?’ 5)

0.
with (g, p,e) =11 (q,p,)°” = %03(5&'110),
HQ(qvpa E) = HQ(Qapv E)D + HQ(Qapv E)OD )

I(0.9.2)" = ~ 55 (00 SN0 S

+(E+ — E) (82 fs)} (8qk Ho)(aqz Iy),

PrDe

Op, [2)(Op, [- _
Ma(g, p, )P = — S Orfe) o X e ) (0 [(By — B-)0,11,])°”
a:gkpefe
+2m(5qk (Ey + E-))(04e110) ,
and e 2Ty, e ¥, € Su( / ! ,gf;Mz(C)) :
(\ T ) (VT p)>
satisfies
Moll=T1+0(E*) | I*=1 , [HH} — O3

in L(L*(R%; C?)). Moreover the estimates in L(L*(R%; C?)) of the remainder
terms do not depend on the parameter 7 = (7', 7") € (0,1]2 and § > 0, as soon
as € € (0,ep) .

17



Proof: The above construction gives immediately
Mol=T+0( , O*=10 |, [HH} = 0@,
The first improved estimates come from the fact that
Moll—TI

contains only terms which are Moyal products with a II; or a Il factor, with

cancellations up to the €2 coefficient. Both of them have seminorms of order
26
e .

For the last one, this is a similar argument after decomposing
|:IA{, ﬁi| = |:€26f1(v TIT”EDq), ﬂ01| + |:ﬁ, Eﬁl + €2ﬂ2

O

The above result can be improved after considering what happens at step
n =3 when f. ,(p) = ¥ f1(v/7/7"p) is at most quadratic w.r.t p in some region.
Before this, let us examine the remainders of order 3 in e.
n = 3 : The remainder term

SG; = N@eEn® —ng®
= & (Hoﬁanl —+ HlﬁEHO — Hl) + 52 (Hlﬁgﬂl —+ HoﬁEHQ —+ HQﬂEHO — HQ)
+€3(H1ﬁEH2 —+ HQﬁEH1> —+ €4H2ﬂ8H2 .

Using the construction of IT; and Iy and the fact that e 2°II; and e~ %Il be-
long to Su( , g3 MQ(C)), the expansion of the Moyal product

1
(T a (V)

-7

(A.2)-(A.3) tells us

N®40® — 1 = &8 [Ag (921, 02111, €) + Bg (9,110, 911z, €)] + 74 R
(2.19)

,gT;Mg((C)) and Ag(.,€), Bg(.,€) have an

where Rg € S ( 1

NV ER
asymptotic expansion in terms of €, of which all the terms are bilinear differential
expressions of their arguments. For the commutator with H, write

[T @8 H] = 1) To(a) ~ To(a)# - ()]
+ [fe(p)t° (eTly 4 £°T03) — (elly + *I05)4° f- ()]
+ {(E+H0 + E_(1—Tlp))t*1® — T4 (B4 1o + E_ (1 — Ho))}
After eliminating all the terms which are cancelled while constructing IT; and

II5, the contributions of all three terms of the right-hand side can be analyzed.
The contribution of the third term is similar to what we got for Gs:

& [Ap (02 (ExIly), 07111, €) + By (9q(E+lo), 0plla, )] + e Ry 4

18



with Ry 1 € Sy (Wv gr3 MQ((C)) . With the uniform estimate of e~2°I;
e~ 211, and =29 f., the contribution of the second term is estimated as e3+4° Ry o

with R € Su( - L , gr; Mo(C ) . The contribution of the first
e N 2(C)

term is 3Cp (0 fo, 9311, €) and we get

[HﬂEH@) @ H} — &3 [Cu (D2 f., O2T0o, )+
Ap(0}(E+Tly), 92101, €) + B (04(E+1p), 0pIls,¢)] + e Ry (2.20)

where the expansions of Ay, By and Cy w.r.t to € have terms which are bilinear
differential expression of their arguments, and the remainder Ry belongs to

SU(W,QT;MQ(C))-

Proposition 2.4. With f.(p) = £2° fi(\/7'7"p), assume that the third differ-
ential 93 f1 vanishes in {|p| < r} and fix v' € (0,7). Then the remainders of
Proposition 2.3 equal

Holl -1 =Y Re 1+ R0 (2.21)
[H, H} =3P Ry ) 4+ Ry, (2.22)

where Ra 10r2 belong to OpSu( ,gT;Mg(C)), R 10r2 belong

1
RN
to OpSu(\/T,—T%W,gT;Mg((C)) and Rgorm,1 = 0 in {|\/T’T”p| < r’}. Those
estimates are uniform for 7 € (0,1]%, § € [0, 8] and € € (0,e0) .

Proof: After noticing that the symbol II; is a linear expression in d, f. while
the symbol 115 is the sum of a linear expression of 82 fe and quadratic expression
in Oy f-, the identities (2.19) and (2.20) imply
H(?) ﬂEH(2) _ H(?) _ €3+25+NRN + €3+45RG ,
HETI®) — H(2)ﬁaH} _ SH2HNp L SR

for an arbitrary large N € N, in {\/T’T”|p| < r}. Choose! N > 2§ and

take a cut-off function x € C§° ({|p| < r}) such that x = 1 in a neighborhood
{lp| <’} . Writing for the symbol

S=T@#En® —n@ o §= [HﬁfH@) el

S =8 x x(VT'7"p) + 5 x (1 = x(V7'7"p)),

yields the result. U

IHere the estimates become §-dependent, because a large & requires a large N. It is
uniformly controlled when ¢ < dg.
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2.3 Unitaries and effective Hamiltonian

We strengthen a little bit the assumptions (2.4)-(2.5), with the condition

HO(quv E) = uO(QaTaE)P+UO(QaT5€)* (223)

. 10 oy —
with P+ = (0 0> y Uo = (uO) ! € S(lvg%T;M?(C))’

fulfilled in our example. The operator g is nothing but the local unitary trans-
formation wug(q,7), on L?(R%;C?).

With the approximate projection I = fI(q, eD,, 7,€) given in Proposition 2.3,
Proposition A.5 tells us that a true orthogonal projection P can be associated
when ¢¢ is chosen small enough, by taking

Pt (z—I)~" dz, (2.24)
2im lz—1]|=1/2
with
P =P(q,eDg,7,e) , P€S,(1,9:;Ma(C)),  (2.25)
P(q,p,7,e) —(q,p,7,¢) = > 2 Ry (q,p, 7, ) + > ¥ Ry (¢, p, 7, €) , (2.26)
with Ry, Rs € Su< ! ,gT;Mz(C)) ;

(T ) (V7T )

1, P| = £729C, (r.¢) + £749C(r,c), (2.27)
with  C1,C% € S,(1,g,; M3(C)),

D i Pt < Ce. :
and HP Uo P11y ‘ﬁ(LZ) < Ce (2.28)

For a general f; € C3°, Ry and Cy are included in the main remainder term.
When f; is quadratic in {|p| < r}, then one can assume that Ry and C; vanishes

in {\/ T'Tp| < r’} for ' < r, according to Proposition 2.4 and Proposition A.5

Instead of constructing unitaries between ]5(7, ¢) and Py by the induction pre-
sented in [PST] and similar to (2.13), (2.14),(2.15),(2.16), we use like in [MaSo]
Nagy’s formula ([NeSo|, [MaSo], [PST])

P,=WPW* |, WW=WW*"=1,
with W=1-(P,—P)) V2 [PP+(1-P)1—-P)], (2.29)
when Pj:PjQ:P;‘ forj=1,2, and||P,—Pi]jz <1,

easier to handle for direct second order computations in our case.
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Proposition 2.5. With the definitions (2.23) and (2.24) after Proposition 2.3,
there exists a unitary operator U on L*(R;C?) such that

P=UP.U",
U=U(q.eDg1e) , U e Su(l,gr; Ma(C)),
with U(qapa T, E) = UO(qa T, 5) + Eul(qapa T, 5) + EQUQ(Qapa T, 5) 5
i, f
Ul(Qapa 5) = _ﬁ(aquO)UOa
1

and 5_26U1,€_26U2 € Su(

(ﬁ}(x/ﬁmm,gﬂM?(C)) :

Moreover, when fi1 is a quadratic function in {|p| < r} and v’ is fized in (0,r),
the term us can be decomposed into

U2 (%Pv T, 5) = 526U2 (qapa T, E) + 546@ (Qapa T, 5)

where vy does not depend on p in {\/T’T”|p| < r’} and vy, V2 belong to the

symbol class Su( agT;MQ((C)) :

1
e

Proof: The notation R will denote a generic remainder term of the form R=
R(q,eDg,7,¢) with R € Su( y gr; MQ(C)) . The notation R is

1
(V Zrd W7 T7D)
used for a symbol R, like R but which vanishes around {\/ 7' p| <71’ } . We

apply Nagy’s formula (2.29) with P, = GoPyaf = Ho(q, 7,¢) and P, = P(1,¢)
with

P =Tly(q,7,¢) + €Iy (q,eDy, 7,€) + €21Ma(q,eDy, 7,6) + TP R + 3R

In the expression of W () given by (2.29), the first factor is nothing but
2
~ _ e .
(1 - (P - HO(quv 5))2) /2 = 1+ 5(1—[1)2((1, Ean T, 5) + €3+46R7

owing to P — Il = Og(¢%9). In the factor [PaP; + (1 — P2)(1 — P1)], the first
term equals

P [e] HO(q7 5) = HO(q7 5) + 5H1(q, T, EDq, T, 5) (e] Ho(q, T, 5)
+°Ia(q,eDq, 7€) 0 Lo(q, 7 ¢) + ¥R 4+ ¥R,

while the second term is
(1 715)0 (1-TIo(q, ,¢)) = (1 —1o(gq, 7,¢€)) —elli(q,eDq, T,¢) 0 (L —IIy(q, 7, €))

— 52H2(q, eDg,7,e) 0 (1 —1ly(q, 7€) + 3TV R 4 SR
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Hence we get

W = [PQPl + (1 —PQ)(l —Pl)] =1 +€H1(q,EDq,T,E) OUg(q,T)
+e?Tla(q,eDy, 7€) 0 03(q, T) + PR 4 SHVR.

The operator U(e) is given by U(e) = W(e) o @ig. The semiclassical calculus
recalled in (A.2)-(A.3) yields the result. In the decomposition of us, when f;
is quadratic around 0, the terms which are linear in 2% come with the second
derivative of f., which does not depend on p. O

Proposition 2.6. Introduce the notation for k € {1,...,d}

. (A, X
ug(Ogrug) = —i (X—i _;fk) .

If U is the unitary operator introduced in Proposition 2.5, the conjugated Hamil-
tonian U(e)*H (e)U(e) equals

U*HU = (ho+ BO ) + PR 4 R, (2.30)
where the remainder terms RLQ = R12(q,eDy, T,€) belong to OpSy, (1, gr; M2(C))
and additionally Ry = 0 in {\/T’T”|p| < r’} when f1 is quadratic in {|p| < r},
with v’ < r.

The symbol hy and h_ are given by

2
€
hy = fe(p) + Ei(q) —e(0pfe) A+ g(fﬁkmfa)AkAe
Ohpets) v v O f)Onfe) o +
TPk Y T \TPRJEJATPeIE) o T 231
+ 5 K Xe + B, b kXe,  (2.31)
2
€
ho = fdp)+E_(q) + E(apfs)-A + 5(azkpefs)AkAl
OS5y, _ € Op f) O fe) 5~
+ 5 X, X, — B b XpXe.  (2.32)
Proof: From the semiclassical calculus, we already know that U*HU is

a semiclassical operator with a symbol in S, ({1/Z7¢'), gr; M2(C)). Its off-
diagonal part equals

(1-P)U*HUP, + P,U'HUQ1-Py)
=U [P, [PHH U.

The almost diagonal form (2.30) of U* HU is then a consequence of (2.27).
For the second result, it is necessary to compute the diagonal part of the symbol

22



U*tsHt=U up to O(£3+2%) in S, (1, g,; Ms) . Let us compute the diagonal part
of

B = (uf + suf + e2ul) e Hi (ug + suy + e2ua),
or equivalently (upBuf)? with our notations.
Since up = ug(q,7,¢) and H = 2 f;(\/7/7"p) + V(q,7,¢) , the first Moyal
product equals according to (A.2)-(A.3),

(uf + eut + e*ub)t*H = ub H + euf H + *us H
€ * 52 * ‘52 2 * 2 3+26
+Z{U’O’H}—*—Z{UI’H}_g(aqkqluo)(apkng)—i_E R
8Pkf€

1

Prpe

1
7§(aq2kq€u8)(82 f€>:| + €3+2§E+ €3+46R,

where R and R denote generic element of S, (1, g-; M2(C)), with the additional
property that R vanishes in {\/ T'Tp| < r'} when f; is quadratic in {|p| < r}

with 7' < r. The reason for the possible decomposition of the remainder, comes
again from the fact that the third order remainder term, proportional to 3129,
arises with the third derivative of f., the second derivative w.r.t p of u; and the
first derivative w.r.t p of us.

In the same way, the complete expression of B is given by

(apka) (a *) (8pkf€)

B(E) = USHUO +e |:’LL8H’U,1 + UTH’U,O — 2 gk Ug U0 + Tug(aqk’ll{))
(3 (3

+€2 |:’u,2H’LL0 + UOHUQ + 2—1 {UOH, ul} + 2_2 {ulH, Uo} + Z {(8pkf€)(8qku0),u0}

0 1
+uiHuy — (L,fe)(@qkug)ul + —{ul, H}ugp
24 24
1 1
—g(agkq[ ud) (02 f))uo — gug;(agm [ (02 geuo) | + TP R+ 7TVR.

PrPe

By recalling that (ujuj)” = 0 by Proposition 2.5, we get

(woB(e)uf)? = H + 55(81% fo) [to(Ogeus) — (Oyruo)ug]
+ 5282D + VR 4 SHVR.

where B is made of several terms to be analyzed. We need the relations

Ogiupy = —ug(Ogiuo)ug » (2.33)
02,y = 15Dy 00 ) By 1)+ 143 (Do)t (D100 )i — (02, o)

= —(aqj/ug)(ﬁqj Ug)uy — (8qju8)(8quu0)u3 — u(’;(a;jqj,uo)ug, (2.34)
and  [uo(8,ul)]°” = —(8,1¢)0s (2.35)

23



coming from ujug = 1 and the differentiation of ujlloug = Py .
For example, the first one simplifies the O(e)-term into

(woB(e)ug)P = H — ei(y, f-) [(Ogeuo)us)” + 2B + 3T R+ 34 R,

Many cancellations appear after assembling all the terms in BY. We need
accurate expressions for all of them:

e By using again (ujuj)? = 0, the term [uousH + Hugu + uouTHulua‘]D
equals

(fe + B4 )Mo (uous + uzug)o 4 (fe + E-) (1 — o) (uous 4 ugug) (1 — o)
+ (fs + Ef)Ho(uouTulug)Ho + (fs + E+)(1 — HO)(uouTulug)(l — Ho) .

