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light beam

Amandine Aftalion∗ and Francis Nier†

November 16, 2011

Abstract

Following the recent experimental realization of synthetic gauge magnetic forces,
Jean Dalibard adressed the question whether the adiabatic ansatz could be math-
ematically justified for a model of an atom in 2 internal states, shun by a quasi
resonant laser beam. In this paper, we derive rigorously the asymptotic model
guessed by the physicists, and show that this asymptotic analysis contains the in-
formation about the presence of vortices. Surprisingly the main difficulties do not
come from the nonlinear part but from the linear Hamiltonian. More precisely,
the analysis of the nonlinear minimization problem and its asymptotic reduction to
simpler ones, relies on an accurate partition of low and high frequencies (or mo-
menta). This requires to reconsider carefully previous mathematical works about
the adiabatic limit. Although the estimates are not sharp, this asymptotic analysis
provides a good insight about the validity of the asymptotic picture, with respect
to the size of the many parameters initially put in the complete model.

1 Introduction

A lot of interest, both in the mathematical and physical community, has been devoted in
the past 10 years to the study of the rotation of a Bose Einstein condensate: experiments
[MCWD1, MCWD2], theoretical works (see [Coo, Fet] for reviews), mathematical contri-
butions [Aft, LiSe]. In [MCWD1, MCWD2], a rotating laser beam is superimposed on the
magnetic trap holding the atoms in order to spin up the condensate by creating a har-
monic anisotropic rotating potential. Recently, a new experimental device has emerged
which consists in realizing artificial or synthetic gauge magnetic forces and leads to the
formation of vortex lattices at rest in the lab frame [LCGPS]. A colloquium [DGJO]
has analyzed in detail the artificial gauge fields and their manifestations. In order to
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understand the main ingredients of the physics of geometrical gauge fields, [DGJO] (see
also [GCYRD]) introduced a toy model: a single quantum particle state with a 2 level
internal structure. A key issue is to determine whether one internal state can be followed
adiabatically. A question raised by Jean Dalibard is to analyze in particular whether
vortex formation may break down the adiabatic process. In [DGJO], some conditions are
provided, that we want to analyze from a mathematical point of view.

We are interested in the minimization of the energy

Eκ(φ) =

∫

R2

|∇φ|2 + Vκ(x, y)|φ|2

+Ωκ,ℓκ(x)〈φ ,
(

cos(θℓκ(x)) eiϕk(y) sin(θℓκ(x))
e−iϕk(y) sin(θℓκ(x)) − cos(θℓκ(x))

)
φ〉C2 +

G

2
|φ|4 dxdy,

where φ =

(
φ1(x, y)
φ2(x, y)

)
∈ C2 and |φ(x, y)|2 = |φ1(x, y)|2 + |φ2(x, y)|2 . Here φ1 and φ2 are

the internal degree of freedom of a particle: ground and excited state of the atom. It is
assumed that the atom is shun by a quasi resonnant laser beam. The functions Ωκ,ℓκ(x),
ϕk(y) and θℓκ(x) are given as in [DGJO] by

Ωκ,ℓκ(x) = κΩ(
x

ℓκ
) with Ω(x) =

√
1 + x2 ,

θℓκ(x) = θ(
x

ℓκ
) with cos(θ(x)) =

x√
x2 + 1

, sin(θ(x)) =
1√

x2 + 1
ϕk(y) = ϕ(ky) with ϕ(y) = y .

where ϕ is the phase of the propagating laser beam while θ is the mixing angle. We define

M(x, y) = Ω(x)

(
cos(θ(x)) eiϕ(y) sin(θ(x))

e−iϕ(y) sin(θ(x)) − cos(θ(x))

)
. (1.1)

The matrix M models the coupling between the atom and the laser. The 2 × 2 matrix
M( x√

ℓκk
,
√
ℓκky) can be diagonalized in the bases (ψ+, ψ−) respectively associated with

the eigenvalues ±Ω(x),

ψ+ =

(
C

Se−iϕ

)
, ψ− =

(
Seiϕ

−C

)
(1.2)

with C = cos(
θ( x√

ℓκk
)

2
), S = sin(

θ( x√
ℓκk

)

2
) and ϕ =

√
ℓκky. When the particle follows

adiabatically one of the eigenstates, for instance ψ−, this corresponds to set formally
ϕ = u(x, y)ψ−, where u(x, y) ∈ C. Then u minimizes a GP type energy functional with a
modified trapping potential called the geometrical gauge potential. The scalar potential
Vκ(x, y) = Vκ(x, y) IdC2 will be adjusted in order to produce a harmonic potential after the
addition of the geometrical gauge potential from the adiabatic theory. We want to justify
the adiabatic approximation for states close to ψ− and analyze the error term between
the initial and effective Hamiltonians.
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After a rescaling, the parameter occuring in experiments have the following orders of
magnitude

κ ∼ 106 , G ∼ 600 , ℓκ ∼ 25 , k ∼ 50 ,

but other values of the parameters can be discussed. Conditions on the strength and
spatial extent of the artificial potential have to be prescribed to induce large circulation.
Two cases, ℓκk ≥ 1 and ℓκk ≤ 1, can be distinguished and the problem has to be rewritten
in two different ways in order to apply semiclassical techniques. In fact, we will focus on
the case ℓκk ≥ 1, corresponding to the previous numerical values. The complete analysis
is carried out in the asymptotic regime ℓκk → +∞ but some partial results are also valid
for ℓκk ≤ 1 or ℓκk → 0 .

A change of scale φ(x, y) =
√

k
ℓκ
ψ(
√

k
ℓκ
x,
√

k
ℓκ
y) yields a new expression for the energy:

∫

R2

k

ℓκ
(|∂xψ|2 + |∂yψ|2) + Vκ(

√
ℓκ
k
x,

√
ℓκ
k
y)|ψ|2

+ κΩ(
x√
kℓκ

)〈ψ ,
(

cos(θ( x√
kℓκ

)) eiϕ(
√
kℓκy) sin(θ( x√

kℓκ
))

e−iϕ(
√
kℓκy) sin(θ( x√

kℓκ
)) − cos(θ( x√

kℓκ
))

)
ψ〉C2

+
Gk

2ℓκ
|ψ|4 dxdy

According to the two cases ℓκk ≥ 1 or ℓκk ≤ 1, we define a small parameter ε that allows
to rescale the energy. In fact, we define rather the parameter ε2+2δ, where δ can be taken
as a first step equal to 5/2 . The exponent δ > 0 is a technical trick which provides the
right quantitative estimates for the adiabatic approximation with a quadratic kinetic enery
term . The suitable choice of this new parameter δ is dicussed further in this introduction,
in Subsections 1.1 and 1.2.

if ℓκk ≥ 1: then

ε2+2δ =
k2

κ
, δ > 0 , Gε =

Gk

κℓκ
=

G

kℓκ
ε2+2δ , (1.3)

This leads in our example to ε2+2δ = 2.5 10−3.

if ℓκk ≤ 1:

ε2+2δ =
1

ℓ2κκ
, δ > 0 , Gε =

Gk

κℓκ
= Gkℓκε

2+2δ , (1.4)

In both cases, this leads to a linear energy

Equad,ε(ψ) =

∫

R2

ε2+2δτxτy|∇ψ|+ Vε,τ(x, y)|ψ|2

+〈ψ , M(

√
τx
τy
x,

√
τy
τx
y)ψ〉C2 dxdy (1.5)

= 〈ψ ,HLinψ〉 , (1.6)
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with

HLin = −ε2δτxτyε2∆+ Vε,τ(x, y) +M(

√
τx
τy
x,

√
τy
τx
y) , (1.7)

Vε,τ(x, y) = κ−1Vκ(

√
ℓκ
k
x,

√
ℓκ
k
y) (to be fixed) , (1.8)

τ = (τx, τy) =

{
( 1
kℓκ
, 1) if kℓκ ≥ 1 ,

(1, kℓκ) if kℓκ ≤ 1 .
(1.9)

With the nonlinear term, the energy equals

Eε(ψ) = 〈ψ , HLinψ〉+
Gε,τ

2

∫
|ψ|4 dxdy , (1.10)

Gε,τ = Gτxτyε
2+2δ . (1.11)

In both cases, we thus have
κ−1Eκ(φ) = Eε(ψ) (1.12)

At least when τx = τy = 1 and δ = 0, this problem looks like the standard problem of
spatial adiabatic approximation studied in [Sor], [MaSo], [PST], although it requires some
adaptations because the symbols are neither bounded nor elliptic.

We shall consider the asymptotic analysis as ε→ 0 with uniform control with respect
to the parameters G, kℓκ which allow to fix the range of validity of the reduced models.
Then we shall consider the asymptotic behaviour of the reduced model and the whole
system as ℓκk is large. Specifying the right assumptions on Vε,τ(x, y) or Vκ, possibly in a
scale depending on (ℓκ, k), is also an issue.

1.1 Main result for the Gross Pitaevskii energy

We shall choose the potential Vε,τ such that after addition of the adiabatic potential in
the lower energy band, the effective potential is almost harmonic, namely we assume

Vε,τ(x, y) =
ε2+2δ

ℓ2V
v(
√
τxx,

√
τxy) +

√
1 + τxx2 − ε2+2δ

[
τ 2x

(1 + τxx2)2
+

1

1 + τxx2

]
, (1.13)

with the potential v chosen such that

v(x, y) = (x2 + y2)χv(x
2 + y2) + (1− χv(x

2 + y2)) (1.14)

χv ∈ C∞
0 ([0, 2)) , 0 ≤ χv ≤ 1 , χv ≡ 1 on [0, 1],

and ℓV > 0 parametrizes the shape of the quadratic potential around the origin.
With these assumptions on the potential Vε,τ , if one chooses ψ = u(x, y)ψ−, where ψ− is
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the eigenfunction corresponding to −Ω(x
√
τx/τy) of Ω(x

√
τx/τy)M(x

√
τx/τy, y

√
τy/τx),

then the linear part Hlin of Eε is formally replaced by the scalar ε2+2δτxĤ− where

Ĥ− = −∂2x −
(
∂y − i

x

2
√
1 + τxx2

)2

+
1

ℓ2V τx
v(
√
τxx,

√
τxy) . (1.15)

In the limit τx → 0, a natural (ε, τ)-independent scalar reduced model emerges:

EH(u) = 〈u ,
[
−∂2x − (∂y −

ix

2
)2 +

x2 + y2

ℓ2V

]
u〉+ G

2

∫

R2

|u|4 , u(x, y) ∈ C .

Because κ is large, or ε is small, it is natural to expect that the ground state of Eε is close,
up to a unitary transform, to a vector u(x, y)ψ−. This is the aim of the adiabatic theory
and leads to a scalar problem. In order to get good bounds on the energy, we need to
study the limit τx small at the same time.

In all our work ℓV > 0 and G > 0 are assumed to be fixed, while the asymptotic
behaviour is studied as ε → 0 and τx → 0 .
The quadratic part of the above energy is associated with the Hamiltonian

HℓV = −∂2x − (∂y −
ix

2
)2 +

x2 + y2

ℓ2V
, (0 < ℓV < +∞) , (1.16)

with the domain

H2 =



u ∈ L2(R2) ,

∑

|α|+|β|≤2

‖qαDβ
q u‖L2 < +∞



 , q = (x, y) ∈ R

2 , (1.17)

endowed with the norm ‖f‖2H2
=
∑

|α|+|β|≤2 ‖qαDβ
q u‖2L2 and the corresponding distance

dH2 . It is not difficult (see Section 4.2) to check that the minimization of EH(ϕ) under
the constraint ‖ϕ‖L2 = 1, admits solutions and that the set, Argmin EH , of ground states
for EH is a bounded set of H2 .

Definition 1.1. For a functional E defined on a Hilbert space H (with +∞ as a possible
value), we set

Emin = inf
‖u‖=1

E(u) and Argmin E = {u ∈ H, E(u) = Emin and ‖u‖ = 1} .

Theorem 1.2. Fix the constant ℓV , G and δ and assume, for some Cδ = C(ℓV , G, δ) > 0,

ε2δ ≤ τ
5
3
x

Cδ
. (1.18)

Let χ = (χ1, χ2) be a pair of cut-off functions such that χ2
1 + χ2

2 ≡ 1 on R2, χ1 ∈ C∞
0 (R2)

and χ1 = 1 in a neighborhood of 0 .
There exist constants, ν0 = νℓV ,G ∈ (0, 1

2
] and for any given δ > 0, τδ = τ(ℓV , G, δ) > 0 ,

Cχ,δ = C(ℓV , G, δ, χ) > 0 , and a unitary operator Û = Û(ε, τ, ℓV , G, δ) which guarantee
the following properties
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• The energy Eε introduced in (1.10) admits ground states as soon as τx ≤ τδ, with

|Eε,min − ε2+2δτxEH,min| ≤ Cδε
2+2δτ

5
3
x .

