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Adiabatic approximation for a two-level atom in

a light beam

Amandine Aftalion∗ and Francis Nier†

January 23, 2012

Abstract: Following the recent experimental realization of synthetic gauge
potentials, Jean Dalibard addressed the question whether the adiabatic ansatz
could be mathematically justified for a model of an atom in 2 internal states,
shone by a quasi resonant laser beam. In this paper, we derive rigorously the
asymptotic model guessed by the physicists, and show that this asymptotic
analysis contains the information about the presence of vortices. Surprisingly,
the main difficulties do not come from the nonlinear part but from the linear
Hamiltonian. More precisely, the analysis of the nonlinear minimization problem
and its asymptotic reduction to simpler ones, relies on an accurate partition of
low and high frequencies (or momenta). This requires to reconsider carefully
previous mathematical works about the adiabatic limit. Although the estimates
are not sharp, this asymptotic analysis provides a good insight about the validity
of the asymptotic picture, with respect to the size of the many parameters
initially put in the complete model.
Résumé : Suite à la réalisation expérimentale de champs de jauge artificiels,
Jean Dalibard a soulevé la question de l’approximation adiabatique pour un
modèle d’atome à deux niveaux, éclairé par un faisceau laser résonnant. Dans
cet article, nous dérivons rigoureusement le modèle asymptotique deviné par les
physiciens et montrons que cette analyse contient l’information sur la présence
de vortex. Les difficultés, et c’est une surprise, ne viennent pas du terme non
linéaire. Plus précisément, l’analyse du problème non linéaire, et la réduction
asymptotique à un modèle plus simple, reposent sur une séparation précise
des grandes et basses fréquences (ou grands et bas moments). Cela nécessite
de reconsidérer avec soin les résultats mathématiques existants sur la limite
adiabatique. Bien que les estimations ne soient pas optimales, elles fournissent
une bonne intuition sur la validité du modèle asymptotique, par rapport aux
tailles des différents paramètres initialement mis dans le modèle.
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†1) IRMAR, Université de Rennes 1, 35042 Rennes Cedex, France. 2) CERMICS, INRIA
project-team MICMAC.

1



1 Introduction

A lot of interest, both in the mathematical and physical community, has been
devoted in the past 10 years to the study of the rotation of a Bose Einstein
condensate: experiments [MCWD1, MCWD2], theoretical works (see [Coo, Fet]
for reviews), mathematical contributions [Aft, LiSe]. In the first experimental
production of such rotating Bose Einstein condensates, a rotating laser beam
was superimposed on the magnetic trap holding the atoms in order to spin up
the condensate by creating a harmonic anisotropic rotating potential [MCWD1,
MCWD2]. Recently, a new experimental device has emerged which consists in
realizing artificial or synthetic gauge magnetic forces and leads to the formation
of vortex lattices at rest in the lab frame [LCGPS]. A colloquium [DGJO] has
analyzed in detail the artificial gauge fields and their manifestations. In order
to understand the main ingredients of the physics of geometrical gauge fields,
[DGJO] (see also [GCYRD]) study the case of a single quantum particle state
with a 2 levels internal structure. More complex systems with more than 2
internal levels are also discussed in [DGJO] but we stick here to the simpler
case of 2 levels, which contains all the mathematical difficulties. A key issue
is to determine whether one internal state can be followed adiabatically. A
question raised by Jean Dalibard is to analyze in particular whether vortex
formation may break down the adiabatic process. In [DGJO], some conditions
are provided, that we want to analyze from a mathematical point of view.

We are interested in the minimization of the energy

Eκ(φ) =

∫

R2

|∇φ|2 + Vκ(x, y)|φ|2 +
G

2
|φ|4 dxdy

+Ωκ,ℓκ(x)〈φ ,
(

cos(θℓκ(x)) eiϕk(y) sin(θℓκ(x))

e−iϕk(y) sin(θℓκ(x)) − cos(θℓκ(x))

)
φ〉C2 ,

where φ =

(
φ1(x, y)
φ2(x, y)

)
∈ C2 and |φ(x, y)|2 = |φ1(x, y)|2 + |φ2(x, y)|2 . We

prescribe that the L2 norm of φ is 1. Here φ1 and φ2 are the internal degree
of freedom of a particle: ground and excited state of the atom. It is assumed
that the atom is shone by a quasi resonant laser beam. The functions Ωκ,ℓκ(x),
ϕk(y) and θℓκ(x) are given as in [DGJO] by

Ωκ,ℓκ(x) = κΩ(
x

ℓκ
) with Ω(x) =

√
1 + x2 ,

θℓκ(x) = θ(
x

ℓκ
) with cos(θ(x)) =

x√
x2 + 1

, sin(θ(x)) =
1√

x2 + 1
,

ϕk(y) = ϕ(ky) with ϕ(y) = y ,

where ϕ is the phase of the propagating laser beam while θ is the mixing angle.
We define

M(x, y) = Ω(x)

(
cos(θ(x)) eiϕ(y) sin(θ(x))

e−iϕ(y) sin(θ(x)) − cos(θ(x))

)
. (1.1)
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The matrix M models the coupling between the atom and the laser. The 2× 2
matrix M( x√

ℓκk
,
√
ℓκky) can be diagonalized in the bases (ψ+, ψ−) respectively

associated with the eigenvalues ±Ω(x),

ψ+ =

(
C

Se−iϕ

)
, ψ− =

(
Seiϕ

−C

)
, (1.2)

with C = cos
(

1
2 θ(

x√
ℓκk

)
)
, S = sin

(
1
2 θ(

x√
ℓκk

)
)

and ϕ =
√
ℓκk y. When the

particle follows adiabatically the eigenstate ψ−, this corresponds to set formally
φ = u(x, y)ψ−, where u(x, y) ∈ C in Eκ. Then u minimizes a Gross-Pitaevskii
type energy functional with a modified trapping potential called the geometrical
gauge potential. The scalar potential Vκ(x, y) = Vκ(x, y) IdC2 will be adjusted
in order to produce a harmonic potential after the addition of the geometrical
gauge potential from the adiabatic theory. We want to justify the adiabatic
approximation for states close to ψ− and analyze the error term between the
initial and effective Hamiltonians.

After a rescaling, the parameter occurring in the experiments have the fol-
lowing orders of magnitude

κ ∼ 106 , G ∼ 600 , ℓκ ∼ 25 , k ∼ 50 ,

but other values can be discussed. Conditions on the strength and spatial extent
of the artificial potential have to be prescribed in order to induce large circula-
tion. Two cases, ℓκk ≥ 1 and ℓκk ≤ 1, can be distinguished and the problem
has to be rewritten in two different ways in order to apply semiclassical tech-
niques. In fact, we will focus on the case ℓκk ≥ 1, corresponding to the previous
numerical values. The complete analysis is carried out in the asymptotic regime
ℓκk → +∞ but some partial results are also valid for ℓκk ≤ 1 or ℓκk → 0 .

A change of scale φ(x, y) =
√

k
ℓκ
ψ(
√

k
ℓκ
x,
√

k
ℓκ
y) yields a new expression for the

energy:

∫

R2

k

ℓκ
(|∂xψ|2 + |∂yψ|2) + Vκ(

√
ℓκ
k
x,

√
ℓκ
k
y)|ψ|2

+ κΩ(
x√
kℓκ

)〈ψ ,
(

cos(θ( x√
kℓκ

)) eiϕ(
√
kℓκy) sin(θ( x√

kℓκ
))

e−iϕ(
√
kℓκy) sin(θ( x√

kℓκ
)) − cos(θ( x√

kℓκ
))

)
ψ〉C2

+
Gk

2ℓκ
|ψ|4 dxdy .

According to the two cases ℓκk ≥ 1 or ℓκk ≤ 1, we define a small parameter
ε that allows to rescale the energy. In fact, we define rather the parameter
ε2+2δ, where δ can be taken as a first step equal to 5/2 . The exponent δ >
0 is a technical trick which provides the right quantitative estimates for the
adiabatic approximation with a quadratic kinetic energy term . The suitable
choice of this new parameter δ is discussed further down in this introduction, in
Subsections 1.1 and 1.2. The small parameter ε > 0 is thus introduced according
to the two cases:
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if ℓκk ≥ 1, then

ε2+2δ =
k2

κ
, δ > 0 , Gε =

Gk

κℓκ
=

G

kℓκ
ε2+2δ ; (1.3)

(This leads in our example to ε2+2δ = 2.5 10−3.)

if ℓκk ≤ 1, then

ε2+2δ =
1

ℓ2κκ
, δ > 0 , Gε =

Gk

κℓκ
= Gkℓκε

2+2δ. (1.4)

We define

τ = (τx, τy) =

{
( 1
kℓκ

, 1) if kℓκ ≥ 1 ,

(1, kℓκ) if kℓκ ≤ 1 .
(1.5)

In both cases, this leads to

κ−1Eκ(φ) = Eε(ψ) (1.6)

where

Eε(ψ) = 〈ψ , HLinψ〉+
Gε,τ
2

∫
|ψ|4 dxdy , (1.7)

Gε,τ = Gτxτyε
2+2δ , (1.8)

and

HLin = −ε2δτxτyε2∆+ Vε,τ (x, y) +M(

√
τx
τy
x,

√
τy
τx
y) , (1.9)

Vε,τ (x, y) = κ−1Vκ(

√
ℓκ
k
x,

√
ℓκ
k
y) (to be fixed) . (1.10)

The quadratic energy (linear Hamiltonian) is

Equad,ε(ψ) =

∫

R2

ε2+2δτxτy|∇ψ|2 + Vε,τ (x, y)|ψ|2

+〈ψ , M(

√
τx
τy
x,

√
τy
τx
y)ψ〉C2 dxdy (1.11)

= 〈ψ ,HLinψ〉 . (1.12)

At least when τx = τy = 1 and δ = 0, this problem looks like the standard
problem of spatial adiabatic approximation studied in [Sor], [MaSo], [MaSo2]
[PST], although it requires some adaptations because the symbols are neither
bounded nor elliptic.

We shall consider the asymptotic analysis as ε → 0 with uniform control
with respect to the parameters G, kℓκ which allow to fix the range of validity
of the reduced models. Then we shall consider the asymptotic behaviour of
the reduced model and the whole system as ℓκk is large. Specifying the right
assumptions on Vε,τ (x, y) or Vκ, possibly in a scale depending on (ℓκ, k), is also
an issue.
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1.1 Main result for the Gross-Pitaevskii energy

We shall choose the potential Vε,τ in (1.10) such that after the addition of the
adiabatic potential in the lower energy band, the effective potential is almost
harmonic. Namely, we assume

Vε,τ (x, y) =
ε2+2δ

ℓ2V
v(
√
τxx,

√
τxy)+

√
1 + τxx2−ε2+2δ

[
τ2x

(1 + τxx2)2
+

1

1 + τxx2

]
,

(1.13)
with the potential v chosen such that

v(x, y) = (x2 + y2)χv(x
2 + y2) + (1− χv(x

2 + y2)) (1.14)

χv ∈ C∞
0 ([0, 2)) , 0 ≤ χv ≤ 1 , χv ≡ 1 on [0, 1],

and ℓV > 0 parametrizes the shape of the quadratic potential around the origin.
With these assumptions on the potential Vε,τ , if one chooses ψ = u(x, y)ψ−,

where ψ− is the eigenfunction corresponding to −Ω(x
√
τx/τy) of the matrix

Ω(x
√
τx/τy)M(x

√
τx/τy, y

√
τy/τx), then the linear part HLin in Eε is formally

replaced by the scalar ε2+2δτxĤ− where

Ĥ− = −∂2x −
(
∂y − i

x

2
√
1 + τxx2

)2

+
1

ℓ2V τx
v(
√
τxx,

√
τxy) . (1.15)

In the limit τx → 0, a natural (ε, τ)-independent scalar reduced model emerges:

EH(u) = 〈u ,
[
−∂2x − (∂y −

ix

2
)2 +

x2 + y2

ℓ2V

]
u〉+ G

2

∫

R2

|u|4 , u(x, y) ∈ C .

Because κ is large, or ε is small, it is natural to expect that the ground state of
Eε is close, up to a unitary transform, to a vector u(x, y)ψ−. This is the aim of
the adiabatic theory and leads to a scalar problem. In order to get good bounds
on the energy, we need to study the limit τx small at the same time.

In all our work ℓV > 0 and G > 0 are assumed to be fixed, while the
asymptotic behaviour is studied as ε→ 0 and τx → 0 .
The quadratic part of the above energy is associated with the Hamiltonian

HℓV = −∂2x − (∂y −
ix

2
)2 +

x2 + y2

ℓ2V
, (0 < ℓV < +∞) , (1.16)

with the domain

H2 =




u ∈ L2(R2) ,
∑

|α|+|β|≤2

‖qαDβ
q u‖L2 < +∞




 , q = (x, y) ∈ R
2 , (1.17)

endowed with the norm ‖f‖2H2
=
∑

|α|+|β|≤2 ‖qαDβ
q u‖2L2 and the corresponding

distance dH2 . It is not difficult (see Section 4.2) to check that the minimization
of EH(ϕ) under the constraint ‖ϕ‖L2 = 1, admits solutions and that the set,
Argmin EH , of ground states for EH is a bounded set of H2 .
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Definition 1.1. For a functional E defined on a Hilbert space H (with +∞ as
a possible value), we set

Emin = inf
‖u‖L2=1

E(u) and Argmin E = {u ∈ H, E(u) = Emin and ‖u‖L2 = 1} .

Theorem 1.2. Fix the constant ℓV , G and δ and assume, for some Cδ =
C(ℓV , G, δ) > 0,

ε2δ ≤ τ
5
3
x

Cδ
. (1.18)

Let χ = (χ1, χ2) be a pair of cut-off functions such that χ2
1 + χ2

2 ≡ 1 on R
2,

χ1 ∈ C∞
0 (R2) and χ1 = 1 in a neighborhood of 0 .

There exists ν0 = νℓV ,G ∈ (0, 12 ] and for any given δ > 0, there are constants

τδ = τ(ℓV , G, δ) > 0 , Cχ,δ = C(ℓV , G, δ, χ) > 0 , and a unitary operator Û =

Û(ε, τ, ℓV , G, δ) which guarantee the following properties

• The energy Eε introduced in (1.7) admits ground states as soon as τx ≤ τδ,
with

|Eε,min − ε2+2δτxEH,min| ≤ Cδε
2+2δτ

5
3
x .

• For any ψ ∈ Argmin Eε written in the form ψ = Û

(
e
i y
2
√

τx a+

e
−i y

2
√

τx a−

)
, the

vector a =

(
a+
a−

)
satisfies

‖a+‖L2 ≤ Cδε
2+2δτx , ‖a‖H2 ≤ Cδ

τx
, ‖a‖L4 + ‖a‖L6 ≤ Cδ ,

‖χ2(τ
1
9
x .)a−‖L2 ≤ Cχ,δτ

1
3
x ,

dH2(χ1(τ
1
9
x .)a−,Argmin EH) ≤ Cχ,δ(τ

2ν0
3

x + ε) ,

‖a+‖L∞ ≤ Cδε
1+δ , dL∞(χ1(τ

1
9
x .)a−,Argmin EH) ≤ Cχ,δ(τ

2ν0
3

x + ε)
1
2 .

All the constants can be chosen uniformly with respect to δ ∈ (0, δ0] for any
fixed δ0 > 0 .

Remark 1.3. The proof is made in two steps: 1) the limit ε → 0 corresponds
to the adiabatic limit for the linear problem and allows to replace the linear part
HLin, of Eε, by the scalar ε2+2δτxĤ− given by (1.15) ; 2) the limit τx → 0 allows
to reduce the asymptotic minimization problem to a simpler one where the linear
Hamiltonian is exactly HℓV given by (1.16).
One main point in the proof is to have precise energy estimates for the limiting
problem. In our case, we obtain them in the limit τx → 0, because explicit
calculations are more easily accessible when the magnetic field is constant, that
is in the case of EH,min. In theory, if one had precise energy estimates for a

general τx for the intermediate adiabatic model with the linear part Ĥ−, complete
results could be performed for general values of τx .
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Remark 1.4. The exponent ν0 = νℓV ,G is a Lojasiewicz-Simon exponent (see
Remark 4.3 for an explanation and a.e. [Loj, BCR] for the definition of Lo-
jasiewicz exponents and [Sim] for its extension to PDE problems). It is 1

2 when
the Lagrange multiplier associated with u ∈ Argmin EH is a simple eigenvalue
of ĤℓV +G|ψ|2 . There are reasons to think that it is the case for generic values
(ℓV , G) ∈ (0,+∞)× [0,+∞), namely outside a subanalytic subset of dimension
smaller than 1 (and possibly 0). Nevertheless for G = 0, there is a discrete set
of values of ℓV for which HℓV has multiple eigenvalues.

Consequences and applications: One issue is whether the presence of vor-
tices (zeroes of the wave function with circulation around them) might break the
adiabatic approach. The answer contained in our theorem is that vortices of ψ
in the original problem and vortices of the ground state of the Gross-Pitaevskii
energy EH are close and that the minimization of EH provides all the informa-
tion on the defects of ψ. Indeed, the smallness of a+ in L∞ indicates that the
vortices of ψ and a− are close, and the last estimate of the theorem provides
that the vortices of a− are close to that of the Gross-Pitaevskii problem.

Numerically, in [GCYRD], the authors observe vortices in a system with
artificial gauge as presented in [DGJO] and modeled with the energy Eε. They
check that the vortex pattern is close to that of the Gross-Pitaevskii energy.
If one wants to use our results, one may process in the following way: once
G is fixed, choose ℓV such that the minimizers of EH have vortices (detailed
conditions will be given in section 4.2). Then take τx > 0 and ε > 0 small

enough so that the L∞ norm of a+ and the L∞ distance from χ(τ
1
9
x .)a− to a

ground state of EH are small. In the above result, the constants are not explicitly
controlled and this control is worse and worse when δ increases. So it is not
explicit for given numerical values of the parameters ℓV , G, τx, ε or equivalently
ℓV , G, κ, k, ℓκ . Nevertheless it provides a framework for numerical simulations,
where the observation of vortices can be confirmed by decreasing ε and τx . The
parameters of the experiments are just at the border where our constants may
become too large to provide a reasonable approximation.

The definitions (1.3) of ε and (1.5) of τx, transform the condition (1.18) into

(
k2

κ

) 2δ
1+2δ

≪
(

1

kℓκ

) 5
3

.

The larger δ, the better, but δ must not be too large because of the value of
the constants Cδ, Cδ,χ. A value of a few units for δ does not affect them too
much. Another reason for keeping δ small is that the initial small parame-

ter is ε2+2δ, while the final error estimate of dH2(χ1(τ
1
9
x .)a−,Argmin EH) (or

dL∞(χ1(τ
1
9
x .)a−,Argmin EH)) contains also an O(ε) term.

As an example for δ = 5
2 , the above relation becomes

1

(kℓκ)7/3
≫ k2

κ
, τx =

1

kℓκ
, ε =

(
k2

κ

) 1
7

.
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A given precision of order ε+ τ
1
3
x , is more easily achieved by taking k small and

ℓκ = 1
τxk

large (for example k = 0.1, ℓκ = 500 × 25 is better than the values
k = 50, ℓκ = 25 given in the introduction). Note also that the external potential

Vε,τ , defined in (1.13) must be adjusted up to the order ε2+2δ = k2

κ .

1.2 Gist of the analysis

Following the general idea of the founding articles [BoFo, BoOp] of Born, Fock
and Oppenheimer, it is well known in the physics literature that a Hamiltonian
system

(εDq)
2 + u0(q)

(
E+(q) 0

0 E−(q)

)
u0(q)

∗

is unitarily equivalent to a diagonal Hamiltonian plus a remainder term:

ε2
[(

(Dq −A(q))2 0
0 (Dq +A(q))2

)
+ |X(q)|2

]
+R(ε) ,

where (Dqi∓Ai(q)) are the covariant derivatives (∓A(q) is the adiabatic connec-
tion) associated with the fiber bundles u0(q)

(
C

0

)
and u0(q)

(
0
C

)
, and |X(q)|2

is the Born-Huang potential.
Since [Kat] and until recently ([NeSo, MaSo, PST, PST2]), this problem has
been widely studied by mathematicians, and the remainder term is formally:

R(ε) =
∑

i,j

ε2Cij(q)(εDqi)(εDqj ) +O(ε3) .

It is smaller than ε2 for bounded frequencies (or momenta) but it has the same
size as the main term for a typical frequency of order 1

ε . For a nonlinear problem
or without any information about the frequency localization of the quantum
states, it is important to estimate the error terms in the low and high frequency
regimes.
Introducing δ > 0 allows to obtain at the formal level

ε2+2δ

[(
(Dq −A(q))2 0

0 (Dq +A(q))2

)
+ |X(q)|2

]
+

∑

i,j

ε2+4δCij(q)(εDqi)(εDqj ) +O(ε3+4δ) ,

where the remainder term is now O(ε2+4δ) at the typical frequency 1
ε and thus

O(ε2δ) times the size of the main term. Such an error estimate can be made
in the L2-sense when applied to some wave function ψ lying in {|p| ≤ r}, with
p quantized into εDq, or more precisely fulfilling ψ = χ(εDq)ψ for some χ ∈
C∞
0 ({|p| ≤ 2r}) with

‖R(ε)ψ‖ ≤ Cχ(ε
2+4δ + CNε

N )‖ψ‖ ≤ (C′
χ,δε

2δ)ε2+2δ‖ψ‖ .
where CN essentially depends on the estimates ofN -derivatives of u0(q), E±(q) .
For a fixed δ, we choose N ≥ 2 + 4δ .
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Remark 1.5. About the choice δ > 0, another strategy could be considered
in order to optimize the exponent δ, w.r.t ε: under analyticity assumptions or
more generally assumptions which lead to an explicit control of CN in terms
of N , one could think of optimizing first CNε

N w.r.t to N according to the
methods of [NeSo, Sor, MaSo]. As an example with CN ≤ N !, this would lead

to CNε
N ≤ Ce−

1
ε after choosing N = N(ε) =

[
1
ε

]
, with some C ≤ 1 . Then

taking δ = δ(ε) = − 1
4ε log(ε) would lead to

CCχ(ε
2+4δ(ε) + e−

1
ε ) ≤ 2CCχe

− 1
ε ‖ψ‖ .

When δ(ε) → ∞ and as compared with ε2+2δ(ε) considered as the order 1 term,
an O(ε2+4δ(ε)) remainder term is almost of order 2 .
We do not consider this optimization of δ w.r.t ε, with limε→0 δ(ε) = +∞, be-
cause our initial small parameter is ε2+2δ and the final result of Theorem 1.2,

(the estimate about dH2(χ1(τ
1
9
x .)a−,Argmin EH) in the nonlinear problem), con-

tains an O(ε) . Hence we keep δ > 0 independent of ε. This is why δ is still
present in the constants of Theorem 1.2.

We need to perform a frequency (or momentum) truncation. We decompose
a general ψ into χ(εDq)ψ+(1−χ(εDq))ψ and use rough estimates for the part
(1−χ(εDq))ψ which will be compensated in the minimization problem for Eε by
good a priori estimates for the norm ‖(1−χ(εDq))ψ‖ of the high-frequency part.

We also have to check that the unitary transform Û , implementing the adiabatic
approximation, does not perturb too much the nonlinear part of Eε(ψ) .

In our case, the limit ε→ 0 leads to the Born-Oppenheimer Hamiltonians

−∂2x − (∂y ∓
ix

2
√
1 + τxx2

)2 +
v(
√
τx.)

ℓ2V τx
,

which, in a second step, in the limit τx → 0, leads to HℓV (with the sign −ix
for the lower energy band). This means that the convergence to the Born-
Oppenheimer Hamiltonian as ε → 0 has to be uniform w.r.t τx ∈ (0, 1] . This
last point requires to reconsider carefully the work of [PST] by following the uni-
formity w.r.t τ of the estimates given byWeyl-Hörmander calculus ([Hor, BoLe])
for τ -dependent metrics which have uniform structural constants.
This is done for the low frequency part in Section 2 while the basic tools of
semiclassical calculus are reviewed and adapted in the Appendix A.
In Section 3 the error associated in the high-frequency part is considered, as
well as the effect of the unitary adiabatic transformation on the nonlinear term.
Once the adiabatic approximation is well justified in this rather involved frame-
work, the accurate analysis, as well as the comparison when τx is small, of the
two reduced models (the one with HℓV and the one with Ĥ−) is carried out
in Section 4. This follows the general scheme of comparison of minimization
problems: 1) Write energy estimates; 2) Use bootstrap arguments and possibly
Lojasiewicz-Simon inequalities in order to compare the minimizers in the energy
space; 3) Use the Euler-Lagrange equations in order to get a better comparison
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in higher regularity spaces.
In Section 5, all the information of the previous sections is gathered in order to
prove Theorem 1.2 : existence of a minimizer for Eε in Proposition 5.3, key en-
ergy estimates in Proposition 5.4 and bounds for minimizers in Proposition 5.6.
Some comments and additional results are pointed out in Section 6, namely: 1)
the question of the smallness condition of ε w.r.t τx appearing in Theorem 1.2;
2) the possible extension to anisotropic nonlinearities (one would have to check
that the unitary transform implementing the adiabatic approximation does not
perturb the nonlinear part); 3) the minimization problem for excited states, i.e.
locally and approximately carried by ψ+ instead of ψ−; 4) the extension to the
problem of the time nonlinear dynamics of adiabatically prepared states.