In the relation

1 1
U2 + usup + ujur + % {ug,u1} + % {uf,up} = TP Ry + TR,

the remainder terms satisfy Ry, R, € Su( - 1 , gr; Mo (C ),
Yo N T 2(C)

with the same convention as for R, R. This identity is obtained by writing
that the O(g?) remainder of U*#°U — 1 vanishes and by noticing that the
remainder Ry + £2% Ry involves second derivatives of u; w.r.t p and first
derivatives of us w.r.t p. We obtain

[uous H + Hugu + uout Huyul)® = (B — E1)(uouluiug)P o
1

- 2iH [ug {ug, u1}ug + uo {UT,Uo}u{;]D LelFB R AR

with R, R € S,(1, gr; M2(C)), again with the same convention.
2
Again with (pu;)uf = (puruf)?P = %&ﬁﬂo and (2.35), the last

factor is
[uo {ug, 1} ug + wo {uy, uo} US]D = —(uo0ye uS)ODZ,((Eafwi’“J;))(aqk Iy)
el (o1 (@)
—2%(aqkno)(aqmo)a3. (2.36)
With wyuf = &%(6@ I1y) , we have proved

P - (Opi f) (O, [2)

[uouz H + Hugug + wout Huyug) ™ = *W(aqkﬂo)(aqmo)(fs
(agfp fa) 1426 p 1+46 p
— Hﬁ(aqkﬂo)(aqzﬂo)@ +elt Ri+e¢ + Ry . (237)
+ - —_
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e The term

1 * * 1 * * (apk f&‘) * * P
—uo {up fo,ur }ug + o {u fe, uo} ug — —a—=uo(Jgrug ) urug
21 21 21

equals

1 " «1D
2_if€ [uo {ug, ur} ug + uo {uy, uo} ug)

Op,. f< . . . . )
+% [(5qku1)u0 + uou (Ogruo)ug — to(Ogs uo)uluo} p

The diagonal part of (O ru1)uf is

_ O

"= i(Ey — E_)

[(aqku1)'u6 (a{?kquO)D .

But differentiating the relation (JgxIlg)Ilg 4 Il (0yelly) = Oprllp wor.t q°
leads to

(aikq[HO)D = —(6qu06qu0 + aqznoaqkno)dg . (2.38)
With (2.35) and (uyug) = (uyu§)OP = 220,10, we obtain

[wout (Ogruo)uy — uo(dgnug)urug) P

:—m%%%ﬂ@mwwm+@MM@%Ww

= [—UOUTO'g,(aqkno) + (qu-l'[o)aguluf;]

We have found

* * 1 * * * *
2—in {ug fe,urufy + 2—in {ui fe,uot ufy — i g (Ogrug ) u1ug
f(03 p f2) (Opy f<)(Op, fc)
= T (00 o) (O Tlo)os + 2= mpt =2 (9, Tlo) (e oo
(2.39)

(Dp f) b
7

e The diagonal part of -uo [{ufV,u1} + {ujV, uo}] uf equals

1 * * * * «1D
% [fuo(aqkuo)V(ﬁpkul)uo — (04 V) (Op, u1)ug + uo(apkul)V(aqkuo)uo]

By using (2.35) with

]OD _ az%k;ueff
i(EJr — E,)
(0,V)°F = (B4 — E-)(9,11y),
and E7HO+E+(17HO) :V+(E, —E+)03,

(apkul)ug = [(apkul)ug (GQZHO)’
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it becomes

82 f 1 * * *
%ffs(aqkﬂo)(aqeﬂo) + 2—Z,V [uo {ug, u1 } ufy + uo {uj, uo}uO]D
1 * * * *
+ Q—Z.(Ef — B [uo {ug, u1} ug + uo {ui, uo} ug]” o3

The relation (2.36) yields

1 0 * * 82 fa
2i [wo {ugV, ua} ug + o {uiV, uo}t ugl = _w@qkﬂo)@qeﬂo)
azkpeff 911 910 A
+Vﬁ( o 100) (0 I0g) . (2.40)

The term 5 [ug {u], H}® is the sum of two terms

o [0 {ut, S} + 5 fuo {uf, VY

2
02, f

Since uOp,ui =1 ST o) (OgrIlp) is off-diagonal while

(0,V)°P = (Ey — E_)(9, 1),
the second term equals

O pofe
%(qu o) (0yellp) .
The first term a priori contains more terms because ug has to be differen-

tiated:

1 1 Opy [) (Op, f¢)
31~ (Opy, £)(Op, f2) Oyt (ﬁ) (Ogr1lp) — (EJF—(E(G‘?[‘?’“HO)

a g a v J E D
uo(aqwg)%(aqkno)} .

The first part is off-diagonal and vanishes after taking the diagonal part.
By using again (2.35) and (2.38) and 9,11y = (9,115)°P, we obtain

Op,, f2)(Op, fe Op,, f2)(Op, f=
—( pEki )_(Ep,[_f )(8qu0)(8qu0)03 + —( pEki )_(Ep,[_f )(8qu0)03(8qu0) =0.
Hence we have proved
1 92 o, fe
— [up {ui, H}]D = L”f(quc1'[0)(6(1@1'[0) . (2.41)

2i
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e The last term is

T= 8{2110{ 8pkfg kug),uo}ug
D

= u0(0 1 1u0) 0y, p, f) — (O, p, o) (O geuo)u

Forgetting the 3 factor, the first part equals 2(95, ,,, f<)to(Ogru) (Dgeuo)uf .
By using (2. 34) in the second part gives
* * D
8T = 4(81%?1 fE) [uO (aq’C uO)(aqEUO)UO}
Owing to (2.8) and (2.35), this gives
T = (O, p f) w0 (e ug)] P [(Oge uo)up) P + (85, , f2) (O TTo) (De o) -
With ug(9,xus) = —(04xuo)ug, the last term equals

( pkpeff) ( pkpe.f:f)
2 2

T = (D wo)ug) P [(Dgewo)us)P + (0, TTo) (8 ) -
(2.42)

By summing (2.37),(2.39),(2.40),(2.41),(2.42), we obtain

( pkpeff) (apkfa)(apefa)

BY = ~
2 E, - E_

[(aqkuo)ug]D[(aqzuo)uS]D—i— (8qu0)((’)qu0)og

02 _ _
+ %ﬂfg(aqkno)(aqzno) + VR 4 TR,

Hence the diagonal symbol that we seek, is

<h0+ ho_)<fe(PaT)‘BE+(QaT) £ )—iE)E_(q,T)>

— (O o)y [(Dgruo)ug]) " uo — sQM 5 [(Ogeuo)ug) " [(0geuo)ug]” o

2
Oy, f2) (O, [ pede &
e % 0(0g+T10)(9ge o) oo + 52%#”0(%'“110)(&;&0)”0
The symbol uj [(9,xuo)uj] " uo equals

uSHO(aqkuo)uB‘HOuo + ug(l — Ho)(aqk UO)US(l — Ho)’uO
A 0
= Pyug(Ogpuo) Py + (1 — Py )ug(Ogruo)(1 — Py) = ( Ok Ak) .

For the last term we deduce from Iy = ugPruf and (Oquo)us + uo(dque) = 0,
Py [ug (Do) uo) [ug(9yeIlo)ug| Py
= Py [ug(Ogruo) Py + Py (g ug)uo] [ug(Dgeuo) Py + Py (Dgeug)uo] Py
= Pyug(Ogruo) Pyug(94eu0) Py 4 Prug(9gxuo) Py (Ogeug)uo Py
+ P (Ogrug )uotg(Dgewo) Pa + Pa (Ogrug)uo Py (Ogeug ) uo Py
= —Pyuf(9gxu0) (1 — Py)uf (9 euo) Py = X X
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Taking the bracket with (1 — Py ) is even simpler and gives
(1 - P+) [ug(aqkno)’ll{)] [u}';(aqeﬂo)uo} (1 - P+)
= —(1 = Py)ug(9euo) Prug(0eu0) (1 — Py) = Xp Xy .
This ends the proof. O

2.4 Discussion about the adiabatic approximation of the
Born-Oppenheimer Hamiltonian

The Theorem 2.1 is a direct application of Proposition 2.6 by taking
fe(p) = 77" [pPy (' 7" |p|?)

The operators
Weyl

2+26 ’ //Z |Xk|2

_ 2t //[ A+ AP T [(%V).AwLA.(;V)] + |X|2]

d
h’:l:,BO(quanE) = 26 / ” lz Pk T+ EAk

€2+26T/7_// |:|—V:FA|2+|X|2:| ,
(3

is nothing but the usual adiabatic effective Hamiltonians which can be found in
the physics literature, including the Born-Huang potential | X |? = Zk L 1Xk%
We refer to [PST] and [PST2] for a discussion of the various presentations of
the calculations and additional references.

Even in the region {\/ T'Tp| < 7”7} with p quantized into €Dy, this approxi-
mation makes sense, only for § > 0, because of the additional term

52-',-467_/7_//

$2ﬁXkXé(€5qk)(€5qz)

coming from the last terms of (2.31) and (2.32), that we have included in the
remainder. It is not surprising (see [Sor], [MaSo]) that the degree of the dif-
ferential operators increases with the degree in ¢ in the adiabatic expansion of
Schrédinger type Hamiltonians. The argument of physicists says that this ef-
fective Hamiltonian is used for relatively small frequencies (or momentum) so
that X5 Xp"p’ is negligible w.r.t |p — cA|? + £2|X|?. The introduction of the
additional factor £€2° with § > 0 provides a mathematically accurate and rather
flexible implementation of this approximation.

3 Adaptation of the adiabatic asymptotics to
the full nonlinear minimization problem

In this section, we adapt our rather general adiabatic result to our nonlinear
problem. In a first step, we give an explicit form of Theorem 2.1 in our spe-
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cific framework. Those results are effective when applied with wave functions
localized in the frequency variable, ¢ = x(,/TxT,eD,)% for some compactly
supported x. It could suffice if we considered minimizing the energy among
such well prepared quantum states. We can do better by using a partition of
unity in the frequency variable, which will be combined, in the end, with the a
priori estimates coming from the complete and reduced minimization problems.
Finally an estimate of the effect of the unitary transform U on the nonlinear
term is provided.

3.1 Adiabatic approximation for the explicit Schrodinger
Hamiltonian

Let us specify the result of Theorem 2.1 by going back to the coordinates
qg=1(¢,q¢") = (z,y) and 7 = (7', 7") = (74, 7y) . Provided that V, ;(x,y) fulfills
the proper assumptions, the unitary transform introduced in Theorem 2.1 trans-
forms Hy,;, given by (1.9) into the Born-Oppenheimer Hamiltonian with a good
accuracy in the low frequency region, that is when applied to wave functions 1
such that ¢ = x(\/ﬁqu)w for some compactly supported x .

The operator Hp;, is the e-quantization of the symbol

Eyi(q,T,¢ 0 x
e o+ wota.r) (BT O Yl

with Ei(quv 5) = ‘/;,T(x)y) + Q(“ T_Z-T) = ‘/E,T(-Tay) + ’/1 + T—Z.T2 .
Ty Ty

The operator ug (g, 7) equals

C  Sew .
wiar) = (5 0 50 ) =l

with C= cos(g , S= sin(g) .

2)
and cot(f) = KEZS , = T—yy.
\ 7y V 72

Proposition 3.1. Assume & € (0,8], (72, 7,) € (0,1]*> and assume that V-,

Tz g2
belongs to Sy ({, /:—z@, R :—:dy2) then the matricial potential

(\fF2)

V(g, 7€) = Ver (@) + Q(\/gz) (e_ggss(ii)(e) eis(f;l((e?)

fulfills the assumption of Theorem 2.1.

Choose the functiony € C3°(R) such that~y = 1 in a neighborhood of [—r?w r?y], as
in. Theorem 2.1 and consider a cut-off function x € C5°((—r2,72)). When U=

29



U(q,eDq,7,€) € OpSy(1, gr; M2(C)) is given in Theorem 2.1, the identities

U*HinUx(727y|eDg|?) — 2Ry (1,¢) =

+1 Ty Y A ,i\/iﬂ
e =2 H e T 2 0
e 7, * Ty~ Ty X(Te7yleDy?) s (3.1)
0 e e 2 H_e' VT2
HrinX(Tomy|eDg|?) — €T Ry(1,6) =
VS VS 0 -
s2+26myu<6 e e |UX(memyeDg ) (3.2)
0 e w2 H e VTa2
hold with
2

T
2, /1+ :—I:c2
Y
1 T,
- - T2
+€2+25my {Vm(x,y) +4/1+ . ] + Wr(z,y),

2
T

2, /14 =22
1 T,
- - _ Iz, 2
+€2+25my {Vm(x,y) 1+ . ] + Wr(z,y),

T Ty
Wr(z,y) = + :
T Ty(1+:—:1'2)2 T (1 + :—;:ﬁ)

H = -92-|0,—i

x

and the estimates
| Ra(7,€)llc(p2y + | Ra(T,€)ll g2y < C
which are uniform w.r.t § € (0,d], 7 € (0,1]% and € € (0,¢&0] .

Proof: Following the approach of Section 2, the Hamiltonian Hry;, is decom-
posed into

Hpin = H(ananTaE) + R’y(EDq’T’ 5)

. E 0 «
Wit H(g.2) = o)+ wo (g ) i),

2

and R, (p,T,e)=¢ 67‘17‘y|p|2(1 — 7(7I7y|p|2)) .

The Hamiltonian H(q,eDg, 7, ¢) fulfills the assumptions of Theorem 2.1, with

e do
Ty

: _ Ty 3,2 _TeTydp®
the metric g, = WETE + dy® + /rrap)® because we assumed
Te g2
T, T,
‘/:S,T € Su(( _Z-T>a L + _ydy2)

Ty { /:_z$>2 Ta
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while the gap E,(q,7,e) — E_(q,7,¢) equals 2, /1 + Z=x2. Actually the esti-

mates
—|af
a 5B < Tz Tz
|ax 3yu0(x,y)| = Ca7ﬁ < T 1'> < >

y Ty

o] —18]
2

are due to 0,0 = —% and 0y = i,/ e'? . Morcover the explicit
Y Ty x

computation with o + 3 = 1 leads to

A, X, s 10,0 0 elv
(X_z Az) = iug(Opup) = 5 (ew 0) (3.3)

Ay Xy . [y S —(Cei®
and (X_y Ay) = jug(Oyuo) = 1/ES’ Ce-iv  _g |- (3.4)
Hence the effective Hamiltonians hpo,+ (g, €Dg, €), when restricted to the region
{4 [TaTy|p| < r.y}, are given by the symbols

0 1
hpot =2y |2+ (y F oy [ L sin(5))? + 3(10:01% + 22 sin?(9))
T 2 4 T
Tz
+Va;r(xay)i 1+_‘T2'
V Ty
With cos(f) = —Y22— and sin(f) = ——~—, the Schrodinger Hamilto-

)
N 1+%z2 /1+%z2

T, s el
. . . +inL My,
nian corresponding to the RHS is e2*27,7 e ‘v Y HyeT 2V Y with

2
x Tx Ty

— | + +
9 1+ Zeg2 7'y(1+:—2502)2 TI(1+:—Z:L'2)
1 Ver(o,y) £ 1+ Za2
_— -(z, —z2| .
TpTye2t20 | F Y Ty

The remainder term in Theorem 2.1 is

Hy=-02—|0,+i

x

g2t p, (¢,eDy,7,2) + 32 R, (¢,eDqy,7,€),

with R12 € Su(1,g,; M2(C)) and where Ry vanishes in a neighborhood of
{W|p| <ry}. The first term provides the expected O(e?74°) estimate in
L?(R%,C?).

It remains to check the effect of truncations. All the factors, including the left
terms

)

.o, 0
R'Y(pa T, E) ) 52 TmTy pi + (py :F ESIH2(§))2 (1 - 'Y(TzTy|p|2)) )

belong to OpSy,({/TzTyP)?, g-; M2(C)). For any a,b belonging to the class
OpSu({/TaTyp)?, gr; M2(C)), where b vanishes in a neighborhood of {, /77, |p| < -},
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and two cut-off functions x1, x2 € C5°((—r2,72)) such that x1 < x2 (see Defini-

tion A.3), the pseudo-differential calculus says

(1 — x2(7amy|pI*) 8 @l X1 (T27y [PI?) € Ny,
bﬂ8X1(TmTy|p|2) € Nu,gT )

with uniform estimates of all the seminorms w.r.t 7 € (0,1} and § € (0,dp] .
Applying this with x; = x and various x2 such that x; < x2 <, implies that
the remainder terms due to truncations are O(¢") elements of £(L?) for any
N € N, uniformly w.r.t 7 € (0,1]? and 6 € (0,dp] . Fixing N > 2 + 45 ends the
proof of (3.1).