• Any ψ ∈ Argmin Eε written in the form ψ = Û

(
e
i y
2
√

τx a+

e
−i y

2
√

τx a−

)
satisfies

‖a+‖L2 ≤ Cδε
2+2δτx , ‖a‖H2 ≤ Cδ

τx
, ‖a‖L4 + ‖a‖L6 ≤ Cδ ,

‖χ2(τ
1
9
x .)a−‖L2 ≤ Cχ,δτ

1
3
x ,

dH2(χ1(τ
1
9
x .)a−,Argmin EH) ≤ Cχ,δ(τ

2ν0
3

x + ε) ,

‖a+‖L∞ ≤ Cδε
1+δ , dL∞(χ1(τ

1
9
x .)a−,Argmin EH) ≤ Cχ,δ(τ

2ν0
3

x + ε)
1
2 .

All the constants can be chosen uniformly with respect to δ ∈ (0, δ0] for any fixed
δ0 > 0 .

Remark 1.3. The proof is made in two steps: 1) the limit ε → 0 corresponds to the
adiabatic limit for the linear problem and allows to replace the linear part Hlin, of Eε, by
the scalar ε2+2δτxĤ− given by (1.15). 2) the limit τx → 0 allows to reduce the asymptotic
minimization problem to a simpler one where the linear Hamiltonian is exactly HℓV given
by (1.16).
One main point in the proof is to have precise energy estimates for the limiting problem. In
our case, we obtain them in the limit τx → 0, because explicit calculations are more easily
accessible when the magnetic field is constant, that is in the case of EH,min. In theory,
if one had precise energy estimates for a general τx for the intermediate adiabatic model
with the linear part Ĥ−, complete results could be performed for general values of τx .

Remark 1.4. The exponent ν0 = νℓV ,G is a Lojasiewicz-Simon exponent. It is 1
2
when the

Lagrange multiplier associated with u ∈ Argmin EH is a simple eigenvalue of ĤℓV +G|ψ|2 .
There are reasons to think that it is the case for generic values (ℓV , G) ∈ (0,+∞) ×
[0,+∞), namely outside a subanalytic subset of dimension smaller than 1 (and possibly
0). Nevertheless for G = 0, there is a discrete set of values of ℓV , where νℓV ,0 can be made
arbitrarily small.

Consequences and applications: One issue is the possibility to observe vortices (zeroes
of the wave function with circulation around them) in a system with artificial gauge as
presented in [DGJO] and modelled with the energy Eε. One may process in the following
way: once G is fixed, choose ℓV such that the minimizers of EH have vortices (detailed
conditions will be given in section 4.2). Then take τx > 0 and ε > 0 small enough so

that dH2(χ(τ
1
9
x .)a−,Argmin EH) and therefore the L∞ distance from χ(τ

1
9
x .)a− to a ground

state of EH is small. In the above result, the constants are not explicitely controlled and
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this control is worse and worse when δ increases. So it is not explicit for given numerical
values of the parameters ℓV , G, τx, ε or equivalently ℓV , G, κ, k, ℓκ . Nevertheless it provides
a framework for numerical simulations, where the observation of vortices can be confirmed
by decreasing ε and τx .

The definitions (1.3) of ε and (1.9) of τx, transform the condition (1.18) into

(
k2

κ

) 2δ
1+2δ

≪
(

1

kℓκ

) 5
3

.

The larger δ, the better, but δ must not be to large because of the value of the constants
Cδ, Cδ,χ. A value of a few units for δ does not affect them to much. Another reason for
keeping δ small is that the initial small parameter is ε2+2δ, while the final error estimate of

dH2(χ1(τ
1
9
x .)a−,Argmin EH) (or dL∞(χ1(τ

1
9
x .)a−,Argmin EH)) contains also an O(ε) term.

As an example for δ = 5
2
, the above relation becomes

1

(kℓκ)7/3
≫ k2

κ
, τx =

1

kℓκ
, ε =

(
k2

κ

) 1
7

.

A given precision of order ε+ τ
1
3
x , is more easily achieved by taking k small and ℓκ =

1
τxk

large (for example k = 0.1, ℓκ = 500× 25 is better than the values k = 50, ℓκ = 25 given
in the introduction). Note also that the external potential Vε,τ , defined in (1.13) must be

adjusted up to the order ε2+2δ = k2

κ
.

1.2 Gist of the analysis

Following the general idea of the founding articles [BoFo, BoOp] of Born, Fock and Op-
penheimer, it is well known in the physics literature that a Hamiltonian system

(εDq)
2 + u0(q)

(
E+(q) 0

0 E−(q)

)
u0(q)

∗

is unitarily equivalent to a diagonal Hamiltonian

ε2
[(

(Dq − A(q))2 0
0 (Dq + A(q))2

)
+ |X(q)|2

]
+R(ε)

where (Dq∓A(q)) are the covariant derivatives (∓A(q) is the adiabatic connection) asso-
ciated with the fiber bundles u0(q)

(
C

0

)
and u0(q)

(
0
C

)
, and |X(q)|2 is the Born-Huang

potential.
Since [Kat] and until recently ([NeSo, MaSo, PST, PST2]), this problem has been widely
studied by mathematicians, and the remainder term is formally:

R(ε) =
∑

i,j

ε2Cij(q)(εDqi)(εDqj) +O(ε3) ,
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which for a typical frequency of order 1
ε
has the same size as the main term. Introducing

δ > 0 allows to obtain at the formal level

ε2+2δ

[(
(Dq −A(q))2 0

0 (Dq + A(q))2

)
+ |X(q)|2

]
+
∑

i,j

ε2+4δCij(q)(εDqi)(εDqj)+O(ε3+4δ) ,

where the remainder term is O(ε2+4δ) at the typical frequency 1
ε
and thus O(ε2δ) times

the size of the main term. Such an error estimate can be made in the L2-sense when
applied to some wave function ψ lying in {|p| ≤ r}, with p quantized into εDq, or more
precisely fulfilling ψ = χ(εDq)ψ for some χ ∈ C∞

0 ({|p| ≤ 2r}) with

‖R(ε)ψ‖ ≤ Cχ(ε
2+4δ + CNε

N)‖ψ‖ ≤ (C ′
χ,δε

2δ)ε2+2δ‖ψ‖ .

where CN essentially depends on the estimates of N -derivatives of u0(q), E±(q) . For a
fixed δ, we choose N ≥ 2 + 4δ .

Remark 1.5. (on the choice of δ): another strategy could be considered in order to opti-
mize the exponent δ, w.r.t ε: under analyticity assumptions or more generally assumptions
which lead to an explicit control of CN in terms of N , one could think of optimizing first
CNε

N w.r.t to N according to the methods of [NeSo, Sor, MaSo]. As an example with

CN ≤ N !, this would lead to CNε
N ≤ Ce−

1
ε after choosing N = N(ε) =

[
1
ε

]
, with some

C ≤ 1 . Then taking δ = δ(ε) = − 1
4ε log(ε)

would lead to

CCχ(ε
2+4δ(ε) + e−

1
ε ) ≤ 2CCχe

− 1
ε‖ψ‖ .

When δ(ε) → ∞ and as compared with ε2+2δ(ε) considered as the order 1 term, an
O(ε2+4δ(ε)) remainder term is almost of order 2 .
We do not consider this optimization of δ w.r.t ε, with limε→0 δ(ε) = +∞, because our
initial small parameter is ε2+2δ and the final result of Theorem 1.2, (the estimate about

dH2(χ1(τ
1
9
x .)a−,Argmin EH) in the nonlinear problem), contains an O(ε) . Hence we keep

δ > 0 independent of ε. This is why δ is still present in the constants of Theorem 1.2.

We need to perform a frequency (or momentum) truncation. We decompose a general
ψ into χ(εDq)ψ+(1−χ(εDq))ψ and use rough estimates for the part (1−χ(εDq))ψ which
will be compensated in the minimization problem for Eε by good a priori estimates for
the norm ‖(1 − χ(εDq))ψ‖ of the high-frequency part. We also have to check that the

unitary transform Û , implementing the adiabatic approximation, does not perturb much
the nonlinear part of Eε(ψ) .

In our case, the limit ε → 0 leads to the Born-Oppenheimer Hamiltonians

−∂2x − (∂y ∓
ix

2
√
1 + τxx2

)2 +
v(
√
τx.)

ℓ2V τx
,

which, in a second step, in the limit τx → 0, leads to HℓV (with the sign −ix for the lower
energy band). This means that the convergence to the Born-Oppenheimer Hamiltonian as
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ε→ 0 has to be uniform w.r.t τx ∈ (0, 1] . This last point requires to reconsider carefully
the work of [PST] by following the uniformity w.r.t τ of the estimates given by Weyl-
Hörmander calculus ([Hor, BoLe]) for τ -dependent metric which have uniform structural
constants.
This is done for the low frequency part in Section 2 while the basic tools of semiclassical
calculus are reviewed and adapted in the Appendix A.
In Section 3 the error associated in the high-frequency part is considered, as well as the
effect of the unitary adiabatic transformation on the nonlinear term.
Once the adiabatic approximation is well justified in this rather involved framework,
the accurate analysis, as well as the comparison when τx is small, of the two reduced
models (the one with HℓV and the one with Ĥ−) is carried out in Section 4. This follows
the general scheme of comparison of minimization problems: 1) Write energy estimates;
2) Use bootstrap arguments and possibly Lojasiewicz-Simon inequalities in order to get
comparison of minimizers in the energy space; 3) Use the Euler-Lagrange equations in
order to get a better comparison in higher regularity spaces.
In Section 5, all the information of the previous sections is gathered in order to prove
Theorem 1.2 : existence of a minimizer for Eε in Proposition 5.3, key energy estimates in
Proposition 5.4 and bounds for minimizers in Proposition 5.6.

Some comments and additional results are pointed out in Section 6, namely: 1) the
question of the smallness condition of ε w.r.t τx appearing in Theorem 1.2; 2) the possible
extension to anisotropic nonlinearities (one would have to check that the unitary trans-
form implementing the adiabatic approximation does not perturb the nonlinear part); 3)
the minimization problem for excited states, i.e. locally and approximately carried by
ψ+ instead of ψ−; 4) the extension to the problem of the time nonlinear dynamics of
adiabatically prepared states.

2 Adiabatic approximation for the linear problem

In [PST], the adiabatic approximation is completely justified for bounded symbols or when
global elliptic properties of the complete matricial symbol allow to reduce to this case af-
ter spectral truncation. Unfortunately it is not the case here because the eigenvalues of

the symbol of the linear part HLin are ε2δτxτy|p|2τ + Vε,τ(x, y) ± Ω(
√

τx
τy
x) . In [Sor], the

adiabatic theory for unbounded symbols is developed after stopping the complete asymp-
totic expansion in an optimal way, under some analyticity assumptions, but this would
be particularly tricky here with divergences occuring both in the momentum and position
directions. We shall see that the sublinear divergence in position makes no difficulty after
using the right Weyl-Hörmander class. The quadratic divergence in momentum, with the
kinetic energy τxτy|p|2 is solved by first considering truncated kinetic energies and using
the additional scaling factor ε2δ, δ > 0, in front of the kinetic energy term.
Our problem shows an anisotropy in the position variables (x, y) . The analysis of the
linear problem can be treated in Rd . Then we split the position and momentum variables,

9



q ∈ R
d and p ∈ R

d, into:

q = (q′, q′′) , p = (p′, p′′) q′, p′ ∈ R
d′ , q′′, p′′ ∈ R

d′′ , d′ + d′′ = d ,

and the pair (τx, τy) is accordingly denoted by (τ ′, τ ′′) ∈ (0, 1)2 .

2.1 Born-Oppenheimer Hamiltonian

Consider the Hamiltonian in Ĥε = H(q, εDq, ε) with the symbol on R2d
q,p

H(q, p, ε) = ε2δτ ′τ ′′|p|2γ(τ ′τ ′′|p|2τ ) + V(q, τ, ε)

= ε2δτ ′τ ′′|p|2γ(τ ′τ ′′|p|2τ ) + u0(q, τ, ε)

(
E+(q, τ, ε) 0

0 E−(q, τ, ε)

)
u∗0(q, τ, ε)

with δ > 0 and (τ ′, τ ′′) ∈ (0, 1]2 . The following properties, with the splitting of variables
q = (q′, q′′) ∈ Rd, are assumed:

E± ∈ Su


〈
√
τ ′

τ ′′
q′〉,

τ ′

τ ′′dq
′2

〈
√

τ ′
τ ′′ q

′〉2
+
τ ′′

τ ′
dq′′

2


 ,

E+(q, τ, ε)−E−(q, τε) ≥ C−1〈
√
τ ′

τ ′′
q′〉 , (2.1)

u0 = (u∗0)
−1 ∈ Su(1,

τ ′

τ ′′dq
′2

〈
√

τ ′
τ ′′ q

′〉2
+
τ ′′

τ ′
dq′′

2
;M2(C)) ,

γ ∈ C∞
0 (R;R+) with γ ≡ 1 ∈ [0, 2r2γ] .