2 Adiabatic approximation for the linear prob-

lem

In [PST], the adiabatic approximation is completely justified for bounded sym-
bols or when global elliptic properties of the complete matricial symbol allow
to reduce to this case after spectral truncation. Unfortunately, it is not the
case here, because the eigenvalues of the symbol of the linear part HLin are

ε2δτxτy|p|2+Vε,τ (x, y)±Ω(
√

τx
τy
x) . In [Sor], the adiabatic theory for unbounded

symbols is developed after stopping the complete asymptotic expansion in an
optimal way, under some analyticity assumptions, but this would be particu-
larly tricky here with divergences occurring both in the momentum and position
directions. We shall see that the sublinear divergence in position makes no dif-
ficulty after using the right Weyl-Hörmander class. The quadratic divergence
in momentum, with the kinetic energy τxτy|p|2 is solved by first considering
truncated kinetic energies and using the additional scaling factor ε2δ, δ > 0, in
front of the kinetic energy term.
Our problem shows an anisotropy in the position variables (x, y) . The analysis
of the linear problem can be treated in Rd . Then we split the position and
momentum variables, q ∈ Rd and p ∈ Rd, into:

q = (q′, q′′) , p = (p′, p′′) q′, p′ ∈ R
d′ , q′′, p′′ ∈ R

d′′ , d′ + d′′ = d ,

and the pair (τx, τy) is accordingly denoted by (τ ′, τ ′′) ∈ (0, 1]2 .
From this section, some notions and notations related with semiclassical anal-
ysis are used. In particular, the notation Su(mτ , gτ ) refers to classes of (ε, τ)-
dependent symbols of which the seminorms are uniformly controlled w.r.t to the
parameters (ε, τ) ∈ (0, ε0)× (0, 1]2 . For accurate definitions, we refer the reader
to appendix A where all the necessary material is reviewed and adapted for our
analysis, assuming knowledges about Fréchet spaces and generalized functions.
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2.1 Born-Oppenheimer Hamiltonian

Consider the Hamiltonian in Ĥε = H(q, εDq, ε) with the symbol on R2d
q,p

H(q, p, ε) = ε2δτ ′τ ′′|p|2γ(τ ′τ ′′|p|2) + V(q, τ, ε)

= ε2δτ ′τ ′′|p|2γ(τ ′τ ′′|p|2) + u0(q, τ, ε)

(
E+(q, τ, ε) 0

0 E−(q, τ, ε)

)
u∗0(q, τ, ε) ,

with δ > 0 and (τ ′, τ ′′) ∈ (0, 1]2 . The following properties, with the splitting of
variables q = (q′, q′′) ∈ Rd, are assumed:

E± ∈ Su

(
〈
√
τ ′

τ ′′
q′〉,

τ ′

τ ′′ dq
′2

〈
√

τ ′

τ ′′ q′〉2
+
τ ′′

τ ′
dq′′

2
)
,

E+(q, τ, ε)− E−(q, τε) ≥ C−1〈
√
τ ′

τ ′′
q′〉 , (2.1)

u0 = (u∗0)
−1 ∈ Su(1,

τ ′

τ ′′ dq
′2

〈
√

τ ′

τ ′′ q′〉2
+
τ ′′

τ ′
dq′′

2
;M2(C)) ,

γ ∈ C∞
0 (R;R+) with γ ≡ 1 ∈ [0, 2r2γ ] .

With these assumptions we are able to justify the Born-Oppenheimer adiabatic
approximation for δ > 0, τ ′, τ ′′ ∈ (0, 1]. We shall work with the τ -dependent
metric

gτ =
τ ′

τ ′′ dq
′2

〈
√

τ ′

τ ′′ q′〉2
+
τ ′′

τ ′
dq′′

2
+

τ ′τ ′′dp2

〈
√
τ ′τ ′′p〉2

,

on the phase-space R2d
q,p, which is checked to have uniform properties w.r.t τ ∈

(0, 1]2 in Proposition A.9 . The exact definition of the parameter dependent
Hörmander symbol classes, Su(m, gτ ;M2(C)), is given in Appendix A (see in
particular its meaning for τ -dependent metrics in Appendix A.4). We shall use
the notation

Su

( 1

〈
√

τ ′

τ ′′ q′〉〈
√
τ ′τ ′′p〉∞

, gτ ;M2(C)
)

with the meaning of the exponent ∞ being the same as in C∞ of O(ε∞) .

Theorem 2.1. There exists a unitary operator Û = U(q, εDq, τ, ε) with symbol

U(q, p, τ, ε) = u0(q, τ, ε) + εu1(q, p, τ, ε) + ε2u2(q, p, τ, ε) ,

ε−2δu1,2 ∈ Su

( 1

〈
√

τ ′

τ ′′ q′〉〈
√
τ ′τ ′′p〉∞

, gτ ;M2(C)
)
,

such that

Û∗ĤÛ =

(
hBO,+(q, εDq, ε) 0

0 hBO,−(q, εDq, ε)

)

+ ε2+4δR1(q, εDq, τ, ε) + ε3+2δR2(q, εDq, τ, ε) , (2.2)
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with hBO±(q, p, τ, ε) equal to

= ε2δτ ′τ ′′(|p∓ εA|2 + |εX |2) + E±

= ε2δτ ′τ ′′
[

d∑

k=1

(pk ∓ εAk)
2 + |εXk|2

]
+ E± , (2.3)

when
√
τ ′τ ′′|p| ≤ rγ , and

(
+Ak Xk

X̄k −Ak

)
= iu∗0(∂qku0) .

The remainder terms satisfy R1, R2 ∈ Su(1, gτ ;M2(C)) and R2 vanishes in{√
τ ′τ ′′|p| ≤ rγ

}
and those estimates are uniform w.r.t δ ∈ (0, δ0] (and τ ∈

(0, 1]2, ε ∈ (0, ε0]).

Remark 2.2. • The remainder term is really negligible only for δ > 0. This
is explained in Subsection 2.4.

• The (Weyl)-quantization of ε2δτ ′τ ′′(|p∓εA|2+ |εX |2)+E± is nothing but

ε2+2δτ ′τ ′′
[

d∑

k=1

−(∂qk ∓ iAk)
2 + |Xk|2

]
+ E± .

2.2 Second order computations for space adiabatic ap-

proximate projections of the reduced Hamiltonian

We shall consider the matricial symbol, on R2d
q,p,

H(q, p, τ, ε) = fε(p, τ) + E+(q, τ, ε)Π0(q, τ, ε) + E−(q, τ, ε)(1−Π0(q, τ, ε))

where Π0(q, τ, ε) = Π0(q, τ, ε)
∗ = Π0(q, τ, ε)

2 ∈ M2(C) , γ,E± real-valued, with
δ ≥ 0 and the following properties:

E± ∈ Su(〈
√
τ ′

τ ′′
q′〉, gqτ ) , Π0 ∈ Su(1, gq,τ ;M2(C)) , (2.4)

with gq,τ =
τ ′

τ ′′ dq
′2

〈
√

τ ′

τ ′′ q′〉2
+
τ ′′

τ ′
dq′′

2
,

E+(q, τ, ε)− E−(q, τ, ε) ≥ C−1〈
√
τ ′

τ ′′
q′〉 , (2.5)

fε(p, τ) = ε2δf1(
√
τ ′τ ′′p) , f1 ∈ C∞

0 (Rd;R) , δ ≥ 0 .

For conciseness, the arguments p, q and the parameters τ, ε, will often be omitted
in ∂αp fε(p) and ∂

α
q E±(q) or ∂αq Π0 .

According to Appendix A.4, the metric

gτ = gq,τ +
τ ′τ ′′dp2

〈
√
τ ′τ ′′p〉2

=
τ ′

τ ′′ dq
′2

〈
√

τ ′

τ ′′ q′〉2
+
τ ′′

τ ′
dq′′

2
+

τ ′τ ′′dp2

〈
√
τ ′τ ′′p〉2
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has the gain function

λ(q, p) = min



〈
√
τ ′τ ′′p〉〈

√
τ ′

τ ′′ q〉
τ ′

,
〈
√
τ ′τ ′′p〉
τ ′′


 ≥ 〈

√
τ ′τ ′′p〉 .

The ε-quantized version of the symbol Aε(q, p) will be denoted

Â = A(q, εDq) .

Note that the symbols E+ − E− is elliptic in its class Su(〈
√

τ ′

τ ′′ q
′〉, gτ ) , and

ε−2δfε ∈ Su(
1

〈
√
τ ′τ ′′p〉∞

, gτ ) .

Our aim is to compute accurately the adiabatic projection Π(n)(q, p) = Π0(q, ε)+
εΠ1(q, p, ε) + · · ·+ εnΠn(q, p, ε) such that

Π̂(n) ◦ Π̂(n) = Π̂(n) +O(εn+1) ,
[
Ĥ, Π̂(n)

]
= O(εn+1) .

The general theory presented in [PST], tells us that the asymptotic expansion
can be pushed up to n = ∞, but we will do here accurate calculations up to
n = 2 (with additional information for n = 3) and then discuss the influence of
the factor ε2δ . Those are feasible and rather easy because the kinetic energy
term and the two-level potential are simple. This allows to reconsider accurately
the arguments sketched in [PST] for the Born-Oppenheimer case with all the
technical new peculiarities of our example. Note also that in [MaSo2] chapter 10
explicit calculations have been made up to order n = 5 but in the slightly dif-
ferent framework of time-dependent Born-Oppenheimer approximation oriented
to polyatomic molecules : no use of the exponent δ > 0, no divergence as q → ∞
and no ellipticity problem, no extra-parameter τ and the techniques are slightly
different although still relying on semiclassical calculus.
Like in [PST], [Sor], [MaSo], [MaSo2], the calculations are first done at the
symbolic level and we write

(A(ε) = OS(ε
ν)) ⇔

(
ε−νA ∈ Su(1, gτ ;M2(C))

)
.

For a matricial symbol A(q, p) (possibly depending on (ε, τ)), it is convenient
to introduce the diagonal and off-diagonal parts

AD(q, p) := Π0(q)A(q, p)Π0(q) + (1 −Π0(q))A(q, p)(1 −Π0(q)) (2.6)

AOD(q, p) := Π0(q)A(q, p)(1 −Π0(q)) + (1−Π0(q))A(q, p)Π0(q) , (2.7)

where we recall Π0(q) = Π0(q, τ, ε) . Note the equalities

(AB)D = ADBD +AODBOD , (AB)OD = ADBOD +AODBD . (2.8)
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The “Pauli matrix”

σ3(q, τ, ε) = 2Π0(q, τ, ε)− IdC2 , (2.9)

will also be used, with the relations

σ2
3(q) = IdC2 , σ3(q)A

D(q, p)σ3(q) = AD(q, p) ,

σ3(q)A
OD(q, p)σ3(q) = −AOD(q, p) ,

σ3(q)A
OD(q, p) = Π0(q)A(q, p)(1 −Π0(q))− (1−Π0(q))A(q, p)Π0(q) .

We are looking for

Π(n)(q, p, τ, ε) =

n∑

j=0

εjΠj(q, p, τ, ε) ∈ Su(1, gτ ;M2(C)) ,

with Πj ∈ Su(1, gτ ;M2(C)) ,

and such that

Π(n)♯εΠ(n) −Π(n) = OS(ε
n+1) , (2.10)

Π(n)∗ = Π(n) , (2.11)

H♯εΠ(n) −Π(n)♯H = OS(ε
n+1) . (2.12)

Like in [MaSo], [PST], this system is solved by induction by starting from
Π(0)(q, p, τ, ε) = Π0(q, τ, ε), with

Gn+1 := ε−(n+1)
[
Π(n)♯εΠ(n) −Π(n)

]
mod OS(ε) , (2.13)

ΠDn+1 := −σ3GDn+1 , (2.14)

Fn+1 := ε−(n+1)
[
H♯ε(Π(n) + εn+1ΠDn+1)

−(Π(n) + εn+1ΠDn+1)♯
εH
]

mod OS(ε)

= ε−(n+1)
[
H♯εΠ(n) −Π(n)♯εH

]
mod OS(ε) , (2.15)

ΠODn+1 := − 1

E+(q)− E−(q)
σ3F

OD
n+1 =

1

E+(q)− E−(q)
FODn+1σ3 . (2.16)

The general theory says that the principal symbol of Fn+1 is off-diagonal,
Fn+1 = FODn+1 mod OS(ε) , and Fn+1 can be chosen so that

Fn+1 = FODn+1 . (2.17)

Below are the computations up to n = 2 in our specific case. In these com-
putations, we shall use Einstein’s summation rule skt

k =
∑

k skt
k with the

coordinates (pk, q
k) or (pk, qk) with pk = pℓδℓ,k = pk like in the examples

|p|2 = pkpk = pkpℓδ
ℓ,k = pkpℓδk,ℓ , (∂pfε).∂q = (∂pkfε)δ

k,ℓ ∂

∂qℓ
= (∂pkfε)∂qk .

14



n = 0: Start with Π(0) = Π0(q, τ, ε) and notice ∂pΠ0 ≡ 0 and ∂qΠ0 ≡ (∂qΠ0)
OD .

n = 1: Take

G1 = Π0 ◦Π0 −Π0 = 0 ,

and ΠD1 = 0 .

Next compute

ε−1 [H♯εΠ0(q, ε)−Π0(q, ε)♯
εH ] = ε−1 [fε♯

εΠ0(q, ε)−Π0(q, ε)♯
εfε]

= −i∂pkfε∂qkΠ0 mod OS(ε) ,

and take

F1 = −i∂pkfε∂qkΠ0 = −i∂pkfε(∂qkΠ0)
OD ,

and Π(1) = Π0 +
εi∂pkfε
E+ − E−

σ3(∂qkΠ0)
OD ,

with

ε−2δΠ1 =
i∂pkf1

E+ − E−
σ3(∂qkΠ0)

OD ∈ Su

( 1

〈
√

τ ′

τ ′′ q′〉〈
√
τ ′τ ′′p〉∞

, gτ ;M2(C)
)
.

n = 2: Consider now

ε2G2 = Π(1)♯εΠ(1) −Π(1) mod OS(ε
3)

= Π0♯
εΠ0 −Π0 + ε(Π0♯

εΠ1 +Π1♯
εΠ0)−Π1 + ε2Π1♯

εΠ1 mod OS(ε
3) .

According to (A.3), with Π0♯Π0 = Π0 and with

Π0Π1 +Π1Π0 = ΠD0 ΠOD1 +ΠOD1 ΠD0 = Π1 ,

we can take

G2 =
1

2i

[
−∂qkΠ0∂pkΠ1 + ∂pkΠ1∂qkΠ0

]
+Π2

1 .

The first term −∂qkΠ0∂pkΠ1, with Einstein’s summation rule, equals

−∂qkΠ0∂pkΠ1 = − i∂2pkpℓfε

(E+ − E−)
(∂qkΠ0)

ODσ3(∂qℓΠ0)
OD

=
i∂2pkpℓfε

(E+ − E−)
σ3(∂qkΠ0)(∂qℓΠ0) ,

while the second term +(∂pkΠ1)(∂qkΠ0) gives the same result.
The third term Π2

1 is given by

Π2
1 = − (∂pkfε)(∂pℓfε)

(E+ − E−)2
σ3(∂qkΠ0)

ODσ3(∂qℓΠ0)
OD

=
(∂pkfε)(∂pℓfε)

(E+ − E−)2
(∂qkΠ0)(∂qℓΠ0) .
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Hence the diagonal second order correction is given by

(E+ − E−)
2ΠD2 = −(E+ − E−)

2σ3G2

= −
[
(∂pkfε)(∂pℓfε) + (E+ − E−)(∂

2
pkpℓfε)σ3

]
(∂qkΠ0)(∂qℓΠ0)

and satisfies

ε−2δΠD2 ∈ Su

( 1

〈
√

τ ′

τ ′′ q′〉〈
√
τ ′τ ′′p〉∞

, gτ ;M2(C)
)
.

Consider now ΠOD2 : By referring to (2.17), F2 can be chosen as the off-diagonal
part of ε−2

[
H♯εΠ(1) −Π(1)♯εH

]
which, according to the previous steps and

(A.3), equals

− 1

8

[
∂2pk,pℓH∂

2
qk,qℓΠ0 − ∂2qk,qℓΠ0∂

2
pk,pℓ

H
]

+
1

2i

[
∂pkH∂qkΠ1 − ∂qkH∂pkΠ1 − ∂pkΠ1∂qkH + ∂qkΠ1∂pkH

]
mod OS(ε) .

(2.18)

Since ∂2pk,pℓH = (∂2pk,pℓfε) as a scalar symbol commutes with ∂2qkqℓΠ0 , the first

term of (2.18) vanishes.
Similarly the factor ∂qkΠ1 appearing in the second term of (2.18) contains three
terms

∂qkΠ1 = −i∂qk(E+ − E−)

(E+ − E−)2
σ3(∂pℓfε)(∂qℓΠ0) +

i(∂pℓfε)

(E+ − E−)
(∂qkσ3)(∂qℓΠ0)

+
i(∂pℓfε)

(E+ − E−)
σ3(∂

2
qkqℓΠ0) ,

where the second one is diagonal (Remember σ3(q, τ, ε) = 2Π0(q, τ, ε) − IdC2) .
Since ∂pkH = ∂pkfε is diagonal, we get

1

2i

[
∂pkH∂qkΠ1 + ∂qkΠ1∂pkH

]OD

= (∂pkfε)(∂pℓfε)σ3
(
∂qk
[
(E+ − E−)

−1∂qℓΠ0

])OD
.

In the quantity −∂qkH∂pkΠ1 − ∂pkΠ1∂qkH , the derivatives

∂pkΠ1 =
i(∂2pkpℓfε)

(E+ − E−)
σ3(∂qℓΠ0)

OD

are off-diagonal factors, while

∂qkH = (∂qkE+)Π0 + (∂qkE−)(1−Π0) + (E+ − E−)(∂qkΠ0)
OD .

With the two equalities,

(∂qkE+)Π0σ3(∂qℓΠ0) + σ3(∂qℓΠ0)(∂qkE+)Π0 = (∂qkE+)σ3(∂qℓΠ0) ,

(∂qkE−)(1 −Π0)σ3(∂qℓΠ0) + σ3(∂qℓΠ0)(∂qkE−)(1−Π0) = (∂qkE−)σ3(∂qℓΠ0) ,
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we get

− 1

2i

[
∂qkH∂pkΠ1 + ∂pkΠ1∂qkH

]OD
= − ∂2pkpℓfε

2(E+ − E−)
(∂qk(E++E−))σ3(∂qℓΠ0) .

This leads to

F2 = (∂pkfε)(∂pℓfε)σ3
(
∂qk
[
(E+ − E−)

−1∂qℓΠ0

])OD

− ∂2pkpℓfε

(E+ − E−)
(∂qk (E+ + E−))σ3(∂qℓΠ0) .

and

ΠOD2 = − (∂pkfε)(∂pℓfε)

(E+ − E−)

(
∂qk
[
(E+ − E−)

−1∂qℓΠ0

])OD

+
∂2pkpℓfε

2(E+ − E−)2
(∂qk(E+ + E−))(∂qℓΠ0) ,

with

ε−2δΠOD2 ∈ Su

( 1

〈
√

τ ′

τ ′′ q′〉〈
√
τ ′τ ′′p〉∞

, gτ ;M2(C)
)
.

We have almost proved the

Proposition 2.3. The pseudodifferential operator Π̂(ε) = Π̂(q, εDq, ε) given by

Π(q, p, ε) = Π0(q, ε) + εΠ1(q, p, ε) + ε2Π2(q, p, ε)

with Π1(q, p, ε) = Π1(q, p, ε)
OD =

i∂pkfε
(E+ − E−)

σ3(∂qkΠ0) ,

Π2(q, p, ε) = Π2(q, p, ε)
D +Π2(q, p, ε)

OD ,

Π2(q, p, ε)
D = − 1

(E+ − E−)2
[(∂pkfε)(∂pℓfε)

+(E+ − E)(∂2pkpℓfε)
]
(∂qkΠ0)(∂qℓΠ0) ,

Π2(q, p, ε)
OD = − (∂pkfε)(∂pℓfε)

(E+ − E−)

(
∂qk
[
(E+ − E−)

−1∂qℓΠ0

])OD

+2
∂2pkpℓfε

(E+ − E−)3
(∂qk (E+ + E−))(∂qℓΠ0) ,

and ε−2δΠ1, ε
−2δΠ2 ∈ Su

( 1

〈
√

τ ′

τ ′′ q′〉〈
√
τ ′τ ′′p〉∞

, gτ ;M2(C)
)
,

satisfies

Π̂ ◦ Π̂ = Π̂ +O(ε3+2δ) , Π̂∗ = Π̂ ,
[
Ĥ, Π̂

]
= O(ε3+2δ) ,

in L(L2(Rd;C2)) . Moreover the estimates in L(L2(Rd;C2)) of the remainder
terms do not depend on the parameter τ = (τ ′, τ ′′) ∈ (0, 1]2 and δ > 0, as soon
as ε ∈ (0, ε0) .
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Proof: The above construction gives immediately

Π̂ ◦ Π̂ = Π̂ +O(ε3) , Π̂∗ = Π̂ ,
[
Ĥ, Π̂

]
= O(ε3) ,

The first improved estimates come from the fact that

Π̂ ◦ Π̂− Π̂

contains only terms which are Moyal products with a Π1 or a Π2 factor, with
cancellations up to the ε2 coefficient. Both of them have seminorms of order
ε2δ .
For the last one, this is a similar argument after decomposing

[
Ĥ, Π̂

]
=
[
ε2δf1(

√
τ ′τ ′′εDq), Π̂0

]
+
[
Ĥ, εΠ̂1 + ε2Π̂2

]
.

The above result can be improved after considering what happens at step
n = 3 when fε,τ (p) = ε2δf1(

√
τ ′τ ′′p) is at most quadratic w.r.t p in some region.

Before this, let us examine the remainders of order 3 in ε.
n = 3 : The remainder term

ε3G3 = Π(2)♯εΠ(2) −Π(2)

= ε (Π0♯
εΠ1 +Π1♯

εΠ0 −Π1) + ε2 (Π1♯
εΠ1 +Π0♯

εΠ2 +Π2♯
εΠ0 −Π2)

+ε3(Π1♯
εΠ2 +Π2♯

εΠ1) + ε4Π2♯
εΠ2 .

Using the construction of Π1 and Π2 and the fact that ε−2δΠ1 and ε−2δΠ2 be-

long to Su

(
1

〈
√

τ′
τ′′ q′〉〈

√
τ ′τ ′′p〉∞

, gτ ;M2(C)
)
, the expansion of the Moyal product

(A.2)-(A.3) tells us

Π(2)♯εΠ(2) −Π(2) = ε3
[
AG(∂

2
qΠ0, ∂

2
pΠ1, ε) +BG(∂qΠ0, ∂pΠ2, ε)

]
+ ε3+4δRG

(2.19)

where RG ∈ Su

(
1

〈
√

τ′
τ′′ q′〉〈

√
τ ′τ ′′p〉∞

, gτ ;M2(C)
)
and AG(., ε), BG(., ε) have an

asymptotic expansion in terms of ε, of which all the terms are bilinear differential
expressions of their arguments. For the commutator with Ĥ, write
[
H♯εΠ(2) −Π(2)♯εH

]
= [fε(p)♯

εΠ0(q) −Π0(q)♯
εfε(p)]

+
[
fε(p)♯

ε(εΠ1 + ε2Π2)− (εΠ1 + ε2Π2)♯
εfε(p)

]

+
[
(E+Π0 + E−(1−Π0))♯

εΠ(2) −Π(2)♯ε(E+Π0 + E−(1−Π0))
]

After eliminating all the terms which are cancelled while constructing Π1 and
Π2, the contributions of all three terms of the right-hand side can be analyzed.
The contribution of the third term is similar to what we got for G3:

ε3
[
AH(∂2q (E±Π0), ∂

2
pΠ1, ε) +BH(∂q(E±Π0), ∂pΠ2, ε)

]
+ ε3+4δRH,1
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with RH,1 ∈ Su

(
1

〈
√
τ ′τ ′′p〉∞ , gτ ;M2(C)

)
. With the uniform estimate of ε−2δΠ1,

ε−2δΠ2 and ε
−2δfε, the contribution of the second term is estimated as ε3+4δRH,2

with RH,2 ∈ Su

(
1

〈
√

τ′
τ′′ q′〉〈

√
τ ′τ ′′p〉∞

, gτ ;M2(C)
)
. The contribution of the first

term is ε3CH(∂3pfε, ∂
3
qΠ0, ε) and we get

[
H♯εΠ(2) −Π(2)♯εH

]
= ε3

[
CH(∂3pfε, ∂

3
qΠ0, ε)+

AH(∂2q (E±Π0), ∂
2
pΠ1, ε) +BH(∂q(E±Π0), ∂pΠ2, ε)

]
+ ε3+4δRH (2.20)

where the expansions of AH , BH and CH w.r.t to ε have terms which are bilinear
differential expression of their arguments, and the remainder RH belongs to

Su

(
1

〈
√
τ ′τ ′′p〉∞ , gτ ;M2(C)

)
.

Proposition 2.4. With fε(p) = ε2δf1(
√
τ ′τ ′′p), assume that the third differ-

ential ∂3pf1 vanishes in {|p| ≤ r} and fix r′ ∈ (0, r) . Then the remainders of
Proposition 2.3 equal

Π̂ ◦ Π̂− Π̂ = ε3+2δR̂G,1 + ε3+4δR̂G,2 (2.21)
[
Ĥ, Π̂

]
= ε3+2δR̂H,1 + ε3+4δR̂H,2 (2.22)

where RG,1or2 belong to OpSu

(
1

〈
√

τ′
τ′′ q′〉〈

√
τ ′τ ′′p〉∞

, gτ ;M2(C)
)
, RH,1or2 belong

to OpSu

(
1√

τ ′τ ′′p〉∞ , gτ ;M2(C)
)

and RGorH,1 ≡ 0 in
{
|
√
τ ′τ ′′p| < r′

}
. Those

estimates are uniform for τ ∈ (0, 1]2, δ ∈ [0, δ0] and ε ∈ (0, ε0) .