For (3.2) use (3.1) with a cut-off function x; such that x < x1 and conjugate
with U :

HLinU)(l(TzTy|EDq|2)U* =

izimyﬁ _7;27\/71/1} 0

2 26 A~ e VTx +e VTx 2 /\*

g2t TaTyU v | xa(TeTyleDg|P)U
0 e "2 VH _e'?via?

+ R (e).
Right-composing with x(7,7,|eD,|?) and noticing that
X1 (Temy [eDg| YU X (Tuy e Dy |*) = UX (1o |eDy[*) = R(g,eDg, 7€) ,

with R € N, 4. lead to (3.2) like above. O

3.2 Linear energy estimates for non truncated states

Proposition 3.2. Assume 6 € (0,00], 7 = (72, 7y) € (0,1]* and that V-, be-
T g2
longs to the parametric symbol class Sy({,/==x), —L + 2dy?). Set x =
Ty ( /im>2 To
X(TeTyleDg|?) for x € C3°((—r2,72)). When U is the unitary semiclassi-
cal operator U(q,eDgq,7,€) € OpSyu(1,g-; M2(C)), given in Theorem 2.1 and
parametrized by a truncation in {\/Tz7y|p| < r+}, then for any x € C3°((—r2,72))

' vy
the estimates

(6, [0 Hyanll = 7, Hpol )| < ™42 [y, (35)

(1 = )Yl72 +I1(1 = )Ylle X [|VTaryleDgl(1 = X)llL2]
W, [Hpim — 52+26myUHBOU*}¢>‘ < O [HB|y|2,  (3.6)

HIA = X)¢lZe + 10 = )Yl r2 x |yTaTyleDgl(1 = )Yl 2]
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hold uniformly w.r.t 7 € (0,1]? and 6 € (0, o], for all b € L*(R?;C?), with

iy Ty
VY H e 2 0
Hpo = iy~ Ty
0 e 2V H_ e 2VTz
2
. T
He = - |04i—— | 422 [Vw(x,y) +4/1 +x2}
2, /14 =a?
Kl
+Wr(z,y),
Ta Ty
We(x,y) = + .
~(2.9) T, (1 + :—:x2)2 T (1 + :—sz)
Proof: Set
NN Van
- 5 BV, e VR Y
D = U*HLZHU7€2+26TCETy € +€ . JTT (2 . TT
0 e "2vVH _e'2vreY

and bound the terms (X¢, D) and ((1 — x¢, Dx) by Ce2+49(|h||2, with the
help of Proposition 3.1. The remaining term is

<(1 - X)wa D(l - >A<)¢> ’ with )A( = X(TzTy|5Dq|2)

The operator D can be decomposed according to D = 52+257xTkam + Dpot
with

) o sk 277 |Dq_A|2+|‘X|2 0
Dkzn - U |Dq| U ( 0 |Dq+A|2+ |X|2 ) (37)

cer (B 0\ fur [ Tz +1 0
DPOt == U UO < O+ E ) UOU - ‘/€7T(x7y) - 1 + T_:CQ < 0 _1) . (38)
- Y

The normalization in (3.8) allows to use directly the semiclassical calculus if

one remembers that UsU = Id +¢eR and U*Uy = Id +eR’ with e 2R, e~ R’ €
S iz 971 Ma(C)) and Bi(0,7.6) = Ver(w,9) £ \/1+ Z2a” . We obtain

(1= R)¥, Dpor(1 = X))b)| < C" 2 (1= Q)17

which corresponds to the second term of our right-hand sides.
The kinetic energy term (3.7) is decomposed into

52+26TZTkain = g2+20 TeTyDhin + Dhin »
with
Diin = EQJU*TZTy|EDq|QU — E2SUS<TITy|EDq|QUO , (3.9)
o _ en 2 (1Pa— AP+ IXP 0
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Writing (3.9) in the form
DL, = eX(U* — U 7ury|eDy|?U + XU tomy|eDy |2 (U — Uy),

while 7,7,[eDy|* € OpS.({\/TaTyp)?, gr; M2(C)), U, Uy € OpSy(1, gr; M2(C))

de1-25(07 _ [ ” _ L g C leads t
and ¢ (U —Uy) € OpS (<\/%m>< — =9 s Mo )) , leads to

(1 =X, Dy (1= )0)| < Ce (1= X)9|3-

which is even smaller than the D,,,; upper bound.
In (3.10), the first term can be computed via

(@, Ug|Dg[*Un(q)®) = Y (Dy, (uo(q, 7)®) , Dy, (uo(g, 7)¥))
gj€{z,y}
with Dy, (uof) = uo(Dg; — iujdy,uo)f and equals
U5|Dq|200 = |Dy — iugdguol?
= ) [D,?j — (iu5(9)0q;10(9))*) Dy, — Dy, (iug(q)dg,u0(q))?)

qje{mvy}
+(iu5(9)9y, w0 ())?

Meanwhile expanding the entries of the second term in (3.10) gives

D, FA@E = Y [D2F Ai(0)Dy, F Doy Asa) + A; (0] -

q; €{z,y}

By using the expressions (3.3) and (3.4) for A, X and iu{04up, we obtain

1/0 R_
0 — —
Dkin_Q(RJr 0)

with R = i(Dy(0:0) + (0:0)Da)e™ — | L sin(0)(Dye % + €7D,
TCE

Tz . 1
and 0x0) = ——F"——F— , sin(l) = ———.

Therefore, we obtain

(1= 30w Dlin(1 = )] < dmax(y [, [ 7 [1Dg (108 2| (A=) 2
Yy T
and, owing to 7,7, € (0,1],

(1= %), 20 7umy DR (1 = X)¥)
<4 /7Ty leDgl (1 = )¢l 2|1 = )l 22 -
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This ends the proof of (3.5).

For (3.6) it suffices to replace ¥ in (3.5) by U*y with a kinetic energy cut-off
function x; such that x < x1 and then to use (1 — )21)17*)2 € OpN,. 4., with
uniform seminorm estimates w.r.t 7 € (0,1]? and § € (0,8]. The L?norm
of the corresponding additional error term is O(¢), for any N, and one fixes
N >2+46. O

3.3 Control of the nonlinear term

In this subsection, we estimate the effect of the operator U = U(q,eDq,7,¢)
belonging to OpSy (1, gr; M2(C)) on the nonlinear term [g, [¢|* dady .

Proposition 3.3. Let U be the unitary operator introduced in Theorem 2.1.
The inequalities

[ 10wt dedy = (1= 02143) [ |00) (@)l dady, (3.11)
ond [ (o)l dody > (1= C5) [0 0) @)l dady (312)
hold for any ¢ € L*(R2;C?).
Proof: For ¢ and v, belonging to L4(R2; C2), the local relations
Wil'@) = (92(@)]® +2Re(ya(a) , (Y1 —v2)(@)) + 1 (@)
[2(0)l" + 20201 — ol + 4 (Rewz, Y =)+ sl - W)Q
+albal Re(t , (1 — )

Y

b2 (q)|* — 4lva(@)|* |1 (q) — ¥2(q)]

is integrated w.r.t ¢ = (x,y) € R?, with Holder inequality, into
[41l7s = / 1|t dedy > ||vol|7s — 4llvalZalltn — ol s -

With 1 = Dotb = uo(a)s W(@)l” = [a(a)]? for all g € R, and gy = U =
1 + (U — Uy), we obtain

1Nz = I1llza = 109I7s = 41TGI24 10 — o)l 1s

The operator U — Uy equals e'72°r(q,eD,, 7,€) with r belonging to the class
Tx 2
— Ty

1 ) Ty dy)?
Su (m, ar; MQ((C)) s where we recall 9r = <\/%z>2 + %dy +
‘rgm'ydp2

(VTaryp)?

. After introducing the isometric transform on L*(R?; C?)

(Ta,‘r@)(xa y) = 5\/7-957-1/90(5\/7-17-3/1" 5\/TacTyy) s
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the difference U — Uo becomes

S 1481
U—Uy=¢e T ;ri(emex,emyy, Do, Dy, e, 7)Tc

with 71 uniformly bounded in S(1, d(TIz) +d(ryy)* + %; Ms(C)). A fortiori,

(1)

the symbol 1 (e7,x, e7yy, &, m; €, 7) is uniformly bounded in S(1,dg* + (UZ;ZQ) and
the Lemma 3.4 below provides the uniform bound

1T = Usllzray < Coe™™°
We have proved

1llze > 10lIze — Ce 22Tl 2

which implies (3.11). The second inequality (3.12) is proved similarly with
U+ U0 (U * U*) . O

The result below is a particular case of the general LP bound, 1 < p < oo, for
pseudodifferential operator in OpS(1, dg* + %; L(H1;H2)), H; Hilbert spaces,
stated in [Tay]-Proposition 5.7 and relying on Calderon-Zygmund analysis of
singular integral operators.

Lemma 3.4. For any p € (1,+00), there exists a seminorm n on S(1,dq* +
i M3(C)) such that

(p>2 )

dp?
Va € S(1,d¢* + —
(p)?’

Proof: The Proposition 5.7 of [Tay] says that for any a € S(1, dgq +dp ; Mo (C)),

the operator a(q, D,) is bounded on LP(R?;C?). It is not difficult to follow the
control of the constants in the previous pages of [Tay] in order to check that
lla(g, Dg)|l z(rry is estimated by a seminorm of a. More efficiently, a linear map-
ping from a Fréchet space into a Banach space is continuous as soon as it is
bounded on bounded sets. Apply this argument with the result of [Tay] to

s Ma(C)),  llalg, D)Ly < n(a).

d 2
S(l,dqQ—i—L

<p>2;M2((C)) Sawalg,Dy) € K(LP(RQ;(C2)).

4 Reduced minimization problems

In this section, we assume that the potential V; , satisfies (1.13)-(1.14). After
the first paragraph of this section and in the rest of the paper, we focus on the
case T, = 1, 7, — 0 (and ¢ — 0) . Two reduced problems have to be considered:
1) the one obtained as ¢ — 0 and 7 is fixed; 2) the one derived from the previous
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one as 7, — 0 and which is parametrized only by (G, ¢y). The linear part
of this latter reduced problem is a purely quadratic Schrédinger Hamiltonian
(with a constant magnetic field), from which many a priori information can
be obtained. This section is divided into three parts. First we specify the
potential V; ; and check our main assumptions for the general theory. Then we
review some properties of the reduced Gross-Pitaevskii problem parametrized
by (G, ¢y ). Finally we make the comparison with the reduced Gross-Pitaevskii
problem parametrized by (G, ¢y, 7,.) as 7, — 0 and deduce properties which will
be necessary for the study of the complete minimization problem.

4.1 Reduced minimization problems

Lemma 4.1. The potential V. . defined by (1.13)-(1.14) belongs to the class

« : : _ pda? Ty 3,2
Su <<1 /i—yz},gqﬁ.r) with the metric gq.» = #’f—;z?) + dy*.

Proof: After the change of variable (z/,y") = (, /T“r , it is equivalent
to check
£2+28 72 72 da2

T Yy

2425
v(Tyx, Toy)+V 1+ 22— (1+22)2 + 1+ 22

2

It is done if v(ryz, T2y) € Su((x), % + dy?). We know v € S(1, fimiiz ).
Hence for all (o, 3) € N? there exists C 5 > 0 such that

B o

T, T,

VT € (Oa 1]2avxay S RQ, |a($165 (U(Tyxa T$y)) | S Cﬂhﬂ — a+pB

(1+ 7202 + 722) =
1
<Cpp———- < Chplz)t=lol
aaB(T_lg +$2)a/2 O¢7ﬂ< >
which is what we seek. O

If the error terms of Proposition 3.2 and Proposition 3.3 are assumed to be

negligible, the energy £ (1) of a state 1) = U* (a0 ) is close to

e la_  H_a_) + % / la_|* dedy = >, 7,E (a_),
. - G 4
with Ea)=(a_,H_a_)+ 3 la_|* dzdy , (4.1)

X

=00, + V(\/TaTyT, \/TeTyY) -
Yy

with the potential v chosen from (1.14).
When and TxTy are small, in particular in the regime 7, < 1 and 7, = 1 that

37



we shall consider, this energy is well approximated by

; 2 2
eute) = o, [-02- 0, 52+ EE o+ § [let )
v

as this will be checked and specified in the next paragraph. Although more

general asymptotics could be considered, we concentrate from now on the regime

Ty < 1, 7y = 1. The parameters ¢y, and G are assumed to be fixed as 7, — 0.
In order to prove that the ground states of £y and &, are close, we need

good estimates on the energy £p.

4.2 Properties of the harmonic approximation

The energy functional £y does not any more depend on 7, and is parametrized
only by (G, ly). Let us start with its properties. We introduce the spaces H1
and Ho which are given by

He=Qque L’ R > [¢°Diulr <+oop, s=1,2(q=(x,y))
laf+|Bl<s
(4.3)
endowed with the norm |lull3, = Plal+181<s l¢*DSul|2,. For a compact set
K of Hs and for u € Hs, the distance ds(u, K) follows the usual definition
min,e i |Ju — v||3, . The self-ajoint operator associated with the linear part of
Eg is denoted by

22 + 2
G

1T
_)2 4

HéV = _ai_(ay_ 2

(0<fv<+oo).

Its domain is Hso while its form domain is H;. Note also the compact em-
beddings Hs CC Hi cC L?> N L*. Following the general scheme presented in
[HiPr, Sjol, its spectrum equals

o(He) ={(1+2n)ry + (1 +2n)r—, (ng,n-)€N?}

withrizrlﬂ\/ur%i /1+%.

Proposition 4.2. The functional Eg admits minima on {u € Hq, ||u||L2 = 1},
with a minimum value Eg min satisfying

V2

-

The set of minimizers Argmin gy is a bounded subset of Hs and therefore a
compact subset of {u € Hu, ||ul|2 =1} . Moreover for any ¢ € Argmin Eg, ¢ is
an eigenvector of Hy + G|p|? . Finally there exist two constants C = Cy,, ¢ > 0
and v = v, ¢ € (0,1/2] such that the conditions u € Ha, ||ullz = 1 and
En(u) < Efmin + 1, imply

dy, (u, Argmin Ef) < C(En(v) — Efmin)” - (4.4)

gH,min Z T+ +r_ Z
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Proof: On H; and Ha, the scalar products

(u, v)1.6, = (u, He,v)p2
<u’ U>27€v = <H@vua Erfv”)L2

provide norms |[ul/xe,, & = 1,2, respectively equivalent to |jul|s, . In this
proof, all the “uniform” estimates are actually parametrized by (G, ¢y ). The
nonlinearity < [ |u|*(z) dz as well as the constraint ||ul| ;2 = 1 are continuous
functions on L* N L* while the quadratic part of € (u) is simply [lull] , with
En(u) > ||u||iév >rp4ro > ‘/75 The compact embedding H, cC L?> N L*
thus implies that the infimum inf, e, | |ju||,,=1 Em(u) is achieved.
A minimizer ¢ € Argmin £p solves in a distributional sense the Euler-Lagrange
equation

Hoy o + Glo*u = Ao
where A, is the Lagrange multiplier associated with the constraint |||z =1.
By taking the scalar product with ¢, one obtains the bounds for A:

5H,min S )\Lp S 2(S‘H,mzn .
Since H; is also (compactly) embedded in L°(R?), the equation
Hyyp = =Glol*o + Aoy

ensures that ||¢||2,¢, is uniformly bounded on Argmin £ . Therefore Argmin
is a bounded subset of Ho and a compact subset of H1 . In an H;-neighborhood
of ¢ € Argmin €y (||p|lz2 = 1), the L?-sphere {u € Hy, ||ullzz = 1} can be
parametrized by

u=(1-|vl2)e+v, (¢, v)==0.