With these assumptions we are able to justify the Born-Oppenheimer adiabatic approxi-
mation for δ > 0, τ ′, τ ′′ ∈ (0, 1]. We shall work with the τ -dependent metric

gτ =
τ ′

τ ′′dq
′2

〈
√

τ ′
τ ′′ q

′〉2
+
τ ′′

τ ′
dq′′

2
+

τ ′τ ′′dp2

〈
√
τ ′τ ′′p〉2

,

on the phase-space R2d
q,p, which is checked to have uniform properties w.r.t τ ∈ (0, 1]2 in

Proposition A.8 . The exact definition of the parameter dependent Hörmander symbol
classes, Su(m, gτ ;M2(C)), is given in Appendix A (see in particular its meaning for τ -
dependent metrics in Appendix A.4).

Theorem 2.1. There exists a unitary operator Û = U(q, εDq, τ, ε) with symbol

U(q, p, τ, ε) = u0(q, τ, ε) + εu1(q, p, τ, ε) + ε2u2(q, p, τ, ε) ,

ε−2δu1,2 ∈ Su(
1

〈
√

τ ′
τ ′′ q

′〉〈
√
τ ′τ ′′p〉∞τ

, gτ ;M2(C)) ,
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such that

Û∗ĤÛ =

(
hBO,+(q, εDq, ε) 0

0 hBO,−(q, εDq, ε)

)

+ ε2+4δR1(q, εDq, τ, ε) + ε3+2δR2(q, εDq, τ, ε) , (2.2)

with hBO±(q, p, τ, ε) equal to

= ε2δτ ′τ ′′(|p∓ εA|2 + |εX|2) + E±

= ε2δτ ′τ ′′

[
d∑

k=1

(pk ∓ εAk)
2 + |εXk|2

]
+ E± , (2.3)

when
√
τ ′τ ′′|p| ≤ rγ, and (

+Ak Xk

X̄k −Ak

)
= iu∗0(∂qku0) .

The remainder terms satisfy R1, R2 ∈ Su(1, gτ ;M2(C)) and R2 vanishes in
{√

τ ′τ ′′|p| ≤ rγ
}

and those estimates are uniform w.r.t δ ∈ (0, δ0] (and τ ∈ (0, 1]2, ε ∈ (0, ε0]).

Remark 2.2. • The remainder term is really negligible only for δ > 0. This is ex-
plained in Subsection 2.4.

• The quantization of ε2δτ ′τ ′′(|p∓ εA|2 + |εX|2) + E± is nothing but

ε2+2δτ ′τ ′′

[
d∑

k=1

−(∂qk ∓ iAk)
2 + |Xk|2

]
+ E± .

2.2 Second order computations for space adiabatic approximate

projections of the reduced Hamiltonian

We shall consider the matricial symbol, on R2d
q,p,

H(q, p, τ, ε) = fε(p, τ) + E+(q, τ, ε)Π0(q, τ, ε) + E−(q, τ, ε)(1− Π0(q, τ, ε))

where Π0(q, τ, ε) = Π0(q, τ, ε)
∗ = Π0(q, τ, ε)

2 ∈ M2(C) , γ, E± real-valued, with δ ≥ 0 and
the following properties:

E± ∈ Su(〈
√
τ ′

τ ′′
q′〉, gqτ) , Π0 ∈ Su(1, gq,τ ;M2(C)) , (2.4)

with gq,τ =
τ ′

τ ′′dq
′2

〈
√

τ ′
τ ′′ q

′〉2
+
τ ′′

τ ′
dq′′

2
,

E+(q, τ, ε)− E−(q, τ, ε) ≥ C−1〈
√
τ ′

τ ′′
q′〉 , (2.5)

fε(p, τ) = ε2δf1(
√
τ ′τ ′′p) , f1 ∈ C∞

0 (Rd;R) , δ ≥ 0 .
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For conciseness, the arguments p, q and the parameters τ, ε, will often be omitted in
∂αp fε(p) and ∂

α
q E±(q) or ∂

α
q Π0 .

Remember that the metric

gτ = gq,τ +
τ ′τ ′′dp2

〈
√
τ ′τ ′′p〉2

=
τ ′

τ ′′dq
′2

〈
√

τ ′
τ ′′ q

′〉2
+
τ ′′

τ ′
dq′′

2
+

τ ′τ ′′dp2

〈
√
τ ′τ ′′p〉2

has the gain function

λ(q, p) = min




〈
√
τ ′τ ′′p〉〈

√
τ ′
τ ′′ q〉

τ ′
,
〈
√
τ ′τ ′′p〉
τ ′′



 ≥ 〈
√
τ ′τ ′′p〉 .

The ε-quantized version of the symbol Aε(q, p) will be denoted

Â = A(q, εDq) .

Note that the symbols E+ −E− is elliptic in its class Su(〈
√

τ ′
τ ′′ q

′〉, gτ ) , and

ε−2δfε ∈ Su(
1

〈
√
τ ′τ ′′p〉∞

, gτ ) .

Our aim is to compute accurately the adiabatic projection Π(n)(q, p) = Π0(q, ε)+εΠ1(q, p, ε)+
· · ·+ εnΠn(q, p, ε) such that

Π̂(n) ◦ Π̂(n) = Π̂(n) +O(εn+1) ,
[
Ĥ, Π̂(n)

]
= O(εn+1) .

The general theory presented in [PST], tells us that the asymptotic expansion can be
pushed up to n = ∞, but we will do here accurate calculations up to n = 2 (with
additional information for n = 3) and then discuss the influence of the factor ε2δ . Those
are feasible and rather easy because the kinetic energy term and the two-level potential
are simple. This allows to reconsider accurately the arguments sketched in [PST] for the
Born-Oppenheimer case with all the technical new specificities of our example.
Like in [PST], [Sor], [MaSo], the calculations are first done at the symbolic level and we
write

(A(ε) = OS(ε
ν)) ⇔

(
ε−νA ∈ Su(1, gτ ;M2(C))

)
.

For a matricial symbol A(q, p) (possibly depending on (ε, τ)), it is convenient to introduce
the diagonal and off-diagonal parts

AD(q, p) := Π0(q)A(q, p)Π0(q) + (1− Π0(q))A(q, p)(1− Π0(q)) (2.6)

AOD(q, p) := Π0(q)A(q, p)(1−Π0(q)) + (1− Π0(q))A(q, p)Π0(q) , (2.7)

where we recall Π0(q) = Π0(q, τ, ε) . Note the equalities

(AB)D = ADBD + AODBOD , (AB)OD = ADBOD + AODBD . (2.8)
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The “Pauli matrix”
σ3(q, τ, ε) = 2Π0(q, τ, ε)− IdC2 , (2.9)

will also be used, with the relations

σ2
3(q) = IdC2 , σ3(q)A

D(q, p)σ3(q) = AD(q, p) , σ3(q)A
OD(q, p)σ3(q) = −AOD(q, p) ,

σ3(q)A
OD(q, p) = Π0(q)A(q, p)(1− Π0(q))− (1− Π0(q))A(q, p)Π0(q) .

We are looking for

Π(n)(q, p, τ, ε) =

n∑

j=0

εjΠj(q, p, τ, ε) ∈ Su(1, gτ ;M2(C)) ,

with Πj ∈ Su(1, gτ ;M2(C)) ,

and such that

Π(n)♯εΠ(n) − Π(n) = OS(ε
n+1) , (2.10)

Π(n)∗ = Π(n) , (2.11)

H♯εΠ(n) −Π(n)♯H = OS(ε
n+1) . (2.12)

Like in [MaSo], [PST], this system is solved by induction starting from Π(0)(q, p, τ, ε) =
Π0(q, τ, ε) with

Gn+1 := ε−(n+1)
[
Π(n)♯εΠ(n) −Π(n)

]
mod OS(ε) , (2.13)

ΠD
n+1 := −σ3GD

n+1 , (2.14)

Fn+1 := ε−(n+1)
[
H♯ε(Π(n) + εn+1ΠD

n+1)− (Π(n) + εn+1ΠD
n+1)♯

εH
]

mod OS(ε)

= ε−(n+1)
[
H♯εΠ(n) − Π(n)♯εH

]
mod OS(ε) , (2.15)

ΠOD
n+1 := − 1

E+(q)−E−(q)
σ3F

OD
n+1 =

1

E+(q)−E−(q)
FOD
n+1σ3 . (2.16)

Remember that the general theory says that the principal symbol of Fn+1 is off-
diagonal, Fn+1 = FOD

n+1 mod OS(ε) , and Fn+1 can be chosen so that

Fn+1 = FOD
n+1 . (2.17)

Below are the computations up to n = 2 in our specific case. In these computations,
we shall use Einstein’s summation rule skt

k =
∑

k skt
k with the coordinates (pk, q

k) or
(pk, qk) with pk = pℓδℓ,k = pk like in the examples

|p|2 = pkpk = pkpℓδ
ℓ,k = pkpℓδk,ℓ , (∂pfε).∂q = (∂pkfε)δ

k,ℓ ∂

∂qℓ
= (∂pkfε)∂qk .

n = 0: Start with Π(0) = Π0(q, τ, ε) and notice ∂pΠ0 ≡ 0 and ∂qΠ0 ≡ (∂qΠ0)
OD .

n = 1: Take

G1 = Π0 ◦ Π0 −Π0 = 0 ,

and ΠD
1 = 0 .
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Next compute

ε−1 [H♯εΠ0(q, ε)−Π0(q, ε)♯
εH ] = ε−1 [fε♯

εΠ0(q, ε)− Π0(q, ε)♯
εfε]

= −i∂pkfε∂qkΠ0 mod OS(ε) ,

and take

F1 = −i∂pkfε∂qkΠ0 = −i∂pkfε(∂qkΠ0)
OD ,

and Π(1) = Π0 +
εi∂pkfε
E+ −E−

σ3(∂qkΠ0)
OD .

with ε−2δΠ1 =
i∂pkf1

E+ −E−
σ3(∂qkΠ0)

OD ∈ Su


 1

〈
√

τ ′
τ ′′ q

′〉〈
√
τ ′τ ′′p〉∞

, gτ ;M2(C)


 .

n = 2: Consider now

ε2G2 = Π(1)♯εΠ(1) − Π(1) mod OS(ε
3)

= Π0♯
εΠ0 −Π0 + ε(Π0♯

εΠ1 +Π1♯
εΠ0)− Π1 + ε2Π1♯

εΠ1 mod OS(ε
3) .

According to (A.3), with Π0♯Π0 = Π0 and with

Π0Π1 +Π1Π0 = ΠD
0 Π

OD
1 +ΠOD

1 ΠD
0 = Π1 ,

we can take

G2 =
1

2i

[
−∂qkΠ0∂pkΠ1 + ∂pkΠ1∂qkΠ0

]
+Π2

1 .

The first term −∂qkΠ0∂pkΠ1, with Einstein’s summation rule, equals

−∂qkΠ0∂pkΠ1 = − i∂2pkpℓfε

(E+ −E−)
(∂qkΠ0)

ODσ3(∂qℓΠ0)
OD

=
i∂2pkpℓfε

(E+ − E−)
σ3(∂qkΠ0)(∂qℓΠ0) ,

while the second term +(∂pkΠ1)(∂qkΠ0) gives the same result.
The third term Π2

1 is given by

Π2
1 = −(∂pkfε)(∂pℓfε)

(E+ − E−)2
σ3(∂qkΠ0)

ODσ3(∂qℓΠ0)
OD =

(∂pkfε)(∂pℓfε)

(E+ − E−)2
(∂qkΠ0)(∂qℓΠ0) .

Hence the diagonal second order correction is given by

(E+ − E−)
2ΠD

2 = −(E+ −E−)
2σ3G2

= −
[
(∂pkfε)(∂pℓfε) + (E+ − E−)(∂

2
pkpℓ

fε)σ3
]
(∂qkΠ0)(∂qℓΠ0)

and satisfies

ε−2δΠD
2 ∈ Su(

1

〈
√

τ ′
τ ′′ q

′〉〈
√
τ ′τ ′′p〉∞

, gτ ;M2(C)) .
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Consider now ΠOD
2 : By referring to (2.17), F2 can be chosen as the off-diagonal part of

ε−2
[
H♯εΠ(1) − Π(1)♯εH

]
which, according to the previous steps and (A.3), equals

− 1

8

[
∂2pk,pℓH∂

2
qk,qℓΠ0 − ∂2qk,qℓΠ0∂

2
pk,pℓ

H
]

+
1

2i

[
∂pkH∂qkΠ1 − ∂qkH∂pkΠ1 − ∂pkΠ1∂qkH + ∂qkΠ1∂pkH

]
mod OS(ε) . (2.18)

Since ∂2pk,pℓH = (∂2pk,pℓfε) as a scalar symbol commutes with ∂2qkqℓΠ0 , the first term of

(2.18) vanishes.
Similarly the factor ∂qkΠ1 appearing in the second term of (2.18) contains three terms

∂qkΠ1 = −i∂qk(E+ − E−)

(E+ −E−)2
σ3(∂pℓfε)(∂qℓΠ0)+

i(∂pℓfε)

(E+ −E−)
σ3(∂qℓΠ0)+

i(∂pℓfε)

(E+ −E−)
σ3(∂

2
qkqℓΠ0) ,

where the second one is diagonal. Since ∂pkH = ∂pkfε is diagonal, we get

1

2i

[
∂pkH∂qkΠ1 + ∂qkΠ1∂pkH

]OD
= (∂pkfε)(∂pℓfε)σ3

(
∂qk
[
(E+ − E−)

−1∂qℓΠ0

])OD
.