Proof: After noticing that the symbol Π1 is a linear expression in ∂pfε while
the symbol Π2 is the sum of a linear expression of ∂2pfε and quadratic expression
in ∂pfε, the identities (2.19) and (2.20) imply

Π(2)♯εΠ(2) −Π(2) = ε3+2δ+NRN + ε3+4δRG ,[
H♯εΠ(2) −Π(2)♯εH

]
= ε3+2δ+NRN + ε3+4δRH ,

for an arbitrary large N ∈ N, in
{√

τ ′τ ′′|p| < r
}
. Choose1 N ≥ 2δ and

take a cut-off function χ ∈ C∞
0 ({|p| < r}) such that χ ≡ 1 in a neighborhood

{|p| ≤ r′} . Writing for the symbol

S = Π(2)♯εΠ(2) −Π(2) or S =
[
H♯εΠ(2) −Π(2)♯εH

]
,

S = S × χ(
√
τ ′τ ′′p) + S × (1− χ(

√
τ ′τ ′′p)) ,

yields the result.

1Here the estimates become δ-dependent, because a large δ requires a large N . It is
uniformly controlled when δ ≤ δ0.
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2.3 Unitaries and effective Hamiltonian

We strengthen a little bit the assumptions (2.4)-(2.5), with the condition

Π0(q, τ, ε) = u0(q, τ, ε)P+u0(q, τ, ε)
∗ (2.23)

with P+ =

(
1 0
0 0

)
, u0 = (u∗0)

−1 ∈ S(1, gq,τ ;M2(C)) ,

fulfilled in our example. The operator û0 is nothing but the local unitary trans-
formation u0(q, τ), on L

2(Rd;C2) .
With the approximate projection Π̂ = Π̂(q, εDq, τ, ε) given in Proposition 2.3,

Proposition A.5 tells us that a true orthogonal projection P̂ can be associated
when ε0 is chosen small enough, by taking

P̂ =
1

2iπ

∫

|z−1|=1/2

(z − Π̂)−1 dz , (2.24)

with

P̂ = P (q, εDq, τ, ε) , P ∈ Su(1, gτ ;M2(C)) , (2.25)

P (q, p, τ, ε)−Π(q, p, τ, ε) = ε3+2δR1(q, p, τ, ε) + ε3+4δR2(q, p, τ, ε) , (2.26)

with R1, R2 ∈ Su

( 1

〈
√

τ ′

τ ′′ q′〉〈
√
τ ′τ ′′p〉∞

, gτ ;M2(C)
)
,

P̂ ◦ P̂ = P̂ = P̂ ∗ ,[
Ĥ, P̂

]
= ε3+2δĈ1(τ, ε) + ε3+4δĈ2(τ, ε) , (2.27)

with C1, C2 ∈ Su(1, gτ ;M2(C)) ,

and
∥∥∥P̂ − û0P+û

∗
0

∥∥∥
L(L2)

≤ Cε . (2.28)

For a general f1 ∈ C∞
0 , R2 and C2 are included in the main remainder term.

When f1 is quadratic in {|p| < r}, then one can assume that R1 and C1 vanishes

in
{√

τ ′τ ′′|p| < r′
}
for r′ < r, according to Proposition 2.4 and Proposition A.5

Instead of constructing unitaries between P̂ (τ, ε) and P+ by the induction pre-
sented in [PST] and similar to (2.13), (2.14),(2.15),(2.16), we use like in [MaSo]
Nagy’s formula ([NeSo], [MaSo], [PST])

P2 =WP1W
∗ , W ∗W =WW ∗ = 1 ,

with W = (1− (P2 − P1)
2)−1/2 [P2P1 + (1− P2)(1 − P1)] , (2.29)

when Pj = P 2
j = P ∗

j for j = 1, 2 , and ‖P2 − P1‖L < 1 ,

easier to handle for direct second order computations in our case.
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Proposition 2.5. With the definitions (2.23) and (2.24) after Proposition 2.3,
there exists a unitary operator Û on L2(R;C2) such that

P̂ = ÛP+Û
∗ ,

Û = U(q, εDq, τ, ε) , U ∈ Su(1, gτ ;M2(C)) ,

with U(q, p, τ, ε) = u0(q, τ, ε) + εu1(q, p, τ, ε) + ε2u2(q, p, τ, ε) ,

u1(q, p, ε) = − i∂pkfε
(E+ − E−)

(∂qkΠ0)u0 ,

and ε−2δu1, ε
−2δu2 ∈ Su

( 1

〈
√

τ ′

τ ′′ 〉〈
√
τ ′τ ′′p〉∞

, gτ ;M2(C)
)
.

Moreover, when f1 is a quadratic function in {|p| < r} and r′ is fixed in (0, r),
the term u2 can be decomposed into

u2(q, p, τ, ε) = ε2δv2(q, p, τ, ε) + ε4δṽ2(q, p, τ, ε)

where v2 does not depend on p in
{√

τ ′τ ′′|p| < r′
}

and v2, ṽ2 belong to the

symbol class Su

(
1

〈
√

τ′
τ′′ 〉〈

√
τ ′τ ′′p〉∞

, gτ ;M2(C)
)
.

Proof: The notation R̂ will denote a generic remainder term of the form R̂ =

R(q, εDq, τ, ε) with R ∈ Su

(
1

〈
√

τ′
τ′′ q′〉〈

√
τ ′τ ′′p〉∞

, gτ ;M2(C)
)
. The notation R̂ is

used for a symbol R, like R but which vanishes around
{√

τ ′τ ′′|p| < r′
}
. We

apply Nagy’s formula (2.29) with P1 = û0P+û
∗
0 = Π0(q, τ, ε) and P2 = P̂ (τ, ε)

with

P̂ = Π0(q, τ, ε) + εΠ1(q, εDq, τ, ε) + ε2Π2(q, εDq, τ, ε) + ε3+2δR̂+ ε3+4δR̂ .

In the expression of Ŵ (ε) given by (2.29), the first factor is nothing but

(1− (P̂ −Π0(q, τ, ε))
2)−1/2 = 1 +

ε2

2
(Π1)

2(q, εDq, τ, ε) + ε3+4δR̂ ,

owing to P − Π0 = OS(ε
2δ) . In the factor [P2P1 + (1 − P2)(1 − P1)], the first

term equals

P̂ ◦Π0(q, ε) = Π0(q, ε) + εΠ1(q, τ, εDq, τ, ε) ◦Π0(q, τ, ε)

+ ε2Π2(q, εDq, τ, ε) ◦Π0(q, τ, ε) + ε3+2δR̂+ ε3+4δR̂ ,

while the second term is

(1− P̂ )◦(1−Π0(q, τ, ε)) = (1−Π0(q, τ, ε))−εΠ1(q, εDq, τ, ε)◦(1−Π0(q, τ, ε))

− ε2Π2(q, εDq, τ, ε) ◦ (1−Π0(q, τε)) + ε3+2δR̂+ ε3+4δR̂ .
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Hence we get

Ŵ = [P2P1 + (1− P2)(1− P1)] = 1 + εΠ1(q, εDq, τ, ε) ◦ σ3(q, τ)
+ ε2Π2(q, εDq, τ, ε) ◦ σ3(q, τ) + ε3+2δR̂+ ε3+4δR̂ .

The operator Û(ε) is given by Û(ε) = Ŵ (ε) ◦ û0 . The semiclassical calculus
recalled in (A.2)-(A.3) yields the result. In the decomposition of u2, when f1
is quadratic around 0, the terms which are linear in ε2δ come with the second
derivative of fε, which does not depend on p .

Proposition 2.6. Introduce the notation for k ∈ {1, . . . , d}

u∗0(∂qku0) = −i
(
Ak Xk

Xk −Ak

)
.

If Û is the unitary operator introduced in Proposition 2.5, the conjugated Hamil-
tonian Û(ε)∗Ĥ(ε)Û(ε) equals

Û∗ĤÛ =

(
ĥ+ 0

0 ĥ−

)
+ ε3+2δR̂1 + ε3+4δR̂2 (2.30)

where the remainder terms R̂1,2 = R1,2(q, εDq, τ, ε) belong to OpSu (1, gτ ;M2(C))

and additionally R1 ≡ 0 in
{√

τ ′τ ′′|p| < r′
}

when f1 is quadratic in {|p| < r},
with r′ < r .
The symbol h+ and h− are given by

h+ = fε(p) + E+(q)− ε(∂pfε).A+
ε2

2
(∂2pkpℓfε)AkAℓ

+
ε2(∂2pkpℓfε)

2
XkXℓ +

ε2(∂pkfε)(∂pℓfε)

E+ − E−
XkXℓ , (2.31)

h− = fε(p) + E−(q) + ε(∂pfε).A+
ε2

2
(∂2pkpℓfε)AkAℓ

+
ε2(∂2pkpℓfε)

2
XkXℓ −

ε2(∂pkfε)(∂pℓfε)

E+ − E−
XkXℓ . (2.32)

Proof: From the semiclassical calculus, we already know that Û∗ĤÛ is

a semiclassical operator with a symbol in Su(〈
√

τ ′
τ ′′ q

′〉, gτ ;M2(C)) . Its off-

diagonal part equals

(1− P+)Û
∗ĤÛP+ + P+Û

∗ĤÛ(1− P+)

= Û
[
P̂ ,
[
P̂ , Ĥ

]]
Û .

The almost diagonal form (2.30) of Û∗ĤÛ is then a consequence of (2.27) .
For the second result, it is necessary to compute the diagonal part of the symbol
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U∗♯εH♯εU up to O(ε3+2δ) in Su(1, gτ ;M2) . Let us compute the diagonal part
of

B := (u∗0 + εu∗1 + ε2u∗2)♯
εH♯ε(u0 + εu1 + ε2u2) ,

or equivalently (u0Bu∗0)D with our notations.
Since u0 = u0(q, τ, ε) and H = ε2δf1(

√
τ ′τ ′′p) + V(q, τ, ε) , the first Moyal

product equals according to (A.2)-(A.3),

(u∗0 + εu∗1 + ε2u∗2)♯
εH = u∗0H + εu∗1H + ε2u∗2H

+
ε

2i
{u∗0, H}+ ε2

2i
{u∗1, H} − ε2

8
(∂2qkqℓu

∗
0)(∂

2
pkpℓ

H) + ε3+2δR

= u∗0H + ε

[
u∗1H − ∂pkfε

2i
∂qku

∗
0

]
+ ε2

[
u∗2H +

1

2i
{u∗1, H}

−1

8
(∂2qkqℓu

∗
0)(∂

2
pkpℓ

fε)

]
+ ε3+2δR+ ε3+4δR ,

where R and R denote generic element of Su(1, gτ ;M2(C)), with the additional

property that R vanishes in
{√

τ ′τ ′′|p| < r′
}
when f1 is quadratic in {|p| ≤ r}

with r′ < r. The reason for the possible decomposition of the remainder, comes
again from the fact that the third order remainder term, proportional to ε3+2δ,
arises with the third derivative of fε, the second derivative w.r.t p of u1 and the
first derivative w.r.t p of u2 .
In the same way, the complete expression of B is given by

B(ε) = u∗0Hu0 + ε

[
u∗0Hu1 + u∗1Hu0 −

(∂pkfε)

2i
(∂qku

∗
0)u0 +

(∂pkfε)

2i
u∗0(∂qku0)

]

+ε2
[
u∗2Hu0 + u∗0Hu2 +

1

2i
{u∗0H,u1}+

1

2i
{u∗1H,u0}+

1

4

{
(∂pkfε)(∂qku

∗
0), u0

}

+u∗1Hu1 −
(∂pkfε)

2i
(∂qku

∗
0)u1 +

1

2i
{u∗1, H}u0

−1

8
(∂2qkqℓu

∗
0)(∂

2
pkpℓ

fε))u0 −
1

8
u∗0(∂

2
pkpℓ

fε)(∂
2
qkqℓu0)

]
+ ε3+2δR+ ε3+4δR .

By recalling that (u1u
∗
0)
D = 0 by Proposition 2.5, we get

(u0B(ε)u∗0)D = H + ε
i

2
(∂pkfε)

[
u0(∂qku

∗
0)− (∂qku0)u

∗
0

]D

+ ε2BD2 + ε3+2δR+ ε3+4δR .

where BD2 is made of several terms to be analyzed. We need the relations

∂qju
∗
0 = −u∗0(∂qju0)u∗0 , (2.33)

∂2
qjqj′ u

∗
0 = u∗0(∂qj′u0)u

∗
0(∂qju0)u

∗
0 + u∗0(∂qju0)u

∗
0(∂qj′u0)u

∗
0 − u∗0(∂

2
qjqj′u0)u

∗
0

= −(∂qj′ u
∗
0)(∂qju0)u

∗
0 − (∂qju

∗
0)(∂qj′u0)u

∗
0 − u∗0(∂

2
qjqj′u0)u

∗
0 , (2.34)

and [u0(∂qu
∗
0)]

OD
= −(∂qΠ0)σ3 , (2.35)
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coming from u∗0u0 = 1 and the differentiation of u∗0Π0u0 = P+ .
For example, the first one simplifies the O(ε)-term into

(u0B(ε)u∗0)D = H − εi(∂pkfε)
[
(∂qku0)u

∗
0

]D
+ ε2BD2 + ε3+2δR+ ε3+4δR .

Many cancellations appear after assembling all the terms in BD2 . We need
accurate expressions for all of them:

• By using again (u1u
∗
0)
D = 0, the term [u0u

∗
2H +Hu2u

∗
0 + u0u

∗
1Hu1u

∗
0]
D

equals

(fε+E+)Π0(u0u
∗
2 +u2u

∗
0)Π0 +(fε+E−)(1−Π0)(u0u

∗
2 +u2u

∗
0)(1−Π0)

+ (fε +E−)Π0(u0u
∗
1u1u

∗
0)Π0 + (fε + E+)(1−Π0)(u0u

∗
1u1u

∗
0)(1−Π0) .

In the relation

u∗0u2 + u∗2u0 + u∗1u1 +
1

2i
{u∗0, u1}+

1

2i
{u∗1, u0} = ε1+2δR1 + ε1+4δR1 ,

the remainder terms satisfy R1, R1 ∈ Su

(
1

〈
√

τ′
τ′′ q′〉〈

√
τ ′τ ′′p〉∞

, gτ ;M2(C)
)
,

with the same convention as for R,R . This identity is obtained by writing
that the O(ε2) remainder of U∗♯εU − 1 vanishes and by noticing that the
remainder R1 + ε2δR1 involves second derivatives of u1 w.r.t p and first
derivatives of u2 w.r.t p . We obtain

[u0u
∗
2H +Hu2u

∗
0 + u0u

∗
1Hu1u

∗
0]
D = (E− − E+)(u0u

∗
1u1u

∗
0)
Dσ3

− 1

2i
H [u0 {u∗0, u1}u∗0 + u0 {u∗1, u0}u∗0]D + ε1+2δR̃+ ε1+4δR̃ .

with R̃, R̃ ∈ Su(1, gτ ;M2(C)), again with the same convention.

Again with (∂pu1)u
∗
0 = (∂pu1u

∗
0)
OD =

(∂2
p,pk

f)

i(E+−E−)∂qkΠ0 and (2.35), the last

factor is

[u0 {u∗0, u1}u∗0 + u0 {u∗1, u0}u∗0]D = −(u0∂qℓu
∗
0)
OD

(∂2pℓpkfε)

i(E+ − E−)
(∂qkΠ0)

− (∂2pℓpkfε)

i(E+ − E−)
(∂qkΠ0)((∂qℓu0)u

∗
0)
OD

= −2
(∂2pℓpkfε)

i(E+ − E−)
(∂qkΠ0)(∂qℓΠ0)σ3 . (2.36)

With u1u
∗
0 =

(∂pkfε)

i(E+−E−) (∂qkΠ0) , we have proved

[u0u
∗
2H +Hu2u

∗
0 + u0u

∗
1Hu1u

∗
0]
D

= − (∂pkfε)(∂pℓfε)

(E+ − E−)
(∂qkΠ0)(∂qℓΠ0)σ3

−H
(∂2pℓpkfε)

E+ − E−
(∂qkΠ0)(∂qℓΠ0)σ3 + ε1+2δR̃1 + ε1+4δR̃1 . (2.37)
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• The term

[
1

2i
u0 {u∗0fε, u1}u∗0 +

1

2i
u0 {u∗1fε, u0} u∗0 −

(∂pkfε)

2i
u0(∂qku

∗
0)u1u

∗
0

]D

equals

1

2i
fε [u0 {u∗0, u1} u∗0 + u0 {u∗1, u0} u∗0]D

+
(∂pkfε)

2i

[
(∂qku1)u

∗
0 + u0u

∗
1(∂qku0)u

∗
0 − u0(∂qku

∗
0)u1u

∗
0

]D
.

The diagonal part of (∂qku1)u
∗
0 is

[
(∂qku1)u

∗
0

]D
=

∂pℓfε
i(E+ − E−)

(∂2qkqℓΠ0)
D .

But differentiating the relation (∂qkΠ0)Π0 + Π0(∂qℓΠ0) = ∂qkΠ0 w.r.t qℓ

leads to
(∂2qkqℓΠ0)

D = −(∂qkΠ0∂qℓΠ0 + ∂qℓΠ0∂qkΠ0)σ3 . (2.38)

With (2.35) and (u1u
∗
0) = (u1u

∗
0)
OD =

∂pℓfε
i(E+−E−)∂qℓΠ0, we obtain

[
u0u

∗
1(∂qku0)u

∗
0 − u0(∂qku

∗
0)u1u

∗
0

]D
= [−u0u∗1σ3(∂qkΠ0) + (∂qkΠ0)σ3u1u

∗
0]

= − (∂pℓfε)

i(E+ − E−)

[
(∂qℓΠ0)(∂qkΠ0) + (∂qkΠ0)(∂qℓΠ0)

]
σ3 .

We have found

[
1

2i
u0 {u∗0fε, u1}u∗0 +

1

2i
u0 {u∗1fε, u0}u∗0 −

(∂pkfε)

2i
u0(∂qku

∗
0)u1u

∗
0

]D

=
fε(∂

2
pkpℓfε)

E+ − E−
(∂qkΠ0)(∂qℓΠ0)σ3 + 2

(∂pkfε)(∂pℓfε)

E+ − E−
(∂qkΠ0)(∂qℓΠ0)σ3 .

(2.39)

• The diagonal part of 1
2iu0 [{u∗0V , u1}+ {u∗1V , u0}]u∗0 equals

1

2i

[
−u0(∂qku∗0)V(∂pku1)u∗0 − (∂qkV)(∂pku1)u∗0 + u0(∂pku

∗
1)V(∂qku0)u∗0

]D
.

By using (2.35) with

(∂pku1)u
∗
0 = [(∂pku1)u

∗
0]
OD

=
∂2pkpℓfε

i(E+ − E−)
(∂qℓΠ0) ,

(∂qV)OD = (E+ − E−)(∂qΠ0) ,

and E−Π0 + E+(1−Π0) = V + (E− − E+)σ3 ,
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it becomes

∂2pkpℓfε

2
(∂qkΠ0)(∂qℓΠ0) +

1

2i
V [u0 {u∗0, u1}u∗0 + u0 {u∗1, u0}u∗0]D

+
1

2i
(E− − E+) [u0 {u∗0, u1} u∗0 + u0 {u∗1, u0} u∗0]D σ3 .

The relation (2.36) yields

1

2i
[u0 {u∗0V , u1} u∗0 + u0 {u∗1V , u0}u∗0] = −∂

2
pkpℓ

fε

2
(∂qkΠ0)(∂qℓΠ0)

+ V ∂2pkpℓfε

E+ − E−
(∂qkΠ0)(∂qℓΠ0) . (2.40)

• The term 1
2i [u0 {u∗1, H}]D is the sum of two terms

1

2i
[u0 {u∗1, fε}]D +

1

2i
[u0 {u∗1,V}]D .

Since u0∂pℓu
∗
1 = i

∂2
pkpℓ

fε

(E+−E−) (∂qkΠ0) is off-diagonal while

(∂qℓV)OD = (E+ − E−)(∂qℓΠ0) ,

the second term equals

∂2pkpℓfε

2
(∂qkΠ0)(∂qℓΠ0) .

The first term a priori contains more terms because u∗0 has to be differen-
tiated:

1

2

[
− (∂pkfε)(∂pℓfε)∂qℓ

(
1

E+ − E−

)
(∂qkΠ0)−

(∂pkfε)(∂pℓfε)

E+ − E−
(∂2qℓqkΠ0)

− u0(∂qℓu
∗
0)
(∂pkfε)(∂pℓfε)

E+ − E−
(∂qkΠ0)

]D
.

The first part is off-diagonal and vanishes after taking the diagonal part.
By using again (2.35) and (2.38) and ∂qΠ0 = (∂qΠ0)

OD, we obtain

(∂pkfε)(∂pℓfε)

E+ − E−
(∂qkΠ0)(∂qℓΠ0)σ3 +

(∂pkfε)(∂pℓfε)

E+ − E−
(∂qkΠ0)σ3(∂qℓΠ0) = 0 .

Hence we have proved

1

2i
[u0 {u∗1, H}]D =

∂2pkpℓfε

2
(∂qkΠ0)(∂qℓΠ0) . (2.41)
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• The last term is

T =
1

8

[
2u0

{
(∂pkfε)(∂qku

∗
0), u0

}
u∗0

− u0(∂
2
qkqℓu

∗
0)(∂

2
pkpℓ

fε)− (∂2pkpℓfε)(∂
2
qkqℓu0)u

∗
0

]D
.

Forgetting the 1
8 factor, the first part equals 2(∂2pkpℓfε)u0(∂qku

∗
0)(∂qℓu0)u

∗
0 .

By using (2.34) in the second part gives

8T = 4(∂pkpℓfε)
[
u0(∂qku

∗
0)(∂qℓu0)u

∗
0

]D
.

Owing to (2.8) and (2.35), this gives

2T = (∂2pkpℓfε)[u0(∂qku
∗
0)]

D[(∂qℓu0)u
∗
0]
D + (∂2pkpℓfε)(∂qkΠ0)(∂qℓΠ0) .

With u0(∂qku
∗
0) = −(∂qku0)u

∗
0, the last term equals

T = − (∂2pkpℓfε)

2
[(∂qku0)u

∗
0]
D[(∂qℓu0)u

∗
0]
D +

(∂2pkpℓfε)

2
(∂qkΠ0)(∂qℓΠ0) .

(2.42)

By summing (2.37),(2.39),(2.40),(2.41),(2.42), we obtain

BD2 = − (∂2pkpℓfε)

2
[(∂qku0)u

∗
0]
D[(∂qℓu0)u

∗
0]
D+

(∂pkfε)(∂pℓfε)

E+ − E−
(∂qkΠ0)(∂qℓΠ0)σ3

+
∂2pkpℓfε

2
(∂qkΠ0)(∂qℓΠ0) + ε1+2δR̃1 + ε1+4δR̃1 .

Hence the diagonal symbol that we seek, is
(
h+ 0
0 h−

)
=

(
fε(p, τ) + E+(q, τ) 0

0 fε(p, τ) + E−(q, τ)

)

− iε(∂pkfε)u
∗
0

[
(∂qku0)u

∗
0

]D
u0 − ε2

∂2pkpℓfε

2
u∗0
[
(∂qku0)u

∗
0

]D [
(∂qku0)u

∗
0

]D
u0

+ ε2
(∂pkfε)(∂pℓfε)

E+ − E−
u∗0(∂qkΠ0)(∂qℓΠ0)σ3u0 + ε2

∂2pkpℓfε

2
u∗0(∂qkΠ0)(∂qℓΠ0)u0 .

The symbol u∗0
[
(∂qku0)u

∗
0

]D
u0 equals

u∗0Π0(∂qku0)u
∗
0Π0u0 + u∗0(1 −Π0)(∂qku0)u

∗
0(1−Π0)u0

= P+u
∗
0(∂qku0)P+ + (1 − P+)u

∗
0(∂qku0)(1 − P+) = −i

(
Ak 0
0 −Ak

)
.

For the last term we deduce from Π0 = u0P+u
∗
0 and (∂qu0)u

∗
0 + u0(∂qu0) = 0,

P+

[
u∗0(∂qkΠ0)u0

] [
u∗0(∂qℓΠ0)u0

]
P+

= P+

[
u∗0(∂qku0)P+ + P+(∂qku

∗
0)u0

] [
u∗0(∂qℓu0)P+ + P+(∂qℓu

∗
0)u0

]
P+

= P+u
∗
0(∂qku0)P+u

∗
0(∂qℓu0)P+ + P+u

∗
0(∂qku0)P+(∂qℓu

∗
0)u0P+

+P+(∂qku
∗
0)u0u

∗
0(∂qℓu0)P+ + P+(∂qku

∗
0)u0P+(∂qℓu

∗
0)u0P+

= −P+u
∗
0(∂qku0)(1 − P+)u

∗
0(∂qℓu0)P+ = XkXℓ .
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Taking the bracket with (1− P+) is even simpler and gives

(1− P+)
[
u∗0(∂qkΠ0)u0

] [
u∗0(∂qℓΠ0)u0

]
(1 − P+)

= −(1− P+)u
∗
0(∂qku0)P+u

∗
0(∂qℓu0)(1− P+) = XkXℓ .

This ends the proof.