Notice also that the potential G|¢|? is a relatively compact perturbation of Hy,,,
so that Hy, + G|p|? is a self-adjoint operator in L?(R?) with domain Hy and
with a compact resolvent. With (p, v)1, = —G [g [¢[*Bv da for ¢ is an
eigenvector of Hy, + G|p|? and v L ¢, the energy £y (u) becomes

Enl( = [olZ)g+0) = Tolfda, + 0= [ol2)e . Phrey
_ G
~2G(1 - ol Re [ foPpo ot F [ 10 lela)o+ol! do
R2 R2
= ol + Folo).

where v lies in the closed subset H1 , = {v € H1, (p,v)2 = 0} of H1 and Fi,(v)
is the composition of the compact embedding H; — L?>NL* with a real analytic,
real-valued, functional on L? N L*. Hence on Hi,, endowed with the scalar
product ( , )1,e,, the Hessian of Ex((1 — ||v]|2.)¢ + v) equals Id+D?Fy,, (0),
with D?Fy,, (0) compact (and self-adjoint) . We can apply the Lojasiewicz-Simon
inequality which says that there exist two constants C, > 0, v, € (0,1/2], such
that

lolle, < Co (€ (1~ [[vZ2)¢ +v) = Errmin)™* -
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Since the set Argmin £y is a compact subset of Hi, it can be covered by a finite
number of neighborhoods of ¢; € Argmin £y, 1 <i < N, where a Lojasiewicz-
Simon inequality holds. Take

v = min v, and C =2 max C,. .
ty,G 1<i<n  $ Ly,G 1<icnN %

O

Remark 4.3. The Lojasiewicz inequality is a classical result of real algebraic
geometry (see a.e. [Loj, BCR]) proved by Lojasiewicz after Tarski-Seidenberg
Theorem. It is usually written as |V f(x)| < C|f(z)|" with v € (0,1] for a real
analytic function of x lying around xo with f(xo) = 0. The variational form is a
variant of it. It was extended to the infinite dimensional case with applications to
PDE’s by L. Simon in [Sim]. We refer the reader also to [Chi, HaJe, Hua/ and
[BDLM] for recent texts and references concerned with the infinite dimensional
case or the extension with o-minimal structures.

The nonlinear Euler-Lagrange equation is usually studied after linearization via
the Liapunov-Schmidt process. Here using some coordinate representation of
the constraint submanifold, especially when it is a sphere for a simple norm,
allows to use directly the standard result for the minimization of real analytic
functionals.

When the minimization problem is non degenerate at every ¢ € Argmin &y,
i.e. in the present case when the kernel of Id +D?F,(0) is restricted to {0}, the
compact set Argmin Ex is made of a finite number of point. When {v is fixed
so that ry and r_ are rationally independent, the spectrum of Hy, is made of
simple eigenvalues and when G is small enough, G < Gy, , the non degeneracy
assumption is satisfied via a perturbation argument from the case G = 0. For
large G, we can only say that the set of (G,ly) € (0,+00)? such that all the
minima are non degenerate, vy, ¢ = 1/2, is a subanalytic subset of R?. In
our case with a linear part Hy,, which is a complex operator with no rotational
symmetry, no standard methods like in [AJR] allow to reduce the minimization
problem to some radial nonlinear ODE.

From the information given by the Lowest-Landau-Level reduction, when G
and Uy are large, the supposed hexagonal symmetry, after removing some trivial
rotational invariance, of the problem (see [ABN, Nie]) suggests that there are
presumably several minimizers.

A change of variable ¢(z, y)e~"¥/* = au(azx, ay) with a? = 1/(£yV/G) leads
to
1 -

1 1 1
&) = —— [ (V= =tyVGe. x Pul> + Gr?|ul® + = |ul*),
) = o 1V = 5o M+ Gl 4 3l

(4.5)
with the notations 7= (;) r = |7]. This implies that £1,+/G is equivalent to a

Enlp) =

rotation value. We have the following results from the literature
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e when /G is small and G is large, the minimizer is unique up to rotation
and vortex-free [AJR]: namely u(x,y) = f(r)e for some real number c,
where f does not vanish. If £1,v/G = 0, this is an adaptation of a result
of [BrOs]. When #y//G is non zero, this requires refined estimates for the
jacobian.

e when (/G is large, then vortices are expected in the system and this
can be analyzed in details in the LLL regime (lowest Landau level) if
additionally /G /fy is small [AB, ABN]. More precisely, if vG/ly is

small, then
~ 1 G
inng———infELLL:O £ (46)
2 Ly
where 1
Buia(w) = [ GO?luf + 3lul’ (47)

for functions w such that u(x,y)eém@ﬁ/ 4 is a holomorphic function of

x+1y. This space is called the LLL. If u is a ground state of Ex and w its
projection onto the LLL, then |u—w| tends to 0 in H' and C*® as v/G/ly
tends to 0. If additionally, va/a is large, then one can estimate inf Er 1,

[ABN] thanks to test functions with vortices and inf Eyr;, = O (\e/_va)

o if /y/G is large, and \/@/fv is large, then this is a Thomas Fermi regime
where the energy can be estimated as well [Aft] and is of order vG/{y .

We complete the previous result with another comparison statement which
will be useful in the sequel.

Proposition 4.4. There exists C' = Cy,, ¢ > 0 such that when v € H; satisfy
En(u) < Emmin + 1, |lullL2 = 1, and solves

Hyy, cu+ Glulu = Au+r
with Ay € R and r € L?, then
o u e Hsy;
o there exists ug € Argmin Ex, with Lagrange multiplier A\, such that

Au = Auo| + = wollae, < ClIrlle> + (Eu(u) = Emmin)”)

where v = vy, ¢ € (0, %] is the exponent given in Proposition 4.2.

Proof:  Since Argmin £y is compact, Proposition 4.2 already provides ug €
Argmin Ex such that

|w —uoll#, < C(En(u) = Emmin)” -

41



Taking the difference of the equation for u and the Euler-Lagrange equation for
g, we obtain

Hy, o(u— o) = (M — Mg ) o + Mo (u — ug) + G(Jug[Puo — |ul®u) + 7.
Taking the scalar product with ug, with
ol *uo — [ul*ul| 2 < O (Er(uo) + Eu(w)) llu — uollny < C" (En(u) — Emmin)”

implies
A = Aol < C7 (17|22 + (€ (w) — Emmin)”) -

Using the ellipticity of Hy, ¢ and the equivalence of the norms ||¢[ly, and
|Hey ,cll L2 ends the proof. O

4.3 Comparison of the two reduced minimization prob-
lems

In the regime 7, = 1 and 7, — 0, while ¢}y > 0 and G > 0 are fixed, we compare
the two minimization problems for the energies £, and £ defined in (4.1)-(4.2).
We start with the next Lemma which is a simple application of the so called
IMS localization formula (see a.e. [CFKS]). We shall use the functional spaces
Hs defined by (4.3) associated with £ as well as the standard Sobolev spaces
H*(R?) associated with &, with s = 1,2 and Hs C H*(R?).

Lemma 4.5. Let x1, x2 € C{°(R?) satisfy X3+x3 = 1, suppx1 C {xQ +y? < 1}
and take o € (0, %] . Then the following identity

Er1(u) = £ (x1 (7)) + Exr(xa (7. —T%Z / (V) (72 uf?

e / XDl (4.8)

holds for all uw € H1, with the same formula for E.-(u) when u € HY(R?).
Moreover, £, and Ep satisfy

() = € (72 )u) + Ex(xalr? 2az/|w )Pful?

+G / () (2 )l + Ru), (4.9)

for all v € HY(R?) with

IR < 1 (600 (70 + En (7 Ju)/2) lul ark =5
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Proof: The first identity is a direct application of the IMS localization formula
(see a.e. [CFKS]) which comes from the identity

1 1
Px*P = xP?x = [P = 5 [\ P P = 5P [P.x°]

when P is a differential operator of order < 1 and y is a C* function. Simply
combine it with the identity

Jul* = Dxa (78 Jul* + Ixa(r Jul* + 2333 (7 ) |l
Using the same argument for &, provides the same identity after replacing &y
with &, and it suffices to compare &, (x1(72.)u) with Ex(x1(7S.)u). The defi-
nition (1.14) of the potential v and the condition o < § imply
v(t2) = 7, (2® + 4% on supp xi(7%.).
Therefore, we obtain, by setting u, = x1(7%.)u,
& (xa (7 Ju) = En (xa (73 )u)| =

T

R VO - B T W
. 0 i~ 0=
. X X
(160, = t5 gl + 10, = 150l

Tow3 /2

ﬁm(ﬂ?-)u”w

(& a2 w2 + Enla (7)) ) flull gari >

)u7-|2

IN

ol

IA
R

O

Proposition 4.6. For any given ({y,G) € (0,+00)?, there exists 7o, g > 0
such that the following properties hold when 7, < 14, G .

e The minimization problem

inf Er(u)

weH (R?), [lufl 2 =1
admits a solution uw € H'(R?).

e A solution u € HY(R?) to the above minimization problem, solves an
FEuler-Lagrange equation

x 5 0(75/2.)

)
. +
2\/1+TI:L'2)

with 0 < Ay, < 2&; min and belongs to H*(R?) .

~92 (9,

x

02 T + G|u|2 U= Ayu
vz
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e Moreover the minimum value Er min = Miye 1 (R?) , |[ul|,2=1 Er(u) satis-
fies the estimate
2/3
|g7',min - gH,min| S CZV,GTx/ .

e For uw € Argmin & and any pairs x = (x1,x2) in C;°(R?)? such that
X34x3 = 1 with supp x1 C {:c2 +y? < 1} and x1 =1 in {:L'2 +92 < 1/2},

the functions x; (T;/g.)u, 7 =1,2, satisfy

Ix2(r2/ Jullz < Cyey.ama!? (4.10)

E0a (T u) < Ermin + Cyty o723 (4.11)

du, (x1 (T;/g.)u,Argmin En) < nygvygTjw'V’G/g , (4.12)
1

vev.6 € (0, 5] (4.13)

A constant Cqp . s a constant which is fived once (a,b,c) are given.

Proof: Fix /v and G. We drop the indices ¢y, G in the constants. The
exponent « will be fixed to the value % within the proof.

First step, upper bound for inf{&,(u), u € H'(R?), ||ul 2 = 1}:

Let x = (x1,x2) and ¥ = (X1, X2) be two pairs as in our statement such that
X1 < x1 according to Definition A.3. Take ug € Argmin £y C H;. According
to Proposition 4.2, it belongs to a bounded set of Ha so that |||q|?uo]| 2, with
g = (z,y), is uniformly bounded. Hence, 0 ¢ supp Vx; Usupp x1X2 implies

|90 Pluol = 0r2) while [ %372 )uol? = 0.
R2 R2
Lemma 4.5 above with the pair ¥ and a € (0, 3] gives:

Etmin = En(uo) = En (X1 (75 )uo) + En(Xa (75 Jug) — CT% .

N , 1/2.
On supp x2(72.), the potential ”(Z%IM )

we get

is bounded from below by ﬁ . Thus

- - _ 1 ~
Ertmin (IX1uoll7> + IX2u0ll72) > EmminllX1uoll 72 + =T IX2uol|72 — CTo,
x

and finally
IX2uoll7> < C"73%, [Xauollz> = 1+ O(13),

as soon as T, < (C”EHﬁmm)fl/%‘ )
The function u; = || X1uo|| ;2 X1uo is normalized with

gH,min < SH(’U,l) < gH,min + O(Tga) :
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and x1 (75 )ur = u1, x2(7%.)ur = 0. Applying the second formula of Lemma 4.5
with, now, the pair x, leads to

Er(w) = Ep(w) + R(wr) = Emin + O(15%) + R(uy)
1
with  R(u;) < Z(Er(m)l/2 + (Etmin + O(T8%)) /) =5

With the estimate g < Exmin < C, we deduce

5-,—(U1) = gH,min + O(Tﬁa + 7_11—3(1).

x

_ 2/3
& so that 78% = 7173 = 72/% and

It’s time to fix a to the value

inf & (u) < E(u1) < Extmin + K723
weH(R2)

Second step - Existence of a minimizer: Once the function u; € H'(R?) has

. . 2/3
been constructed as above, consider 7, < 179 with Ex min + HTO/ < ezlm . The
%4

functional

lullZ:

E-(u)

-
0T

is the sum of a convex strongly continuous functional (and therefore weakly
continuous) on H'(R?) and a negative functional

(u, @/17'1 {U(T;/Q.) - 1} uy .

Due to the compact support of v—1, it is also continuous w.r.t the weak topology
on H'(R?). Out a minimizing sequence (uy,)nen+, extract a weakly converging
subsequence in H!(R?). The weak limit, 1, satisfies

1 2 . 1 2
7\Uoo ) — o0 2 =1 T\ Uny ) — nell L2 -
£ ue) ~ sl = Jim &) — I

with [|uco|lrz < 1. The same convergence holds also for the energy &, (u) —
M%/;TIHUH%Q, so that actually ||ucollrz = limg—eo ||tn, ||z = 1 and ue realizes
the minimum of & (u) under the constraint ||ul|2 = 1.

The Euler-Lagrange equation can thus be written, with the stated straightfor-
ward consequences.

Third step - a priori estimate for minimizers of &;:
Let u € HY(R?) satisfy |lulpz = 1 and & (u) = Ermin < En + k2! Take

two pairs X = (X1, X2) and X’ = (X1, x%), like in our statement, and such that
X1 < X1. The identities (4.9) for £, and (4.9) in Lemma 4.5 provide

Erimin > Er (X1 (T2/°)u) — Cx72/®
gT,min Z gH()zl(Tzl/g)u) - 0)27-12/9
1 1

e G ) 2 (72 2] 725,
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The first line says
Er(X (a0 ) < Ermin + Cx72/° < Eppmin + K723 + Cx72 < C%
which combined with the second line provides the uniform estimate

E(u(ry/?)u) < CY.

Therefore 5(1(7';/ 9.)u is uniformly bounded in H; with respect to 7, . Consider
now the Euler-Lagrange equation

. 1/2

i x (T’ "
[83(8745 ,71+7_z2)2+ (627_ )+G|u|2 U= AU

xT VvVize

and write its local version for v} = x| (7’5/ ? Ju in the form

T x? + 12 -
02— 0, - 54 T =t - G
14
TR (AT
th L= e DY) -
w1 w = 1 m X 7,7 yUl 11 T TI:EQ Uy,

and  f2 = -2n)/° (VX)) (722 . Vi, — 7270 (AXY) (722 it
e — o (29 : ~ I (229
after setting @; = x1(72’ .)u. Both functions, 4y and therefore v} = x| (72" )1
are uniformly estimated in H; and therefore in H*(R?). From the embedding
HY(R?) C L5(R?), the term G| |*u} is uniformly bounded in L?(R?). For the

term fl, the support condition supp x} (T;/g.) C {|ac| < T{l/g} imply

Ifallzz < Oy (™2 4 73749 < O

while the estimate
Il < Curs/® < O,

is straightforward. Hence the right-hand side of (4.14) is uniformly bounded in
L?(R?) and we have proved

x5 (2 Y, < CF (4.15)

for any good pair of cut-offs x' = (x}, x4) -
Fourth step- accurate comparison of minimal energies:

We already know & min < EH,min + /-@75/ % and we want to check the reverse

inequality. Consider a minimizer u of £, and take two pairs of cut-off y =
(x1,x2) and X’ = (X}, X5), such that x1 < x}. The identity (4.8) for &, and
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(4.9) of Lemma 4.5 used with x imply

g‘r,min > 57' (XI(T;/Q)U) + 57—()(2(7';/9)11/)
2
2SS [ IV PE . (d0)
j=1"/R?
E'r,min Z SH (Xl (Txl/g)u)

> LT + R (@417)

1/9

After setting v} = x} (72’ )u, we get the bound

V) (02
[ gpue = [0 ypp < o e,

while we already know from the third step the bounds 5.()(1(7’11/9.)’& <

)
when e stands for 7 or H, which implies |R(u)| < CXTIQ/B. From (4.16),

deduce, as we did in the first step with the energy £y,

CX
we

Ix2(ry®Julfe < O a(re/®Julle =14+ O(%),
while the second line implies
E'r,min 2 (1 - CXTg/B) 5H,min - 0;7—12/3 Z 5H,min - 0;/7'12/3 .