In the quantity −∂qkH∂pkΠ1 − ∂pkΠ1∂qkH , the derivatives

∂pkΠ1 =
i(∂2pkpℓfε)

(E+ − E−)
σ3(∂qℓΠ0)

OD

are off-diagonal factors, while

∂qkH = (∂qkE+)Π0 + (∂qkE−)(1− Π0) + (E+ −E−)(∂qkΠ0)
OD .

Since

(∂qkE+)Π0σ3(∂qℓΠ0) + σ3(∂qℓΠ0)(∂qkE+)Π0 = (∂qkE+)σ3(∂qℓΠ0)

and (∂qkE−)(1− Π0)σ3(∂qℓΠ0) + σ3(∂qℓΠ0)(∂qkE−)(1−Π0) = (∂qkE−)σ3(∂qℓΠ0) ,

we get

− 1

2i

[
∂qkH∂pkΠ1 + ∂pkΠ1∂qkH

]OD
= − ∂2pkpℓfε

2(E+ −E−)
(∂qk(E+ + E−))σ3(∂qℓΠ0) .

This leads to

F2 = (∂pkfε)(∂pℓfε)σ3
(
∂qk
[
(E+ − E−)

−1∂qℓΠ0

])OD

− ∂2pkpℓfε

(E+ − E−)
(∂qk(E+ + E−))σ3(∂qℓΠ0) .
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and

ΠOD
2 = −(∂pkfε)(∂pℓfε)

(E+ − E−)

(
∂qk
[
(E+ − E−)

−1∂qℓΠ0

])OD

+
∂2pkpℓfε

2(E+ −E−)2
(∂qk(E+ + E−))(∂qℓΠ0) ,

with

ε−2δΠOD
2 ∈ Su(

1

〈
√

τ ′
τ ′′ q

′〉〈
√
τ ′τ ′′p〉∞

, gτ ;M2(C)) .

We have almost proved the

Proposition 2.3. The pseudodifferential operator Π̂(ε) = Π̂(q, εDq, ε) given by

Π(q, p, ε) = Π0(q, ε) + εΠ1(q, p, ε) + ε2Π2(q, p, ε)

with Π1(q, p, ε) = Π1(q, p, ε)
OD =

i∂pkfε
(E+ −E−)

σ3(∂qkΠ0) ,

Π2(q, p, ε) = Π2(q, p, ε)
D +Π2(q, p, ε)

OD ,

Π2(q, p, ε)
D = − 1

(E+ − E−)2
(
(∂pkfε)(∂pℓfε) + (E+ − E)(∂2pkpℓfε)

)
(∂qkΠ0)(∂qℓΠ0) ,

Π2(q, p, ε)
OD = −(∂pkfε)(∂pℓfε)

(E+ −E−)

(
∂qk
[
(E+ − E−)

−1∂qℓΠ0

])OD

+2
∂2pkpℓfε

(E+ − E−)3
(∂qk(E+ + E−))(∂qℓΠ0) ,

and ε−2δΠ1, ε
−2δΠ2 ∈ Su(

1

〈
√

τ ′
τ ′′ q

′〉〈
√
τ ′τ ′′p〉∞

, gτ ;M2(C)) ,

satisfies

Π̂ ◦ Π̂ = Π̂ +O(ε3+2δ) , Π̂∗ = Π̂ ,
[
Ĥ, Π̂

]
= O(ε3+2δ) ,

in L(L2(Rd;C2)) . Moreover the estimates of the remainder terms in L(L2(Rd;C2)), do
not depend on the parameter τ = (τ ′, τ ′′) ∈ (0, 1]2 and δ > 0, as soon as ε ∈ (0, ε0) .

Proof: The above construction gives immediately

Π̂ ◦ Π̂ = Π̂ +O(ε3) , Π̂∗ = Π̂ ,
[
Ĥ, Π̂

]
= O(ε3) ,

The first improved estimates come from the fact that

Π̂ ◦ Π̂− Π̂

contains only terms which are Moyal products with a Π1 or a Π2 factor, with cancellations
up to the ε2 coefficient. Both of them have seminorms of order ε2δ .
For the last one, this is a similar argument after decomposing

[
Ĥ, Π̂

]
=
[
ε2δf1(

√
τ ′τ ′′εDq), Π̂0

]
+
[
Ĥ, εΠ̂1 + ε2Π̂2

]
.
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The above result can be improved after considering what happens at step n = 3 when
fε,τ(p) = ε2δf1(

√
τ ′τ ′′p) is at most quadratic w.r.t p in some region. Before this, let us

examine the remainders of order 3 in ε.
n = 3 : The remainder term

ε3G3 = Π(2)♯εΠ(2) − Π(2)

= ε (Π0♯
εΠ1 +Π1♯

εΠ0 − Π1) + ε2 (Π1♯
εΠ1 +Π0♯

εΠ2 +Π2♯
εΠ0 − Π2)

+ε3(Π1♯
εΠ2 +Π2♯

εΠ1) + ε4Π2♯
εΠ2 .

Using the construction of Π1 and Π2 and the fact that ε−2δΠ1 and ε−2δΠ2 belong to
Su(

1

〈
√

τ ′
τ ′′ q

′〉〈
√
τ ′τ ′′p〉

, gτ ;M2(C)), the expansion of the Moyal product (A.2)-(A.3) tells us

Π(2)♯εΠ(2) − Π(2) = ε3
[
AG(∂2qΠ0, ∂

2
pΠ1, ε) +BG(∂qΠ0, ∂pΠ2, ε)

]
+ ε3+4δRG (2.19)

where RG ∈ Su(
1

〈
√

τ ′
τ ′′ q

′〉〈
√
τ ′τ ′′p〉∞

, gτ ;M2(C)) and AG(., ε), BG(., ε) have an asymptotic

expansion in terms of ε, of which all the terms are bilinear differential expressions of their
arguments. For the commutator with Ĥ, write

[
H♯εΠ(2) − Π(2)♯εH

]
= [fε(p)♯

εΠ0(q)−Π0(q)♯
εfε(p)]

+
[
fε(p)♯

ε(εΠ1 + ε2Π2)− (εΠ1 + ε2Π2)♯
εfε(p)

]

+
[
(E+Π0 + E−(1− Π0))♯

εΠ(2) − Π(2)♯ε(E+Π0 + E−(1− Π0))
]

After eliminating all the terms which are cancelled while constructing Π1 and Π2, the
contributions of all three terms of the right-hand side can be analyzed. The contribution
of the third term is similar to what we got for G3:

ε3
[
AH(∂2q (E±Π0), ∂

2
pΠ1, ε) +BH(∂q(E±Π0), ∂pΠ2, ε)

]
+ ε3+4δRH,1

with RH,1 ∈ Su(
1

〈
√
τ ′τ ′′p〉∞ , gτ ;M2(C)) . With the uniform estimate of ε−2δΠ1, ε

−2δΠ2

and ε−2δfε, the contribution of the second term is estimated as ε3+4δRH,2 with RH,2 ∈
Su(

1

〈
√

τ ′
τ ′′ q

′〉〈
√
τ ′τ ′′p〉∞

, gτ ;M2(C)) . The first term is of the form ε3CH(∂3pfε, ∂
3
qΠ0, ε) and we

get

[
H♯εΠ(2) − Π(2)♯εH

]
= ε3

[
CH(∂3pfε, ∂

3
qΠ0, ε)+

AH(∂2q (E±Π0), ∂
2
pΠ1, ε) +BH(∂q(E±Π0), ∂pΠ2, ε)

]
+ ε3+4δRH (2.20)

where the expansions of AH,BH and CH w.r.t to ε have terms which are bilinear differ-
ential expression of their arguments, and RH ∈ Su(

1
〈
√
τ ′τ ′′p〉∞ , gτ ;M2(C)) .
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Proposition 2.4. With fε(p) = ε2δf1(
√
τ ′τ ′′p), assume that the third differential ∂3pf1

vanishes in {|p| ≤ r} and fix r′ ∈ (0, r) . Then the remainders of Proposition 2.3 equal

Π̂ ◦ Π̂− Π̂ = ε3+2δR̂G,1 + ε3+4δR̂G,2 (2.21)[
Ĥ, Π̂

]
= ε3+2δR̂H,1 + ε3+4δR̂H,2 (2.22)

with RG,1or2 ∈ OpSu(
1

〈
√

τ ′
τ ′′ q

′〉〈
√
τ ′τ ′′p〉∞

, gτ ;M2(C)), RH,1or2 ∈ OpSu(
1√

τ ′τ ′′p〉∞ , gτ ;M2(C))

and RGorH,1 ≡ 0 in
{
|
√
τ ′τ ′′p| < r′

}
. Those estimates are uniform for τ ∈ (0, 1]2, δ ∈

[0, δ0] and ε ∈ (0, ε0) .

Proof: After noticing that the symbol Π1 is a linear expression in ∂pfε while the symbol
Π2 is the sum of a linear expression of ∂2pfε and quadratic expression in ∂pfε, the identities
(2.19) and (2.20) imply

Π(2)♯εΠ(2) − Π(2) = ε3+2δ+NRN + ε3+4δRG ,[
H♯εΠ(2) − Π(2)♯εH

]
= ε3+2δ+NRN + ε3+4δRH ,

for an arbitrary large N ∈ N, in
{√

τ ′τ ′′|p| < 2r
}
. Choose1 N ≥ 2δ and take a cut-off

function χ ∈ C∞
0 ({|p| < r}) such that χ ≡ 1 in a neigborhood {|p| ≤ r′} . Writing for the

symbol S = Π(2)♯εΠ(2) −Π(2) or S =
[
H♯εΠ(2) −Π(2)♯εH

]
,

S = S × χ(
√
τ ′τ ′′p) + S × (1− χ(

√
τ ′τ ′′p)) ,

yields the result.

2.3 Unitaries and effective Hamiltonian

We strengthen a little bit the assumptions (2.4)-(2.5), with the condition

Π0(q, τ, ε) = u0(q, τ, ε)P+u0(q, τ, ε)
∗ (2.23)

with P+ =

(
1 0
0 0

)
, u0 = (u∗0)

−1 ∈ S(1, gq,τ ;M2(C)) ,

fulfilled in our example. The operator û0 is nothing but the local unitary transformation
u0(q, τ), on L

2(Rd;C2) .
With the approximate projection Π̂ = Π̂(q, εDq, τ, ε) given in Proposition 2.3, Proposi-

tion A.4 tells us that a true orthogonal projection P̂ can be associated when ε0 is chosen
small enough, by taking

P̂ =
1

2iπ

∫

|z−1|=1/2

(z − Π̂)−1 dz , (2.24)

1Here the estimates become δ-dependent, because a large δ requires a large N . It is uniformly con-
trolled when δ ≤ δ0.

18



with

P̂ = P (q, εDq, τ, ε) , P ∈ Su(1, gτ ;M2(C)) , (2.25)

P (q, p, τ, ε)− Π(q, p, τ, ε) = ε3+2δR1(q, p, τ, ε) + ε3+4δR2(q, p, τ, ε) , (2.26)

with R1, R2 ∈ Su(
1

〈
√

τ ′
τ ′′ q

′〉〈
√
τ ′τ ′′p〉∞

, gτ ;M2(C)) ,

P̂ ◦ P̂ = P̂ = P̂ ∗ ,[
Ĥ, P̂

]
= ε3+2δĈ1(τ, ε) + ε3+4δĈ2(τ, ε) , (2.27)

with C1, C2 ∈ Su(1, gτ ;M2(C)) ,

and
∥∥∥P̂ − û0P+û

∗
0

∥∥∥
L(L2)

≤ Cε . (2.28)

For a general f1 ∈ C∞
0 , R2 and C2 are included in the main remainder term. When f1 is

quadratic in {|p| < r}, then one can assume that R1 and C1 vanishes in
{√

τ ′τ ′′|p| < r′
}

for r′ < r, according to Proposition 2.4 and Proposition A.4
Instead of constructing unitaries between P̂ (τ, ε) and P+ by the induction presented in
[PST] and similar to (2.13), (2.14),(2.15),(2.16), we use like in [MaSo] Nagy’s formula
([NeSo], [MaSo], [PST])

P2 = WP1W
∗ , W ∗W =WW ∗ = 1

with W = (1− (P2 − P1)
2)−1/2 [P2P1 + (1− P2)(1− P1)] , (2.29)

when Pj = P 2
j = P ∗

j for j = 1, 2 , and ‖P2 − P1‖L < 1 ,

easier to handle for direct second order computations in our case.