2.4 Discussion about the adiabatic approximation of the

Born-Oppenheimer Hamiltonian

The Theorem 2.1 is a direct application of Proposition 2.6 by taking

fε(p) = ε2δτ ′τ ′′|p|2γ(τ ′τ ′′|p|2) .
The operators

h±,BO(q, εDq, ε) = ε2δτ ′τ ′′
[

d∑

k=1

(pk ∓ εAk)
2

]Weyl

+ ε2+2δτ ′τ ′′
d∑

k=1

|Xk|2

= ε2+2δτ ′τ ′′
[
−∆+ |A|2 ∓

[
(
1

i
∇).A +A.(

1

i
∇)

]
+ |X |2

]

= ε2+2δτ ′τ ′′
[
|1
i
∇∓A|2 + |X |2

]
,

is nothing but the usual adiabatic effective Hamiltonians which can be found in
the physics literature, including the Born-Huang potential |X |2 =

∑d
k=1 |Xk|2 .

We refer to [PST] and [PST2] for a discussion of the various presentations of
the calculations and additional references.
Even in the region

{√
τ ′τ ′′|p| ≤ rγ

}
with p quantized into εDq, this approxi-

mation makes sense, only for δ > 0, because of the additional term

∓2
ε2+4δτ ′τ ′′

E+ − E−
X̄kXℓ(ε∂qk)(ε∂qℓ)

coming from the last terms of (2.31) and (2.32), that we have included in the
remainder. It is not surprising (see [Sor], [MaSo]) that the degree of the dif-
ferential operators increases with the degree in ε in the adiabatic expansion of
Schrödinger type Hamiltonians. The argument of physicists says that this ef-
fective Hamiltonian is used for relatively small frequencies (or momentum) so
that XkXℓp

kpℓ is negligible w.r.t |p − εA|2 + ε2|X |2 . The introduction of the
additional factor ε2δ with δ > 0 provides a mathematically accurate and rather
flexible implementation of this approximation.

3 Adaptation of the adiabatic asymptotics to

the full nonlinear minimization problem

In this section, we adapt our rather general adiabatic result to our nonlinear
problem. In a first step, we give an explicit form of Theorem 2.1 in our spe-

28



cific framework. Those results are effective when applied with wave functions
localized in the frequency variable, ψ = χ(

√
τxτyεDq)ψ for some compactly

supported χ . It could suffice if we considered minimizing the energy among
such well prepared quantum states. We can do better by using a partition of
unity in the frequency variable, which will be combined, in the end, with the a
priori estimates coming from the complete and reduced minimization problems.
Finally an estimate of the effect of the unitary transform Û on the nonlinear
term is provided.

3.1 Adiabatic approximation for the explicit Schrödinger

Hamiltonian

Let us specify the result of Theorem 2.1 by going back to the coordinates
q = (q′, q′′) = (x, y) and τ = (τ ′, τ ′′) = (τx, τy) . Provided that Vε,τ (x, y) fulfills
the proper assumptions, the unitary transform introduced in Theorem 2.1 trans-
forms HLin given by (1.9) into the Born-Oppenheimer Hamiltonian with a good
accuracy in the low frequency region, that is when applied to wave functions ψ
such that ψ = χ(

√
τxτyεDq)ψ for some compactly supported χ .

The operator HLin is the ε-quantization of the symbol

ε2δτxτy|p|2 + u0(q, τ)

(
E+(q, τ, ε) 0

0 E−(q, τ, ε)

)
u0(q, τ)

∗ ,

with E±(q, τ, ε) = Vε,τ (x, y)± Ω(

√
τx
τy
x) = Vε,τ (x, y)±

√
1 +

τx
τy
x2 .

The operator u0(q, τ) equals

u0(q, τ) =

(
C Seiϕ

Se−iϕ −C

)
= u0(q, τ)

∗

with C = cos(
θ

2
) , S = sin(

θ

2
) .

and cot(θ) =

√
τx
τy
x , ϕ =

√
τy
τx
y .

Proposition 3.1. Assume δ ∈ (0, δ0], (τx, τy) ∈ (0, 1]2 and assume that Vε,τ

belongs to Su(〈
√

τx
τy
x〉,

τx
τy
dx2

〈
√

τx
τy
x〉2

+
τy
τx
dy2) then the matricial potential

V(q, τ, ε) = Vε,τ (x, y) + Ω(

√
τx
τy
x)

(
cos(θ) eiϕ sin(θ)

e−iϕ sin(θ) − cos(θ)

)

fulfills the assumption of Theorem 2.1.
Choose the function γ ∈ C∞

0 (R) such that γ ≡ 1 in a neighborhood of [−r2γ , r2γ ], as
in Theorem 2.1 and consider a cut-off function χ ∈ C∞

0 ((−r2γ , r2γ)). When Û =
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U(q, εDq, τ, ε) ∈ OpSu(1, gτ ;M2(C)) is given in Theorem 2.1, the identities

Û∗HLinÛχ(τxτy|εDq|2)− ε2+4δR1(τ, ε) =

ε2+2δτxτy

(
e
+i

√

τy
τx

y
2 Ĥ+e

−i

√

τy
τx

y
2 0

0 e
−i

√

τy
τx

y
2 Ĥ−e

i

√

τy
τx

y
2

)
χ(τxτy |εDq|2) , (3.1)

HLinχ(τxτy|εDq|2)− ε2+4δR2(τ, ε) =

ε2+2δτxτyÛ

(
e
+i

√

τy
τx

y
2 Ĥ+e

−i

√

τy
τx

y
2 0

0 e
−i

√

τy
τx

y
2 Ĥ−e

i

√

τy
τx

y
2

)
Û∗χ(τxτy|εDq|2) , (3.2)

hold with

Ĥ+ = −∂2x −



∂y + i
x

2
√
1 + τx

τy
x2




2

+
1

ε2+2δτxτy

[
Vε,τ (x, y) +

√
1 +

τx
τy
x2
]
+Wτ (x, y) ,

Ĥ− = −∂2x −



∂y − i
x

2
√
1 + τx

τy
x2




2

+
1

ε2+2δτxτy

[
Vε,τ (x, y)−

√
1 +

τx
τy
x2
]
+Wτ (x, y) ,

Wτ (x, y) =
τx

τy(1 +
τx
τy
x2)2

+
τy

τx(1 +
τx
τy
x2)

,

and the estimates

‖R1(τ, ε)‖L(L2) + ‖R2(τ, ε)‖L(L2) ≤ C

which are uniform w.r.t δ ∈ (0, δ0], τ ∈ (0, 1]2 and ε ∈ (0, ε0] .

Proof: Following the approach of Section 2, the Hamiltonian HLin is decom-
posed into

HLin = H(q, εDq, τ, ε) +Rγ(εDq, τ, ε)

with H(q, p, ε) = ε2δτxτy|p|2γ(τxτy|p|2) +
[
u0

(
E+ 0
0 E−

)
u∗0

]
(q, τ) ,

and Rγ(p, τ, ε) = ε2δτxτy |p|2(1− γ(τxτy|p|2)) .

The Hamiltonian H(q, εDq, τ, ε) fulfills the assumptions of Theorem 2.1, with

the metric gτ =
τx
τy
dx2

〈
√

τx
τy
x〉2

+
τy
τx
dy2 +

τxτydp
2

〈√τxτyp〉2 , because we assumed

Vε,τ ∈ Su(〈
√
τx
τy
x〉,

τx
τy
dx2

〈
√

τx
τy
x〉2

+
τy
τx
dy2)
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while the gap E+(q, τ, ε) − E−(q, τ, ε) equals 2
√
1 + τx

τy
x2 . Actually the esti-

mates

|∂αx ∂βy u0(x, y)| ≤ Cα,β

〈√
τx
τy
x

〉−|α|(
τx
τy

) |α|−|β|
2

are due to ∂xθ = −
√
τx√

τy(1+
τx
τy
x2) and ∂ye

iϕ = i
√

τy
τx
eiϕ . Moreover the explicit

computation with α+ β = 1 leads to
(
Ax Xx

Xx −Ax

)
= iu∗0(∂xu0) =

i∂xθ

2

(
0 eiϕ

−e−iϕ 0

)
(3.3)

and

(
Ay Xy

Xy −Ay

)
= iu∗0(∂yu0) =

√
τy
τx
S

(
S −Ceiϕ

−Ce−iϕ −S

)
. (3.4)

Hence the effective Hamiltonians hB0,±(q, εDq, ε), when restricted to the region{√
τxτy |p| ≤ rγ

}
, are given by the symbols

hBO,± = ε2δτxτy

[
p2x + (py ∓ ε

√
τy
τx

sin2(
θ

2
))2 +

1

4
(|∂xθ|2 +

τy
τx

sin2(θ))

]

+ Vε,τ (x, y)±
√
1 +

τx
τy
x2 .

With cos(θ) =
√
τxx

√
τy

√

1+ τx
τy
x2

and sin(θ) = 1
√

1+ τx
τy
x2
, the Schrödinger Hamilto-

nian corresponding to the RHS is ε2+2δτxτye
±i

√
τy

2
√

τx
y
Ĥ±e

∓i
√

τy
2
√

τx
y
with

Ĥ± = −∂2x −


∂y ± i

x

2
√
1 + τx

τy
x2




2

+
τx

τy(1 +
τx
τy
x2)2

+
τy

τx(1 +
τx
τy
x2)

+
1

τxτyε2+2δ

[
Vε,τ (x, y)±

√
1 +

τx
τy
x2
]
.

The remainder term in Theorem 2.1 is

ε2+4δR1(q, εDq, τ, ε) + ε3+2δR2(q, εDq, τ, ε) ,

with R1,2 ∈ Su(1, gτ ;M2(C)) and where R2 vanishes in a neighborhood of{√
τxτy |p| ≤ rγ

}
. The first term provides the expected O(ε2+4δ) estimate in

L2(R2;C2) .
It remains to check the effect of truncations. All the factors, including the left
terms

Rγ(p, τ, ε) , ε2δτxτy

[
p2x + (py ∓ ε sin2(

θ

2
))2
]
(1 − γ(τxτy|p|2)) ,

belong to OpSu(〈√τxτyp〉2, gτ ;M2(C)) . For any a, b belonging to the class

OpSu(〈√τxτyp〉2, gτ ;M2(C)), where b vanishes in a neighborhood of
{√

τxτy |p| ≤ rγ
}
,
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and two cut-off functions χ1, χ2 ∈ C∞
0 ((−r2γ , r2γ)) such that χ1 ≺ χ2 (see Defini-

tion A.3), the pseudo-differential calculus says

(1− χ2(τxτy |p|2))♯εa♯εχ1(τxτy |p|2) ∈ Nu,gτ ,

b♯εχ1(τxτy|p|2) ∈ Nu,gτ ,

with uniform estimates of all the seminorms w.r.t τ ∈ (0, 1]2 and δ ∈ (0, δ0] .
Applying this with χ1 = χ and various χ2 such that χ1 ≺ χ2 ≺ γ, implies that
the remainder terms due to truncations are O(εN ) elements of L(L2) for any
N ∈ N , uniformly w.r.t τ ∈ (0, 1]2 and δ ∈ (0, δ0] . Fixing N ≥ 2+ 4δ0 ends the
proof of (3.1).
For (3.2) use (3.1) with a cut-off function χ1 such that χ ≺ χ1 and conjugate
with Û :

HLinÛχ1(τxτy |εDq|2)Û∗ =

ε2+2δτxτyÛ

(
e
i

√
τy

2
√

τx
y
Ĥ+e

−i
√

τy
2
√

τx
y

0

0 e
−i

√
τy

2
√

τx
y
Ĥ−e

i
√

τy
2
√

τx
y

)
χ1(τxτy|εDq|2)Û∗

+ ε2+4δR′
1(ε) .

Right-composing with χ(τxτy|εDq|2) and noticing that

χ1(τxτy |εDq|2)Û∗χ(τxτy|εDq|2)− Û∗χ(τxτy |εDq|2) = R(q, εDq, τ, ε) ,

with R ∈ Nu,gτ lead to (3.2) like above.

3.2 Linear energy estimates for non truncated states

Proposition 3.2. Assume δ ∈ (0, δ0], τ = (τx, τy) ∈ (0, 1]2 and that Vε,τ be-

longs to the parametric symbol class Su(〈
√

τx
τy
x〉,

τx
τy
dx2

〈
√

τx
τy
x〉2

+
τy
τx
dy2) . Set χ̂ =

χ(τxτy|εDq|2) for χ ∈ C∞
0 ((−r2γ , r2γ)) . When Û is the unitary semiclassi-

cal operator U(q, εDq, τ, ε) ∈ OpSu(1, gτ ;M2(C)), given in Theorem 2.1 and
parametrized by a truncation in

{√
τxτy|p| < rγ

}
, then for any χ ∈ C∞

0 ((−r2γ , r2γ))
the estimates

∣∣∣
〈
ψ ,
[
Û∗HLinÛ − ε2+2δτxτyHBO

]
ψ
〉∣∣∣ ≤ Cε1+2δ

[
ε1+2δ‖ψ‖2L2 (3.5)

+‖(1− χ̂)ψ‖2L2 +‖(1− χ̂)ψ‖L2 × ‖√τxτy|εDq|(1− χ̂)ψ‖L2

]
,

∣∣∣
〈
ψ ,
[
HLin − ε2+2δτxτyÛHBOÛ

∗]ψ
〉∣∣∣ ≤ Cε1+2δ

[
ε1+2δ‖ψ‖2L2 (3.6)

+‖(1− χ̂)ψ‖2L2 + ‖(1− χ̂)ψ‖L2 × ‖√τxτy|εDq|(1 − χ̂)ψ‖L2

]
,
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hold uniformly w.r.t τ ∈ (0, 1]2 and δ ∈ (0, δ0], for all ψ ∈ L2(R2;C2), with

HBO =

(
e
i

√
τy

2
√

τx
y
Ĥ+e

−i
√

τy
2
√

τx
y

0

0 e
−i

√
τy

2
√

τx
y
Ĥ−e

i
√

τy
2
√

τx
y

)

Ĥ± = −∂2x −


∂y ± i

x

2
√
1 + τx

τy
x2




2

+ ε−2−2δ
[
Vε,τ (x, y)±

√
1 + x2

]

+Wτ (x, y) ,

Wτ (x, y) =
τx

τy(1 +
τx
τy
x2)2

+
τy

τx(1 +
τx
τy
x2)

.

Proof: Set

D = Û∗HLinÛ − ε2+2δτxτy

(
e
i

√
τy

2
√

τx
y
Ĥ+e

−i
√

τy
2
√

τx
y

0

0 e
−i

√
τy

2
√

τx
y
Ĥ−e

i
√

τy
2
√

τx
y

)

and bound the terms 〈χ̂ψ , Dψ〉 and 〈(1− χ̂ψ , Dχ̂ψ〉 by Cε2+4δ‖ψ‖2L2 with the
help of Proposition 3.1. The remaining term is

〈(1− χ̂)ψ , D(1 − χ̂)ψ〉 , with χ̂ = χ(τxτy |εDq|2) .

The operator D can be decomposed according to D = ε2+2δτxτyDkin + Dpot
with

Dkin = Û∗|Dq|2Û −
(
|Dq −A|2 + |X |2 0

0 |Dq +A|2 + |X |2
)
, (3.7)

Dpot = Û∗Û0

(
E+ 0
0 E−

)
Û∗
0 Û − Vε,τ (x, y)−

√
1 +

τx
τy
x2
(
+1 0
0 −1

)
. (3.8)

The normalization in (3.8) allows to use directly the semiclassical calculus if
one remembers that Û∗

0 Û = Id+εR̂ and Û∗Û0 = Id+εR̂′ with ε−2δR, ε−2δR′ ∈
Su(

1

〈
√

τx
τy
x〉
, gτ ;M2(C)) and E±(q, τ, ε) = Vε,τ (x, y)±

√
1 + τx

τy
x2 . We obtain

|〈(1 − χ̂)ψ , Dpot(1− χ̂))ψ〉| ≤ Cε1+2δ‖(1− χ̂)ψ‖2L2 ,

which corresponds to the second term of our right-hand sides.
The kinetic energy term (3.7) is decomposed into

ε2+2δτxτyDkin = ε2+2δτxτyD0
kin +D1

kin ,

with

D1
kin = ε2δÛ∗τxτy |εDq|2Û − ε2δÛ∗

0 τxτy|εDq|2Û0 , (3.9)

D0
kin = Û∗

0 |Dq|2Û0 −
(
|Dq −A|2 + |X |2 0

0 |Dq +A|2 + |X |2
)
. (3.10)
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Writing (3.9) in the form

D1
kin = ε2δ(Û∗ − Û∗

0 )τxτy |εDq|2Û + ε2δÛ∗
0 τxτy |εDq|2(Û − Û0) ,

while τxτy|εDq|2 ∈ OpSu(〈√τxτyp〉2, gτ ;M2(C)), Û , Û0 ∈ OpSu(1, gτ ;M2(C))

and ε−1−2δ(Û − Û0) ∈ OpSu

(
1

〈
√

τx
τy
x〉〈√τxτyp〉∞

, gτ ;M2(C)
)

, leads to

∣∣〈(1− χ̂)ψ , D1
kin(1 − χ̂)ψ

〉∣∣ ≤ Cε1+4δ‖(1− χ̂)ψ‖2L2 ,

which is even smaller than the Dpot upper bound.
In (3.10), the first term can be computed via

〈Φ , U∗
0 |Dq|2U0(q)Ψ〉 =

∑

qj∈{x,y}
〈Dqj (u0(q, τ)Φ) , Dqj (u0(q, τ)Ψ)〉 ,

with Dqj (u0f) = u0(Dqj − iu∗0∂qju0)f and equals

Û∗
0 |Dq|2Û0 = |Dq − iu∗0∂qu0|2

=
∑

qj∈{x,y}

[
D2
qj − (iu∗0(q)∂qju0(q))

2)Dqj −Dqj (iu
∗
0(q)∂qju0(q))

2)

+(iu∗0(q)∂qju0(q))
2
]
.

Meanwhile expanding the entries of the second term in (3.10) gives

|Dq ∓A(q)|2 =
∑

qj∈{x,y}

[
D2
qj ∓Aj(q)Dqj ∓DqjAj(q) +Aj(q)

2
]
.

By using the expressions (3.3) and (3.4) for A,X and iu∗0∂qu0, we obtain

D0
kin =

1

2

(
0 R−
R+ 0

)

with R± = ±i(Dx(∂xθ) + (∂xθ)Dx)e
∓iϕ −

√
τy
τx

sin(θ)(Dye
∓iϕ + e∓iϕDy)

and (∂xθ) = −
√
τx√

τy(1 +
τx
τy
x2)

, sin(θ) =
1√

1 + τx
τy
x2

.

Therefore, we obtain

∣∣〈(1− χ̂)ψ , D0
kin(1− χ̂)ψ

〉∣∣ ≤ 4max(

√
τx
τy
,

√
τy
τx

)‖|Dq|(1−χ̂)ψ‖L2‖(1−χ̂)ψ‖L2 .

and, owing to τx, τy ∈ (0, 1],

∣∣〈(1 − χ̂)ψ , ε2+2δτxτyD0
kin(1− χ̂)ψ

〉∣∣

≤ 4ε1+2δ‖√τxτy|εDq|(1− χ̂)ψ‖L2‖(1− χ̂)ψ‖L2 .

34



This ends the proof of (3.5).
For (3.6) it suffices to replace ψ in (3.5) by Û∗ψ with a kinetic energy cut-off
function χ1 such that χ ≺ χ1 and then to use (1 − χ̂1)Û

∗χ̂ ∈ OpNu,gτ , with
uniform seminorm estimates w.r.t τ ∈ (0, 1]2 and δ ∈ (0, δ0] . The L2-norm
of the corresponding additional error term is O(εN ), for any N , and one fixes
N ≥ 2 + 4δ0 .

3.3 Control of the nonlinear term

In this subsection, we estimate the effect of the operator Û = U(q, εDq, τ, ε)
belonging to OpSu(1, gτ ;M2(C)) on the nonlinear term

∫
R2 |ψ|4 dxdy .

Proposition 3.3. Let Û be the unitary operator introduced in Theorem 2.1.
The inequalities

∫
|ψ(x, y)|4 dxdy ≥ (1− Cε1+2δ)

∫
|(Ûψ)(x, y)|4 dxdy , (3.11)

and

∫
|ψ(x, y)|4 dxdy ≥ (1− Cε1+2δ)

∫
|(Û∗ψ)(x, y)|4 dxdy (3.12)

hold for any ψ ∈ L4(R2;C2) .

Proof: For ψ1 and ψ2 belonging to L4(R2;C2), the local relations

|ψ1|4(q) =
(
|ψ2(q)|2 + 2Re〈ψ2(q) , (ψ1 − ψ2)(q)〉 + |ψ1(q)|2

)2

= |ψ2(q)|4 + 2|ψ2|2|ψ1 − ψ2|2 + 4

(
Re〈ψ2 , ψ1 − ψ2〉+

1

2
|ψ1 − ψ2|2

)2

+4|ψ2|2 Re〈ψ2 , (ψ1 − ψ2)〉
≥ |ψ2(q)|4 − 4|ψ2(q)|3|ψ1(q)− ψ2(q)| ,

is integrated w.r.t q = (x, y) ∈ R2, with Hölder inequality, into

‖ψ1‖4L4 =

∫
|ψ1|4 dxdy ≥ ‖ψ2‖4L4 − 4‖ψ2‖3L4‖ψ1 − ψ2‖L4 .

With ψ1 = Û0ψ = u0(q)ψ, |ψ(q)|2 = |ψ1(q)|2 for all q ∈ R
2, and ψ2 = Ûψ =

ψ1 + (Û − Û0)ψ, we obtain

‖ψ‖4L4 = ‖ψ1‖4L4 ≥ ‖Ûψ‖4L4 − 4‖Ûψ‖3L4‖(Û − Û0)ψ‖L4 .

The operator Û − Û0 equals ε1+2δr(q, εDq, τ, ε) with r belonging to the class

Su

(
1

〈
√

τx
τy
x〉〈√τxτyp〉∞

, gτ ;M2(C)
)
, where we recall gτ =

τx
τy
dx2

〈
√

τx
τy
x〉2

+
τy
τx
dy2 +

τxτydp
2

〈√τxτyp〉2 . After introducing the isometric transform on L4(R2;C2)

(Tε,τϕ)(x, y) = ε
√
τxτyϕ(ε

√
τxτyx, ε

√
τxτyy) ,
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the difference Û − Û0 becomes

Û − Û0 = ε1+δT−1
ε,τ r1(ετxx, ετyy,Dx, Dy, ε, τ)Tε,τ

with r1 uniformly bounded in S(1, d(τxx)
2

〈τxx〉2 + d(τyy)
2 + dp2

〈p〉2 ;M2(C)) . A fortiori,

the symbol r1(ετxx, ετyy, ξ, η; ε, τ) is uniformly bounded in S(1, dq2 + dp2

〈p〉2 ) and

the Lemma 3.4 below provides the uniform bound

‖Û − Û0‖L(L4) ≤ C0ε
1+δ .

We have proved

‖ψ‖4L4 ≥ ‖Ûψ‖4L4 − Cε1+2δ‖Ûψ‖3L4‖ψ‖L4 .

which implies (3.11). The second inequality (3.12) is proved similarly with
Û∗ = Û∗

0 + (Û∗ − Û∗
0 ) .

The result below is a particular case of the general Lp bound, 1 < p <∞, for

pseudodifferential operator in OpS(1, dq2+ dp2

〈p〉2 ;L(H1;H2)), Hi Hilbert spaces,

stated in [Tay]-Proposition 5.7 and relying on Calderon-Zygmund analysis of
singular integral operators.

Lemma 3.4. For any p ∈ (1,+∞), there exists a seminorm n on S(1, dq2 +
dp2

〈p〉2 ;M2(C)) such that

∀a ∈ S(1, dq2 +
dp2

〈p〉2 ;M2(C)), ‖a(q,Dq)‖L(Lp) ≤ n(a) .

Proof: The Proposition 5.7 of [Tay] says that for any a ∈ S(1, dq2+ dp2

〈p〉
2
;M2(C)),

the operator a(q,Dq) is bounded on Lp(R2;C2) . It is not difficult to follow the
control of the constants in the previous pages of [Tay] in order to check that
‖a(q,Dq)‖L(Lp) is estimated by a seminorm of a . More efficiently, a linear map-
ping from a Fréchet space into a Banach space is continuous as soon as it is
bounded on bounded sets. Apply this argument with the result of [Tay] to

S(1, dq2 +
dp2

〈p〉2 ;M2(C)) ∋ a 7→ a(q,Dq) ∈ L(Lp(R2;C2)) .

4 Reduced minimization problems

In this section, we assume that the potential Vε,τ satisfies (1.13)-(1.14). After
the first paragraph of this section and in the rest of the paper, we focus on the
case τy = 1, τx → 0 (and ε→ 0) . Two reduced problems have to be considered:
1) the one obtained as ε→ 0 and τx is fixed; 2) the one derived from the previous
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one as τx → 0 and which is parametrized only by (G, ℓV ) . The linear part
of this latter reduced problem is a purely quadratic Schrödinger Hamiltonian
(with a constant magnetic field), from which many a priori information can
be obtained. This section is divided into three parts. First we specify the
potential Vε,τ and check our main assumptions for the general theory. Then we
review some properties of the reduced Gross-Pitaevskii problem parametrized
by (G, ℓV ) . Finally we make the comparison with the reduced Gross-Pitaevskii
problem parametrized by (G, ℓV , τx) as τx → 0 and deduce properties which will
be necessary for the study of the complete minimization problem.

4.1 Reduced minimization problems

Lemma 4.1. The potential Vε,τ defined by (1.13)-(1.14) belongs to the class

Su

(
〈
√

τx
τy
x〉, gq,τ

)
with the metric gq,τ = τxdx

2

τy〈1+ τx
τy
x2〉 +

τy
τx
dy2 .

Proof: After the change of variable (x′, y′) = (
√

τx
τy
x,
√

τy
τx
y), it is equivalent

to check

ε2+2δ

ℓ2V
v(τyx, τxy)+

√
1 + x2−ε2+2δ

[
τ2x

(1 + x2)2
+

τ2y
1 + x2

]
∈ Su(〈x〉,

dx2

〈x〉2+dy
2) .