Fifth step- accurate comparison of minimizers:

The function u; = Hxl(ﬁ/g.)uH;le(T;/g

.Ju, satisfies

EH(UJ) S SH,min + CXTIQ/B

/9

while Xl(T; .Ju solves the equation (4.14) for some pair Y = (X1, x2) such that

X1 < X1 after replacing (x/,u}) with (X,Xl(T;/9.>u>. After normalization by

setting @y = ||X(T;/9.)UH221X1(T;/g.)u it becomes
Hyy qur + Glu|*ur = Xy + fo + fo + [, (4.18)
ur = IIx (e ull o (e u = (el g2 xa () u,
1 x? Ta?

with = —ix(

u

e DX(0)8yuy - 2
m )X(Tz ) y U1 4 1+me2ula

fi = =202 (Vxa) () Vi — 722 (Axa) (7, )
and f = Glxa(ry/"ul e (jan* = [ ur + G(1 =[x (r3/* Jul[f2) Jua[us

x

The estimate (4.15), for any new good pair X’ = (X}, x5) such that y; <
X1 < X}, implies that the terms f! and f2 of the right-hand side of (4.18) have
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an L2-norm of order 72/° . For the third term the estimate (4.15) also implies
that
(I 2 = funPyun = (1= 23(727°)) e P

has an L2-norm of order O(72/?) (use the L> bound for |y |2 with |||g|?uy |2 <
Cy). We conclude by applying Proposition 4.4.

We end this section with a comparison property similar to Proposition 4.4.

Proposition 4.7. Let ly,G be fized positive numbers and take u € H'(R?)
such that
57' (u) S gT,min + Cévwc 7-2/3

x

and which solves

1/2
x 5 (7))
)+
V14 rpa? 0T
with A, € R and ||ry||z2 < 1. Then for any pair x = (x1,x2) € C;°(R?) so that

X;+x3 =1 withsuppxy C {z? +y* <1} and xy1 = 1 in {z* +y> <1/2},
there exists Ty 0., and Cy ¢, such that

—02u — (0 — i u+ Glul®u = A\yu + 1y

Ixa(72/* Jullze < Cry il (4.19)

1€, 01 (72 J0) = Extmin] < Croy 672 (4.20)
. 2v, /3

dyy (x1(13/% Ju, Argmin €r) < Coep a(re V7 + ralle), (4:21)

when T, < Ty.oy ¢ and where vp, ¢ € (0, %] s the exponent given in Proposi-
tion 4.2.

Proof: The analysis follows essentially the same line as the study of the
minimizers of & in the proof of Proposition 4.6. By taking two pairs x' =
(X1, x5) and X = (X1, X2) such that x} < x1, we obtain successively like in the
Third Step in the proof of Proposition 4.6 :

o & (1 (ma%)u) + E-(Ra (72! Ju) < C

o [<02- 0 5+ TFE wh = At - Gl + fL+ f2 4 o where

&
u} iy, f1? have the same expressions as in (4.14);
o X (" ull, < Cy owing to [Iru 1z < 1.

From the last estimate, the refined comparison of energies like in the Fourth Step
gives for a pair x = (x1, x2) such that x1 < x}:

Ix2(7a/ Jull72 < Oy’ Em(ur) < Ermin + Cy7a/?
with u; = ||X1(T;/g.)u||_1x1(7;/9.)u and CXTZQ/g <1 for 7, < 7. The equa-
tion (4.18) is replaced by

Hyy cur + Glua|Puy = Agur + fo + f2+ £2 4+ xa(ma/®)ul| = ry
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without changing the expressions of £1:23 . Again the estimate ||} (r2/°.)ul|3, <

C, is used with various cut-offs x}, in order to get || fL+ f2+ 2|22 = (9(712/3) .
We conclude with the help of Proposition 4.4 applied to u; . O

5 Analysis of the complete minimization prob-
lem

We consider the complete minimization problem for the energy

G

Eulw) = o Huawt+ 552 [ 10 =020, e 20 ) + 5 [ 104

and compare its solutions to the minimization of the reduced energies &, and
Em, introduced in the previous sections. We work with 7y =1, 7, — 0, ¢ — 0,
while ¢y, G and § € (0, §p] are fixed. The analysis follows the same lines as the
proof of Proposition 4.6.

5.1 Upper bound for inf {&.(¥), ||¥] 2 = 1}

The potential V; is chosen according to (1.13)-(1.14) while ¢y and G are fixed.
The parameter 7, is assumed to be smaller than 7., ¢ so that the minimal energy
Eromin (1) of & is achieved (see Proposition 4.6) and |Er min(Te) — Emmin| <
Cgngg/ . Moreover Proposition 4.6 also says that by truncating an element
of Argmin &, one can find a_ € Hs such that

lacllze =1, [E0(az) ~ Emmin] < Coy.cm® and Jla—|n, < Coy 6 (5.1)

x

- 0
Proposition 5.1. Under the above assumptions, take v = U( iy )
e VT q_

where a_ satisfies (5.1) and U= U(q,eDq,7,€) is the unitary operator intro-
duced in Theorem 2.1. The estimate

Ec(v) — 2 (a)| < Coy ™. (5.2)
hold uniformly w.r.t 7, € (0,7, ] and § € (0, ] .
Proof: Let us compare first the linear part by estimating
5 v(\/T_)] a}‘

. X
- +
VI +Tzz2) 037,
= ‘<1/J ’ (HLin - 52+267-ZU*HBOU)1/1>|

<1/} ) HLGi/}> - 52+267_m <a, ) 783 - (ay

By Proposition 3.2, it suffices to estimate

11 =X)¢llrz and  |[y/7eleDy|(1 = )¢ L2
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for some given cut-off function x € C§°(R) with x = x(7.£°D?). Notice

7
€

y iy /TzED
27 VT =
(VTzeDy)e "2V ( 7D, — %)

Hence by using the functional calculus of \/eD,, we can say that there exists a
cut-off x' € Cg°(—r2,72), with x’ = 1 around 0 and x" < x such that

€T - E < (1-x)?

Y

and e TF (1,62 Dy*)(1 = X)%e T E < 27| Dy ) (1 - X) + 21 - X)?

assoonase < gg < 1, for a convenient choice of eg and r, . By using ||a|| g2(m2) <
Cyy ¢, we deduce

(1= X)¥l72 < 11 = xa— 32 < Coy aTiet,
and

I(v/7zelDg (X = X)¢II 72 2/|(v/7ee| Dgl) (1 = X)a- |22 +20I(1 = X)a |72

<
< CuyoTae”.

By Proposition 3.2, we obtain

|<1/} ) (HLG - 52+267—1U*HBOU)1/}>|

<o {€2+45 i €5+25T§ 4 54”573/2} < 02V’G€2+45. (5.3)

For the nonlinear part of the energy, Proposition 3.3 gives

a-ce) [ Jaft < [ ol <0+ [ o

RZ

and the bound, [, le ‘T ma_|t = Jgz la—|* < Cp, @, leads to

R
R2 R2

5 5 < CZV,G52+267—1 X €1+25,

which is smaller than the error term for the linear part. This ends the proof of
(5.2). O

Remark 5.2. o The energy E+(a—) = Emin + 0(75/3). Therefore the
error given by (5.2) is relevant, as compared with the energy scale of

e 1. & min, when
% < ¢y 6Tu (5.4)

with cp, ¢ small enough, and accurate when
e < CgvﬁgTSB . (5.5)
Remember that the constants cp, ¢ and Cy, ¢ depend also on §y, when

o€ (0,(50] .
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e [t is interesting to motice that the worst term in the right-hand side of
(5.3) comes from the error of order O(£2+2%) in the Born-Oppenheimer
approzimation. There seems to be no way to get an additional factor TS
with o > 0 because the initial problem is rapidly oscillatory in the y-
variable in a T,-dependent scale. This can be seen on the gain associated
with the metric g-, for 7, = 1 and 7, > 0, which is simply (\/T,p) or
essentially 1 when p is small.

5.2 Existence of a minimizer for &,

With the choice (1.13)-(1.14) of the potential V; -, the linear Hamiltonian Hp;,
can be written

21+ 7122 0 ‘
0 0> uO(QaT>

’U(T;/Q.)
+€2Jr26 o €2+26WT (1,, y) ,

HLin = 7€2+267_IA + UO(Q, 7_) <

&
T2 1
ith We(z,y) = = .

A () (14 7522)2 1 + T a2

For t < 82%25, the negative part (52‘*2‘5% — t) is compactly supported.
\'2 A% —
Set
21+ 7122 0 N
Hpintv = —2T2°71,A +up(q,7) ( 0 0) uo(q,7)
+ €2+25U(\/T ) _y
03 n ’

so that

£~ I = (0 sy + 52 [ ol
<M - 52i26>_ _ WT] b) . (5.6)

2

+ <’l/) €2+26

Proposition 5.3. Assume € < ey, ¢ and 7, < ¢, ¢ with 7, ¢ small enough.
Then the infimum

inf{&.(u), ue HY(R?),|ul =1}
1s achieved. Any element ¥ of Argmin &, solves an Fuler-Lagrange equation
Hrint) + Ge - [$]* = Ay t)
with the estimates
E-()] + Myl < Coppae®, (I(1+ 7| D) 0|12 < Coy 6,
Ec() = Eemin < X [Er min + Coyy ™)

< 2428 [ngH,mm n Cév,g(ﬂ?/g +€26)} _
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Proof: From Proposition 5.1, we know that

t
. 2425 2445
inf  &(u) < e* 7.8 min + Coy .qe™™ =1 =
llull2=1 2
£2+28 . o,
For e < ey, ,q and 7, < 74y, g, t smaller than S Consider the decomposition
\'4

(5.6) for the energy & (u) — t[jul|2.. By the same argument (convexity of the
positive part and compactness of the negative part) as we used for &, in the
proof of Proposition 4.6 (second step), a weak limit of an extracted sequence of
minimizers in H1(R?) is a minimum for & on {||ul|z2 = 1}.

A element 9 of Argmin &, satisfies

Pt (14 72)e2 < CéV,G52+26a

S g&,min - <1/]a €2+26

<

N | o+

by recalling v > 0 for the last line. This implies

_ 261, 6 __
1lE < Chomt 5 Wl < —2=70
G

and by interpolation with [[ul|zs < C||Vul|24*|u]| ¥4, [4] s = O(a /*). The

first inequality with [|v)|| g2 = 1, gives ||(1 + 7| Dy|?)'/24]| L2 = O(1) .
The Euler-Lagrange equation

HLin"/J + Ga,‘r|w|2w = MP

implies
Gaﬂ' 4
|)‘| S 2 <wa HLin,t,-i-l/]) + ) |1/J|

—<w,a””l(”(ﬁ ) _t )—WT] ¥) < O, 62>,

2 T 2425
0 €

Similarly, the lower bound &.(1)) > —2¢2t29 is due to W, > —2. The upper
bound of (1)) = & min comes from Proposition 5.1 and (5.1). O

5.3 Comparison of minimal energies between £. and &

In this subsection, we specify a priori estimates for the minimizers of £ and
compare the energies & min and &; pin without imposing relations between g2
and 7, . This is not necessary at this level, if one uses carefully bootstrap
arguments.
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Proposition 5.4. Let V. ; be given by (1.13)-(1.14) and assume 7, < 7¢,, ¢ and
e < egy.¢ so that & admits a ground state according to Proposition 5.3. The

operator U is the unitary transform provided by Theorem 2.1 and an element i) €

- (et mq a
Argmin &, is written U | ~_, T, witha = < +> . Then, the estimates
e eq_

(1 + 72| Dg|*)2al| 2 < Ciy (5.7)
llas |3z + Ger / la|* < Cpy . 4+ & omin (5.8)
E-(¥) = TP 1€ (a-)] < Coyp ™, (5.9)
|58,min - 52+267‘m£7’,min| < CZV,G€2+463 (510)

2426

hold with right-hand sides which can be replaced by Cy,, qe 7. when 2 <

Cov ,GTx -

inE
Proof: Fora= |, , ** ) and a = (aJr),the norms ||(1+7,|Dy|?)/2al| 2
e 2VTxq_ a_

and ||(1 + 7.|D,|?)'/2a| > are uniformly equivalent because

PRI iy 1
et ZE(vTﬂch)éF WV = (1 Dy) F 2
Hence it suffices to estimate ‘/TstqU*z/). Remember that U = U(q,eDq,T,¢)

with U € S,(1,g,; M2(C)), while \/7op € S.({\/Tap),9-;R?). With (1 +
72| Dg|?) /24|12 < Ciy, . in Proposition 5.3, simply compute:

JTaeD U = eU*\/TaDyth + [\/EEDQ, U*} ¥ =0() in LA(R%C?),

and divide by ¢ for (5.7).
In order to compare the energies, consider first the linear part by writing

’WJ Hpint) — ¥, [(aJr CHiay)+ (a_, ]{L(Lﬂ ‘ =

‘<a (U HpinU — 28 Hp0)a)!

with
(NI - (eiya+> )
e VTzq_
(ei%\/ﬁﬁue_ 2VTe 0 )
HBO - ) A iy 9
0 e V= H_e 2V
- ) x v(y/Ts.)  (1£1)
H = -9*>—(8,+ 2 1+ ma?)/2.
+ T (y Z2m) + E%/Tz +52+26Tz( +T1')
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Here it is convenient to write

. 2\1/2
2420 Hoo = BBy <2(1 —l—%vx ) > 7

B= (BO+ BO ) , Ei = Bi(q,eDy,1,€), (5.11)

Ty

it

With the notation ¥ = x(,.€%|Dy|?) of Proposition 3.2, Lemma 5.5 below says
in particular

— V7)) + Sulyr) (5.12)

£
Bi(qapaTaE):szi+(VTmpyi§( 62
\%

10 = R)$132 < Coyq [ (@ Ba) + 2l 3]
IV7elDl(1 = Wll3z < Coy 6 (@, Ba) + e+ fal 3]
Proposition 3.2 yields

N N . 2y1/2 .
(@, <U*HLmU€25B - (2(1 + 7%) )) @) < Cryc [*F9 + 100, Ba)) .

0

For the nonlinear part of the energy, Proposition 3.3 gives

(1—C€1+26)/ |w|4§/ |d|4:/ |a|4§(1+061+26)/ |’l/1|4
R2 R2 R2 R2

with @ = (e L ) and o = <Z+) The bound [y, [[* < Cry ary?

—1i

e Vrea_
coming from & (1)) = O(e2+%) with 2+, = O(e2+?), leads to

Grye?t? Grye?t? .
S [t - [
R2 R2

which is smaller than the error term for the linear part. We have proved

S CZV,G€2+26T1 X€1+267_I_1 _ C€V7G€3+46 ,

E.(0) — (@, Ba) — (@, 201+ e 2a) - Z22 ol

< Cypy.c {52+45 +exe?a, Bd)} .
With & () = & min (= O(e%129)), this gives
) G..
(1—Ce)e*(a, Ba)+2(a, (1+m2%)2%a,) + T / la|* < Ce>* + & nin

where all the terms of the left-hand side are now non negative. We deduce (5.8)
and by bootstrapping

. G, - oL G
o, )+ 25 [ lalt <, Ba +

;T /|a|4
&

2446
< 6,min+C€V,G5 o
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Additionally, [ |a* = [ (Ja—]* + |a+|2)2 > [la_|* also gives
25 26

€ Eeomi €
0< Ha—HiZg‘r,min <& fa-) < CZV,GZ + 5223?;; < Ermin + Cév,GZ

With [Ja— |22 = 1~ [lat|® = 1+ O@**%) = 1+ O(=) and Ermin = Efmin +
O(72/%), this finally leads to

| ga,min —6 ( )| < C// f
g2+20, T a-)1 =Ly e .