Proposition 2.5. With the definitions (2.23) and (2.24) after Proposition 2.3, there
exists a unitary operator Û on L2(R;C2) such that

P̂ = ÛP+Û
∗ ,

Û = U(q, εDq, τ, ε) , U ∈ Su(1, gτ ;M2(C)) ,

with U(q, p, τ, ε) = u0(q, τ, ε) + εu1(q, p, τ, ε) + ε2u2(q, p, τ, ε) ,

u1(q, p, ε) = − i∂pkfε
(E+ − E−)

(∂qkΠ0)u0 ,

and ε−2δu1, ε
−2δu2 ∈ Su(

1

〈
√

τ ′
τ ′′ 〉〈

√
τ ′τ ′′p〉∞

, gτ ;M2(C)) .

Moreover, when f1 is a quadratic function in {|p| < r} and r′ is fixed in (0, r), the term
u2 can be decomposed into

u2(q, p, τ, ε) = ε2δv2(q, p, τ, ε) + ε4δṽ2(q, p, τ, ε)

where v2 does not depend on p in
{√

τ ′τ ′′|p| < r′
}
and v2, ṽ2 ∈ Su(

1

〈
√

τ ′
τ ′′ 〉〈

√
τ ′τ ′′p〉∞

, gτ ;M2(C)) .
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Proof: The notation R̂3 will denote a generic remainder term of the form R̂ =
R(q, εDq, τ, ε) with R ∈ Su(

1

〈
√

τ ′
τ ′′ q

′〉〈
√
τ ′τ ′′p〉∞

, gτ ;M2(C)) . The notation R̂ is used for a

symbol R, like R but which vanishes around
{√

τ ′τ ′′|p| < r′
}
. We apply Nagy’s formula

(2.29) with P1 = û0P+û
∗
0 = Π0(q, τ, ε) and P2 = P̂ (τ, ε) with

P̂ = Π0(q, τ, ε) + εΠ1(q, εDq, τ, ε) + ε2Π2(q, εDq, τ, ε) + ε3+2δR̂ + ε3+4δR̂ .

In the expression of Ŵ (ε) given by (2.29), the first factor is nothing but

(1− (P̂ −Π0(q, τ, ε))
2)−1/2 = 1 +

ε2

2
(Π1)

2(q, εDq, τ, ε) + ε3+4δR̂ ,

owing to P −Π0 = OS(ε
2δ) . In the factor [P2P1 + (1− P2)(1−P1)], the first term equals

P̂ ◦ Π0(q, ε) = Π0(q, ε) + εΠ1(q, τ, εDq, τ, ε) ◦ Π0(q, τ, ε)

+ ε2Π2(q, εDq, τ, ε) ◦ Π0(q, τ, ε) + ε3+2δR̂ + ε3+4δR̂ ,

while the second term is

(1− P̂ ) ◦ (1−Π0(q, τ, ε)) = (1−Π0(q, τ, ε))− εΠ1(q, εDq, τ, ε) ◦ (1− Π0(q, τ, ε))

− ε2Π2(q, εDq, τ, ε) ◦ (1−Π0(q, τε)) + ε3+2δR̂ + ε3+4δR̂ .

Hence we get

Ŵ = [P2P1 + (1− P2)(1− P1)] = 1 + εΠ1(q, εDq, τ, ε) ◦ σ3(q, τ)
+ ε2Π2(q, εDq, τ, ε) ◦ σ3(q, τ) + ε3+2δR̂ + ε3+4δR̂ .

The operator Û(ε) is given by Û(ε) = Ŵ (ε) ◦ û0 . The semiclassical calculus recalled in
(A.2)-(A.3) yields the result. In the decomposition of u2, when f1 is quadratic around 0,
the terms which are linear in ε2δ come with the second derivative of fε, which does not
depend on p .

Proposition 2.6. Introduce the notation for k ∈ {1, . . . , d}

u∗0(∂qku0) = −i
(
Ak Xk

Xk −Ak

)
.

If Û is the unitary operator introduced in Proposition 2.5, the conjugated Hamiltonian
Û(ε)∗Ĥ(ε)Û(ε) equals

Û∗ĤÛ =

(
ĥ+ 0

0 ĥ−

)
+ ε3+2δR̂1 + ε3+4δR̂2 (2.30)
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where the remainder terms R̂1,2 = R1,2(q, εDq, τ, ε) satisfy R1,2 ∈ Su (1, gτ ;M2(C)) and
additionally R1 ≡ 0 in

{√
τ ′τ ′′|p| < r′

}
when f1 is quadratic in {|p| < r}, with r′ < r .

The symbol h+ and h− are given by

h+ = fε(p) + E+(q)− ε(∂pfε).A+
ε2

2
(∂2pkpℓfε)AkAℓ

+
ε2(∂2pkpℓfε)

2
XkXℓ +

ε2(∂pkfε)(∂pℓfε)

E+ − E−
XkXℓ , (2.31)

h− = fε(p) + E−(q) + ε(∂pfε).A +
ε2

2
(∂2pkpℓfε)AkAℓ

+
ε2(∂2pkpℓfε)

2
XkXℓ −

ε2(∂pkfε)(∂pℓfε)

E+ −E−
XkXℓ . (2.32)

Proof: From the semiclassical calculus, we already know that Û∗ĤÛ is a semiclassical

operator with a symbol in Su(〈
√

τ ′
τ ′′ q

′〉, gτ ;M2(C)) . Its off-diagonal part equals

(1− P+)Û
∗ĤÛP+ + P+Û

∗ĤÛ(1− P+)

= Û
[
P̂ ,
[
P̂ , Ĥ

]]
Û .

The almost diagonal form (2.30) of Û∗ĤÛ is then a consequence of (2.27) .
For the second result, it is necessary to compute the diagonal part of the symbol U∗♯εH♯εU
up to O(ε3+2δ) in Su(1, gτ ;M2) . Let us compute the diagonal part of

B := (u∗0 + εu∗1 + ε2u∗2)♯
εH♯ε(u0 + εu1 + ε2u2) ,

or equivalently (u0Bu∗0)D with our notations.
Since u0 = u0(q, τ, ε) and H = ε2δf1(

√
τ ′τ ′′p) + V(q, τ, ε) , the first Moyal product equals

according to (A.2)-(A.3),

(u∗0 + εu∗1 + ε2u∗2)♯
εH = u∗0H + εu∗1H + ε2u∗2H

+
ε

2i
{u∗0, H}+ ε2

2i
{u∗1, H} − ε2

8
(∂2qkqℓu

∗
0)(∂

2
pkpℓ

H) + ε3+2δR

= u∗0H + ε

[
u∗1H − ∂pkfε

2i
∂qku

∗
0

]
+ ε2

[
u∗2H +

1

2i
{u∗1, H}

−1

8
(∂2qkqℓu

∗
0)(∂

2
pkpℓ

fε)

]
+ ε3+2δR + ε3+4δR ,

where R and R denote generic element of Su(1, gτ ;M2(C)), with the additional property
that R vanishes in

{√
τ ′τ ′′|p| < r′

}
when f1 is quadratic in {|p| ≤ r} with r′ < r. The

reason for the possible decomposition of the remainder, comes again from the fact that at
the third order the remainder term proportional to ε3+2δ arise with the third derivative
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of fε, the second derivative w.r.t p of u1 and the first derivative w.r.t p of u2 .
In the same way, the complete expression of B is given by

B(ε) = u∗0Hu0 + ε

[
u∗0Hu1 + u∗1Hu0 −

(∂pkfε)

2i
(∂qku

∗
0)u0 +

(∂pkfε)

2i
u∗0(∂qku0)

]

+ε2
[
u∗2Hu0 + u∗0Hu2 +

1

2i
{u∗0H, u1}+

1

2i
{u∗1H, u0}+

1

4

{
(∂pkfε)(∂qku

∗
0), u0

}

+u∗1Hu1 −
(∂pkfε)

2i
(∂qku

∗
0)u1 +

1

2i
{u∗1, H}u0

−1

8
(∂2qkqℓu

∗
0)(∂

2
pkpℓ

fε))u0 −
1

8
u∗0(∂

2
pkpℓ

fε)(∂
2
qkqℓu0)

]
+ ε3+2δR + ε3+4δR .

By recalling that (u1u
∗
0)
D = 0 by Proposition 2.5, we get

(u0B(ε)u∗0)D = H + ε
i

2
(∂pkfε)

[
u0(∂qku

∗
0)− (∂qku0)u

∗
0

]D
+ ε2BD2 + ε3+2δR + ε3+4δR .

where BD2 is made of several terms to be analyzed. We need the relations

∂qju
∗
0 = −u∗0(∂qju0)u∗0 , (2.33)

∂2
qjqj′u

∗
0 = u∗0(∂qj′u0)u

∗
0(∂qju0)u

∗
0 + u∗0(∂qju0)u

∗
0(∂qj′u0)u

∗
0 − u∗0(∂

2
qjqj′u0)u

∗
0

= −(∂qj′u
∗
0)(∂qju0)u

∗
0 − (∂qju

∗
0)(∂qj′u0)u

∗
0 − u∗0(∂

2
qjqj′u0)u

∗
0 , (2.34)

and [u0(∂qu
∗
0)]

OD = −(∂qΠ0)σ3 , (2.35)

coming from u∗0u0 = 1 and the differentiation of u∗0Π0u0 = P+ .
For example, the first one simplifies the O(ε)-term into

(u0B(ε)u∗0)D = H − εi(∂pkfε)
[
(∂qku0)u

∗
0

]D
+ ε2BD2 + ε3+2δR + ε3+4δR .

Many cancelations appear after assembling all the terms in BD2 . We need accurate ex-
pressions for all of them:

• By using again (u1u
∗
0)
D = 0, the term [u0u

∗
2H +Hu2u

∗
0 + u0u

∗
1Hu1u

∗
0]
D equals

(fε + E+)Π0(u0u
∗
2 + u2u

∗
0)Π0 + (fε + E−)(1− Π0)(u0u

∗
2 + u2u

∗
0)(1− Π0)

+(fε + E−)Π0(u0u
∗
1u1u

∗
0)Π0 + (fε + E+)(1− Π0)(u0u

∗
1u1u

∗
0)(1−Π0)

In the relation

u∗0u2 + u∗2u0 + u∗1u1 +
1

2i
{u∗0, u1}+

1

2i
{u∗1, u0} = ε1+2δR1 + ε1+4δR1

the remainder terms satisfy R1, R1 ∈ Su(
1

〈
√

τ ′
τ ′′ q

′〉〈
√
τ ′τ ′′p〉∞

, gτ ;M2(C)), with the same

convention as for R,R . This identity is obtained by writing that the O(ε2) remain-
der of U∗♯εU − 1 vanishes and by noticing that the remainder R1 + ε2δR1 involves
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second derivatives of u1 w.r.t p and first derivatives of u2 w.r.t p . We obtain

[u0u
∗
2H +Hu2u

∗
0 + u0u

∗
1Hu1u

∗
0]
D = (E− −E+)(u0u

∗
1u1u

∗
0)
Dσ3

− 1

2i
H [u0 {u∗0, u1} u∗0 + u0 {u∗1, u0}u∗0]D + ε1+2δR̃ + ε1+4δR̃ .

with R̃, R̃ ∈ Su(1, gτ ;M2(C)), again with the same convention.

Again with (∂pu1)u
∗
0 = (∂pu1u

∗
0)
OD =

(∂2p,pk
f)

i(E+−E−)
∂qkΠ0 and (2.35), the last factor is

[u0 {u∗0, u1}u∗0 + u0 {u∗1, u0} u∗0]D = −(u0∂qℓu
∗
0)
OD

(∂2pℓpkfε)

i(E+ −E−)
(∂qkΠ0)

− (∂2pℓpkfε)

i(E+ − E−)
(∂qkΠ0)((∂qℓu0)u

∗
0)
OD

= −2
(∂2pℓpkfε)

i(E+ −E−)
(∂qkΠ0)(∂qℓΠ0)σ3 . (2.36)

With u1u
∗
0 =

(∂pkfε)

i(E+−E−)
(∂qkΠ0) , we have proved

[u0u
∗
2H +Hu2u

∗
0 + u0u

∗
1Hu1u

∗
0]
D = −(∂pkfε)(∂pℓfε)

(E+ − E−)
(∂qkΠ0)(∂qℓΠ0)σ3

−H
(∂2pℓpkfε)

E+ − E−
(∂qkΠ0)(∂qℓΠ0)σ3 + ε1+2δR̃1 + ε1+4δR̃1 . (2.37)

• The term
[

1
2i
u0 {u∗0fε, u1}u∗0 + 1

2i
u0 {u∗1fε, u0} u∗0 −

(∂pkfε)

2i
u0(∂qku

∗
0)u1u

∗
0

]D
equals

1

2i
fε [u0 {u∗0, u1} u∗0 + u0 {u∗1, u0}u∗0]D

+
(∂pkfε)

2i

[
(∂qku1)u

∗
0 + u0u

∗
1(∂qku0)u

∗
0 − u0(∂qku

∗
0)u1u

∗
0

]D
.

The diagonal part of (∂qku1)u
∗
0 is

[
(∂qku1)u

∗
0

]D
=

∂pℓfε
i(E+ −E−)

(∂2qkqℓΠ0)
D .