It is done if v(τyx, τxy) ∈ Su(〈x〉, dx
2

〈x〉2 + dy2) . We know v ∈ S(1, dx
2+dy2

1+x2+y2 ) .

Hence for all (α, β) ∈ N2 there exists Cα,β > 0 such that

∀τ ∈ (0, 1]2, ∀x, y ∈ R
2, |∂αx ∂βy (v(τyx, τxy)) | ≤ Cα,β

τβx τ
α
y

(1 + τ2yx
2 + τ2xy

2)−
α+β

2

≤ Cα,β
1

( 1
τ2
y
+ x2)α/2

≤ Cα,β〈x〉1−|α| ,

which is what we seek.

If the error terms of Proposition 3.2 and Proposition 3.3 are assumed to be

negligible, the energy Eε(ψ) of a state ψ = Û∗
(

0
a−

)
is close to

ε2+2δτxτy〈a− , Ĥ−a−〉+
Gε,τ
2

∫
|a−|4 dxdy = ε2+2δτxτyEτ (a−) ,

with Eτ (a−) = 〈a− , Ĥ−a−〉+
G

2

∫
|a−|4 dxdy , (4.1)

Ĥ− = −∂2x −


∂y − i

x

2
√
1 + τx

τy
x2




2

+
1

ℓ2V τxτy
v(
√
τxτyx,

√
τxτyy) .

with the potential v chosen from (1.14).
When τx

τy
and τxτy are small, in particular in the regime τx ≪ 1 and τy = 1 that
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we shall consider, this energy is well approximated by

EH(ϕ) = 〈ϕ ,
[
−∂2x − (∂y −

ix

2
)2 +

x2 + y2

ℓ2V

]
ϕ〉+ G

2

∫
|ϕ|4 , (4.2)

as this will be checked and specified in the next paragraph. Although more
general asymptotics could be considered, we concentrate from now on the regime
τx ≪ 1, τy = 1 . The parameters ℓV and G are assumed to be fixed as τx → 0 .

In order to prove that the ground states of EH and Eε are close, we need
good estimates on the energy EH .

4.2 Properties of the harmonic approximation

The energy functional EH does not any more depend on τx and is parametrized
only by (G, ℓV ) . Let us start with its properties. We introduce the spaces H1

and H2 which are given by

Hs =




u ∈ L2(R2)
∑

|α|+|β|≤s
‖qαDβ

q u‖L2 < +∞




 , s = 1, 2, (q = (x, y))

(4.3)
endowed with the norm ‖u‖2Hs

=
∑

|α|+|β|≤s ‖qαDβ
q u‖2L2 . For a compact set

K of Hs and for u ∈ Hs, the distance ds(u,K) follows the usual definition
minv∈K ‖u − v‖Hs . The self-ajoint operator associated with the linear part of
EH is denoted by

HℓV = −∂2x − (∂y −
ix

2
)2 +

x2 + y2

ℓ2V
, (0 < ℓV < +∞) .

Its domain is H2 while its form domain is H1 . Note also the compact em-
beddings H2 ⊂⊂ H1 ⊂⊂ L2 ∩ L4 . Following the general scheme presented in
[HiPr, Sjo], its spectrum equals

σ(HℓV ) =
{
(1 + 2n+)r+ + (1 + 2n−)r− , (n+, n−) ∈ N

2
}

with r± = 1
2
√
2

√
1 + 8

ℓ2V
±
√
1 + 4

ℓ2V
.

Proposition 4.2. The functional EH admits minima on {u ∈ H1, ‖u‖L2 = 1} ,
with a minimum value EH,min satisfying

EH,min ≥ r+ + r− ≥
√
2

2
.

The set of minimizers Argmin EH is a bounded subset of H2 and therefore a
compact subset of {u ∈ H1, ‖u‖L2 = 1} . Moreover for any ϕ ∈ Argmin EH , ϕ is
an eigenvector of H0 +G|ϕ|2 . Finally there exist two constants C = CℓV ,G > 0
and ν = νℓV ,G ∈ (0, 1/2] such that the conditions u ∈ H1, ‖u‖L2 = 1 and
EH(u) ≤ EH,min + 1, imply

dH1(u,Argmin EH) ≤ C(EH(u)− EH,min)ν . (4.4)
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Proof: On H1 and H2, the scalar products

〈u , v〉1,ℓV = 〈u , HℓV v〉L2

〈u , v〉2,ℓV = 〈HℓV u , HℓV v〉L2

provide norms ‖u‖k,ℓV , k = 1, 2, respectively equivalent to ‖u‖Hk
. In this

proof, all the “uniform” estimates are actually parametrized by (G, ℓV ) . The
nonlinearity G

2

∫
|u|4(x) dx as well as the constraint ‖u‖L2 = 1 are continuous

functions on L2 ∩ L4 while the quadratic part of EH(u) is simply ‖u‖21,ℓV with

EH(u) ≥ ‖u‖21,ℓV ≥ r+ + r− ≥
√
2
2 . The compact embedding H1 ⊂⊂ L2 ∩ L4

thus implies that the infimum infu∈H1 , ‖u‖L2=1 EH(u) is achieved.
A minimizer ϕ ∈ Argmin EH solves in a distributional sense the Euler-Lagrange
equation

HℓV ϕ+G|ϕ|2u = λϕϕ

where λϕ is the Lagrange multiplier associated with the constraint ‖ϕ‖L2 = 1 .
By taking the scalar product with ϕ, one obtains the bounds for λϕ:

EH,min ≤ λϕ ≤ 2EH,min .

Since H1 is also (compactly) embedded in L6(R2), the equation

HℓV ϕ = −G|ϕ|2ϕ+ λϕϕ

ensures that ‖ϕ‖2,ℓV is uniformly bounded on Argmin EH . Therefore Argmin EH
is a bounded subset of H2 and a compact subset of H1 . In an H1-neighborhood
of ϕ ∈ Argmin EH (‖ϕ‖L2 = 1), the L2-sphere {u ∈ H1, ‖u‖L2 = 1} can be
parametrized by

u = (1− ‖v‖2L2)ϕ+ v , 〈ϕ , v〉L2 = 0 .

Notice also that the potential G|ϕ|2 is a relatively compact perturbation of HℓV ,
so that HℓV + G|ϕ|2 is a self-adjoint operator in L2(R2) with domain H2 and
with a compact resolvent. With 〈ϕ , v〉1,ℓV = −G

∫
R2 |ϕ|2ϕv dx for ϕ is an

eigenvector of HℓV +G|ϕ|2 and v ⊥ ϕ, the energy EH(u) becomes

EH((1 − ‖v‖2L2)ϕ+ v) = ‖v‖21,ℓV + (1− ‖v‖L2)〈ϕ , ϕ〉1,ℓV
−2G(1− ‖v‖2L2)Re

∫

R2

|ϕ|2ϕv dx+
G

2

∫

R2

|(1− ‖ϕ‖2L2)ϕ+ v|4 dx

= ‖v‖21,ℓV + Fϕ(v) ,

where v lies in the closed subset H1,ϕ = {v ∈ H1, 〈ϕ , v〉L2 = 0} of H1 and Fϕ(v)
is the composition of the compact embedding H1 → L2∩L4 with a real analytic,
real-valued, functional on L2 ∩ L4 . Hence on H1,ϕ endowed with the scalar
product 〈 , 〉1,ℓV , the Hessian of EH((1 − ‖v‖2L2)ϕ + v) equals Id+D2FℓV (0),
withD2FℓV (0) compact (and self-adjoint) . We can apply the Lojasiewicz-Simon
inequality which says that there exist two constants Cϕ > 0, νϕ ∈ (0, 1/2], such
that

‖v‖1,ℓV ≤ Cϕ
(
EH((1− ‖v‖2L2)ϕ+ v)− EH,min

)νϕ
.
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Since the set Argmin EH is a compact subset of H1, it can be covered by a finite
number of neighborhoods of ϕi ∈ Argmin EH , 1 ≤ i ≤ N , where a Lojasiewicz-
Simon inequality holds. Take

νℓV ,G = min
1≤i≤N

νϕi and CℓV ,G = 2 max
1≤i≤N

Cϕi .

Remark 4.3. The Lojasiewicz inequality is a classical result of real algebraic
geometry (see a.e. [Loj, BCR]) proved by Lojasiewicz after Tarski-Seidenberg
Theorem. It is usually written as |∇f(x)| ≤ C|f(x)|ν with ν ∈ (0, 1] for a real
analytic function of x lying around x0 with f(x0) = 0 . The variational form is a
variant of it. It was extended to the infinite dimensional case with applications to
PDE’s by L. Simon in [Sim]. We refer the reader also to [Chi, HaJe, Hua] and
[BDLM] for recent texts and references concerned with the infinite dimensional
case or the extension with o-minimal structures.

The nonlinear Euler-Lagrange equation is usually studied after linearization via
the Liapunov-Schmidt process. Here using some coordinate representation of
the constraint submanifold, especially when it is a sphere for a simple norm,
allows to use directly the standard result for the minimization of real analytic
functionals.

When the minimization problem is non degenerate at every ϕ ∈ Argmin EH ,
i.e. in the present case when the kernel of Id+D2Fϕ(0) is restricted to {0}, the
compact set Argmin EH is made of a finite number of point. When ℓV is fixed
so that r+ and r− are rationally independent, the spectrum of HℓV is made of
simple eigenvalues and when G is small enough, G < GℓV , the non degeneracy
assumption is satisfied via a perturbation argument from the case G = 0 . For
large G, we can only say that the set of (G, ℓV ) ∈ (0,+∞)2 such that all the
minima are non degenerate, νℓV ,G = 1/2, is a subanalytic subset of R2 . In
our case with a linear part HℓV which is a complex operator with no rotational
symmetry, no standard methods like in [AJR] allow to reduce the minimization
problem to some radial nonlinear ODE.

From the information given by the Lowest-Landau-Level reduction, when G
and ℓV are large, the supposed hexagonal symmetry, after removing some trivial
rotational invariance, of the problem (see [ABN, Nie]) suggests that there are
presumably several minimizers.

A change of variable ϕ(x, y)e−ixy/4 = αu(αx, αy) with α2 = 1/(ℓV
√
G) leads

to

EH(ϕ) =
1

ℓV
√
G
ẼH(u) =

1

ℓV
√
G

∫
|(∇− i

2
ℓV

√
Gez×~r)u|2+G(r2|u|2+

1

2
|u|4) ,
(4.5)

with the notations ~r =

(
x
y

)
r = |~r| . This implies that ℓV

√
G is equivalent to a

rotation value. We have the following results from the literature
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• when ℓV
√
G is small and G is large, the minimizer is unique up to rotation

and vortex-free [AJR]: namely u(x, y) = f(r)eic for some real number c,
where f does not vanish. If ℓV

√
G = 0, this is an adaptation of a result

of [BrOs]. When ℓV
√
G is non zero, this requires refined estimates for the

jacobian.

• when ℓV
√
G is large, then vortices are expected in the system and this

can be analyzed in details in the LLL regime (lowest Landau level) if
additionally

√
G/ℓV is small [AB, ABN]. More precisely, if

√
G/ℓV is

small, then

inf ẼH − 1

2
− inf ELLL = o

(√
G

ℓV

)
(4.6)

where

ELLL(u) =

∫
G(r2|u|2 + 1

2
|u|4) (4.7)

for functions u such that u(x, y)eℓV
√
Gr2/4 is a holomorphic function of

x+ iy. This space is called the LLL. If u is a ground state of ẼH and w its
projection onto the LLL, then |u−w| tends to 0 in H1 and C0,α as

√
G/ℓV

tends to 0. If additionally, ℓV
√
G is large, then one can estimate inf ELLL

[ABN] thanks to test functions with vortices and inf ELLL = O
(√

G
ℓV

)
.

• if ℓV
√
G is large, and

√
G/ℓV is large, then this is a Thomas Fermi regime

where the energy can be estimated as well [Aft] and is of order
√
G/ℓV .

We complete the previous result with another comparison statement which
will be useful in the sequel.

Proposition 4.4. There exists C = CℓV ,G > 0 such that when u ∈ H1 satisfy
EH(u) ≤ EH,min + 1, ‖u‖L2 = 1, and solves

HℓV ,Gu+G|u|2u = λuu+ r

with λu ∈ R and r ∈ L2, then

• u ∈ H2 ;

• there exists u0 ∈ Argmin EH , with Lagrange multiplier λu0 , such that

|λu − λu0 |+ ‖u− u0‖H2 ≤ C (‖r‖L2 + (EH(u)− EH,min)ν) ,

where ν = νℓV ,G ∈ (0, 12 ] is the exponent given in Proposition 4.2.

Proof: Since Argmin EH is compact, Proposition 4.2 already provides u0 ∈
Argmin EH such that

‖u− u0‖H1 ≤ C(EH(u)− EH,min)ν .
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Taking the difference of the equation for u and the Euler-Lagrange equation for
u0, we obtain

HℓV ,G(u − u0) = (λu − λu0)u0 + λu(u − u0) +G(|u0|2u0 − |u|2u) + r .

Taking the scalar product with u0, with

‖|u0|2u0 − |u|2u‖L2 ≤ C (EH(u0) + EH(u)) ‖u− u0‖H1 ≤ C′ (EH(u)− EH,min)ν

implies
|λu − λu0 | ≤ C′′ (‖r‖L2 + (EH(u)− EH,min)ν) .

Using the ellipticity of HℓV ,G and the equivalence of the norms ‖ϕ‖H2 and
‖HℓV ,Gϕ‖L2 ends the proof.

4.3 Comparison of the two reduced minimization prob-

lems

In the regime τy = 1 and τx → 0, while ℓV > 0 and G > 0 are fixed, we compare
the two minimization problems for the energies Eτ and EH defined in (4.1)-(4.2).
We start with the next Lemma which is a simple application of the so called
IMS localization formula (see a.e. [CFKS]). We shall use the functional spaces
Hs defined by (4.3) associated with EH as well as the standard Sobolev spaces
Hs(R2) associated with Eτ , with s = 1, 2 and Hs ⊂ Hs(R2) .

Lemma 4.5. Let χ1, χ2 ∈ C∞
b (R2) satisfy χ2

1+χ
2
2 = 1, suppχ1 ⊂

{
x2 + y2 < 1

}

and take α ∈ (0, 12 ] . Then the following identity

EH(u) = EH(χ1(τ
α
x .)u) + EH(χ2(τ

α
x .)u)− τ2αx

2∑

j=1

∫

R2

|(∇χj)(ταx .)|2|u|2

+G

∫

R2

(χ2
1χ

2
2)(τ

α
x .)|u|4 , (4.8)

holds for all u ∈ H1, with the same formula for Eτ (u) when u ∈ H1(R2) .
Moreover, Eτ and EH satisfy

Eτ (u) = EH(χ1(τ
α
x .)u) + Eτ (χ2(τ

α
x .)u)− τ2αx

2∑

j=1

∫

R2

|(∇χj)(ταx .)|2|u|2

+G

∫

R2

(χ2
1χ

2
2)(τ

α
x .)|u|4 +R(u) , (4.9)

for all u ∈ H1(R2) with

|R(u)| ≤ 1

4

(
Eτ (χ1(τ

α
x .)u)

1/2 + EH(χ1(τ
α
x .)u)

1/2
)
‖u‖L2τ1−3α

x .
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Proof: The first identity is a direct application of the IMS localization formula
(see a.e. [CFKS]) which comes from the identity

Pχ2P − χP 2χ = [P, χ]
2 − 1

2

[
χ2, P

]
P − 1

2
P
[
P, χ2

]

when P is a differential operator of order ≤ 1 and χ is a C∞ function. Simply
combine it with the identity

|u|4 = |χ1(τ
α
x .)u|4 + |χ2(τ

α
x .)u|4 + 2χ2

1χ
2
2(τ

α
x .)|u|4 .

Using the same argument for Eτ provides the same identity after replacing EH
with Eτ , and it suffices to compare Eτ (χ1(τ

α
x .)u) with EH(χ1(τ

α
x .)u) . The defi-

nition (1.14) of the potential v and the condition α ≤ 1
2 imply

v(τ1/2x .) = τx(x
2 + y2) on suppχ1(τ

α
x .) .

Therefore, we obtain, by setting uτ = χ1(τ
α
x .)u ,

|Eτ (χ1(τ
α
x .)u)− EH(χ1(τ

α
x .)u)| =∣∣∣∣

∫

R2

|(∂y − i
x

2
√
1 + τxx2

)uτ |2 − |(∂y − i
x

2
)uτ |2

∣∣∣∣

≤
(
‖(∂y − i

x

2
√
1 + τxx2

)uτ‖L2 + ‖(∂y − i
x

2
)uτ‖L2

)

×‖ τxx
3/2

1 +
√
1 + τxx2

χ1(τ
α
x .)u‖L2

≤ 1

4

(
Eτ (χ1(τ

α
x .)u)

1/2 + EH(χ1(τ
α
x .)u)

1/2
)
‖u‖L2τ1−3α

x .

Proposition 4.6. For any given (ℓV , G) ∈ (0,+∞)2, there exists τℓV ,G > 0
such that the following properties hold when τx ≤ τℓV ,G .

• The minimization problem

inf
u∈H1(R2 ) , ‖u‖L2=1

Eτ (u)

admits a solution u ∈ H1(R2) .

• A solution u ∈ H1(R2) to the above minimization problem, solves an
Euler-Lagrange equation

[
−∂2x − (∂y −

i

2

x√
1 + τxx2

)2 +
v(τ

1/2
x .)

ℓ2V τx
+G|u|2

]
u = λuu

with 0 ≤ λu ≤ 2Eτ,min and belongs to H2(R2) .
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• Moreover the minimum value Eτ,min = minu∈H1(R2) , ‖u‖L2=1 Eτ (u) satis-
fies the estimate

|Eτ,min − EH,min| ≤ CℓV ,Gτ
2/3
x .

• For u ∈ Argmin Eτ and any pairs χ = (χ1, χ2) in C∞
b (R2)2 such that

χ2
1+χ

2
2 = 1 with suppχ1 ⊂

{
x2 + y2 < 1

}
and χ1 ≡ 1 in

{
x2 + y2 ≤ 1/2

}
,

the functions χj(τ
1/9
x .)u, j = 1, 2, satisfy

‖χ2(τ
1/9
x .)u‖2L2 ≤ Cχ,ℓV ,Gτ

2/3
x (4.10)

Eτ (χ1(τ
1/9
x .)u) ≤ Eτ,min + Cχ,ℓV ,Gτ

2/3
x (4.11)

dH2(χ1(τ
1/9
x .)u,Argmin EH) ≤ Cχ,ℓV ,Gτ

2νℓV,G
/3

x , (4.12)

νℓV ,G ∈ (0,
1

2
] . (4.13)

A constant Ca,b,c is a constant which is fixed once (a, b, c) are given.

Proof: Fix ℓV and G. We drop the indices ℓV , G in the constants. The
exponent α will be fixed to the value 1

9 within the proof.
First step, upper bound for inf{Eτ (u) , u ∈ H1(R2) , ‖u‖L2 = 1}:
Let χ = (χ1, χ2) and χ̃ = (χ̃1, χ̃2) be two pairs as in our statement such that
χ̃1 ≺ χ1 according to Definition A.3. Take u0 ∈ Argmin EH ⊂ H1 . According
to Proposition 4.2, it belongs to a bounded set of H2 so that ‖|q|2u0‖L2, with
q = (x, y), is uniformly bounded. Hence, 0 6∈ supp∇χ̃j ∪ supp χ̃1χ̃2 implies

∫

R2

|∇χ̃j(ταx .)|2|u0|2 = O(τ4αx ) while

∫

R2

χ̃2
1χ̃

2
2(τ

α
x .)|u0|4 ≥ 0 .

Lemma 4.5 above with the pair χ̃ and α ∈ (0, 12 ] gives:

EH,min = EH(u0) ≥ EH(χ̃1(τ
α
x .)u0) + EH(χ̃2(τ

α
x .)u0)− Cτ6αx .

On supp χ̃2(τ
α
x .), the potential

v(τ1/2
x .)
ℓ2vτx

is bounded from below by 1
C′τ2α

x
. Thus

we get

EH,min
(
‖χ̃1u0‖2L2 + ‖χ̃2u0‖2L2

)
≥ EH,min‖χ̃1u0‖2L2 +

1

C′τ2αx
‖χ̃2u0‖2L2 − Cτ6αx ,

and finally
‖χ̃2u0‖2L2 ≤ C′′τ8αx , ‖χ̃1u0‖2L2 = 1 +O(τ8αx ) ,

as soon as τx < (C′EH,min)−1/2α .

The function u1 = ‖χ̃1u0‖−1
L2 χ̃1u0 is normalized with

EH,min ≤ EH(u1) ≤ EH,min +O(τ6αx ) ,

44



and χ1(τ
α
x .)u1 = u1, χ2(τ

α
x .)u1 = 0 . Applying the second formula of Lemma 4.5

with, now, the pair χ, leads to

Eτ (u1) = EH(u1) + R(u1) = EH,min +O(τ6αx ) +R(u1)

with R(u1) ≤
1

4
(Eτ (u1)1/2 + (EH,min +O(τ6αx ))1/2)τ1−3α

x .

With the estimate
√
2
2 ≤ EH,min ≤ C, we deduce

Eτ (u1) = EH,min +O(τ6αx + τ1−3α
x ) .

It’s time to fix α to the value 1
9 so that τ6αx = τ1−3α

x = τ
2/3
x and

inf
u∈H1(R2)

Eτ (u) ≤ Eτ (u1) ≤ EH,min + κτ2/3x .

Second step - Existence of a minimizer: Once the function u1 ∈ H1(R2) has

been constructed as above, consider τx < τ0 with EH,min + κτ
2/3
0 ≤ 1

ℓ2V τ0
. The

functional

Eτ (u)−
1

ℓ2V τx
‖u‖2L2 ,

is the sum of a convex strongly continuous functional (and therefore weakly
continuous) on H1(R2) and a negative functional

〈u, 1

ℓ2V τx

[
v(τ1/2x .)− 1

]

−
u〉 .

Due to the compact support of v−1, it is also continuous w.r.t the weak topology
on H1(R2) . Out a minimizing sequence (un)n∈N∗ , extract a weakly converging
subsequence in H1(R2) . The weak limit, u∞, satisfies

Eτ (u∞)− 1

ℓ2V τx
‖u∞‖2L2 = lim

k→∞
Eτ (unk

)− 1

ℓ2V τx
‖unk

‖2L2 .

with ‖u∞‖L2 ≤ 1 . The same convergence holds also for the energy Eτ (u) −
1

2ℓ2V τx
‖u‖2L2, so that actually ‖u∞‖L2 = limk→∞ ‖unk

‖L2 = 1 and u∞ realizes

the minimum of Eτ (u) under the constraint ‖u‖L2 = 1 .
The Euler-Lagrange equation can thus be written, with the stated straightfor-
ward consequences.
Third step - a priori estimate for minimizers of Eτ :
Let u ∈ H1(R2) satisfy ‖u‖L2 = 1 and Eτ (u) = Eτ,min ≤ EH + κτ

2/3
x . Take

two pairs χ̃ = (χ̃1, χ̃2) and χ′ = (χ′
1, χ

′
2), like in our statement, and such that

χ′
1 ≺ χ̃1. The identities (4.9) for Eτ and (4.9) in Lemma 4.5 provide

Eτ,min ≥ Eτ (χ̃1(τ
1/9
x .)u)− Cχ̃τ

2/9
x

Eτ,min ≥ EH(χ̃1(τ
1/9
x .)u)− Cχ̃τ

2/9
x

−1

4

[
Eτ (χ̃1(τ

1/9
x .)u)1/2 + EH(χ̃1(τ

1/9
x .)u)1/2

]
τ2/3x .
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The first line says

Eτ (χ̃1(τ
1/9
x .)u) ≤ Eτ,min + Cχ̃τ

2/9
x ≤ EH,min + κτ2/3x + Cχ̃τ

2/9
x ≤ C′

χ̃ ,

which combined with the second line provides the uniform estimate

Eτ (χ̃1(τ
1/9
x .)u) ≤ C′′

χ̃ .

Therefore χ̃1(τ
1/9
x .)u is uniformly bounded in H1 with respect to τx . Consider

now the Euler-Lagrange equation

[
−∂2x − (∂y −

i

2

x√
1 + τxx2

)2 +
v(τ

1/2
x .)

ℓ2V τx
+G|u|2

]
u = λuu

and write its local version for u′1 = χ′
1(τ

2/9
x .)u in the form

[
−∂2x − (∂y −

ix

2
)2 +

x2 + y2

ℓ2V

]
u′1 = λuu

′
1 −G|ũ1|2u′1

+f1
u + f2

u , (4.14)

with f1
u = −ix( 1√

1 + τxx2
− 1)χ′(τ1/9x .)∂yũ1 −

x2

4

τxx
2

1 + τxx2
u′1 ,

and f2
u = −2τ1/9x (∇χ′

1)(τ
1/9
x .).∇ũ1 − τ2/9x (∆χ′

1)(τ
1/9
x .)ũ1 ,

after setting ũ1 = χ̃1(τ
2/9
x .)u . Both functions, ũ1 and therefore u′1 = χ′

1(τ
2/9
x .)ũ1

are uniformly estimated in H1 and therefore in H1(R2) . From the embedding
H1(R2) ⊂ L6(R2), the term G|ũ1|2u′1 is uniformly bounded in L2(R2) . For the

term f1
u, the support condition suppχ′

1(τ
1/9
x .) ⊂

{
|x| ≤ τ

−1/9
x

}
imply

‖f1
u‖L2 ≤ Cχ′(τ1−1/3

x + τ1−4/9
x ) ≤ C′′

χ′ ,

while the estimate
‖f2
u‖ ≤ Cχ′τ1/9x ≤ C′′

χ′

is straightforward. Hence the right-hand side of (4.14) is uniformly bounded in
L2(R2) and we have proved

‖χ′
1(τ

1/9
x .)u‖H2 ≤ C3

χ′ (4.15)

for any good pair of cut-offs χ′ = (χ′
1, χ

′
2) .