O

Lemma 5.5. Assume B(q,p,T,€) = T.|p|*+er withr € S,({\/Tep), gr; M2(C)),
take any x € C°(R) and set B = B(q,eDy,7,¢) and X = x(12¢|Dy|?). Then
there exists ep.y > 0 and Cp,, > 0 such that the estimates

1= ulld + I VEleDl(L = Qullfe < Coy (u, Bu)+ e+ jula] |
and (1= RJullzz + IVA1eDl(1 = Qullzs < Cay [I1Bullze + € ull 2] |

hold uniformly w.r.t 6 € (0,00] and € € (0,ep,y) -

Proof:  For xo € C§°(R) such that x¢ > 0 and xo = 1 around 0, the symbol
Xo(7zp?) + B is an elliptic symbol in S, ((\/7zp)?, gr : M2(C)). For £ > 0 small
enough according to (xo, B), its quantization xo+ B is invertible and its inverse
belongs to OpSy({v/72p) 2, g, M2(C)) . Next we notice that in

-1 -1
1= =0-o[tw+B] oB+1-e|tw+B] %o,

the last term belongs to OpN,, 4. if xo < x . All the estimates are consequences
of

L1-1 L
(1= =0 =%)o[Ro+B] B+,

with p € Sy (5=, gr; M2(C)). =

(Tap)

5.4 Adiabatic Euler-Lagrange equation

As suggested by Proposition 4.7, or the last steps in the proof of Proposition 4.6,
an accurate comparison of minimizers requires some comparison of the Euler-
Lagrange equations. We check here that the a_ component in Proposition 5.4
solves approximately the Euler-Lagrange equations for minimizers of £, . Here
the bootstrap argument is made in terms of operators instead of quadratic forms.
In order to get reliable results, we now assume

5
< ¢y ,GTz

with ¢, ¢ chosen small enough.
With such an assumption we know:
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e from (5.10) and |7 min — Emin| = O(T§/3),

—1_2+426 2425
C g2t ng&,mm§05+ Tr -

; Y
. . . e may 4
e When ¢ € Argmin & 4, is written ¢ = U | __u the L*-norm
e 2V ag

of @ is uniformly bounded, [ |a|* < Cy, ¢, according to (5.8). By apply-
ing Lemma 3.4 this also gives [ [¢|* < Cy, . We also have [lay|/7. <
Coy .ce?%1, .

e The Lagrange multiplier Ay, associated with ¢ € Argmin & nin, equals
E () + % [ |[*. Thus it is of order O(e*+%°7,).

Proposition 5.6. Under the same assumptions as in Proposition 5.4 and with

the above condition 20 < Coy ,GTz, Write a minimizer ¥ of & in the form ¢ =

(. |

Ul _, . Then the component a_ solves the equation
e Wrq_

. . 226
H_a_ + G/ la_*a_ = Apa_ +re  with |re|r2 < Cry c(e+ T—),

x

while ||ay|| 2 < Coy.qe* 07, .

The LP-norms of a and v are uniformly bounded by Cy,, ¢ for p € [2,6].

Moreover if B is the operator defined in (5.11)-(5.12), a = < €0t ) satis-

—i
fies

e VTzq_

|Bal| 2 < Coy > - (5.13)
Remark 5.7. The relation of | Bal|L> with ||a| g2 is given by
O~ [n || Djall + el 2] < ||Ballpe +€lfal 2 < C [*rel|Diall + *||all 2] -
Note that the L? remainder terms have a factor €2 and not €27, .

Proof: Playing with the Euler-Lagrange equation for v, we shall first prove
(5.13) by using the same argument as we did for (a, Ed) in the variational
proof of Proposition 5.4 and then use it in order to estimate |r|/z2 . The Euler-
Lagrange equation for v

Hpint + G, [91*) = Ay
becomes R . R
U'HpmUa+ G U™ ([9*9) = Aya.
Remember that Born-Oppenheimer Hamiltonian is given by

_7:2 Y ~ l Yy
0 e Ve H_e 2V

2200 Hpo = 52+267_Z<

. 2
2B <2\/1 —grmx > 7

i-—Y ~ I —]
e'VE Hyoe '™V= 0
Y
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by using the notations of (5.11)-(5.12).

Let us consider first the linear part after decomposing a into a = ya+(1—x)a,
where the kinetic energy cut-off operator ¥ = x(7.|eD,|?) has been introduced
in Proposition 3.2:

U*HpimUa = U*HpinUxa
N— ——
(1)
+ (U = U§)HrinU(1 — X)a+ Ug Hpin(U — Up)(1 — X)a

(1)

+ UsHpinUs(1 = Q) .

(I11)

The three terms are treated by reconsidering the computations done for Propo-
sition 3.2. By inserting a cut-off X1, x < x1, in x1U*Hp;,Uxa with (1 —
)A(l)U*HLme( S OpNu,g,v we get

(I) = > 7, Hpoxa + O(e*™°)  in L*(R?).

With e 1=2(0 — Uy) € OpSu(ﬁ,gT;Mg(C)) and by using Lemma 5.5,

the second term is estimated by
I(IT)||> < C"2|(1 = R)all> < O |e]|e* Bal > + 52+45} :
We write the third term as
(ITT) = e*™ 7, Hpo(1 — X)a + e 1, Dyin(1 — X)@ + Dpot (1 — X)a,

where Dy, and Dy, are defined by (3.7)-(3.8). Following the arguments given
in the proof of Proposition 3.2 after these definitions, we get

IDpor(1 = X)allz < Ce*(1 = %)z <

< [€|\525Bd||L2 + 52+45} ,
[Drin(1 — Q)allz: < C[e)(1 = Qa2 + e || (ey/Ta| Dgl) (1 — Xl 2]
<

c’ [€|\525Bd||L2 + 5”45} .
Hence the Euler-Lagrange equation can be written

e Hpoa = A\pa — e 7,GU™ (1) +r

with  ||rl[z2 < C [5|\5263a|\L2 +52+45} .

From Proposition 5.3, with €20 < cr,, we know |||+ < C. It can be trans-
formed into ||a||p2 = ||[U*| s+ < C with

1 PYllze < Cllvlizs < C'lalls ,
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by applying Lemma 3.4, adapted for the metric g, like in the proof Proposi-

tion 3.3. We start from the interpolation inequality
1 s
2 Dy flI72l1 117

1 g
I£llze < CIUDZfIIZ=IIF1IZe < p
(T2€)%

By introducing the operator B = B(T;1/2€q, 72 Dy, T,€) with
€ x
— | — — /72 | (12e)D
(= - vA) (e,
g2 T 2 4
(\/1 + 22 \/_) &

T

)

Bi(Tfl/Qq,Tzl/QDq,T, €)= (TIE)QDg +

it becomes
_o1 8 2 1 8
IBAIZ A5+ <t 1A 711

Cyy,

Iflse < 0255

1

The above relation with f = 7, 2a(7, 2.) which satisfies

1 1 - .
[fllze =7 *llallse » Nfllze =72 *l|alles and  [[Bf[lL2 = ||Bal|re
leads to

_1 Ce, L1 _4. 8 2, L _4 8

72 *lallpe < s {llBaHZsz “llall 24 +evllallz=m= °llall 24

(T2€)°

1 ~ 1
Crv a7 * 78 |1Ballj +1] .

IN

and finally
Ger WPl 12 < G2 r|[6]3s < Coy 6 [/ 7alle® Bl 2 + €227,

With |\, | = O(e2+2°7,), we obtain
HEQJrZJTIHBOdHLZ <C |:€H€25B(~1HL2 4 g2+48 Jr{_:2+257I} 7

2B 421+ Tzz2>

and recall
24267 .
3 tHpo = A
< 2B

According to Lemma 5.8 below

162 Byaisllzs + 121+ mea?ay ]|z < ClE? By +2v/T+ roa?)iiy |1

We deduce R
||€2(SB@HL2 < Ce*tPr, .
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Plugging this result into the estimate of the remainder r gives
220 Hpoa = \a + GE,TU*(|1/J|21/J) + (’)(53"’26735 + 52"’46) .

Consider now more carefully the nonlinear term

0 (j9P) = U5 |[00al?(0o@)| + (0" = 03) 100l (0oa)|

1) (2)
+ 0 [[0a2(Ua) ~ |Ooal* (Toa)

(3)

By differentiating the relation [ |f|* = [|Uof]* w.r.t f, the first term equals

By semiclassical calculus in the metric g,, the operator ‘/TiquUO equals

V7aeDy0o = Uo/7azDy + |V7eeDy, U ¥ = Uo /7Dy + Ofe)

where the remainder estimate holds in £(L?(R?;C?)). We have already proved
lla]| s < C and Lemma 3.4 leads again to

|Ta|| e + |Uodl| e < C.

With e=1=20(0 — Up) € OpSy(1, gr; Mo(C)), this gives

I(2)] < Ce™+2.
For the third term, we use
| [10aP @) — [00alP @] e < Coll© — Oolalus [[0alis + [D0l3s]

< C€1+26 )
We have proved
GT,8U*(|1/’|21/’) - GT,8|d|2~ = 0(53+467m) )

which is even better than the estimate for the linear part.
For the a_ component, we get

0 2 e e A g2
HBO (&) +G(|a_| + |a+| )a_ = ma_ +O(€+ _),

Tz

and it remains to estimate the term |a|?a_ . The first line of the system may
be written

e®Bla +2v1 + mpaa, +G. (Jas]? +a—|?) ay = Apay+O(e¥T 20,4227, .
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Taking the scalar product with a, with A, = O(¢2+207,) and B, > 0, gives

~ ~ 526
/|a+|4 < Clllaslze + (e + —)llas|z2] < C'e**r

x

Then the same argument as in the estimate of ||a|| s gives

_ 2~ _ L1 8 1.8
laslize < C[emdByanallasl o+ lashfalasl f]

IN

' |:(€—2—26||€26B(~1”L2)% + (€2+26Tm>%:| (€2+267_I>%

44468
9

1 2 1
C”ng (52+267'z)9 < O 3.

IN

Again with ||al| s < C, we deduce

8485

2
larPa-|ize < Coy ge™ 78 < Cp, ge-

The final result is just a transcription in terms of a . |

Lemma 5.8. Let By be the symbol

5 Tol e2v(\/Tz.)
Bi(q,p,Ta,€) = TuD2 + (VTaly + = (= — /72))? + ——
+(@ 0, Tar€) = Tapy + (VTepy + 5 T ) 23

introduced in (5.12). By setting B, = B.(q,eDgq,Ts,€), the operator A =
e¥ By 4 2v1 + 1,22 is self-adjoint with D(A) = {u € L*(R?), Au € L*(R?)}

as soon as € < €q, with g independent of T, . Moreover the inequality

Vue D), ¥ Byullss + 12V F maul s < C)ldul
holds with a constant C' independent of (g,7,) .

Proof: The operator A can be written
A= aO(Qa €1+§an T:E) + €1+6a1 (q7 €1+6Dq7 TI) + E24’25&2 (q7 TI) )
with ay, € Su((\/Tap)? ™% + (Tox) 179+ g.) and

ao(q,p, 72) = p* +2v/1 + 1,22

Therefore the operator A is elliptic in OpS.,, ({/7zp)*+(y/Tzx), g-) and the result
about the domain follows with

162 By ullzs + 1123/1+ reaull 2 < Ol Aull g + ull12)
for all u € D(A). We conclude with
2llullfe < (u, Au) < [|ul| 2| Au]| L2

duet03+20. O
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5.5 End of the proof of Theorem 1.2

Assume G, ¢y > 0 be fixed and § € (0,dp]. Although we dropped dy in our
notations, all the constants in the previous inequalities depend on (G, ¢y, dp) .
We assume now 7, < 7py,.¢.605 € < E0y,G,5, and

5

e <3

Proposition 5.4 says

5
|58,min - 52+267‘zg7',min| < 052+46 < 0/52+267—x3

and we recall

2

|€T,min - 5H,mzn| S 07—13

by Proposition 4.6.

When o= 0 { €729 ) | Proposition 5.6
en Y = ity | roposition 5.6 says
2426 c
latlzz < Ce™r  Jlallgz < — and lafjzs + Jlallze < C,
x

while a_ solves the approximate Euler-Lagrange equation

20
. . €
H,a,+G/|a,|2a, = Apa_ +r. with |[[re] 2 SCZV7G(€+T—).

x

For u = ||a_|[sa— the energy &, (u) satisfy

|5-,—(U) - gT,min| S CTE

and the above equation becomes

25
H_ u+G |u|2u:)\¢u+(9(€+€—).
Tz
We conclude by referring to Proposition 4.7 applied to v and then renormal-
izing for a_: For x = (x1,x2) with xy1 € C(R?), x3+x3=1,x1 = 1ina
neighborhood of 0

1 1
Ixa(7s Ja—l2 < Ot

IE-(xa1 (72 a=) — Ermin)| < CT

8 oo

2vpy, @ 1

1
dy, (x1 (72 Ja—, Argmin Ey) < C(mw *  +¢), v ¢ € (0, 5] )

1
For the L*-estimates of a; and dpe (x1(72.)a—, Argmin ), we simply use

the interpolation inequality
1 1 1 1
lulle < Cllullz2l|Aull. < CllullzallullFe

valid for any u € H*(R?) (write u(0) = [g» ﬁ(&)%, cut the integral according
to || S R, estimate both term by Cauchy-Schwartz with 4 = #(HQQ) when
|¢€] > R, and then optimize w.r.t R).
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6 Additional comments

We briefly discuss and sketch how our analysis could be adapted to other prob-
lems. No definite statement is given. Complete proofs require additional work,
which may be done in the future.

6.1 About the smallness condition of ¢ w.r.t 7,

In our main result, Theorem 1.2, condition (1.18) is used, namely
%
20 < Ta .
=5
One may wonder whether such a condition is necessary in order to compare the
minimization problems for & and 2297,y . When comparing the minimal
energies in Proposition 5.4, we found

2426 2446
|ga,min — € * gH,min| S Ce * )

while we know that Eg min = Emmin(fv, G) is a positive number independent
of 7, and €. Hence it seems natural to say that £2° < 7,, at least, is required
to ensure that 27297, i is a good approximation of & i . The error is
made of three parts:

e the error term for the Born-Oppenheimer approximation in the low-frequency
range given in Theorem 2.1;

e the error term coming from the truncated high frequency part;

e the non linear term.

The non linear term is %25” J |¥|*, so that a small error in |7, will give

a negligible term w.r.t 52"’2‘57}551{,,”1-”. The question is thus mainly about the
linear problem. If one looks more carefully at the error term of Theorem 2.1, it
is made of the term Oy )00 1)
2\9p Je)\%poJe)
—gt e P X X, 6.1

S on kX (6.1)
according to Proposition 2.6, and of terms coming from the third order term
of Moyal products. The function f. is in our case f.(p) = e®7,p?v(1.p?),
p = (pa,py), k. ¢ € {z,y}, and the factors X, and X, computed in the proof

of Proposition 3.1 are at most of order —— . Hence the quantity (6.1) is an

Tz
O(e**97,) which is again negligible w.r.t 2+2°7, €y in . By considering the
higher order terms in the Moyal product, the fast oscillating part of the symbol

w.r.t y, at the frequency \/%, deteriorates the estimates: although there are
compensations with the slow variations w.r.t p,, always multiplied by /7., only
an ¥ factor without 7, appears in the k-th order term.