But differentiating the relation (∂qkΠ0)Π0 +Π0(∂qℓΠ0) = ∂qkΠ0 w.r.t qℓ leads to

(∂2qkqℓΠ0)
D = −(∂qkΠ0∂qℓΠ0 + ∂qℓΠ0∂qkΠ0)σ3 . (2.38)

With (2.35) and (u1u
∗
0) = (u1u

∗
0)
OD =

∂pℓfε
i(E+−E−)

∂qℓΠ0, we obtain

[
u0u

∗
1(∂qku0)u

∗
0 − u0(∂qku

∗
0)u1u

∗
0

]D
= [−u0u∗1σ3(∂qkΠ0) + (∂qkΠ0)σ3u1u

∗
0]

= − (∂pℓfε)

i(E+ − E−)

[
(∂qℓΠ0)(∂qkΠ0) + (∂qkΠ0)(∂qℓΠ0)

]
σ3 .
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We have found

[
1

2i
u0 {u∗0fε, u1}u∗0 +

1

2i
u0 {u∗1fε, u0} u∗0 −

(∂pkfε)

2i
u0(∂qku

∗
0)u1u

∗
0

]D

=
fε(∂

2
pkpℓ

fε)

E+ − E−
(∂qkΠ0)(∂qℓΠ0)σ3 + 2

(∂pkfε)(∂pℓfε)

E+ − E−
(∂qkΠ0)(∂qℓΠ0)σ3 . (2.39)

• The diagonal part of 1
2i
u0 [{u∗0V, u1}+ {u∗1V, u0}] u∗0 equals

1

2i

[
−u0(∂qku∗0)V(∂pku1)u∗0 − (∂qkV)(∂pku1)u∗0 + u0(∂pku

∗
1)V(∂qku0)u∗0

]D
.

By using (2.35) with

(∂pku1)u
∗
0 = [(∂pku1)u

∗
0]
OD =

∂2pkpℓfε

i(E+ − E−)
(∂qℓΠ0) ,

(∂qV)OD = (E+ − E−)(∂qΠ0) ,

and E−Π0 + E+(1− Π0) = V + (E− − E+)σ3 ,

it becomes

∂2pkpℓfε

2
(∂qkΠ0)(∂qℓΠ0) +

1

2i
V [u0 {u∗0, u1}u∗0 + u0 {u∗1, u0}u∗0]D

+
1

2i
(E− −E+) [u0 {u∗0, u1} u∗0 + u0 {u∗1, u0}u∗0]D σ3 .

The relation (2.36) yields

1

2i
[u0 {u∗0V, u1}u∗0 + u0 {u∗1V, u0}u∗0] = −∂

2
pkpℓ

fε

2
(∂qkΠ0)(∂qℓΠ0)

+ V ∂2pkpℓfε

E+ −E−
(∂qkΠ0)(∂qℓΠ0) . (2.40)

• The term 1
2i
[u0 {u∗1, H}]D is the sum of two terms

1

2i
[u0 {u∗1, fε}]D +

1

2i
[u0 {u∗1,V}]D .

Since u0∂pℓu
∗
1 = i

∂2pkpℓ
fε

(E+−E−)
(∂qkΠ0) is off-diagonal while

(∂qℓV)OD = (E+ −E−)(∂qℓΠ0) ,

the second term equals
∂2pkpℓfε

2
(∂qkΠ0)(∂qℓΠ0) .
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The first term a priori contains more terms because u∗0 has to be differentiated:

1

2

[
− (∂pkfε)(∂pℓfε)∂qℓ

(
1

E+ − E−

)
(∂qkΠ0)−

(∂pkfε)(∂pℓfε)

E+ −E−
(∂2qℓqkΠ0)

− u0(∂qℓu
∗
0)
(∂pkfε)(∂pℓfε)

E+ − E−
(∂qkΠ0)

]D
.

The first part is off-diagonal and vanishes after taking the diagonal part. By using
again (2.35) and (2.38) and ∂qΠ0 = (∂qΠ0)

OD, we obtain

(∂pkfε)(∂pℓfε)

E+ − E−
(∂qkΠ0)(∂qℓΠ0)σ3 +

(∂pkfε)(∂pℓfε)

E+ − E−
(∂qkΠ0)σ3(∂qℓΠ0) = 0 .

Hence we have proved

1

2i
[u0 {u∗1, H}]D =

∂2pkpℓfε

2
(∂qkΠ0)(∂qℓΠ0) . (2.41)

• The last term is

T =
1

8

[
2u0

{
(∂pkfε)(∂qku

∗
0), u0

}
u∗0 − u0(∂

2
qkqℓu

∗
0)(∂

2
pkpℓ

fε)− (∂2pkpℓfε)(∂
2
qkqℓu0)u

∗
0

]D
.

Forgetting the 1
8
factor, the first part equals 2(∂2pkpℓfε)u0(∂qku

∗
0)(∂qℓu0)u

∗
0 . By using

(2.34) in the second part gives

8T = 4(∂pkpℓfε)
[
u0(∂qku

∗
0)(∂qℓu0)u

∗
0

]D
.

Owing to (2.8) and (2.35), this gives

2T = (∂2pkpℓfε)[u0(∂qku
∗
0)]

D[(∂qℓu0)u
∗
0]
D + (∂2pkpℓfε)(∂qkΠ0)(∂qℓΠ0) .

With u0(∂qku
∗
0) = −(∂qku0)u

∗
0, the last term equals

T = −(∂2pkpℓfε)

2
[(∂qku0)u

∗
0]
D[(∂qℓu0)u

∗
0]
D +

(∂2pkpℓfε)

2
(∂qkΠ0)(∂qℓΠ0) . (2.42)

By summing (2.37),(2.39),(2.40),(2.41),(2.42), we obtain

BD
2 = −(∂2pkpℓfε)

2
[(∂qku0)u

∗
0]
D[(∂qℓu0)u

∗
0]
D +

(∂pkfε)(∂pℓfε)

E+ −E−
(∂qkΠ0)(∂qℓΠ0)σ3

+
∂2pkpℓfε

2
(∂qkΠ0)(∂qℓΠ0) + ε1+2δR̃1 + ε1+4δR̃1 .
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Hence the diagonal symbol that we seek, is
(
h+ 0
0 h−

)
=

(
fε(p, τ) + E+(q, τ) 0

0 fε(p, τ) + E−(q, τ)

)
− iε(∂pkfε)u

∗
0

[
(∂qku0)u

∗
0

]D
u0

− ε2
∂2pkpℓfε

2
u∗0
[
(∂qku0)u

∗
0

]D [
(∂qku0)u

∗
0

]D
u0 + ε2

(∂pkfε)(∂pℓfε)

E+ −E−
u∗0(∂qkΠ0)(∂qℓΠ0)σ3u0

+ ε2
∂2pkpℓfε

2
u∗0(∂qkΠ0)(∂qℓΠ0)u0 .

The symbol u∗0
[
(∂qku0)u

∗
0

]D
u0 equals

u∗0Π0(∂qku0)u
∗
0Π0u0 + u∗0(1− Π0)(∂qku0)u

∗
0(1−Π0)u0

= P+u
∗
0(∂qku0)P+ + (1− P+)u

∗
0(∂qku0)(1− P+) = −i

(
Ak 0
0 −Ak

)
.

For the last term we deduce from Π0 = u0P+u
∗
0 and (∂qu0)u

∗
0 + u0(∂qu0) = 0,

P+

[
u∗0(∂qkΠ0)u0

] [
u∗0(∂qℓΠ0)u0

]
P+

= P+

[
u∗0(∂qku0)P+ + P+(∂qku

∗
0)u0

] [
u∗0(∂qℓu0)P+ + P+(∂qℓu

∗
0)u0

]
P+

= P+u
∗
0(∂qku0)P+u

∗
0(∂qℓu0)P+ + P+u

∗
0(∂qku0)P+(∂qℓu

∗
0)u0P+

+P+(∂qku
∗
0)u0u

∗
0(∂qℓu0)P+ + P+(∂qku

∗
0)u0P+(∂qℓu

∗
0)u0P+

= −P+u
∗
0(∂qku0)(1− P+)u

∗
0(∂qℓu0)P+ = XkXℓ .

Taking the bracket with (1− P+) is even simpler and gives

(1− P+)
[
u∗0(∂qkΠ0)u0

] [
u∗0(∂qℓΠ0)u0

]
(1− P+)

= −(1 − P+)u
∗
0(∂qku0)P+u

∗
0(∂qℓu0)(1− P+) = XkXℓ .

This ends the proof.

2.4 Discussion about the adiabatic approximation of the Born-

Oppenheimer Hamiltonian

The Theorem 2.1 is a direct application of Proposition 2.6 by taking

fε(p) = ε2δτ ′τ ′′|p|2γ(τ ′τ ′′|p|2) .
The operators

h±,BO(q, εDq, ε) = ε2δτ ′τ ′′

[
d∑

k=1

(pk ∓ εAk)
2

]Weyl

+ ε2+2δτ ′τ ′′
d∑

k=1

|Xk|2

= ε2+2δτ ′τ ′′
[
−∆+ |A|2 ∓ 2

[
(
1

i
∇).A+ A.(

1

i
∇)

]
+ |X|2

]

= ε2+2δτ ′τ ′′
[
|1
i
∇∓ A|2 + |X|2

]
,
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is nothing but the usual adiabatic effective Hamiltonians which can be found in the physics
litterature, including the Born-Huang potential |X|2 =

∑d
k=1 |Xk|2 . We refer to [PST]

and [PST2] for a discussion of the various presentations of the calculations and additional
references.
Even in the region {|p| ≤ rγ} with p quantized into εDq, this approximation makes sense,
only for δ > 0, because of the additional term

∓2
ε2+4δτ ′τ ′′

E+ −E−
X̄kXℓ(ε∂qk)(ε∂qℓ)

coming from the last terms of (2.31) and (2.32), that we have included in the remainder.
It is not surprising (see [Sor], [MaSo]) that the degree of the differential operators increases
with the degree in ε in the adiabatic expansion of Schrödinger type Hamiltonians. The
argument of physicists says that this effective Hamiltonian is used for relatively small
frequencies (or momentum) so that XkXℓp

kpℓ is negligible w.r.t |p− εA|2 + ε2|X|2 . The
introduction of the additional factor ε2δ with δ > 0 provides a mathematically accurate
and rather flexible implementation of this approximation.

3 Adaptation of the adiabatic asymptotics to the full

nonlinear minimization problem

In this section, we adapt our rather general adiabatic result to our nonlinear problem. In
a first step, we give an explicit form of Theorem 2.1 in our specific framework. Those
results are effective when applied with wave functions localized in the frequency variable,
ψ = χ(

√
τxτyεDq)ψ for some compactly supported χ . It could suffice if we considered

minimizing the energy among such well prepared quantum states. We can do better
by using a partition of unity in the frequency variable, which will be combined, in the
end, with the a priori estimates coming from the complete and reduced minimization
problems. Finally an estimate of the effect of the unitary transform Û on the nonlinear
term is provided.

3.1 Adiabatic approximation for the explicit Schrödinger Hamil-
tonian

Let us specify the result of Theorem 2.1 by going back to the coordinates q = (q′, q′′) =
(x, y) and τ = (τ ′, τ ′′) = (τx, τy) . Provided that Vε,τ (x, y) fulfills the proper assumptions,
the unitary transform introduced in Theorem 2.1 transforms HLin given by (1.7) into the
Born-Oppenheimer Hamiltonian with a good accuracy in the low frequency region, that
is when applied to wave functions ψ such that ψ = χ(

√
τxτyεDq)ψ for some compactly

supported χ .
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The operator HLin is the ε-quantization of the symbol

ε2δτxτy|p|2 + u0(q, τ)

(
E+(q, τ, ε) 0

0 E−(q, τ, ε)

)
u0(q, τ)

∗ ,

with E±(q, τ, ε) = Vε,τ(x, y)± Ω(

√
τx
τy
x) = Vε,τ(x, y)±

√
1 +

τx
τy
x2 .

The operator u0(q, τ) equals

u0(q, τ) =

(
C Seiϕ

Se−iϕ −C

)
= u0(q, τ)

∗

with C = cos(
θ

2
) , S = sin(

θ

2
) .

and cot(θ) =

√
τx
τy
x , ϕ =

√
τy
τx
y .