Fourth step- accurate comparison of minimal energies:

We already know Eτ,min ≤ EH,min + κτ
2/3
x and we want to check the reverse

inequality. Consider a minimizer u of Eτ and take two pairs of cut-off χ =
(χ1, χ2) and χ′ = (χ′

1, χ
′
2), such that χ1 ≺ χ′

1 . The identity (4.8) for Eτ and
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(4.9) of Lemma 4.5 used with χ imply

Eτ,min ≥ Eτ (χ1(τ
1/9
x .)u) + Eτ (χ2(τ

1/9
x .)u)

−τ2/9x

2∑

j=1

∫

R2

|(∇χj)(τ1/9x .)|2|u|2 , (4.16)

Eτ,min ≥ EH(χ1(τ
1/9
x .)u)

−τ2/9x

2∑

j=1

∫

R2

|(∇χj)(τ1/9x .)|2|u|2 +R(u) . (4.17)

After setting u′1 = χ′
1(τ

1/9
x .)u, we get the bound

∫

R2

|(∇χj)(τ1/9x .)|2|u|2 =

∫

R2

|(∇χj)(τ1/9x .)|2
|q|4 ||q|2u′1|2 ≤ Cχτ

4/9
x ,

while we already know from the third step the bounds E•(χ1(τ
1/9
x .)u) ≤ Cχ

when • stands for τ or H , which implies |R(u)| ≤ Cχτ
2/3
x . From (4.16), we

deduce, as we did in the first step with the energy EH ,

‖χ2(τ
1/9
x .)u‖2L2 ≤ Cχτ

2/3
x , ‖χ1(τ

1/9
x .)u‖L2 = 1 +O(τ2/3x ) ,

while the second line implies

Eτ,min ≥
(
1− Cχτ

2/3
x

)
EH,min − C′

χτ
2/3
x ≥ EH,min − C′′

χτ
2/3
x .

Fifth step- accurate comparison of minimizers:

The function u1 = ‖χ1(τ
1/9
x .)u‖−1

L2χ1(τ
1/9
x .)u, satisfies

EH(u1) ≤ EH,min + Cχτ
2/3
x

while χ1(τ
1/9
x .)u solves the equation (4.14) for some pair χ̃ = (χ̃1, χ̃2) such that

χ1 ≺ χ̃1 after replacing (χ′, u′1) with (χ, χ1(τ
1/9
x .)u) . After normalization by

setting ũ1 = ‖χ(τ1/9x .)u‖−1
L2χ1(τ

1/9
x .)u it becomes

HℓV ,Gu1 +G|u1|2u1 = λuu1 + f1
u + f2

u + f3
u , (4.18)

u1 = ‖χ(τ1/9x .)u‖−1
L2χ1(τ

1/9
x .)u , ũ1 = ‖χ(τ1/9x .)u‖−1

L2 χ̃1(τ
1/9
x .)u ,

with f1
u = −ix( 1√

1 + τxx2
− 1)χ(τ1/9x .)∂yũ1 −

x2

4

τxx
2

1 + τxx2
u1 ,

f2
u = −2τ1/9x (∇χ1)(τ

1/9
x .).∇ũ1 − τ2/9x (∆χ1)(τ

1/9
x .)ũ1 ,

and f3
u = G‖χ1(τ

1/9
x .)u‖2L2(|ũ1|2 − |u1|2)u1 +G(1− ‖χ1(τ

1/9
x .)u‖2L2)|u1|2u1 .

The estimate (4.15), for any new good pair χ′ = (χ′
1, χ

′
2) such that χ1 ≺

χ̃1 ≺ χ′
1, implies that the terms f1

u and f2
u of the right-hand side of (4.18) have
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an L2-norm of order τ
2/3
x . For the third term the estimate (4.15) also implies

that
(|ũ1|2 − |u1|2)u1 =

(
1− χ2

1(τ
1/9
x .)

)
|ũ1|2u1 ,

has an L2-norm of order O(τ
2/3
x ) (use the L∞ bound for |ũ1|2 with ‖|q|2u1‖L2 ≤

Cχ). We conclude by applying Proposition 4.4 .

We end this section with a comparison property similar to Proposition 4.4.

Proposition 4.7. Let ℓV , G be fixed positive numbers and take u ∈ H1(R2)
such that

Eτ (u) ≤ Eτ,min + CℓV,Gτ
2/3
x

and which solves

−∂2xu− (∂y − i
x√

1 + τxx2
)2 +

v(τ
1/2
x .)

ℓ2V τx
u+G|u|2u = λuu+ ru

with λu ∈ R and ‖ru‖L2 ≤ 1 . Then for any pair χ = (χ1, χ2) ∈ C∞
b (R2) so that

χ2
1 + χ2

2 = 1 with suppχ1 ⊂
{
x2 + y2 < 1

}
and χ1 ≡ 1 in

{
x2 + y2 ≤ 1/2

}
,

there exists τχ,ℓV ,G and Cχ,ℓV such that

‖χ2(τ
1/9
x .)u‖2L2 ≤ Cχ,ℓV ,Gτ

2/3
x (4.19)

|Eτ (χ1(τ
1/9
x .)u)− EH,min| ≤ Cχ,ℓV ,Gτ

2/3
x (4.20)

dH2(χ1(τ
1/9
x .)u,Argmin EH) ≤ Cχ,ℓV ,G(τ

2νℓV,G
/3

x + ‖ru‖L2) , (4.21)

when τx < τχ,ℓV ,G and where νℓV ,G ∈ (0, 12 ] is the exponent given in Proposi-
tion 4.2.

Proof: The analysis follows essentially the same line as the study of the
minimizers of Eτ in the proof of Proposition 4.6. By taking two pairs χ′ =
(χ′

1, χ
′
2) and χ̃ = (̃χ̃1, χ̃2) such that χ′

1 ≺ χ̃1, we obtain successively like in the
Third Step in the proof of Proposition 4.6 :

• Eτ (χ̃1(τ
1/9
x .)u) + Eτ (χ̃2(τ

1/9
x .)u) ≤ Cχ̃ ;

•
[
−∂2x − (∂y − ix

2 )
2 + x2+y2

ℓ2V

]
u′1 = λuu

′
1 − G|ũ1|2u′1 + f1

u + f2
u + ru where

u′1,ũ1, f
1,2
u have the same expressions as in (4.14);

• ‖χ′
1(τ

1/9
x .)u‖H2 ≤ Cχ′ owing to ‖ru‖L2 ≤ 1 .

From the last estimate, the refined comparison of energies like in the Fourth Step
gives for a pair χ = (χ1, χ2) such that χ1 ≺ χ′

1:

‖χ2(τ
1/9
x .)u‖2L2 ≤ Cχτ

2/3
x EH(u1) ≤ EH,min + Cχτ

2/3
x ,

with u1 = ‖χ1(τ
1/9
x .)u‖−1χ1(τ

1/9
x .)u and Cχτ

2/3
x ≤ 1 for τx ≤ τχ . The equa-

tion (4.18) is replaced by

HℓV ,Gu1 +G|u1|2u1 = λuu1 + f1
u + f2

u + f3
u + ‖χ1(τ

1/9
x .)u‖−1ru
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without changing the expressions of f1,2,3
u . Again the estimate ‖χ′

1(τ
1/9
x .)u‖H2 ≤

Cχ′ is used with various cut-offs χ′
1, in order to get ‖f1

u+f
2
u+f

3
u‖L2 = O(τ

2/3
x ) .

We conclude with the help of Proposition 4.4 applied to u1 .

5 Analysis of the complete minimization prob-

lem

We consider the complete minimization problem for the energy

Eε(ψ) = 〈ψ,HLinψ〉+
Gε,τ
2

∫
|ψ4| = ε2+2δτx

[
〈ψ, ε−2−2δτ−1

x HLinψ〉+
G

2

∫
|ψ4|

]

and compare its solutions to the minimization of the reduced energies Eτ and
EH , introduced in the previous sections. We work with τy = 1, τx → 0, ε → 0,
while ℓV , G and δ ∈ (0, δ0] are fixed. The analysis follows the same lines as the
proof of Proposition 4.6.

5.1 Upper bound for inf {Eε(ψ), ‖ψ‖L2 = 1}
The potential Vε is chosen according to (1.13)-(1.14) while ℓV and G are fixed.
The parameter τx is assumed to be smaller than τℓV ,G so that the minimal energy
Eτ,min(τx) of Eτ is achieved (see Proposition 4.6) and |Eτ,min(τx) − EH,min| ≤
CℓV ,Gτ

2/3
x . Moreover Proposition 4.6 also says that by truncating an element

of Argmin Eτ , one can find a− ∈ H2 such that

‖a−‖L2 = 1 , |Eτ (a−)− EH,min| ≤ CℓV ,Gτ
2/3
x and ‖a−‖H2 ≤ CℓV ,G . (5.1)

Proposition 5.1. Under the above assumptions, take ψ = Û

(
0

e
−i y

2
√

τx a−

)

where a− satisfies (5.1) and Û = U(q, εDq, τ, ε) is the unitary operator intro-
duced in Theorem 2.1. The estimate

∣∣Eε(ψ)− ε2+2δτxEτ (a−)
∣∣ ≤ CℓV ,Gε

2+4δ . (5.2)

hold uniformly w.r.t τx ∈ (0, τℓV ,G] and δ ∈ (0, δ0] .

Proof: Let us compare first the linear part by estimating

∣∣∣∣〈ψ ,HLinψ〉 − ε2+2δτx〈a− ,
[
−∂2x − (∂y − i

x

2
√
1 + τxx2

)2 +
v(
√
τx.)

ℓ2V τx

]
a−〉

∣∣∣∣

=
∣∣〈ψ , (HLin − ε2+2δτxU

∗HBOU)ψ〉
∣∣

By Proposition 3.2, it suffices to estimate

‖(1− χ̂)ψ‖L2 and ‖√τx|εDq|(1− χ̂)ψ‖L2
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for some given cut-off function χ ∈ C∞
0 (R) with χ̂ = χ(τxε

2D2
q) . Notice

e
i y
2
√

τx (
√
τxεDq)e

−i y
2
√

τx =

( √
τxεDx√

τxεDy − ε
2

)

Hence by using the functional calculus of
√
εDq, we can say that there exists a

cut-off χ′ ∈ C∞
0 (−r2γ , r2γ), with χ′ ≡ 1 around 0 and χ′ ≺ χ such that

e
i y
2
√

τx (1 − χ̂)2e
−i y

2
√

τx ≤ (1− χ̂′)2 ,

and e
i y
2
√

τx (τxε
2|Dq|2)(1− χ̂)2e

−i y
2
√

τx ≤ 2(τxε
2|Dq|2)(1 − χ̂′)2 + 2(1− χ̂′)2

as soon as ε ≤ ε0 ≤ 1, for a convenient choice of ε0 and rγ . By using ‖a‖H2(R2) ≤
CℓV ,G, we deduce

‖(1− χ̂)ψ‖2L2 ≤ ‖(1− χ̂′)a−‖2L2 ≤ CℓV ,Gτ
2
xε

4 ,

and

‖(√τxε|Dq|)(1− χ̂)ψ‖2L2 ≤ 2‖(√τxε|Dq|)(1− χ̂′)a−‖2L2 + 2‖(1− χ̂′)a−‖2L2

≤ CℓV ,Gτxε
2 .

By Proposition 3.2, we obtain

∣∣〈ψ , (HLin − ε2+2δτxU
∗HBOU)ψ〉

∣∣

≤ CℓV ,G

[
ε2+4δ + ε5+2δτ2x + ε4+2δτ3/2x

]
≤ C′

ℓV ,Gε
2+4δ . (5.3)

For the nonlinear part of the energy, Proposition 3.3 gives

(1− Cε1+2δ)

∫

R2

|a−|4 ≤
∫

R2

|ψ|4 ≤ (1 + Cε1+2δ)

∫

R2

|a−|4

and the bound,
∫
R2 |e−i

y
2
√

τx a−|4 =
∫
R2 |a−|4 ≤ CℓV ,G, leads to

∣∣∣∣
Gτxε

2+2δ

2

∫

R2

|ψ|4 − ε2+2δGτx
2

∫

R2

|a−|4
∣∣∣∣ ≤ CℓV ,Gε

2+2δτx × ε1+2δ ,

which is smaller than the error term for the linear part. This ends the proof of
(5.2) .

Remark 5.2. • The energy Eτ (a−) = EH,min + O(τ
2/3
x ) . Therefore the

error given by (5.2) is relevant, as compared with the energy scale of
ε2+2δτxEτ,min, when

ε2δ ≤ cℓV ,Gτx , (5.4)

with cℓV ,G small enough, and accurate when

ε2δ ≤ CℓV ,Gτ
5/3
x . (5.5)

Remember that the constants cℓV ,G and CℓV ,G depend also on δ0, when
δ ∈ (0, δ0] .
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• It is interesting to notice that the worst term in the right-hand side of
(5.3) comes from the error of order O(ε2+2δ) in the Born-Oppenheimer
approximation. There seems to be no way to get an additional factor ταx
with α > 0 because the initial problem is rapidly oscillatory in the y-
variable in a τx-dependent scale. This can be seen on the gain associated
with the metric gτ , for τy = 1 and τx > 0, which is simply 〈√τxp〉 or
essentially 1 when p is small.

5.2 Existence of a minimizer for Eε
With the choice (1.13)-(1.14) of the potential Vε,τ , the linear Hamiltonian HLin

can be written

HLin = −ε2+2δτx∆+ u0(q, τ)

(
2
√
1 + τxx2 0
0 0

)
u0(q, τ)

∗

+ε2+2δ v(τ
1/2
x .)

ℓ2V
− ε2+2δWτ (x, y) ,

with Wτ (x, y) =
τ2x

(1 + τxx2)2
+

1

1 + τxx2
.

For t ≤ ε2+2δ

2ℓ2V
, the negative part

(
ε2+2δ v(

√
τx.)

ℓ2V
− t
)

−
is compactly supported.

Set

HLin,t,+ = −ε2+2δτx∆+ u0(q, τ)

(
2
√
1 + τxx2 0
0 0

)
u0(q, τ)

∗

+

(
ε2+2δ v(

√
τx.)

ℓ2V
− t

)

+

,

so that

Eε(ψ)− t‖ψ‖2 = 〈ψ ,HLin,t,+ψ〉+
Gε,τ
2

∫
|ψ|4

+ 〈ψ , ε2+2δ

[(
v(
√
τx.)

ℓ2V
− t

ε2+2δ

)

−
−Wτ

]
ψ〉 . (5.6)

Proposition 5.3. Assume ε ≤ εℓV ,G and τx ≤ τℓV ,G with τℓV ,G small enough.
Then the infimum

inf{Eε(u), u ∈ H1(R2), ‖u‖L2 = 1}
is achieved. Any element ψ of Argmin Eε solves an Euler-Lagrange equation

HLinψ +Gε,τ |ψ|2ψ = λψψ

with the estimates

|Eε(ψ)|+ |λψ | ≤ CℓV ,Gε
2+2δ , ‖(1 + τx|Dq|2)1/2ψ‖L2 ≤ CℓV ,G ,

Eε(ψ) = Eε,min ≤ ε2+2δ
[
Eτ,min + CℓV ,Gε

2δ)
]

≤ ε2+2δ
[
τxEH,min + C′

ℓV ,G
(τ

5/3
x + ε2δ)

]
.
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Proof: From Proposition 5.1, we know that

inf
‖u‖L2=1

Eε(u) ≤ ε2+2δτxEτ,min + CℓV ,Gε
2+4δ =:

t

2
.

For ε ≤ εℓV ,G and τx ≤ τℓV ,G, t smaller than ε2+2δ

2ℓ2V
. Consider the decomposition

(5.6) for the energy Eε(u) − t‖u‖2L2 . By the same argument (convexity of the
positive part and compactness of the negative part) as we used for Eτ in the
proof of Proposition 4.6 (second step), a weak limit of an extracted sequence of
minimizers in H1(R2) is a minimum for Eε on {‖u‖L2 = 1} .
A element ψ of Argmin Eε satisfies

ε2+2δτx

[
〈ψ , −∆ψ〉+ G

2

∫
|ψ|4

]
≤ 〈ψ , HLin,t,+ψ〉+

Gε,τ
2

∫
|ψ|4

≤ Eε,min − 〈ψ , ε2+2δ

[(
v(
√
τx.)

ℓ2V
− t

ε2+2δ

)

−
−Wτ

]
ψ〉

≤ t

2
+ t+ (1 + τ2x)ε

2+2δ ≤ C′
ℓV ,Gε

2+2δ ,

by recalling v ≥ 0 for the last line. This implies

‖ψ‖2H1 ≤ C′
ℓV ,Gτ

−1
x , ‖ψ‖4L4 ≤

2C′
ℓV ,G

G
τ−1
x ,

and by interpolation with ‖u‖L6 ≤ C‖∇u‖2/3L2 ‖u‖1/3L2 , ‖ψ‖L6 = O(τ
−1/3
x ) . The

first inequality with ‖ψ‖L2 = 1, gives ‖(1 + τx|Dq|2)1/2ψ‖L2 = O(1) .
The Euler-Lagrange equation

HLinψ +Gε,τ |ψ|2ψ = λψ

implies

|λ| ≤ 2

[
〈ψ , HLin,t,+ψ〉+

Gε,τ
2

∫
|ψ|4

]

−〈ψ , ε2+2δ

[(
v(
√
τx.)

ℓ2V
− t

ε2+2δ

)

−
−Wτ

]
ψ〉 ≤ C′′

ℓV ,Gε
2+2δ .

Similarly, the lower bound Eε(ψ) ≥ −2ε2+2δ is due to Wτ ≥ −2 . The upper
bound of Eε(ψ) = Eε,min comes from Proposition 5.1 and (5.1).

5.3 Comparison of minimal energies between Eε and Eτ
In this subsection, we specify a priori estimates for the minimizers of Eε and
compare the energies Eε,min and Eτ,min without imposing relations between ε2δ

and τx . This is not necessary at this level, if one uses carefully bootstrap
arguments.
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Proposition 5.4. Let Vε,τ be given by (1.13)-(1.14) and assume τx ≤ τℓV ,G and
ε ≤ εℓV ,G so that Eε admits a ground state according to Proposition 5.3 . The

operator Û is the unitary transform provided by Theorem 2.1 and an element ψ ∈

Argmin Eε is written Û

(
e
+i y

2
√

τx a+

e
−i y

2
√

τx a−

)
, with a =

(
a+
a−

)
. Then, the estimates

‖(1 + τx|Dq|2)1/2a‖L2 ≤ CℓV ,G , (5.7)

‖a+‖2L2 +Gε,τ

∫
|a|4 ≤ CℓV ,Gε

2+4δ + Eε,min , (5.8)

|Eε(ψ)− ε2+2δτxEτ (a−)| ≤ CℓV ,Gε
2+4δ , (5.9)

|Eε,min − ε2+2δτxEτ,min| ≤ CℓV ,Gε
2+4δ , (5.10)

hold with right-hand sides which can be replaced by CℓV ,Gε
2+2δτx when ε2δ ≤

cℓV ,Gτx .

Proof: For ã =

(
e
i y
2
√

τx a+

e
−i y

2
√

τx a−

)
and a =

(
a+
a−

)
, the norms ‖(1+τx|Dq|2)1/2a‖L2

and ‖(1 + τx|Dq|2)1/2ã‖L2 are uniformly equivalent because

e
±i y

2
√

τx (
√
τxDy)e

∓i y
2
√

τx = (
√
τxDy)∓

1

2
.

Hence it suffices to estimate
√
τxεDqÛ

∗ψ . Remember that Û = U(q, εDq, τ, ε)
with U ∈ Su(1, gτ ;M2(C)), while

√
τxp ∈ Su(〈

√
τxp〉, gτ ;R2) . With ‖(1 +

τx|Dq|2)1/2ψ‖L2 ≤ CℓV ,G in Proposition 5.3, simply compute:

√
τxεDqÛ

∗ψ = εÛ∗√τxDqψ +
[√

τxεDq, Û
∗
]
ψ = O(ε) in L2(R2;C2) ,

and divide by ε for (5.7).
In order to compare the energies, consider first the linear part by writing

∣∣∣〈ψ ,HLinψ〉 − ε2+2δτx

[
〈a+ , Ĥ+a+〉+ 〈a− , Ĥ−a−〉

]∣∣∣ =
∣∣∣〈ã , (Û∗HLinÛ − ε2+2δHBO)ã〉

∣∣∣ ,

with

ã =

(
e
i y
2
√

τx a+

e
−i y

2
√

τx a−

)
,

HBO =

(
e
i y
2
√

τx Ĥ+e
−i y

2
√

τx 0

0 e
−i y

2
√

τx Ĥ−e
i y
2
√

τx

)
,

Ĥ± = −∂2x − (∂y ± i
x

2
√
1 + τxx2

)2 +
v(
√
τx.)

ℓ2V τx
+

(1± 1)

ε2+2δτx
(1 + τxx

2)1/2 .
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Here it is convenient to write

ε2+2δτxHBO = ε2δB̂ +

(
2(1 + τxx

2)1/2

0

)
,

B̂ =

(
B̂+ 0

0 B̂−

)
, B̂± = B±(q, εDq, τ, ε) , (5.11)

B±(q, p, τ, ε) = τxp
2
x + (

√
τxpy ±

ε

2
(

√
τxx√

1 + τxx2
−√

τx))
2 +

ε2v(
√
τx.)

ℓ2V
. (5.12)

With the notation χ̂ = χ(τxε
2|Dq|2) of Proposition 3.2, Lemma 5.5 below says

in particular

‖(1− χ̂)ψ‖2L2 ≤ CℓV ,G

[
〈ã, B̂ã〉+ ε1+2δ‖ã‖2L2

]
,

‖√τxε|Dq|(1 − χ̂)ψ‖2L2 ≤ CℓV ,G

[
〈ã, B̂ã〉+ ε1+2δ‖ã‖2L2

]
.

Proposition 3.2 yields
∣∣∣∣〈ã ,

(
Û∗HLinÛ − ε2δB̂ −

(
2(1 + τxx

2)1/2

0

))
ã〉
∣∣∣∣ ≤ CℓV ,G

[
ε2+4δ + ε1+2δ〈ã , B̂ã〉

]
.

For the nonlinear part of the energy, Proposition 3.3 gives

(1− Cε1+2δ)

∫

R2

|ψ|4 ≤
∫

R2

|ã|4 =

∫

R2

|a|4 ≤ (1 + Cε1+2δ)

∫

R2

|ψ|4

with ã =

(
e
i y
2
√

τx a+

e
−i y

2
√

τx a−

)
and a =

(
a+
a−

)
. The bound

∫
R2 |ψ|4 ≤ CℓV ,Gτ

−1
x

coming from Eε(ψ) = O(ε2+2δ) with ε2+2δWτ = O(ε2+2δ), leads to
∣∣∣∣
Gτxε

2+2δ

2

∫

R2

|ψ|4 − Gτxε
2+2δ

2

∫

R2

|ã|4
∣∣∣∣ ≤ CℓV ,Gε

2+2δτx×ε1+2δτ−1
x = CℓV ,Gε

3+4δ ,

which is smaller than the error term for the linear part. We have proved
∣∣∣∣Eε(ψ)− ε2δ〈ã , B̂ã〉 − 〈ã+ , 2(1 + τxx

2)1/2ã+〉 −
Gε,τ
2

∫
|a|4
∣∣∣∣

≤ CℓV ,G

[
ε2+4δ + ε× ε2δ〈ã , B̂ã〉

]
.

With Eε(ψ) = Eε,min (= O(ε2+2δ)), this gives

(1−Cε)ε2δ〈ã , B̂ã〉+2〈ã+ , (1 + τxx
2)1/2ã+〉+

Gε,τ
2

∫
|a|4 ≤ Cε2+4δ + Eε,min ,

where all the terms of the left-hand side are now non negative. We deduce (5.8)
and by bootstrapping

ε2+2δτx〈a− , Ĥ−a−〉+
Gε,τ
2

∫
|a|4 ≤ ε2δ〈ã , B̂ã〉+ Gε,τ

2

∫
|ã|4

≤ Eε,min + CℓV ,Gε
2+4δ .
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Additionally,
∫
|a|4 =

∫ (
|a−|2 + |a+|2

)2 ≥
∫
|a−|4 also gives

0 ≤ ‖a−‖4L2Eτ,min ≤ Eτ (a−) ≤ CℓV ,G
ε2δ

τx
+

Eε,min
ε2+2δτx

≤ Eτ,min + C′
ℓV ,G

ε2δ

τx
.

With ‖a−‖2L2 = 1− ‖a+‖2 = 1+O(ε2+2δ) = 1 +O( ε
2δ

τx
) and Eτ,min = EH,min +

O(τ
2/3
x ), this finally leads to

| Eε,min
ε2+2δτx

− Eτ (a−)| ≤ C′′
ℓV ,G

ε2δ

τx
.