Hence, computing the higher order terms, at least up to order 3, in the adiabatic
approximation and then considering the question of the high-frequency trunca-
tion, is a way to understand whether the smallness of € w.r.t 7, is necessary.
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6.2 Anisotropic nonlinearity

Our work assumes an isotropic nonlinearity. A more general nonlinear term
would be

Ge?t20 7,

2 /a1|w1|4+20‘12|¢1|2|7/)2|2+Oé2|7/)2|4 dedy, ¢ = <w1) .

(>

Our case is a1 = ag = aq2 = 1. Let ¢ = Ugb, with the unitary transform
U= U+ e t¥R, (or conversely ¢ = U+ 1). Then the same arguments as in
Subsection 3.3 will lead to

/041|1/)1|4 + 2012 |t01|*[2]? + aoltpo|* drdy
= ([ el + 2002813 + aalu dady ) 1+ 02,
after setting ¢¥°(q) = uo(q)p(q) at every ¢ = (z,y) . In our case

itp 0 0
uo(z,y) = (Secw S_ec> , C =cos <§) , S =sin <§) ,

with 0 = 0(\/Tzx), ¢ = \/— The point-wise identities

W01 + [5]? = 61 ]* + |42
(Y17 = 5] = cos(0) (|o1|* — |da]?) + 2sin(0) Re(pre?¢ o),
lead to

o1 + 26;12 + (|¢1|2 + |6 2)2
O (1612 +16212) (cos(0)(61 2 ~ [6) + 25in(6) Be(Brci%6))

D202 02 (con(0) 1] — 6 ) + 25in(6) Re(@reon))

ar [PY|* + 2002 |7 P[00 + as |t =

«
+

0 0
= [al cos4(§) + sin4(§) + % sinQ(G)} 1|t

oy sin?(2) + ay cos4(g) + a2 sin2(9)] | |*

3 ;
[a1+a2

n Sin(8) + ana(1 + eos2<9>>} 161212

+ (a1 — a2) + (a1 — 2013 + az) cos(0)] sin(0)|p1|* Re(drei pa)
+ (a1 — a2) — (a1 — 2012 + az) cos(0)] sin(8) |pa|* Re(drei® o)
+(a1 — 2012 + a2) sin®(0) Re [(Wﬂﬁg)} :

At least three points have to be adapted from the previous analysis:
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1) When we take a test function ¢ = U < —i ) the energy &.(¢) will be
e 'Vma_

close to £2+2°7,€ (a_), with
E(a)=V{a_, H a_

0
- / [al cos* (=) + 81114(2) + % sin (9)] la_|* dady,

and cos(f) = \/% . Hence before taking the limit 7, — 0 we have a
position dependent nonlinearity. This will induce another error term when
comparing with the energy Ex(a_) = (a_, Heva,>+w [la—|*,
in the limit 7, — 0.

Another possibility consists in considering the case when |ag — oy |+ |12 —

aq| is small as (g,7,) — (0,0). The energy &, (), written as,

(a—, H_a_)

+ % / {al + (g — al)sin4(g) + w sin2(9)] la_|* dady,

will converge to Eg(a_) = (a_, Hpya_) + €2 [fa_|*.

2) The existence of a minimizer for & and the variational argument showing

2
. v
that [lat||2. = O(e24) + & yin When ¢ = U éi;,c_a"’ is a ground
e ‘Vwa_

state for £ will be essentially the same as in the isotropic case.

3) The analysis and the use of the Euler-Lagrange equation for ground states
of &, like in Subsection 5.4, will certainly be more delicate because it will
be a system, and the vanishing of the crossing terms have to be considered
more carefully.

6.3 Minimization for excited states

One may consider like in [DGJO] the question of minimizing the energy, for
states prepared according to ¥, local eigenvector of the potential. Two things
have to be modified in order to adapt the previous analysis:

1) The space of states, on which the energy is minimized has to be specified.
The unitary transform U introduced in Theorem 2.1 provides a simple
way to formulate this minimization problem: set 7. = RanUP; with

P = ((1) 8) and consider

E(¥).

inf
eF i, [lpll=1
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2) In order to get asymptotically as € — 0, the same scalar minimization prob-
lems with & and &g, the external potential V; ; has to be changed. It
must be now

52-‘,-2(5
Ve,‘r(xvy) = 02 U( Tz, \/Tmy)
Vv

2 1
N T+ rz? — £2+26 T +

(14 722)2 1+ 722

The analysis of this problem is essentially the same as for the complete minimiza-
tion problem. It is even simpler because the unitary U is directly introduced.
A slightly different question is about the minimization of the energy & in the
space F = Ran UOP+, but the accurate comparison between U and U, widely
used through this article would lead to similar results.

Possibly this extension can even be generalized to higher rank matricial poten-
tials with eigenvectors 1, ..., ¥y, for states modeled on any given )y .

6.4 Time dynamics of adiabatically prepared states

Nonlinear adiabatic time evolution has been considered recently in [CaFe]. Note
that our problem is slightly different because, we are considering a spatial adi-
abatic problem, but some techniques may be related.

When ¢ = U (aO > (resp. Yo = U <a'6’0> ), the question is whether the
-0
solution ¥ (t) to

101 = Hpint) + Gs,'r|w|2¢ ) T/J(t = 0) =1
remains close to U (a_o(t)> (resp. <a+0(t)>) with

2426 _ 7 Ge*2r, 2
i0a_ = &>t TzH_a_+T|a_| a- , a_(t=0)=a_p,
. Ge?+2r,
- 242 w2
resp. iy =T, Hyay + 5 lax]"ar , ay(t=0)=a4p.

More precisely, the question is about the range of time where this approximation

is valid: what is the size of 7. w.r.t € such that sup,e_1, 7.} [|¥(?) -U < 0 ) I

a—(t)
(vesp. sup;ei_r. 1) 19(t) — (a+0(t)) |) remains small.
Since the approximation of U*HpinU by (ff; h? > is good in the low fre-

quency range, a natural assumption will be that the initial data are supported
in the low frequency region

a0+ = X(7z|eDg|*)ao = ,
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for some compactly supported x. Then the question is whether the norm of
(1 — X(e*7.D2))(t) remains small for ¢ € [0, T.] for X € C5°(R), x < X. Then
the two last parts of Section 3, concerned with the high frequency part and the
effect of U on the nonlinear term, have to be reconsidered.

Note that the adiabatically prepared state with ¥y = U <aod+> are probably

not stable for very long time, 7. = O(e?), because the characteristic set
Cr={(q.p) €R*, det (e®7,p® + V.- (q) + M(q) — A) =0}

contains two components when A > min F/;, one corresponding to the higher
level of M(q) with |p|*> < C()\), and another one for the lower level of M (q)
but with large p’s. This means that a tunnel effect will occur between the two
levels, so that adiabatically prepared states, with energies close to A > min E,
will not remain in this state for (very) large times.

A Semiclassical calculus

A.1 Short review in the scalar case

Consider a Héormander metric, g, that is a metric on R?i, which satisfies the
uncertainty principle, the slowness and temperance conditions (see [Hor, BoLe])
and consider g-weights (slow and tempered for g) M, My, Ms. The symplectic

form on R2% is denoted by o :
d .
(X, X" => Pa;—qp”’, X=(¢.p),X = ().
j=1

The dual metric g7 is given by g% (T') = supyv % and the gain associ-

ated with g is

- 1/2
AMX) = %I;éfo (Zf(g:;) >1 (uncertainty) . (A1)

In the scalar case, the space S(M,g) is then the subspace of C>(R2%;C) of
functions such that

VN eN,30y  sup |(T1...Tva)(X)| < CyM(X),

9x (Te)=1

after identifying a vector field T with a first-order differentiation operator. For
a given N € N, the system of seminorms (pn,a,¢) ven defined by

pyargla) = sup  sup  M(X)(T1,.... Tna)(X)|
XE]Rngx(Tg):l
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makes S(M, g) a Fréchet space.
For a € S/GR?%) and & > 0, the Weyl quantized operator aV (¢,eD,) : S(R%) —
S'(RY) is given by its kernel

w / e q+q dp
D frd £ R
a (q’{;‘ q)(an) /Rde a( 2 ap) (27T€)d
When no confusion is possible, we shall use the shortest notations
a(q,eD,) = a" =alq,eD,).

When a € S(M, g), it sends S(R?) (resp. S’'(R?)) into itself and the composition
a1 oas makes sense for a; € S(Mj, g) . The Moyal product a;°as is then defined
as the Weyl-symbol of a}" (¢,eD,) o a¥ (q,eD,):

arffax(X) = (e%U(DXI’DXz)al(Xl)a2(X2)) ‘

X1=X2=X

<

= (%U(DXI ) DXz))j
!

“ (Xl)a2 (X2)‘X1:X2:X

Il
o

J

L1—g)7-1 . ie ’

+/ %eQOU(DxlvDXQ) <§U(DX17DX2)) al(Xl)(IQ(XQ)
o _
1

J—

X1 =Xp=X
DX1 ,Dx, ))

a(X)ar(Xo)| el Ry(m,a,0)(X) . (A2)
7=0

where Ry(.,.,&) is a uniformly continuous bilinear operator from S(Mj,g) x
S(Mz, g) into S(MyMaA=7,g) (i.e. any seminorm of Rj(a1,az,¢) is uniformly
controlled by some bilinear expression of a finite number of seminorms of a; and
ag).
The three first terms of the previous expansion are given by
aljj a2 = a102 + — % [8pka18 kA2 — 8qka18pka2]
52 o2 02 02 02 2(0? 02 A3
(0py p, 1) (g gea2) + (0 4ea1)(0y, p,a2) = 2(8,, g0a1)(Opx ,,a2) | (A.3)
+¢°R3 (a1, az,¢)

by making use of the Einstein convention st; = Y y st .

Definition A.1. With the small parameter e € (0,eq), it is more convenient to
consider the Fréchet-space S, (M, g) of bounded functions from (0,e¢) to S(M, g)
endowed with the seminorms:

Py arg(a) = sup pnwg(ale)).
e€(0,e0)

The subscript ., stands for uniform seminorm estimates.
The space of e-quantized family of symbols will be denoted by OpS,(M,g):

(a(e) € Su(M,g)) & (aW(q,EDq,E) € OpS., (M, g)) )
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We shall give a variation of this definition in Subsection A.4 below for pa-
rameter dependent metrics.
We recall the Beals-criterion proved in [BoCh] (see [NaNi] for the e-dependent

. . .. . d dgi? dpi2
version) for diagonal Hérmander metrics of the form g = 37, W + W :
Set ® = (Dg1,...,Dya,q",...,q%) and for E € N*? introduce the multi-commutator

ady = H‘j]i‘l adgé acting on the continuous operators from S(R?) to &'(R¢) and
the weight Mp(X) = (o(X),¥(X))?.

Then the Beals criterion says that an operator A : S(R?) — &'(R9) belongs to
OpS(1,g) if and only if

adh A € L(L*(RY), H*(Mp))
for all E € N2? when the Sobolev space H®(Mg) is given by
[ull e () = [IME(q,€Dg)ul| 2 -

Moreover the family of seminorms (Qn)nen, defined by,

Qn(A) = sup max E7N|| adg A(E)HL(L?(Rd),Ha(ME,g)) (A.4)
e€(0,e0) |E|=N

on OpS, (M, g), is uniformly equivalent to the family (Py(a))nen on S, (M, g)
after the identification A(e) = a"V(q,eD,, ). “Uniformly” means here that the
comparison of the two topologies is expressed with constants independent of
g€ (0,e0).
Below is an example of a metric which satisfies all the assumptions and which
is used in our computations

dq’2
9= T 2
(1+1g'1*)e

d2
P m>0, o0 €[0,1], (A.5)

+dg" + >
(1+[pl?)e

with the gain function A(q,p) = (p)¢ .

It is convenient to introduce the class of negligible symbols and operators.

Definition A.2. An element a € S, (1,g), belongs to Ny 4 if
YN,N' €N, 3ICyn >0, e Na(e) € S,(AN,g).
Similarly, OpN,,,4 denotes the e-quantized version:
(" (q,eDq.€) € OpNyy) & (a € Nuy) -

Combined with the following relation between cut-off functions it provides
easy estimates from phase-space localization.

Definition A.3. For two cut-off functions x1, x2 € C§°(R?*), 0 < x12 < 1, the
notation x1 < x2 means that xo = 1 in a neighborhood of supp x1 -

For example the pseudodifferential calculus leads to

(x1 < x2) = (Va € Su(M,g), (1—x2)fat™x1 € Nuy), (A.6)
when the weight M satisfies M < C\C for some C > 0.
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A.2 Applications to matricial operators

Operator valued pseudodifferential calculus has been studied in [Bak]. When
b is a Hilbert space it suffices to tensorize the previous calculus with L£(f),
which corresponds to the componentwise definition in M,,(C) when h = C™.
The corresponding class of symbols associated with a Hormander metric g and a
g-tempered weight M is denoted by S(M, g; £(h)) while the set of bounded fam-
ilies in S(M, g; L(h)) parametrized by e € (0,e) is denoted by S, (M, g; L(h)) .
The asymptotic expansions (A.2)-(A.3) of the Moyal product clearly holds (see
[PST] for a presentation without specifying the remainder terms) if one takes
care of the order of the symbols. For example, the two first terms of the expan-
sion of a commutator [a1(q,eDq), a2(q,eDy)] are

a1fas — asf®ar = lai(q, p), a2(q,p)]
+ 2%(8]0(118,]@ — 8qa18pa2) — 2%(8]0(128,](11 — 8qa28pa1)
52 [Rg(al,ag,s) — Rg(ag,al,é“)] (A?)

with no simpler expression when the matricial symbols do not commute.

When the Hérmander metric g has the form dq + d—pL the uniform Beals

criterion also holds: In the seminorms Q(a) deﬁned in (A.4) simply replace
L?(R%) by the Hilbert tensor product L?(R?) ® b and consider the operators
and Mg(q,eD,) as the diagonal ones ® ® Idy and Mg(,eD,) ® Idy .

Finally the Definition A.2 of negligible symbols also makes sense for matricial
symbols after replacing OpS(A~N", g) by OpS(A~N', g; L(p)) .

We end this section with standard applications of the Beals criterion.

Proposition A.4. Consider a diagonal Hérmander metric g = Z‘j 1 (pd(;()2 +

2
% and the constant metric gy = dq® + dp? . Assume that any f chosen in
{pj, v, 7 €{1,...,d}} is a go-slow and -tempered weight such that f(q,eDq)°
belongs OpSy(f*, go) for any s € N. 2
Assume that A € OpS,, (1, g; L(h)) is a family of invertible operators in L(L?(RY)®
h) and such that ||A=1(¢)| is uniformly bounded in w.r.t € € (0,e0) . Then A~}
belongs to OpS, (1, g; L(h)) .

Proof: We start from the relation
|E

adfA = Y ppd H[(ad A) ] (A.8)

|E|=|E|,E'eNI#| J=1

which holds in £(L?*(R?) @ ) for all E € N?¢. Hence the Beals criterion in the
metric go says that A=! belongs to OpS, (1, g; £(h)) . In particular A~ belongs
to L(H®(Mg»)) for any E” € N2¢. This allows to apply the Beals criterion in
the metric g and yields the result. |

2This last condition is redundant after a possible modification of w; and ; if one refers
to [BoCh], but easier to check directly in our examples than giving the general proof.
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A.3 Pseudodifferential projections

An application of the Beals criterion says that a true pseudodifferential projec-
tion can be made from an approximate one at the principal symbol level. This
holds for matricial symbols.

i2
Proposition A.5. Consider a diagonal Hormander metric g = Z;l:l % +
J
dp?

5002 with the same properties as in Proposition A.4. Assume that the operator
J
IT € OpS.(1,9; L(h)) satisfies

(ﬁoﬁ—ﬁ) :EuRu+€VRV;

with R, € Su(M,g; L)), R, € Su(N,g;L(H)) v > p > 0 and M,N < 1.
Assume additionally that there exist x,x’ € Su(1,9;£(h)), 0 < x <x' <1 such
that x < x" and 'R, =0.