Proposition 3.1. Assume δ ∈ (0, δ0], (τx, τy) ∈ (0, 1]2 and Vε,τ ∈ Su(〈
√

τx
τy
x〉,

τx
τy
dx2

〈
√

τx
τy
x〉2

+

τy
τx
dy2) then the matricial potential

V(q, τ, ε) = Vε,τ(x, y) + Ω(

√
τx
τy
x)

(
cos(θ) eiϕ sin(θ)

e−iϕ sin(θ) − cos(θ)

)

fulfills the assumption of Theorem 2.1.
Choose a cut-off γ, γ(|p|2) ≡ 1 in a neighborhood of {|p| ≤ rγ}, as in Theorem 2.1 and con-

sider a cut-off function χ ∈ C∞
0 ((−r2γ , r2γ)). When Û = U(q, εDq, τ, ε) ∈ OpSu(1, gτ ;M2(C))

is given in Theorem 2.1, the identities

Û∗HLinÛχ(τxτy|εDq|2) = ε2+2δτxτy



e
+i

√

τy
τx

y
2 Ĥ+e

−i
√

τy
τx

y
2 0

0 e
−i

√

τy
τx

y
2 Ĥ−e

i
√

τy
τx

y
2



χ(τxτy|εDq|2)

+ε2+4δR1(τ, ε) , (3.1)

HLinχ(τxτy|εDq|2) = ε2+2δτxτyÛ


e

+i
√

τy
τx

y
2 Ĥ+e

−i
√

τy
τx

y
2 0

0 e
−i

√

τy
τx

y
2 Ĥ−e

i
√

τy
τx

y
2


Û∗χ(τxτy|εDq|2)

+ε2+4δR2(τ, ε) , (3.2)

hold with

Ĥ+ = −∂2x −


∂y + i

x

2
√

1 + τx
τy
x2




2

+
1

ε+2+2δτxτy

[
Vε,τ (x, y) +

√
1 +

τx
τy
x2
]
+Wτ (x, y) ,

Ĥ− = −∂2x −


∂y − i

x

2
√
1 + τx

τy
x2




2

+
1

ε2+2δτxτy

[
Vε,τ(x, y)−

√
1 +

τx
τy
x2
]
+Wτ (x, y) ,

Wτ (x, y) =
τx

τy(1 +
τx
τy
x2)2

+
τy

τx(1 +
τx
τy
x2)

,
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and the estimates
‖R1(τ, ε)‖L(L2) + ‖R2(τ, ε)‖L(L2) ≤ C

which are uniform w.r.t δ ∈ (0, δ0], τ ∈ (0, 1]2 and ε ∈ (0, ε0] .

Proof: Following the approach of Section 2, the Hamiltonian HLin is decomposed into

HLin = H(q, εDq, τ, ε) +Rγ(εDq, τ, ε)

with H(q, p, ε) = ε2δτxτy|p|2τγ(τxτy|p|2) + u0(q, τ)

(
E+(q, τ, ε) 0

0 E−(q, τ, ε)

)
u0(q, τ)

∗ ,

and Rγ(p, τ, ε) = ε2δτxτy|p|2(1− γ(τxτy|p|2)) .
The Hamiltonian H(q, εDq, τ, ε) fulfills the assumptions of Theorem 2.1, with the metric

gτ =
τx
τy
dx2

〈
√

τx
τy
x〉2

+ τy
τx
dy2 + τxτydp2

〈√τxτyp〉2τ
, because we assumed Vε,τ ∈ Su(〈

√
τx
τy
x〉,

τx
τy
dx2

〈
√

τx
τy
x〉2

+ τy
τx
dy2)

and the gap E+(q, τ, ε)− E−(q, τ, ε) equals 2
√

1 + τx
τy
x2 . Actually the estimates

|∂αx∂βy u0(x, y)| ≤ Cα,β

〈√
τx
τy
x

〉−|α|(
τx
τy

) |α|−|β|
2

are due to ∂xθ = −
√
τx√

τy(1+
τx
τy
x2)

and ∂ye
iϕ = i

√
τy
τx
eiϕ . Moreover the explicit computation

with α + β = 1 leads to
(
Ax Xx

Xx −Ax

)
= iu∗0(∂xu0) =

i∂xθ

2

(
0 eiϕ

−e−iϕ 0

)
(3.3)

and

(
Ay Xy

Xy −Ay

)
= iu∗0(∂yu0) =

√
τy
τx
S

(
S −Ceiϕ

−Ce−iϕ −S

)
. (3.4)

Hence the effective Hamiltonians hB0,±(q, εDq, ε) restricted to the region {|p|τ ≤ rγ} are
given by the symbols

hBO,± = ε2δτxτy

[
p2x + (py ∓ ε

√
τy
τx

sin2(
θ

2
))2 +

1

4
(|∂xθ|2 +

τy
τx

sin2(θ))

]

+ Vε,τ(x, y)±
√

1 +
τx
τy
x2 .

With cos(θ) =
√
τxx

√
τy

√

1+ τx
τy
x2

and sin(θ) = 1
√

1+ τx
τy
x2
, the Schrödinger Hamiltonian corre-

sponding to the RHS is ε2+2δτxτye
±i

√
τy

2
√

τx
y
Ĥ±e

∓i
√
τy

2
√

τx
y
with

Ĥ± = −∂2x −



∂y ± i
x

2
√
1 + τx

τy
x2




2

+
τx

τy(1 +
τx
τy
x2)2

+
τy

τx(1 +
τx
τy
x2)

+
1

τxτyε2+2δ

[
Vε,τ(x, y)±

√
1 +

τx
τy
x2
]
.
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The remainder term in Theorem 2.1 is

ε2+4δR1(q, εDq, τ, ε) + ε3+2δ)R2(q, εDq, τ, ε)

withR1,2 ∈ Su(1, gτ ;M2(C)) and where R2 vanishes in a neighborhood of
{√

τxτy|p| ≤ rγ
}
.

The first term provides the expected O(ε2+4δ) estimate in L2(R2;C2) .
It remains to check the effect of truncations. All the factors, including the left terms

Rγ(p, τ, ε) , ε2δτxτy

[
p2x + (py ∓ ε sin2(

θ

2
))2
]
(1− γ(τxτy|p|2))

belong to OpSu(〈√τxτyp〉2, gτ ;M2(C)) . For any a, b ∈ OpSu(〈√τxτyp〉2, gτ ;M2(C)),

where b vanishes in a neighborhood of
{√

τxτy|p| ≤ rγ
}
, and two cut-off functions χ1, χ2 ∈

C∞
0 ((−r2γ , r2γ)) such that χ1 ≺ χ2 (see Definition A.2), the pseudo-differential calculus says

(1− χ2(τxτy|p|2))♯εa♯εχ1(τxτy|p|2) ∈ Nu,gτ ,

b♯εχ1(|p|2τ ) ∈ Nu,gτ ,

with uniform estimates of all the seminorms w.r.t τ ∈ (0, 1]2 and δ ∈ (0, δ0] . Applying
this with χ1 = χ and various χ2 such that χ1 ≺ χ2 ≺ γ, implies that the remainder terms
due to truncations are O(εN) elements of L(L2) for any N ∈ N , uniformly w.r.t τ ∈ (0, 1]2

and δ ∈ (0, δ0] . Fixing N ≥ 2 + 4δ0 ends the proof of (3.1).
For (3.2) use (3.1) with a cut-off function χ1 such that χ ≺ χ1 and conjugate with Û :

HLinÛχ1(τxτy|εDq|2)Û∗ =

ε2+2δτxτyÛ

(
e
i

√
τy

2
√

τx
y
Ĥ+e

−i
√

τy
2
√

τx
y

0

0 e
−i

√
τy

2
√

τx
y
Ĥ−e

i
√

τy
2
√

τx
y

)
χ1(τxτy|εDq|2)Û∗

+ ε2+4δR′
1(ε) .

Right-composing with χ(τxτy|εDq|2) and noticing that

χ1(τxτy|εDq|2)Û∗χ(τxτy|εDq|2)− Û∗χ(τxτy|εDq|2) = R(q, εDq, τ, ε) ,

with R ∈ Nu,gτ lead to (3.2) like above.

3.2 Linear energy estimates for non truncated states

Proposition 3.2. Assume δ ∈ (0, δ0], τ = (τx, τy) ∈ (0, 1]2 and that Vε,τ belongs to the

parametric symbol class Su(〈
√

τx
τy
x〉,

τx
τy
dx2

〈
√

τx
τy
x〉2

+ τy
τx
dy2) . Set χ̂ = χ(τxτy|εDq|2) for χ ∈

C∞
0 ((−r2γ , r2γ)) . When Û = U(q, εDq, τ, ε) ∈ OpSu(1, gτ ;M2(C)) is the unitary operator
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given in Theorem 2.1 and parametrized by a truncation in
{√

τxτy|p| < rγ
}
, then for any

χ ∈ C∞
0 ((−r2γ , r2γ)) the estimates
∣∣∣
〈
ψ ,
[
Û∗HLinÛ − ε2+2δτxτyHBO

]
ψ
〉∣∣∣ (3.5)

≤ Cε1+2δ
[
ε1+2δ‖ψ‖2L2 + ‖(1− χ̂)ψ‖2L2 + ‖(1− χ̂)ψ‖L2 × ‖√τxτy|εDq|(1− χ̂)ψ‖L2

]
,∣∣∣

〈
ψ ,
[
HLin − ε2+2δτxτyÛHBOÛ

∗]ψ
〉∣∣∣ (3.6)

≤ Cε1+2δ
[
ε1+2δ‖ψ‖2L2 + ‖(1− χ̂)ψ‖2L2 + ‖(1− χ̂)ψ‖L2 × ‖√τxτy|εDq|(1− χ̂)ψ‖L2

]
,

hold uniformly w.r.t τ ∈ (0, 1]2 and δ ∈ (0, δ0], for all ψ ∈ L2(R2;C2), with

HBO =

(
e
i

√
τy

2
√

τx
y
Ĥ+e

−i
√

τy
2
√

τx
y

0

0 e
−i

√
τy

2
√

τx
y
Ĥ−e

i
√

τy
2
√

τx
y

)

Ĥ+ = −∂2x −



∂y + i
x

2
√

1 + τx
τy
x2




2

+ ε−2−2δ
[
Vε,τ(x, y) +

√
1 + x2

]
+Wτ (x, y) , ,

Ĥ− = −∂2x −


∂y − i

x

2
√
1 + τx

τy
x2




2

+ ε−2−2δ
[
Vε,τ(x, y)−

√
1 + x2

]
+Wτ (x, y)

Wτ (x, y) =
τx

τy(1 +
τx
τy
x2)2

+
τy

τx(1 +
τx
τy
x2)

.

Proof: Set

D = Û∗HLinÛ − ε2+2δτxτy

(
e
i

√
τy

2
√

τx
y
Ĥ+e

−i
√

τy
2
√

τx
y

0

0 e
−i

√
τy

2
√

τx
y
Ĥ−e

i
√

τy
2
√

τx
y

)

and bound the terms 〈χ̂ψ , Dψ〉 and 〈(1 − χ̂ψ , Dχ̂ψ〉 by Cε2+4δ‖ψ‖2L2 with the help of
Proposition 3.1. The remaining term is

〈(1− χ̂)ψ , D(1− χ̂(τxτy|εDq|2))ψ〉 .
The operator D can be decomposed according to D = ε2+2δτxτyDkin +Dpot with

Dkin = Û∗|Dq|2Û −
(
|Dq − A|2 + |X|2 0

0 |Dq + A|2 + |X|2τ

)
, (3.7)

Dpot = Û∗Û0

(
E+ 0
0 E−

)
Û∗
0 Û − Vε,τ(x, y)−

√
1 +

τx
τy
x2
(
+1 0
0 −1

)
. (3.8)

The normalization in (3.8) allows to use directly the semiclassical calculus if one remem-
bers that Û∗

0 Û = Id+εR̂ and Û∗Û0 = Id+εR̂′ with ε−2δR, ε−2δR′ ∈ Su(
1

〈
√

τx
τy
x〉
, gτ ;M2(C))

and E±(q, τ, ε) = Vε,τ(x, y)±
√

1 + τx
τy
x2 . We obtain

|〈(1− χ̂)ψ , Dpot(1− χ̂))ψ〉| ≤ Cε1+2δ‖(1− χ̂)ψ‖2L2 ,
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which corresponds to the second term of our right-hand sides.
The kinetic energy term (3.7) is decomposed into ε2+2δτxτyDkin = ε2+2δτxτyD0

kin + D1
kin

with

D1
kin = ε2δÛ∗τxτy|εDq|2Û − ε2δÛ∗

0 τxτy|εDq|2Û0 , (3.9)

D0
kin = Û∗

0 |Dq|2Û0 −
(
|Dq − A|2 + |X|2 0

0 |Dq + A|2 + |X|2τ

)
. (3.10)

Writing (3.9) in the form

D1
kin = ε2δ(Û∗ − Û∗

0 )τxτy|εDq|2Û + ε2δÛ∗
0 τxτy|εDq|2(Û − Û0) ,

while τxτy|εDq|2 ∈ OpSu(〈√τxτyp〉, gτ ;M2(C)), Û , Û0 ∈ OpSu(1, gτ ;M2(C)) and ε
−1−2δ(Û−

Û0) ∈ OpSu(
1

〈
√

τx
τy
x〉〈√τxτyp〉∞τ

, gτ ;M2(C)) , leads to

∣∣〈(1− χ̂)ψ , D1
kin(1− χ̂)ψ

〉∣∣ ≤ Cε1+4δ‖(1− χ̂)ψ‖2L2 .

which is even smaller than the Dpot upper bound.
In (3.10), the first term can be computed via

〈Φ , U∗
0 |Dq|2τU0(q)Ψ〉 =

∑

qj∈{x,y}
〈Dqj(u0(q, τ)Φ) , Dqj(u0(q, τ)Ψ)〉

with Dqj(u0f) = u0(Dqj − iu∗0∂qju0)f and equals

Û∗
0 |Dq|2Û0 = |Dq − iu∗0∂qu0|2

=
∑

qj∈{x,y}

[
D2
qj
− (iu∗0(q)∂qju0(q))

2)Dqj −Dqj(iu
∗
0(q)∂qju0(q))

2)

+(iu∗0(q)∂qju0(q))
2
]
.