Lemma 5.5. Assume B(q, p, τ, ε) = τx|p|2+εr with r ∈ Su(〈
√
τxp〉, gτ ;M2(C)),

take any χ ∈ C∞
0 (R) and set B̂ = B(q, εDq, τ, ε) and χ̂ = χ(τxε|Dq|2) . Then

there exists εB,χ > 0 and CB,χ > 0 such that the estimates

‖(1− χ̂)u‖2L2 + ‖√τx|εDq|(1− χ̂)u‖2L2 ≤ CB,χ

[
〈u , B̂u〉+ ε1+2δ‖u‖2L2

]
,

and ‖(1− χ̂)u‖L2 + ‖√τx|εDq|(1− χ̂)u‖L2 ≤ CB,χ

[
‖B̂u‖L2 + ε1+2δ‖u‖L2

]
,

hold uniformly w.r.t δ ∈ (0, δ0] and ε ∈ (0, εB,χ) .

Proof: For χ0 ∈ C∞
0 (R) such that χ0 ≥ 0 and χ0 ≡ 1 around 0, the symbol

χ0(τxp
2) +B is an elliptic symbol in Su(〈

√
τxp〉2, gτ : M2(C)) . For ε > 0 small

enough according to (χ0, B), its quantization χ̂0+ B̂ is invertible and its inverse
belongs to OpSu(〈

√
τxp〉−2, gτ ,M2(C)) . Next we notice that in

(1− χ̂) = (1− χ̂) ◦
[
χ̂0 + B̂

]−1

◦ B̂ + (1− χ̂) ◦
[
χ̂0 + B̂

]−1

◦ χ̂0 ,

the last term belongs to OpNu,gτ if χ0 ≺ χ . All the estimates are consequences
of

(1− χ̂) = (1− χ̂) ◦
[
χ̂0 + B̂

]−1

◦ B̂ + ε1+2δρ ,

with ρ ∈ Su(
1

〈τxp〉∞ , gτ ;M2(C)) .

5.4 Adiabatic Euler-Lagrange equation

As suggested by Proposition 4.7, or the last steps in the proof of Proposition 4.6,
an accurate comparison of minimizers requires some comparison of the Euler-
Lagrange equations. We check here that the a− component in Proposition 5.4
solves approximately the Euler-Lagrange equations for minimizers of Eτ . Here
the bootstrap argument is made in terms of operators instead of quadratic forms.
In order to get reliable results, we now assume

ε2δ ≤ cℓV ,Gτx ,

with cℓV ,G chosen small enough.
With such an assumption we know:
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• from (5.10) and |Eτ,min − EH,min| = O(τ
2/3
x ),

C−1ε2+2δτx ≤ Eε,min ≤ Cε2+2δτx .

• When ψ ∈ Argmin Eε,min is written ψ = Û

(
e
i y
2
√

τx a+

e
− y

2
√

τx a+

)
the L4-norm

of a is uniformly bounded,
∫
|a|4 ≤ CℓV ,G, according to (5.8). By apply-

ing Lemma 3.4 this also gives
∫
|ψ|4 ≤ CℓV ,G . We also have ‖a+‖2L2 ≤

CℓV ,Gε
2+2δτx .

• The Lagrange multiplier λψ , associated with ψ ∈ Argmin Eε,min, equals
Eε(ψ) + Gε,τ

2

∫
|ψ|4 . Thus it is of order O(ε2+2δτx) .

Proposition 5.6. Under the same assumptions as in Proposition 5.4 and with
the above condition ε2δ ≤ cℓV ,Gτx, write a minimizer ψ of Eε in the form ψ =

Û

(
e
i y
2
√

τx a+

e
−i y

2
√

τx a−

)
. Then the component a− solves the equation

Ĥ−a− +G

∫
|a−|2a− = λψa− + rε with ‖rε‖L2 ≤ CℓV ,G(ε+

ε2δ

τx
) ,

while ‖a+‖L2 ≤ CℓV ,Gε
2+2δτx .

The Lp-norms of a and ψ are uniformly bounded by CℓV ,G for p ∈ [2, 6] .

Moreover if B̂ is the operator defined in (5.11)-(5.12), ã =

(
e
i y
2
√

τx a+

e
−i y

2
√

τx a−

)
satis-

fies
‖B̂ã‖L2 ≤ CℓV ,Gε

2τx . (5.13)

Remark 5.7. The relation of ‖B̂ã‖L2 with ‖ã‖H2 is given by

C−1
[
ε2τx‖D2

q ã‖+ ε2‖ã‖L2

]
≤ ‖B̂ã‖L2 + ε2‖ã‖L2 ≤ C

[
ε2τx‖D2

q ã‖+ ε2‖ã‖L2

]
.

Note that the L2 remainder terms have a factor ε2 and not ε2τx .

Proof: Playing with the Euler-Lagrange equation for ψ, we shall first prove
(5.13) by using the same argument as we did for 〈ã , B̂ã〉 in the variational
proof of Proposition 5.4 and then use it in order to estimate ‖r‖L2 . The Euler-
Lagrange equation for ψ

HLinψ +Gε,τ |ψ|2ψ = λψψ

becomes
Û∗HLinÛ ã+Gε,τ Û

∗ (|ψ|2ψ
)
= λψ ã .

Remember that Born-Oppenheimer Hamiltonian is given by

ε2+2δτxHBO = ε2+2δτx

(
e
i y
2
√

τx Ĥ+e
−i y

2
√

τx 0

0 e
−i y

2
√

τx Ĥ−e
i y
2
√

τx

)
,

= ε2δB̂ +

(
2
√
1 + τxx2

0

)
,
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by using the notations of (5.11)-(5.12).
Let us consider first the linear part after decomposing ã into ã = χ̂ã+(1−χ̂)ã,

where the kinetic energy cut-off operator χ̂ = χ(τx|εDq|2) has been introduced
in Proposition 3.2:

Û∗HLinÛ ã = Û∗HLinÛ χ̂ã︸ ︷︷ ︸
(I)

+ (Û∗ − Û∗
0 )HLinÛ(1 − χ̂)ã+ Û∗

0HLin(Û − Û0)(1− χ̂)ã︸ ︷︷ ︸
(II)

+ Û∗
0HLinÛ0(1− χ̂)ã︸ ︷︷ ︸

(III)

.

The three terms are treated by reconsidering the computations done for Propo-
sition 3.2. By inserting a cut-off χ̂1 , χ ≺ χ1 , in χ1Û

∗HLinÛ χ̂ã with (1 −
χ̂1)Û

∗HLinÛ χ̂ ∈ OpNu,gτ , we get

(I) = ε2+2δτxHBOχ̂ã+O(ε2+4δ) inL2(R2) .

With ε−1−2δ(Û − Û0) ∈ OpSu(
1

〈√τxp〉∞ , gτ ;M2(C)) and by using Lemma 5.5,

the second term is estimated by

‖(II)‖L2 ≤ Cε1+2δ‖(1− χ̂)ã‖L2 ≤ C′
[
ε‖ε2δB̂ã‖L2 + ε2+4δ

]
.

We write the third term as

(III) = ε2+2δτxHBO(1 − χ̂)ã+ ε2+2δτxDkin(1− χ̂)ã+Dpot(1− χ̂)ã ,

where Dkin and Dpot are defined by (3.7)-(3.8). Following the arguments given
in the proof of Proposition 3.2 after these definitions, we get

‖Dpot(1− χ̂)ã‖L2 ≤ Cε1+2δ‖(1− χ̂)ã‖L2 ≤
≤ C′

[
ε‖ε2δB̂ã‖L2 + ε2+4δ

]
,

‖Dkin(1− χ̂)ã‖L2 ≤ C
[
ε1+4δ‖(1− χ̂)ã‖L2 + ε1+2δ‖(ε√τx|Dq|)(1 − χ̂)ã‖L2

]

≤ C′
[
ε‖ε2δB̂ã‖L2 + ε2+4δ

]
.

Hence the Euler-Lagrange equation can be written

ε2+2δτxHBOã = λψ ã− ε2+2δτxGÛ
∗ (|ψ|2ψ

)
+ r

with ‖r‖L2 ≤ C
[
ε‖ε2δB̂ã‖L2 + ε2+4δ

]
.

From Proposition 5.3, with ε2δ ≤ cτx, we know ‖ψ‖L4 ≤ C . It can be trans-
formed into ‖ã‖L4 = ‖Û∗ψ‖L4 ≤ C with

‖|ψ|2ψ‖L2 ≤ C‖ψ‖3L6 ≤ C′‖ã‖3L6 ,
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by applying Lemma 3.4, adapted for the metric gτ like in the proof Proposi-
tion 3.3. We start from the interpolation inequality

‖f‖L6 ≤ C‖D2
qf‖

1
9

L2‖f‖
8
9

L4 ≤ C

(τxε)
2
9

‖τ2xε2D2
qf‖

1
9

L2‖f‖
8
9

L4.

By introducing the operator B̃ = B(τ
−1/2
x εq, τ

1
2
x Dq, τ, ε) with

B±(τ
−1/2
x q, τ1/2x Dq, τ, ε) = (τxε)

2D2
q ±

ε

2

(
x√

1 + x2
−√

τx

)
(τxε)Dy

+
ε2

4

[(
x√

1 + x2
−√

τx

)2

+
4v

ℓ2V

]
,

it becomes

‖f‖L6 ≤ CℓV

(τxε)
2
9

[
‖B̃f‖

1
9

L2‖f‖
8
9

L4 + ε
2
9 ‖f‖

1
9

L2‖f‖
8
9

L4

]
.

The above relation with f = τ
− 1

2
x ã(τ

− 1
2

x .) which satisfies

‖f‖L6 = τ
− 1

3
x ‖ã‖L6 , ‖f‖L4 = τ

− 1
2

x ‖ã‖L4 and ‖B̃f‖L2 = ‖B̂ã‖L2

leads to

τ
− 1

3
x ‖ã‖L6 ≤ CℓV

(τxε)
2
9

[
‖B̂ã‖

1
9

L2τ
− 4

9
x ‖ã‖

8
9

L4 + ε
2
9 ‖ã‖

1
9

L2τ
− 4

9
x ‖ã‖

8
9

L4

]

≤ CℓV ,Gτ
− 1

3
x

[
ε−

2
9 ‖B̂ã‖

1
9

L2 + 1
]
,

and finally

Gε,τ‖|ψ|2ψ‖L2 ≤ Gε2+2δτx‖ψ‖3L6 ≤ CℓV ,G

[
ε4/3τx‖ε2δB̂ã‖L2 + ε2+2δτx

]

With |λψ | = O(ε2+2δτx), we obtain

‖ε2+2δτxHBOã‖L2 ≤ C
[
ε‖ε2δB̂ã‖L2 + ε2+4δ + ε2+2δτx

]
,

and recall

ε2+2δτxHBO =

(
ε2δB̂+ + 2

√
1 + τxx2

ε2δB̂−

)
.

According to Lemma 5.8 below

‖ε2δB̂+ã+‖L2 + ‖2
√
1 + τxx2ã+‖L2 ≤ C‖(ε2δB̂+ + 2

√
1 + τxx2)ã+‖L2 .

We deduce
‖ε2δB̂ã‖L2 ≤ Cε2+2δτx .
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Plugging this result into the estimate of the remainder r gives

ε2+2δτxHBOã = λτ ã+Gε,τ Û
∗(|ψ|2ψ) +O(ε3+2δτx + ε2+4δ) .

Consider now more carefully the nonlinear term

Û∗ (|ψ|2ψ
)
= Û∗

0

[
|Û0ã|2(Û0ã)

]

︸ ︷︷ ︸
(1)

+(Û∗ − Û∗
0 )
[
|Û0ã|2(Û0ã)

]

︸ ︷︷ ︸
(2)

+ Û∗
[
|Û ã|2(Û ã)− |Û0ã|2(Û0ã)

]

︸ ︷︷ ︸
(3)

.

By differentiating the relation
∫
|f |4 =

∫
|Û0f |4 w.r.t f , the first term equals

(1) = |ã|4ã .

By semiclassical calculus in the metric gτ , the operator
√
τxεDqÛ0 equals

√
τxεDqÛ0 = Û0

√
τxεDq +

[√
τxεDq, Û0

]
ψ = Û0

√
τxεDq +O(ε) ,

where the remainder estimate holds in L(L2(R2;C2)) . We have already proved
‖ã‖L6 ≤ C and Lemma 3.4 leads again to

‖Û ã‖L6 + ‖Û0ã‖L6 ≤ C .

With ε−1−2δ(Û − Û0) ∈ OpSu(1, gτ ;M2(C)), this gives

‖(2)‖ ≤ Cε1+2δ .

For the third term, we use

‖
[
|Û ã|2(Û ã)− |Û0ã|2(Û0ã)

]
‖L2 ≤ C0‖(Û − Û0)ã‖L6

[
‖Û ã‖2L6 + ‖Û0ã‖2L6

]

≤ Cε1+2δ .

We have proved

Gτ,εÛ
∗(|ψ|2ψ)−Gτ,ε|ã|2ã = O(ε3+4δτx) ,

which is even better than the estimate for the linear part.
For the ã− component, we get

HBO

(
0
ã−

)
+G(|ã−|2 + |ã+|2)ã− =

λψ
ε2+2δτx

ã− +O(ε+
ε2δ

τx
) ,

and it remains to estimate the term |ã+|2ã− . The first line of the system may
be written

ε2δB̂+ã++2
√
1 + τxx2ã++Gε,τ

(
|ã+|2 + |ã−|2

)
ã+ = λψ ã++O(ε3+2δτx+ε

2+2δτx) .
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Taking the scalar product with ã+, with λτ = O(ε2+2δτx) and B̂+ ≥ 0, gives

∫
|ã+|4 ≤ C[‖ã+‖2L2 + (ε+

ε2δ

τx
)‖a+‖L2 ] ≤ C′ε2+2δτx .

Then the same argument as in the estimate of ‖ã‖L6 gives

‖ã+‖L6 ≤ C
[
ε−

2
9 ‖B̂+ã+‖

1
9

L2‖ã+‖
8
9

L4 + ‖ã+‖
1
9

L2‖ã+‖
8
9

L4

]

≤ C′
[
(ε−2−2δ‖ε2δB̂ã‖L2)

1
9 + (ε2+2δτx)

1
18

]
(ε2+2δτx)

2
9

≤ C′′τ
1
9
x (ε

2+2δτx)
2
9 ≤ C′′ε

4+4δ
9 τ

1
3
x .

Again with ‖ã‖L6 ≤ C, we deduce

‖|ã+|2ã−‖L2 ≤ CℓV ,Gε
8+8δ

3 τ
2
3
x ≤ C′

ℓV ,Gε .

The final result is just a transcription in terms of a .

Lemma 5.8. Let B+ be the symbol

B+(q, p, τx, ε) = τxp
2
x + (

√
τxpy +

ε

2
(

√
τxx√

1 + τxx2
−√

τx))
2 +

ε2v(
√
τx.)

ℓ2V

introduced in (5.12). By setting B̂+ = B+(q, εDq, τx, ε), the operator A =

ε2δB̂+ + 2
√
1 + τxx2 is self-adjoint with D(A) =

{
u ∈ L2(R2), Au ∈ L2(R2)

}

as soon as ε ≤ ε0, with ε0 independent of τx . Moreover the inequality

∀u ∈ D(A), ‖ε2δB̂+u‖L2 + ‖2
√
1 + τxx2u‖L2 ≤ C‖Au‖L2

holds with a constant C independent of (ε, τx) .

Proof: The operator A can be written

A = a0(q, ε
1+δDq, τx) + ε1+δa1(q, ε

1+δDq, τx) + ε2+2δa2(q, τx) ,

with ak ∈ Su(〈
√
τxp〉2−k + 〈√τxx〉(1−k)+ , gτ ) and

a0(q, p, τx) = p2 + 2
√
1 + τxx2 .

Therefore the operator A is elliptic in OpSu(〈
√
τxp〉2+〈√τxx〉, gτ ) and the result

about the domain follows with

‖ε2δB̂+u‖L2 + ‖2
√
1 + τxx2u‖L2 ≤ C(‖Au‖L2 + ‖u‖L2)

for all u ∈ D(A) . We conclude with

2‖u‖2L2 ≤ 〈u , Au〉 ≤ ‖u‖L2‖Au‖L2

due to B̂+ ≥ 0 .
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5.5 End of the proof of Theorem 1.2

Assume G, ℓV > 0 be fixed and δ ∈ (0, δ0] . Although we dropped δ0 in our
notations, all the constants in the previous inequalities depend on (G, ℓV , δ0) .
We assume now τx ≤ τℓV ,G,δ0 , ε ≤ εℓV ,G,δ0 and

ε2δ ≤ τ
5
3
x .

Proposition 5.4 says

|Eε,min − ε2+2δτxEτ,min| ≤ Cε2+4δ ≤ C′ε2+2δτ
5
3
x

and we recall
|Eτ,min − EH,min| ≤ Cτ

2
3
x

by Proposition 4.6.

When ψ = Û

(
e
i y
2
√

τx a+

e
−i y

2
√

τx a−

)
, Proposition 5.6 says

‖a+‖L2 ≤ Cε2+2δτx , ‖a‖H2 ≤ C

τx
and ‖a‖L4 + ‖a‖L6 ≤ C ,

while a− solves the approximate Euler-Lagrange equation

Ĥ−a− +G

∫
|a−|2a− = λψa− + rε with ‖rε‖L2 ≤ CℓV ,G(ε+

ε2δ

τx
) .

For u = ‖a−‖−1
L2 a− the energy Eτ (u) satisfy

|Eτ (u)− Eτ,min| ≤ Cτ
2
3
x

and the above equation becomes

Ĥ−u+G

∫
|u|2u = λψu+O(ε+

ε2δ

τx
) .

We conclude by referring to Proposition 4.7 applied to u and then renormal-
izing for a−: For χ = (χ1, χ2) with χ1 ∈ C∞

0 (R2), χ2
1 + χ2

2 ≡ 1, χ1 = 1 in a
neighborhood of 0

‖χ2(τ
1
9
x .)a−‖L2 ≤ Cτ

1
3
x

|Eτ (χ1(τ
1
9
x a−)− EH,min)| ≤ Cτ

2
3
x

dH2(χ1(τ
1
9
x .)a−,Argmin EH) ≤ C(τ

2νℓV ,G

3
x + ε) , νℓV ,G ∈ (0,

1

2
] .

For the L∞-estimates of a+ and dL∞(χ1(τ
1
9
x .)a−,Argmin EH), we simply use

the interpolation inequality

‖u‖L∞ ≤ C‖u‖
1
2

L2‖∆u‖
1
2

L2 ≤ C‖u‖
1
2

L2‖u‖
1
2

H2 ,

valid for any u ∈ H2(R2) (write u(0) =
∫
R2 û(ξ)

dξ
(2π)2 , cut the integral according

to |ξ| ≶ R, estimate both term by Cauchy-Schwartz with û = 1
|ξ|2 (|ξ|2û) when

|ξ| ≥ R, and then optimize w.r.t R).
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6 Additional comments

We briefly discuss and sketch how our analysis could be adapted to other prob-
lems. No definite statement is given. Complete proofs require additional work,
which may be done in the future.

6.1 About the smallness condition of ε w.r.t τx

In our main result, Theorem 1.2, condition (1.18) is used, namely

ε2δ ≤ τ
5
3
x

Cδ
.

One may wonder whether such a condition is necessary in order to compare the
minimization problems for Eε and ε2+2δτxEH . When comparing the minimal
energies in Proposition 5.4, we found

|Eε,min − ε2+2δEH,min| ≤ Cε2+4δ ,

while we know that EH,min = EH,min(ℓV , G) is a positive number independent
of τx and ε . Hence it seems natural to say that ε2δ ≪ τx, at least, is required
to ensure that ε2+2δτxEH,min is a good approximation of Eε,min . The error is
made of three parts:

• the error term for the Born-Oppenheimer approximation in the low-frequency
range given in Theorem 2.1;

• the error term coming from the truncated high frequency part;

• the non linear term.

The non linear term is Gε2+2δτx
2

∫
|ψ|4, so that a small error in ‖ψ‖4L4 will give

a negligible term w.r.t ε2+2δτxEH,min . The question is thus mainly about the
linear problem. If one looks more carefully at the error term of Theorem 2.1, it
is made of the term

−ε2 (∂pkfε)(∂pℓfε)
E+ − E−

XkXℓ , (6.1)

according to Proposition 2.6, and of terms coming from the third order term
of Moyal products. The function fε is in our case fε(p) = ε2δτxp

2γ(τxp
2),

p = (px, py), k, ℓ ∈ {x, y} , and the factors Xx and Xy computed in the proof
of Proposition 3.1 are at most of order 1√

τx
. Hence the quantity (6.1) is an

O(ε2+4δτx) which is again negligible w.r.t ε2+2δτxEH,min . By considering the
higher order terms in the Moyal product, the fast oscillating part of the symbol
w.r.t y, at the frequency 1√

τx
, deteriorates the estimates: although there are

compensations with the slow variations w.r.t py, always multiplied by
√
τx, only

an εk factor without τx appears in the k-th order term.
Hence, computing the higher order terms, at least up to order 3, in the adiabatic
approximation and then considering the question of the high-frequency trunca-
tion, is a way to understand whether the smallness of ε w.r.t τx is necessary.
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6.2 Anisotropic nonlinearity

Our work assumes an isotropic nonlinearity. A more general nonlinear term
would be

Gε2+2δτx
2

∫
α1|ψ1|4 + 2α12|ψ1|2|ψ2|2 + α2|ψ2|4 dxdy , ψ =

(
ψ1

ψ2

)
.

Our case is α1 = α2 = α12 = 1. Let ψ = Ûφ, with the unitary transform
Û = Û0 + ε1+2δR̂, (or conversely φ = Û∗ψ). Then the same arguments as in
Subsection 3.3 will lead to

∫
α1|ψ1|4 + 2α12|ψ1|2|ψ2|2 + α2|ψ2|4 dxdy

=

(∫
α1|ψ0

1 |4 + 2α12|ψ0
1 |2|ψ0

2 |2 + α2|ψ0
2 |4 dxdy

)
(1 +O(ε1+2δ)) ,

after setting ψ0(q) = u0(q)φ(q) at every q = (x, y) . In our case

u0(x, y) =

(
C Seiϕ

Se−iϕ −C

)
, C = cos

(
θ

2

)
, S = sin

(
θ

2

)
,

with θ = θ(
√
τxx) , ϕ = y√

τx
. The point-wise identities

|ψ0
1 |2 + |ψ0

2 |2 = |φ1|2 + |φ2|2

|ψ0
1 |2 − |ψ0

2 |2 = cos(θ)
(
|φ1|2 − |φ2|2

)
+ 2 sin(θ)Re(φ1eiϕφ2) ,

lead to

α1|ψ0
1 |4 + 2α12|ψ0

1 |2|ψ0
2 |2 + α2|ψ0

2 |4 =
α1 + 2α12 + α2

4

(
|φ1|2 + |φ2|2

)2

+
α1 − α2

2

(
|φ1|2 + |φ2|2

) (
cos(θ)(|φ1|2 − |φ2|2) + 2 sin(θ)Re(φ1eiϕφ2)

)

+
α1 − 2α12 + α2

4

(
cos(θ)(|φ1|2 − |φ2|2) + 2 sin(θ)Re(φ1eiϕφ2)

)2

=

[
α1 cos

4(
θ

2
) + α2 sin

4(
θ

2
) +

α12

2
sin2(θ)

]
|φ1|4

+

[
α1 sin

4(
θ

2
) + α2 cos

4(
θ

2
) +

α12

2
sin2(θ)

]
|φ2|4

+

[
(α1 + α2)

2
sin2(θ) + α12(1 + cos2(θ))

]
|φ1|2|φ2|2

+ [(α1 − α2) + (α1 − 2α12 + α2) cos(θ)] sin(θ)|φ1|2 Re(φ1eiϕφ2)
+ [(α1 − α2)− (α1 − 2α12 + α2) cos(θ)] sin(θ)|φ2|2 Re(φ1eiϕφ2)

+(α1 − 2α12 + α2) sin
2(θ)Re

[
(φ2eiϕφ2)

]
.

At least three points have to be adapted from the previous analysis:
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1) When we take a test function ψ = Û

(
0

e
−i y√

τx a−

)
the energy Eε(ψ) will be

close to ε2+2δτxEτ (a−), with

Eτ (a−) = 〈a− , Ĥ−a−〉

+
G

2

∫ [
α1 cos

4(
θ

2
) + α2 sin

4(
θ

2
) +

α12

2
sin2(θ)

]
|a−|4 dxdy ,

and cos(θ) =
√
τxx√

1+τxx2
. Hence before taking the limit τx → 0 we have a

position dependent nonlinearity. This will induce another error term when

comparing with the energy EH(a−) = 〈a− , HℓV a−〉+G(α1+α2+2α12)
8

∫
|a−|4 ,

in the limit τx → 0 .
Another possibility consists in considering the case when |α2−α1|+ |α12−
α1| is small as (ε, τx) → (0, 0) . The energy Eτ (ψ) , written as,

〈a− , Ĥ−a−〉

+
G

2

∫ [
α1 + (α2 − α1) sin

4(
θ

2
) +

(α12 − α1)

2
sin2(θ)

]
|a−|4 dxdy ,

will converge to EH(a−) = 〈a− , HℓV a−〉+ Gα1

2

∫
|a−|4 .

2) The existence of a minimizer for Eε and the variational argument showing

that ‖a+‖2L2 = O(ε2+4δ) + Eε,min when ψ = Û

(
e
i y√

τx a+

e
−i y√

τx a−

)
is a ground

state for Eε will be essentially the same as in the isotropic case.

3) The analysis and the use of the Euler-Lagrange equation for ground states
of Eε, like in Subsection 5.4, will certainly be more delicate because it will
be a system, and the vanishing of the crossing terms have to be considered
more carefully.