Then for g1 < e¢ small enough, the operator

. 1 A
P = —/ (Z — H)_l dZ
207 J|.o1)=12

is well defined for e € (0,21) and satisfies

PoP=P in LIL*RY b)),
and ( P fl) = 5”12[” + EVﬁV .
) Hl/

with T, € S, (M, g; L(h)) € Su(N,g; L(h)) and 1T, 0 X € OpN,. 4 .

Proof: The first result concerned with the definition of P is a direct ap-
plication of the simple general result in Lemma A.6 applied with T" = II and
H = LQ(Rd) ® h. Note that our assumptions ¥ > 1 and M < 1 ensure that
||1:[2 — f[|| < % as soon as € < g1 with 7 small enough.

Writing o . .
II— P = (I - 1I)(A; — Ap)
with )
Ay = — 1)t 1
5= 5 (z )" dz, xe€{0,1},

|z—z|

reduces the problem to proving
Ay € OpSu(1,g:£(h)) or (z—1)7" € OpSu(L,9:L(H)),

when {|z — x| = 1/2} with uniform bounds. But this was proved in Proposi-
tion A.4 as a consequence of the Beals criterion. This ends the proof. O
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Lemma A.6. Assume that in an Hilbert space H, the operator T € L(H)
satisfies |[T? — T|| <6 < 1/4 and ||T|| < C. Then there exists cs < 3 such that

o(T)Cc{zeC,lz(z—1)| <0} C{ze€C,|z]| <cs}U{z€C,|z - 1] < ¢},

_ 1 20+1
maX{H(Z—T) 1|,|z—1|:§}§2145.

Moreover, the operator

1
P:—/ (Z—T)_ldz
2im lz—1]=1/2

differs from T according to

T—P=(T?=T)(A — Ag) = (A1 — A)(T* = T),  (A9)

1
th Ay = — T—2)"t1-2)"1d A.10
wi 1= 5 Iz—l\:%( 2)7'1—2)""dz (A.10)
and Ay = = (T — 2"tz dz. (A.11)
2m

j=1=1
Proof: If z € o(T) then z(z — 1) € o(T(T' = 1)) C {z € C,|2(z—1)| < 1}
(Remember that |z(z —1)| = § means |Z — 1| = ] with Z = (2 — 1)?). Consider
z € C such that [z — 1| = 3, then the relation

(T =2)(T—(1=-2)=2(1-2)+(T*-T),
with |2(1—2)| > % and [|[7? — T'|| < < 1, implies

C+13
1_
4

The symmetry with respect to z =1 dueto (1-T)1-T)—(1-T)=T*-T
implies also

T =27 < T - A =2)[2(1—2) + T2 = T] 7| <

1
for |zfl|:§.

=2 < S5 or 2= .
Compute '
T-P = ﬁ A T(z=1)""'=(z=T)""] dz
= (T-1)P+(T?°-T)4
with A} = i ‘%1':%(sz)71(172)71 dz .

In particular this implies to T'(1 — P) = (T? — T)A; while replacing T with
(1-T) and P with 1 — P leads to

1
P-T=-T(1-P)+(T?-T)Ay with A= — (T -2tz dz.

1T ‘z‘:l

2
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Summing the two previous identities yields the result. O

A.4 Extension to parameter dependent metrics

Additionally to the semiclassical (or adiabatic) parameter, we need other pa-

rameters 7 = (7/,7") € (0,1]? on which the metric g = g, depends. In general

consider 7 € T C R” and a family of Hérmander metrics (g, )rc7 defined on
2d

RZ% -

Definition A.7. The family of metrics (g;)reT is said admissible if the uncer-

tainty principle (A.1) is satisfied and if the slowness and temperance constants
C1,Cs, Ny involved in

+1
(slowness) (gTVX(X -Y)< i) = <<gT—X> < C’1> ,
Ch gry

9r,. X

+1
) < Ca(l 4 g7 (X — V)2,
gy

(temperance) (
can be chosen uniformly w.r.t T €T .
Accordingly a family of weights (M;)rc1 will be admissible if the slowness and
temperance constants of M, w.r.t g, can be chosen uniform w.r.t T € T .

The important point is that all the estimates of the Weyl-Hormander pseu-
dodifferential calculus (see [Hor, BoLe]), including the equivalence of norms in
the Beals criterion of [BoCh], occur with constants which are determined by
the dimension d, the uncertainty lower bound (which is 1 here), the slowness
and temperance constants. Hence all the pseudodifferential and semiclassical
estimates, (operator norms or seminorms of remainder terms) are uniform w.r.t
to (e,7) as long as the symbols, ap(e,7), k = 1,2, have uniformly controlled
seminorm in S(M; k, g-), w.r.t (e,7) € (0,&0] X T .

The definition of symbol classes S, (M, g) with uniform control of seminorms
w.r.t e € (0,20] can be extended to admissible families (M, g;)re7 -

Definition A.8. For an admissible family (M, g;)re7, the set of parameter
dependent symbol a(X,e,7), X € R??, (,7) € (0,e0] x T with uniform estimates

VN €N, 3Cy >0, Y(e,7) € (0,60] X T,  pn., 4. (ale, 7)) < Cn,
is denoted by Sy, (My,g-,L(h)), T€T.

Equivalently the set of semiclassically quantized operators a(q,eDq, e, T) when
the symbol a belongs to Sy, (M, g.; L(h)) is denoted by OpS., (M, g-; L(H)) .
The set of negligible symbols and operators associated with (g;)recT with uniform
estimates in Definition A.2 w.r.t T € T is denoted by Ny 4. and OpN, 4. .

Proposition A.9. For 7 = (7',7") € (0,1]* the family (9;)re (0,12 defined on
R2d — RQ(d'er”) by
7_/dq/2 +7_//dq//2+ T/T//dp2

ey V)’
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is admissible.
Proof: It is easier to consider the symplectically equivalent metric (use the

1 1 1
Al Al BN )
q,T “p,T p ))

1 1
transform (¢, q",p',p") — (7'2¢', 7”2

. dq? ) 2dp’? + 7" dp'"?
e T T
after setting (p)2 = 1+ 7/%p'* + 7/*p""? . Firstly remember that the metric
dq" dp?

g0 = Tyt

is a Hormander metric. The metric g7 is given by

2 2
50 <p>'r dq/2 4 <p>.,- dq//2 + <q/>2dp/2 4 dp”Q.

T 7—/2 7—//2
Hence the uncertainty principle (A.1) is satisfied with

<];>,T,<f?f}z<p>721.

In order to check the uniform slowness and temperance of g., introduce the
1,11

new variables X, = (¢/,¢"”,7'p',7"p") when X = (¢, q",p’,p"”) with a similar
definition for Y, and T’ .

A (', q",p',p") = min {<Q’>

Slowness: Write

s 1 - 1
(gT,X(X -Y)< a) < (9(1,1),X, (Xr—-Y;) < a) .

When C7 is slowness constant of g(; 1), this implies
~ +1
9(1,1),x,
(M) <y
91,1,y
g +1
<~T—X> <Cr.
gry
Temperance: Write

g +1 G +1
gr x(T)> <g<1,1>,XT (TT)) . .
o7, = (T2} < Oy(1+g X, Y,V
<977Y(T) da.y, (Tr) 21+ 9011, ( )

when C and Na are the temperance constants for g; ;). The problem is
reduced to showing

VX, T €R™, g4y x. (Tr) < G2 x(T).

which is nothing but

The expression of g7 gives with X = (¢/,¢”,p/,p") and T = (¢',0", 7', 7"
By, (Tr) = (267 + ()26 + (¢ 70" 4 775" < G2 (T)

owing to max{r’, 7"} <1.

73



O

Acknowledgements: The authors are very grateful to Jean Dalibard for ex-
plaining the mathematical questions arising from a two level atom in a light
beam and for many detailed discussions that took place for the duration of
this work. They also wish to thank G. Panati, C. Lebris and S.V. Ngoc for
their occasional help. This work was initiated while the second author had a
CNRS-sabbatical semester at CMAP in Ecole Polytechnique. They acknowledge
support from the French ministry Grant ANR-BLAN-0238, VoL.Quan.

References

[Aft] A. Aftalion. Vortices in Bose-FEinstein Condensates. Progress in Nonlinear
Differential Equations and their Applications, Vol 67 Birhkaiiser (2006).

[AB] A. Aftalion, X. Blanc. Reduced energy functionals for a three dimensional
fast rotating Bose Einstein condensates. Ann. Inst. H. Poincaré Anal. Non
Linéaire 25 no. 2 (2008), pp 339-355.

[ABN] A. Aftalion, X. Blanc, F. Nier. Lowest Landau level functional and
Bargmann spaces for Bose-Einstein condensates. J. Funct. Anal. 241 no. 2
(2006), pp 661-702.

[AJR] A. Aftalion, R. L. Jerrard, J. Royo-Letelier. Non existence of vortices in
the small density region of a condensate Jour. Funct. Anal., vol. 260, no.
8 (2011), pp 2387-2406.

[Bak] A. Balazard-Konlein. Calcul fonctionnel pour des opérateurs h-admissible
a symbole opérateur et applications. ph-D, Université de Nantes, (1985).

[BCR] J. Bochnak, M. Coste, M.F. Roy. Géométrie algébrique réelle. Ergebnisse
der Mathematik und ihrer Grenzgebiete (3), 12 Springer-Verlag (1987).

[BDLM] J. Bolte, A. Daniilidis, O. Ley, L. Mazet. Characterizations of Lo-
jasiewicz inequalities and applications: subgradient flows, talweg, convex-
ity. Math. Oper. Res. 36 no. 1 (2011), pp 55-70.

[BoCh] J.M. Bony, J.Y. Chemin. Espaces fonctionnels associés au calcul de
Weyl-Hérmander. Bull. Soc. Math. France, 122 no 1 (1994), pp 77-118.

[BoFo] M. Born, V.Fock. Beweis des Adiabatensatzes. Zeitschrift fiir Physik 51
(1928), pp 165-169.

[BoLe] J.M. Bony, N. Lerner. Quantification asymptotique et microlocalisation
d’ordre supérieur I. Ann. Scient. Ec. Norm. Sup., 4¢ série 22 (1989), pp
377-433.

[BoOp] M. Born, R. Oppenheimer. Zur Quantentheorie der Molekeln. Ann.
Phys. (Leipzig) 84 (1927), pp 457-484.

74



[BrOs] H. Brezis, L. Oswald. Remarks on sublinear elliptic equations, Nonlinear
Analysis 10 (1986), pp 55—64.

[CaFe] R. Carles, C. Fermanian. A nonlinear adiabatic theorem for coherent
states. Nonlinearity 24 no. 8 (2011), pp 2143-2164.

[CFKS] H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon. Schridinger operators
with application to quantum mechanics and global geometry. Texts and
Monographs in Physics. Springer Study Edition. Springer-Verlag (1987).

[Chi] R. Chill. On the Lojasiewicz-Simon gradient inequality. J. Funct. Anal.
201 no. 10 (2003), pp 572-601.

[Coo] N.R. Cooper. Rapidly Rotating Atomic Gases Advances in Physics 57
(2008), p 539.

. Dalibard, F. Gerbier, G. Juzeliunas, P. Ohberg. Artificial gauge
DGJO] J. Dalibard, F. Gerbier, G. Juzeli P. Ohberg. Artificial gaug
potentials for neutral atoms. Rev. Mod. Phys. 83 (2011), p 1523.

[Fet] A.L. Fetter. Rotating trapped Bose-Einstein condensates Rev. Mod. Phys.
81 (2009), p 647.

[LCGPS] Y.J. Lin, R.L. Compton, K.J. Garcia, J.V. Porto, I.B. Spielman. Syn-
thetic magnetic fields for ultracold neutral atoms Nature 462 (2009), p 628

[GCYRD] K.J. Giinter, M. Cheneau, T. Yefsah, S.P. Rath, J. Dalibard. Prac-
tical scheme for a light-induced gauge field in an atomic Bose gas. Phys.
Rev. A 79 (2009), p 011604(R).

[HaJe] A. Haraux, M.A. Jendoubi. The Lojasiewicz gradient inequality in the
infinite-dimensional Hilbert space framework. J. Funct. Anal. 260 no. 9
(2011), pp 2826-2842.

[HiPr] M. Hitrik, K. Pravda-Starov. Spectra and semigroup smoothing for non-
elliptic quadratic operators. Mathematische Annalen, 344 (2009), no.4, pp
801-846.

[Hor] L. Hormander. The analysis of linear partial differential operators.
Springer Verlag (1985).

[Hua| S.Z. Huang. Gradient inequalities. With applications to asymptotic be-
havior and stability of gradient-like systems. Mathematical Surveys and
Monographs, 126. Am. Math. Soc. (2006).

[Kat] T. Kato. Perturbation theory for linear operators. Reprint of the 1980
edition. Classics in Mathematics. Springer-Verlag, (1995).

[LiSe] E.H. Lieb, R. Seiringer. Derivation of the Gross-Pitaevskii Equation for
Rotating Bose Gases. Commun. Math. Phys. 264 (2006), pp 505-537.

(0]



[Loj] S. Lojasiewicz. Une propriété topologique des sous-ensembles analytiques
réels. Les Equations aux Dérivées Partielles, pp. 87-89, Editions du centre
National de la Recherche Scientifique (1963).

[MCWD1] K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard. Vortex for-
mation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 84 (2000),
p 806.

[MCWD2] K. W. Madison, F. Chevy, W. Wohlleben, J. Dalibard. Vortices in
a stirred Bose-Einstein condensate Jour. Mod. Optics 47 (2000), p 2715.

[MaSo] A. Martinez, V. Sordoni. A general reduction scheme for the time-
dependent Born-Oppenheimer approximation. C.R. Acad. Sci. Paris Ser.
I, 334 (2002), pp 185-188.

[MaSo2] A. Martinez, V. Sordoni. Twisted Pseudodifferential Calculus and
Application to the Quantum Evolution of Molecules. Mem. Amer. Math.
Soc. 200 no. 936 (2009).

[NaNi] F. Nataf, F. Nier. Convergence of domain decomposition methods via
semi-classical calculus. Comm. Partial Differential Equations 23 no. 5-6
(1998), pp 1007-1059.

[NeSo] G. Nenciu, V. Sordoni. Semiclassical limit for multistate Klein-Gordon
systems: almost invariant subspaces, and scattering theory. J. Math. Phys.
45 no. 9 (2004), pp 3676-3696.

[Nie] F. Nier. A propos des fonctions théta et des réseaux d’Abrikosov.
Séminaire Equations aux Dérivées Partielles. Ecole Polytechnique, 2006—
2007, Exp. No. XII.

[PST] G. Panati, H. Spohn, S. Teufel. Space adiabatic perturbation theory.
Adv. Theor. Math. Phys. 7 no. 1 (2003), pp 145-204.

[PST2] G. Panati, H. Spohn, S. Teufel. The time-dependent Born-Oppenheimer
approximation. M2AN 45 no. 2 (2007), pp 297-314.

[Sim] L. Simon. Asymptotics for a class of non-linear evolution equations, with
applications to geometric problems. Ann. of Math. 118 (1983), pp 525-571.

[Sjo] J. Sjostrand. Parametrices for pseudodifferential operators with multiple
characteristics. Ark. fiir Mat. 12 (1974) pp 85-130.

[Sor] V. Sordoni. Reduction scheme for semiclassical operator-valued
Schrédinger type equation and application to scattering. Comm. Partial
Differential Equations 28 no. 7-8 (2003), pp 1221-1236.

[Tay] M. Taylor. Partial Differential Equations III, Nonlinear Equations. Ap-
plied Mathematical Sciences Vol. 117, Springer (1997).

76