6.3 Minimization for excited states

One may consider like in [DGJO] the question of minimizing the energy, for
states prepared according to ψ+ local eigenvector of the potential. Two things
have to be modified in order to adapt the previous analysis:

1) The space of states, on which the energy is minimized has to be specified.
The unitary transform Û introduced in Theorem 2.1 provides a simple
way to formulate this minimization problem: set F+ = Ran ÛP+ with

P+ =

(
1 0
0 0

)
and consider

inf
ψ∈F+ , ‖ψ‖=1

Eε(ψ) .
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2) In order to get asymptotically as ε→ 0, the same scalar minimization prob-
lems with Eτ and EH , the external potential Vε,τ has to be changed. It
must be now

Vε,τ (x, y) =
ε2+2δ

ℓ2V
v(
√
τxx,

√
τxy)

−
√
1 + τxx2 − ε2+2δ

[
τ2x

(1 + τxx2)2
+

1

1 + τxx2

]
.

The analysis of this problem is essentially the same as for the complete minimiza-
tion problem. It is even simpler because the unitary Û is directly introduced.
A slightly different question is about the minimization of the energy Eε in the
space F0

+ = Ran Û0P+, but the accurate comparison between Û and Û0 widely
used through this article would lead to similar results.
Possibly this extension can even be generalized to higher rank matricial poten-
tials with eigenvectors ψ1, . . . , ψN , for states modeled on any given ψk .

6.4 Time dynamics of adiabatically prepared states

Nonlinear adiabatic time evolution has been considered recently in [CaFe]. Note
that our problem is slightly different because, we are considering a spatial adi-
abatic problem, but some techniques may be related.

When ψ0 = Û

(
0

a−,0

)
(resp. ψ0 = Û

(
a+,0
0

)
), the question is whether the

solution ψ(t) to

i∂tψ = HLinψ +Gε,τ |ψ|2ψ , ψ(t = 0) = ψ0

remains close to Û

(
0

a−(t)

)
(resp.

(
a+(t)
0

)
) with

i∂ta− = ε2+2δτxĤ−a− +
Gε2+2δτx

2
|a−|2a− , a−(t = 0) = a−,0 ,

resp. i∂ta+ = ε2+2δτxĤ+a+ +
Gε2+2δτx

2
|a+|2a+ , a+(t = 0) = a+,0 .

More precisely, the question is about the range of time where this approximation

is valid: what is the size of Tε w.r.t ε such that supt∈[−Tε,Tε] ‖ψ(t)−Û
(

0
a−(t)

)
‖

(resp. supt∈[−Tε,Tε] ‖ψ(t)−
(
a+(t)
0

)
‖) remains small.

Since the approximation of Û∗HLinÛ by

(
Ĥ+ 0

0 Ĥ−

)
is good in the low fre-

quency range, a natural assumption will be that the initial data are supported
in the low frequency region

a0,± = χ(τx|εDq|2)a0,± ,
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for some compactly supported χ . Then the question is whether the norm of
(1 − χ̃(ε2τxD

2
q))ψ(t) remains small for t ∈ [0, Tε] for χ̃ ∈ C∞

0 (R), χ ≺ χ̃ . Then
the two last parts of Section 3, concerned with the high frequency part and the
effect of Û on the nonlinear term, have to be reconsidered.

Note that the adiabatically prepared state with ψ0 = Û

(
a0,+
0

)
are probably

not stable for very long time, Tε = O(e
c
ε ), because the characteristic set

Cλ =
{
(q, p) ∈ R

4, det
(
ε2δτxp

2 + Vε,τ (q) +M(q)− λ
)
= 0
}

contains two components when λ ≥ minE+, one corresponding to the higher
level of M(q) with |p|2 ≤ C(λ), and another one for the lower level of M(q)
but with large p’s. This means that a tunnel effect will occur between the two
levels, so that adiabatically prepared states, with energies close to λ ≥ minE+,
will not remain in this state for (very) large times.

A Semiclassical calculus

A.1 Short review in the scalar case

Consider a Hörmander metric, g, that is a metric on R2d
q,p, which satisfies the

uncertainty principle, the slowness and temperance conditions (see [Hor, BoLe])
and consider g-weights (slow and tempered for g) M , M1, M2 . The symplectic
form on R2d

q,p is denoted by σ :

σ(X,X ′) =
d∑

j=1

pjq′j − qjp
′j , X = (q, p) , X ′ = (q′, p′) .

The dual metric gσ is given by gσX(T ) = supT ′ 6=0
|σ(T,T ′)|2
gX (T ′) and the gain associ-

ated with g is

λ(X) = inf
T 6=0

(
gσX(T )

gX(T )

)1/2

≥ 1 (uncertainty) . (A.1)

In the scalar case, the space S(M, g) is then the subspace of C∞(R2d
p,q;C) of

functions such that

∀N ∈ N, ∃CN sup
gX (Tℓ)=1

|(T1 . . . TNa)(X)| ≤ CNM(X) ,

after identifying a vector field Tℓ with a first-order differentiation operator. For
a given N ∈ N, the system of seminorms (pN,M,g)N∈N defined by

pN,M,g(a) = sup
X∈R2d

sup
gX (Tℓ)=1

M(X)−1|(T1, . . . , TNa)(X)|
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makes S(M, g) a Fréchet space.
For a ∈ S ′(R2d

q,p) and ε > 0, the Weyl quantized operator aW (q, εDq) : S(Rd) →
S ′(Rd) is given by its kernel

aW (q, εDq)(q, q
′) =

∫

Rd

ei
(q−q′).p

ε a(
q + q′

2
, p)

dp

(2πε)d
.

When no confusion is possible, we shall use the shortest notations

aW (q, εDq) = aW = a(q, εDq) .

When a ∈ S(M, g), it sends S(Rd) (resp. S ′(Rd)) into itself and the composition
a1◦a2 makes sense for aj ∈ S(Mj, g) . The Moyal product a1♯

εa2 is then defined
as the Weyl-symbol of aW1 (q, εDq) ◦ aW2 (q, εDq):

a1♯
εa2(X) =

(
e

iε
2 σ(DX1 ,DX2)a1(X1)a2(X2)

) ∣∣∣
X1=X2=X

=

J−1∑

j=0

(
iε
2 σ(DX1 , DX2)

)j

j!
a1(X1)a2(X2)

∣∣∣
X1=X2=X

+

∫ 1

0

(1 − θ)J−1

(J − 1)!
e

iε
2 θσ(DX1 ,DX2 )

(
iε

2
σ(DX1 , DX2)

)J
a1(X1)a2(X2)

∣∣∣
X1=X2=X

=

J−1∑

j=0

(
iε
2 σ(DX1 , DX2)

)j

j!
a1(X1)a2(X2)

∣∣∣
X1=X2=X

+ εJRJ (a1, a2, ε)(X) , (A.2)

where RJ(., ., ε) is a uniformly continuous bilinear operator from S(M1, g) ×
S(M2, g) into S(M1M2λ

−J , g) (i.e. any seminorm of RJ(a1, a2, ε) is uniformly
controlled by some bilinear expression of a finite number of seminorms of a1 and
a2).
The three first terms of the previous expansion are given by

a1♯
εa2 = a1a2 +

ε

2i

[
∂pka1∂qka2 − ∂qka1∂pka2

]

−ε
2

8

[
(∂2pk,pℓa1)(∂

2
qkqℓa2) + (∂2qk,qℓa1)(∂

2
pk ,pℓa2)− 2(∂2pk,qℓa1)(∂

2
qk ,pℓ

a2)
]
(A.3)

+ε3R3(a1, a2, ε) ,

by making use of the Einstein convention sjtj =
∑

j s
jtj .

Definition A.1. With the small parameter ε ∈ (0, ε0), it is more convenient to
consider the Fréchet-space Su(M, g) of bounded functions from (0, ε0) to S(M, g)
endowed with the seminorms:

PN,M,g(a) = sup
ε∈(0,ε0)

pN,M,g(a(ε)) .

The subscript u stands for uniform seminorm estimates.
The space of ε-quantized family of symbols will be denoted by OpSu(M, g):

(a(ε) ∈ Su(M, g)) ⇔
(
aW (q, εDq, ε) ∈ OpSu(M, g)

)
.
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We shall give a variation of this definition in Subsection A.4 below for pa-
rameter dependent metrics.

We recall the Beals-criterion proved in [BoCh] (see [NaNi] for the ε-dependent

version) for diagonal Hörmander metrics of the form g =
∑d
j=1

dqj
2

ϕj(X)2 +
dpj

2

ψj(X)2 .

SetD = (Dq1 , . . . , Dqd , q
1, . . . , qd) and for E ∈ N2d introduce the multi-commutator

adED =
∏|E|
j=1 ad

Ej

Dj
acting on the continuous operators from S(Rd) to S ′(Rd) and

the weight ME(X) = (ϕ(X), ψ(X))E .
Then the Beals criterion says that an operator A : S(Rd) → S ′(Rd) belongs to
OpS(1, g) if and only if

adEDA ∈ L(L2(Rd), Hε(ME))

for all E ∈ N2d , when the Sobolev space Hε(ME) is given by

‖u‖Hε(ME) = ‖ME(q, εDq)u‖L2 .

Moreover the family of seminorms (QN )N∈N, defined by,

QN (A) = sup
ε∈(0,ε0)

max
|E|=N

ε−N‖ adEDA(ε)‖L(L2(Rd),Hε(ME ,g)) (A.4)

on OpSu(M, g), is uniformly equivalent to the family (PN (a))N∈N on Su(M, g)
after the identification A(ε) = aW (q, εDq, ε) . “Uniformly” means here that the
comparison of the two topologies is expressed with constants independent of
ε ∈ (0, ε0) .
Below is an example of a metric which satisfies all the assumptions and which
is used in our computations

g =
dq′2

(1 + |q′|2)̺ + dq′′
2
+

dp2

(1 + |p|2)̺′ , m ≥ 0 , ̺, ̺′ ∈ [0, 1] , (A.5)

with the gain function λ(q, p) = 〈p〉̺′ .
It is convenient to introduce the class of negligible symbols and operators.

Definition A.2. An element a ∈ Su(1, g), belongs to Nu,g if

∀N,N ′ ∈ N, ∃CN,N ′ > 0, ε−Na(ε) ∈ Su(λ
−N ′

, g) .

Similarly, OpNu,g denotes the ε-quantized version:
(
aW (q, εDq, ε) ∈ OpNu,g

)
⇔ (a ∈ Nu,g) .

Combined with the following relation between cut-off functions it provides
easy estimates from phase-space localization.

Definition A.3. For two cut-off functions χ1, χ2 ∈ C∞
0 (R2d), 0 ≤ χ1,2 ≤ 1, the

notation χ1 ≺ χ2 means that χ2 ≡ 1 in a neighborhood of suppχ1 .

For example the pseudodifferential calculus leads to

(χ1 ≺ χ2) ⇒ (∀a ∈ Su(M, g), (1− χ2)♯
εa♯εχ1 ∈ Nu,g) , (A.6)

when the weight M satisfies M ≤ CλC for some C > 0 .
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A.2 Applications to matricial operators

Operator valued pseudodifferential calculus has been studied in [Bak]. When
h is a Hilbert space it suffices to tensorize the previous calculus with L(h),
which corresponds to the componentwise definition in Mn(C) when h = C

n .
The corresponding class of symbols associated with a Hörmander metric g and a
g-tempered weightM is denoted by S(M, g;L(h)) while the set of bounded fam-
ilies in S(M, g;L(h)) parametrized by ε ∈ (0, ε0) is denoted by Su(M, g;L(h)) .
The asymptotic expansions (A.2)-(A.3) of the Moyal product clearly holds (see
[PST] for a presentation without specifying the remainder terms) if one takes
care of the order of the symbols. For example, the two first terms of the expan-
sion of a commutator [a1(q, εDq), a2(q, εDq)] are

a1♯
εa2 − a2♯

εa1 = [a1(q, p), a2(q, p)]

+
ε

2i
(∂pa1∂qa2 − ∂qa1∂pa2)−

ε

2i
(∂pa2∂qa1 − ∂qa2∂pa1)

+ ε2 [R2(a1, a2, ε)−R2(a2, a1, ε)] (A.7)

with no simpler expression when the matricial symbols do not commute.

When the Hörmander metric g has the form
∑
j
dqj

2

ϕ2
j

+
dp2j
ψ2

j
the uniform Beals

criterion also holds: In the seminorms Q(a) defined in (A.4) simply replace
L2(Rd) by the Hilbert tensor product L2(Rd)⊗ h and consider the operators D
and ME(q, εDq) as the diagonal ones D⊗ Idh and ME(, εDq)⊗ Idh .
Finally the Definition A.2 of negligible symbols also makes sense for matricial
symbols after replacing OpS(λ−N

′
, g) by OpS(λ−N

′
, g;L(h)) .

We end this section with standard applications of the Beals criterion.

Proposition A.4. Consider a diagonal Hörmander metric g =
∑d

j=1
dqj

2

ϕj(X)2 +

dp2j
ψj(X)2 and the constant metric g0 = dq2 + dp2 . Assume that any f chosen in

{ϕj , ψj, j ∈ {1, . . . , d}} is a g0-slow and -tempered weight such that f(q, εDq)
s

belongs OpSu(f
s, g0) for any s ∈ N . 2

Assume that A ∈ OpSu(1, g;L(h)) is a family of invertible operators in L(L2(Rd)⊗
h) and such that ‖A−1(ε)‖ is uniformly bounded in w.r.t ε ∈ (0, ε0) . Then A−1

belongs to OpSu(1, g;L(h)) .
Proof: We start from the relation

adEDA
−1 =

∑

|E′|=|E|,E′∈N|E|

cE,E′A−1

|E|∏

j=1

[(
ad

E′
j

D A
)
A−1

]
. (A.8)

which holds in L(L2(Rd)⊗ h) for all E ∈ N2d . Hence the Beals criterion in the
metric g0 says that A−1 belongs to OpSu(1, g;L(h)) . In particular A−1 belongs
to L(Hε(ME”)) for any E” ∈ N2d . This allows to apply the Beals criterion in
the metric g and yields the result.

2This last condition is redundant after a possible modification of ϕj and ψj if one refers
to [BoCh], but easier to check directly in our examples than giving the general proof.
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A.3 Pseudodifferential projections

An application of the Beals criterion says that a true pseudodifferential projec-
tion can be made from an approximate one at the principal symbol level. This
holds for matricial symbols.

Proposition A.5. Consider a diagonal Hörmander metric g =
∑d

j=1
dqj

2

ϕj(X)2 +

dp2j
ψj(X)2 with the same properties as in Proposition A.4. Assume that the operator

Π̂ ∈ OpSu(1, g;L(h)) satisfies
(
Π̂ ◦ Π̂− Π̂

)
= εµR̂µ + ενR̂ν ,

with Rµ ∈ Su(M, g;L(h)), Rν ∈ Su(N, g;L(h)) ν > µ > 0 and M,N ≤ 1 .
Assume additionally that there exist χ, χ′ ∈ Su(1, g;L(h)), 0 ≤ χ ≤ χ′ ≤ 1 such
that χ ≺ χ′ and χ′Rµ = 0 .
Then for ε1 ≤ ε0 small enough, the operator

P̂ =
1

2iπ

∫

|z−1|=1/2

(z − Π̂)−1 dz

is well defined for ε ∈ (0, ε1) and satisfies

P̂ ◦ P̂ = P̂ in L(L2(Rd)⊗ h) ,

and
(
P̂ − Π̂

)
= εµΠ̂µ + ενΠ̂ν .

with Πµ ∈ Su(M, g;L(h)), Πν ∈ Su(N, g;L(h)) and Π̂µ ◦ χ̂ ∈ OpNu,g .

Proof: The first result concerned with the definition of P̂ is a direct ap-
plication of the simple general result in Lemma A.6 applied with T = Π̂ and
H = L2(Rd) ⊗ h . Note that our assumptions ν > 1 and M ≤ 1 ensure that
‖Π̂2 − Π̂‖ ≤ 1

8 as soon as ε ≤ ε1 with ε1 small enough.
Writing

Π̂− P̂ = (Π̂2 − Π̂)(A1 −A0)

with

Ax =
1

2iπ

∫

|z−x|
(z − Π̂)−1 dz , x ∈ {0, 1} ,

reduces the problem to proving

Ax ∈ OpSu(1, g;L(h)) or (z − Π̂)−1 ∈ OpSu(1, g;L(h)) ,

when {|z − x| = 1/2} with uniform bounds. But this was proved in Proposi-
tion A.4 as a consequence of the Beals criterion. This ends the proof.
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Lemma A.6. Assume that in an Hilbert space H, the operator T ∈ L(H)
satisfies ‖T 2 − T ‖ ≤ δ < 1/4 and ‖T ‖ ≤ C. Then there exists cδ <

1
2 such that

σ(T ) ⊂ {z ∈ C , |z(z − 1)| ≤ δ} ⊂ {z ∈ C , |z| ≤ cδ} ∪ {z ∈ C , |z − 1| ≤ cδ} ,

max

{
‖(z − T )−1‖, |z − 1| = 1

2

}
≤ 2

2C + 1

1− 4δ
.

Moreover, the operator

P =
1

2iπ

∫

|z−1|=1/2

(z − T )−1 dz .

differs from T according to

T − P = (T 2 − T )(A1 −A0) = (A1 −A0)(T
2 − T ) , (A.9)

with A1 =
1

2iπ

∫

|z−1|= 1
2

(T − z)−1(1 − z)−1 dz (A.10)

and A0 =
1

2iπ

∫

|z|= 1
2

(T − z)−1z−1 dz . (A.11)

Proof: If z ∈ σ(T ) then z(z − 1) ∈ σ(T (T − 1)) ⊂
{
z ∈ C, |z(z − 1)| ≤ 1

4

}

(Remember that |z(z−1)| = 1
4 means |Z− 1

4 | = 1
4 with Z = (z− 1

2 )
2). Consider

z ∈ C such that |z − 1| = 1
2 , then the relation

(T − z)(T − (1− z)) = z(1− z) + (T 2 − T ) ,

with |z(1− z)| ≥ 1
4 and ‖T 2 − T ‖ ≤ δ < 1

4 , implies

‖(T − z)−1‖ ≤ ‖T − (1− z)‖‖[z(1− z) +T 2 −T ]−1‖ ≤ C + 1
2

1
4 − δ

for |z− 1| = 1

2
.

The symmetry with respect to z = 1
2 due to (1− T )(1− T )− (1− T ) = T 2 − T

implies also

‖(T − z)−1‖ ≤ C + 1
2

1
4 − δ

for |z| = 1

2
.

Compute

T − P =
1

2iπ

∫

|z−1|= 1
2

[
T (z − 1)−1 − (z − T )−1

]
dz

= (T − 1)P + (T 2 − T )A1

with A1 =
1

2iπ

∫

|z−1|= 1
2

(T − z)−1(1− z)−1 dz .

In particular this implies to T (1 − P ) = (T 2 − T )A1 while replacing T with
(1− T ) and P with 1− P leads to

P − T = −T (1− P ) + (T 2 − T )A0 with A0 =
1

2iπ

∫

|z|= 1
2

(T − z)−1z−1 dz .
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Summing the two previous identities yields the result.

A.4 Extension to parameter dependent metrics

Additionally to the semiclassical (or adiabatic) parameter, we need other pa-
rameters τ = (τ ′, τ ′′) ∈ (0, 1]2 on which the metric g = gτ depends. In general
consider τ ∈ T ⊂ Rν and a family of Hörmander metrics (gτ )τ∈T defined on
R2d
q,p .

Definition A.7. The family of metrics (gτ )τ∈T is said admissible if the uncer-
tainty principle (A.1) is satisfied and if the slowness and temperance constants
C1, C2, N2 involved in

(slowness)

(
gτ,X(X − Y ) ≤ 1

C1

)
⇒
((

gτ,X
gτ,Y

)±1

≤ C1

)
,

(temperance)

(
gτ,X
gY

)±1

≤ C2(1 + gστ,X(X − Y ))N2 ,

can be chosen uniformly w.r.t τ ∈ T .
Accordingly a family of weights (Mτ )τ∈T will be admissible if the slowness and
temperance constants of Mτ w.r.t gτ can be chosen uniform w.r.t τ ∈ T .

The important point is that all the estimates of the Weyl-Hörmander pseu-
dodifferential calculus (see [Hor, BoLe]), including the equivalence of norms in
the Beals criterion of [BoCh], occur with constants which are determined by
the dimension d, the uncertainty lower bound (which is 1 here), the slowness
and temperance constants. Hence all the pseudodifferential and semiclassical
estimates, (operator norms or seminorms of remainder terms) are uniform w.r.t
to (ε, τ) as long as the symbols, ak(ε, τ), k = 1, 2, have uniformly controlled
seminorm in S(Mτ,k, gτ ), w.r.t (ε, τ) ∈ (0, ε0]× T .
The definition of symbol classes Su(M, g) with uniform control of seminorms
w.r.t ε ∈ (0, ε0] can be extended to admissible families (Mτ , gτ )τ∈T .

Definition A.8. For an admissible family (Mτ , gτ )τ∈T , the set of parameter
dependent symbol a(X, ε, τ), X ∈ R2d, (ε, τ) ∈ (0, ε0]×τ with uniform estimates

∀N ∈ N, ∃CN > 0, ∀(ε, τ) ∈ (0, ε0]× T , pN,Mτ ,gτ (a(ε, τ)) ≤ CN ,

is denoted by Su(Mτ , gτ ,L(h)), τ ∈ T .
Equivalently the set of semiclassically quantized operators a(q, εDq, ε, τ) when
the symbol a belongs to Su(Mτ , gτ ;L(h)) is denoted by OpSu(Mτ , gτ ;L(h)) .
The set of negligible symbols and operators associated with (gτ )τ∈T with uniform
estimates in Definition A.2 w.r.t τ ∈ T is denoted by Nu,gτ and OpNu,gτ .

Proposition A.9. For τ = (τ ′, τ ′′) ∈ (0, 1]2 the family (gτ )τ∈(0,1]2 defined on

R
2d = R

2(d′+d′′) by

gτ =
τ ′dq′2

〈
√
τ ′q′〉2

+ τ ′′dq′′
2
+

τ ′τ ′′dp2

〈
√
τ ′τ ′′p〉2
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is admissible.

Proof: It is easier to consider the symplectically equivalent metric (use the

transform (q′, q′′, p′, p′′) → (τ ′
1
2 q′, τ ′′

1
2 q′′, τ ′−

1
2 p′, τ ′′−

1
2 p′′))

g̃τ =
dq′2

〈q′〉2 + dq′′ +
τ ′2dp′2 + τ ′′2dp′′2

〈p〉2τ
after setting 〈p〉2τ = 1 + τ ′2p′2 + τ ′′2p′′2 . Firstly remember that the metric

g(1,1) =
dq′2

〈q′〉2 + dq′′ +
dp2

〈p〉2 .

is a Hörmander metric. The metric g̃στ is given by

g̃στ =
〈p〉2τ
τ ′2

dq′2 +
〈p〉2τ
τ ′′2

dq′′2 + 〈q′〉2dp′2 + dp′′2 .

Hence the uncertainty principle (A.1) is satisfied with

λτ (q
′, q′′, p′, p′′) = min

{
〈q′〉 〈p〉τ

τ ′
,
〈p〉τ
τ ′′

}
≥ 〈p〉τ ≥ 1 .

In order to check the uniform slowness and temperance of g̃τ , introduce the
new variables Xτ = (q′, q′′, τ ′p′, τ ′′p′′) when X = (q′, q′′, p′, p′′) with a similar
definition for Yτ and Tτ .

Slowness: Write
(
g̃τ,X(X − Y ) ≤ 1

C1

)
⇔
(
g̃(1,1),Xτ

(Xτ − Yτ ) ≤
1

C1

)
.

When C1 is slowness constant of g̃(1,1), this implies

(
g̃(1,1),Xτ

g̃(1,1),Yτ

)±1

≤ C1

which is nothing but (
g̃τ,X
g̃τ,Y

)±1

≤ C1 .

Temperance: Write
(
g̃τ,X(T )

g̃τ,Y (T )

)±1

=

(
g̃(1,1),Xτ

(Tτ )

g̃(1,1),Yτ
(Tτ )

)±1

≤ C2(1 + g̃σ(1,1),Xτ
(Xτ − Yτ ))

N2 ,

when C2 and N2 are the temperance constants for g̃(1,1) . The problem is
reduced to showing

∀X,T ∈ R
2d , g̃σ(1,1),Xτ

(Tτ ) ≤ g̃στ,X(T ) .

The expression of g̃στ gives with X = (q′, q′′, p′, p′′) and T = (θ′, θ′′, π′, π′′)

g̃σ(1,1)Xτ
(Tτ ) = 〈p〉2τθ′2 + 〈p〉2τθ′′2 + 〈q′〉2τ ′2π′2 + τ ′′2π′′2 ≤ g̃στ,X(T )

owing to max{τ ′, τ ′′} ≤ 1 .
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potentials for neutral atoms. Rev. Mod. Phys. 83 (2011), p 1523.

[Fet] A.L. Fetter. Rotating trapped Bose-Einstein condensates Rev. Mod. Phys.
81 (2009), p 647.

[LCGPS] Y.J. Lin, R.L. Compton, K.J. Garcia, J.V. Porto, I.B. Spielman. Syn-
thetic magnetic fields for ultracold neutral atoms Nature 462 (2009), p 628

[GCYRD] K.J. Günter, M. Cheneau, T. Yefsah, S.P. Rath, J. Dalibard. Prac-
tical scheme for a light-induced gauge field in an atomic Bose gas. Phys.
Rev. A 79 (2009), p 011604(R).

[HaJe] A. Haraux, M.A. Jendoubi. The Lojasiewicz gradient inequality in the
infinite-dimensional Hilbert space framework. J. Funct. Anal. 260 no. 9
(2011), pp 2826–2842.

[HiPr] M. Hitrik, K. Pravda-Starov. Spectra and semigroup smoothing for non-
elliptic quadratic operators. Mathematische Annalen, 344 (2009), no.4, pp
801–846.
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