Meanwhile expanding the entries of the second term in (3.10) gives

|Dq ∓A(q)|2 =
∑

qj∈{x,y}

[
D2
qj
∓Aj(q)Dqj ∓DqjAj(q) + Aj(q)

2
]
.

By using the expresions (3.3) and (3.4) for A,X and iu∗0∂qu0, we obtain

D0
kin =

1

2

(
0 R−
R+ 0

)

with R± = ±i(Dx(∂xθ) + (∂xθ)Dx)e
∓iϕ −

√
τy
τx

sin(θ)(Dye
∓iϕ + e∓iϕDy)

and (∂xθ) = −
√
τx√

τy(1 +
τx
τy
x2)

, sin(θ) =
1√

1 + τx
τy
x2
.
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Therefore, we obtain

∣∣〈(1− χ̂)ψ , D0
kin(1− χ̂)ψ

〉∣∣ ≤ 4max(

√
τx
τy
,

√
τy
τx
)‖|Dq|(1− χ̂)ψ‖L2‖(1− χ̂)ψ‖L2 .

and, owing to τx, τy ∈ (0, 1],
∣∣〈(1− χ̂)ψ , ε2+2δτxτyD0

kin(1− χ̂)ψ
〉∣∣ ≤ 4ε1+2δ‖√τxτy|εDq|(1− χ̂)ψ‖L2‖(1− χ̂)ψ‖L2 .

This ends the proof of (3.5).
For (3.6) it suffices to replace ψ in (3.5) by Û∗ψ with a cut-off function χ1 such that
χ ≺ χ1 and then to use (1 − χ1(|εDq|2τ ))Û∗χ(|εDq|2τ ) ∈ OpNu,gτ , with uniform seminorm
estimates w.r.t τ ∈ (0, 1]2 and δ ∈ (0, δ0] . The L2-norm of the corresponding additional
error term is O(εN), for any N , and one fixes N ≥ 2 + 4δ0 .

3.3 Control of the nonlinear term

In this subsection, we estimate the effect of the operator Û = U(q, εDq, τ, ε) belonging to
OpSu(1, gτ ;M2(C)) on the nonlinear term

∫
R2 |ψ|4 dxdy .

Proposition 3.3. Let Û be the unitary operator introduced in Theorem 2.1. The inequal-
ities

∫
|ψ(x, y)|4 dxdy ≥ (1− Cε1+2δ)

∫
|(Ûψ)(x, y)|4 dxdy , (3.11)

and

∫
|ψ(x, y)|4 dxdy ≥ (1− Cε1+2δ)

∫
|(Û∗ψ)(x, y)|4 dxdy (3.12)

hold for any ψ ∈ L4(R2;C2) .

Proof: For ψ1 and ψ2 belonging to L4(R2;C2), the local relations

|ψ1|4(q) =
(
|ψ2(q)|2 + 2Re〈ψ2(q) , (ψ1 − ψ2)(q)〉+ |ψ1(q)|2

)2

= |ψ2(q)|4 + 2|ψ2|2|ψ1 − ψ2|2 + 4

(
Re〈ψ2 , ψ1 − ψ2〉+

1

2
|ψ1 − ψ2|2

)2

+4|ψ2|2Re〈ψ2 , (ψ1 − ψ2)〉
≥ |ψ2(q)|4 − 4|ψ2(q)|3|ψ1(q)− ψ2(q)| ,

is integrated w.r.t q = (x, y) ∈ R2, with Hölder inequality, into

‖ψ1‖4L4 =

∫
|ψ1|4 dxdy ≥ ‖ψ2‖4L4 − 4‖ψ2‖3L4‖ψ1 − ψ2‖L4 .

With ψ1 = Û0ψ = u0(q)ψ, |ψ(q)|2 = |ψ1(q)|2 for all q ∈ R2, and ψ2 = Ûψ = ψ1+(Û−Û0)ψ,
we obtain

‖ψ‖4L4 = ‖ψ1‖4L4 ≥ ‖Ûψ‖4L4 − 4‖Ûψ‖3L4‖(Û − Û0)ψ‖L4 .
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The operator Û − Û0 equals ε1+2δr(q, εDq, τ, ε) with r ∈ Su(
1

〈
√

τx
τy
x〉〈√τxτyp〉∞

, gτ ;M2(C)),

where we recall gτ =
τx
τy
dx2

〈
√

τx
τy
x〉2

+ τy
τx
dy2+ τxτydp2

〈√τxτyp〉2 . After introducing the isometric transform

on L4(R2;C2)
(Tε,τϕ)(x, y) = ε

√
τxτyϕ(ε

√
τxτyx, ε

√
τxτyy) ,

the difference Û − Û0 becomes

Û − Û0 = ε1+δT−1
ε,τ r1(ετxx, ετyy,Dx, Dy, ε, τ)Tε,τ

with r1 uniformly bounded in S(1, d(τxx)
2

〈τxx〉2 + d(τyy)
2+ dp2

〈p〉2 ;M2(C)) . A fortiori, the symbol

r1(ετxx, ετyy, ξ, η; ε, τ) is uniformly bounded in S(1, dq2 + dp2

〈p〉2 ) and the Lemma 3.4 below
provides the uniform bound

‖Û − Û0‖L(L4) ≤ C0ε
1+δ .

We have proved
‖ψ‖4L4 ≥ ‖Ûψ‖4L4 − Cε1+2δ‖Ûψ‖3L4‖ψ‖L4 .

which implies (3.11). The second inequality (3.12) is proved similarly with Û∗ = Û∗
0 +

(Û∗ − Û∗
0 ) .

The result below is a particular case of the general Lp bound, 1 < p < ∞, for pseu-
dodifferential operator in OpS(1, dq2+ dp2

〈p〉2 ;L(H1;H2)), Hi Hilbert spaces, stated in [Tay]-
Proposition 5.7 and relying on Calderon-Zygmund analysis of singular integral operators.

Lemma 3.4. For any p ∈ (1,+∞), there exists a seminorm n on S(1, dq2+ dp2

〈p〉2 ;M2(C))
such that

∀a ∈ S(1, dq2 +
dp2

〈p〉2 ;M2(C)), ‖a(q,Dq)‖L(Lp) ≤ n(a) .

Proof: The Proposition 5.7 of [Tay] says that for any a ∈ S(1, dq2 + dp2

〈p〉
2
;M2(C)), the

operator a(q,Dq) is bounded on Lp(R2;C2) . It is not difficult to follow the control of the
constants in the previous pages of [Tay] in order to check that ‖a(q,Dq)‖L(Lp) is estimated
by a seminorm of a . More efficiently, one can refer to the uniform boundedness principle,
because S(1, dq2+ dp2

〈p〉2 ;M2(C)) ∋ a→ a(q,Dq) ∈ L(Lp(R2;C2)) is a linear operator from
a Fréchet space to a Banach space.

4 Reduced minimization problems

In this section, we assume that potential Vε,τ satisfies (1.13)-(1.14). After the first para-
graph of this section and in the rest of the paper, we focus on the case τy = 1, τx → 0
(and ε → 0) . Two reduced problems have to be considered: 1) the one obtained as
ε → 0 and τx is fixed; 2) the one derived from the previous one as τx → 0 and which is
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parameterized only by (G, ℓV ) . The linear part of this latter reduced problem is a purely
quadratic Schrödinger Hamiltonian (with a constant magnetic field), from which many
a priori information can be obtained. This section is divided into three parts. First we
specify the potential Vε,τ and check our main assumptions for the general theory. Then we
review some properties of the reduced Gross-Pitaevskii problem parametrized by (G, ℓV ) .
Finally we make the comparison with the reduced Gross-Pitaevskii problem parametrized
by (G, ℓV , τx) as τx → 0 and deduce properties which will be necessary for the study of
the complete minimization problem.

4.1 Reduced minimization problems

Lemma 4.1. The potential Vε,τ defined by (1.13)-(1.14) belongs to Su

(
〈
√

τx
τy
x〉, gq,τ

)

with the metric gq,τ =
τxdx2

τy〈1+ τx
τy
x2〉 +

τy
τx
dy2 .

Proof: After the change of variable (x′, y′) = (
√

τx
τy
x,
√

τy
τx
y), it is equivalent to check

ε2+2δ

ℓ2V
v(τyx, τxy) +

√
1 + x2 − ε2+2δ

[
τ 2x

(1 + x2)2
+

τ 2y
1 + x2

]
∈ Su(〈x〉,

dx2

〈x〉2 + dy2) .

It is done if v(τyx, τxy) ∈ Su(〈x〉, dx
2

〈x〉2 + dy2) . We know v ∈ S(1, dx
2+dy2

1+x2+y2
) . Hence for all

(α, β) ∈ N2 there exists Cα,β > 0 such that

∀τ ∈ (0, 1]2, ∀x, y ∈ R
2, |∂αx∂βy (v(τyx, τxy)) | ≤ Cα,β

τβx τ
α
y

(1 + τ 2yx
2 + τ 2xy

2)−
α+β
2

≤ Cα,β
1

( 1
τ2y

+ x2)α/2
≤ Cα,β〈x〉1−|α| ,

which is what we seek.

If the error terms of Proposition 3.2 and Proposition 3.3 are assumed to be negligible,

the energy Eε(ψ) of a state ψ = Û∗
(

0
a−

)
is close to

ε2+2δτxτy〈a− , Ĥ−a−〉+
Gε,τ

2

∫
|a−|4 dxdy = ε2+2δτxτyEτ (a−) ,

with Eτ (a−) = 〈a− , Ĥ−a−〉+
G

2

∫
|a−|4 dxdy , (4.1)

Ĥ− = −∂2x −


∂y − i

x

2
√

1 + τx
τy
x2




2

+
1

ℓ2V τxτy
v(
√
τxτyx,

√
τxτyy) .
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with the potential v chosen from (1.14).
When τx

τy
and τxτy are small, in particular in the regime τx ≪ 1 and τy = 1 that we shall

consider, this energy is well approximated by

EH(ϕ) = 〈ϕ ,
[
−∂2x − (∂y −

ix

2
)2 +

x2 + y2

ℓ2V

]
ϕ〉+ G

2

∫
|ϕ|4 , (4.2)

as this will be checked and specified in the next paragraph. Although more general
asymptotics could be considered, we concentrate from now on the regime τx ≪ 1, τy = 1 .
The parameters ℓV and G are assumed to be fixed as τx → 0 .

In order to prove that the ground states of EH and Eε are close, we need to have good
estimates on the energy EH .

4.2 Properties of the harmonic approximation

Let us recall that the energy functional EH does not any more depend on τx and is
parameterized only by (G, ℓV ) . Let us start with its properties. We introduce the spaces
H1 and H2 which are given by

Hs =




u ∈ L2(R2)
∑

|α|+|β|≤s
‖qαDβ

q u‖L2 < +∞




 , s = 1, 2, (q = (x, y)) (4.3)

endowed with the norm ‖u‖2Hs
=
∑

|α|+|β|≤s ‖qαDβ
q u‖2L2 . For a compact set K of Hs and

for u ∈ Hs, the distance ds(u,K) follows the usual definition minv∈K ‖u − v‖Hs . The
self-ajoint operator associated with the linear part of EH is denoted by

HℓV = −∂2x − (∂y −
ix

2
)2 +

x2 + y2

ℓ2V
, (0 < ℓV < +∞) .

Its domain is H2 while its form domain is H1 . Note also the compact embeddings H2 ⊂⊂
H1 ⊂⊂ L2 ∩ L4 . Following the general scheme presented in [HiPr, Sjo], its spectrum
equals

σ(HℓV ) =
{
(1 + 2n+)r+ + (1 + 2n−)r− , (n+, n−) ∈ N

2
}

with r± = 1
2
√
2

√
1 + 8

ℓ2V
±
√

1 + 4
ℓ2V

.

Proposition 4.2. The functional EH admits minima on {u ∈ H1, ‖u‖L2 = 1} , with a
minimum value EH,min satisfying

EH,min ≥ r+ + r− ≥
√
2

2
.

The set of minimizers Argmin EH is a bounded subset of H2 and therefore a compact
subset of {u ∈ H1, ‖u‖L2 = 1} . Morever for any ϕ ∈ Argmin EH, ϕ is an eigenvector of
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H0 + G|ϕ|2 . Finally there exist two constants C = CℓV ,G > 0 and ν = νℓV ,G ∈ (0, 1/2]
such that

∀u ∈ H1 , (‖u‖L2 = 1, EH(u) ≤ EH,min + 1) ⇒ (dH1(u,Argmin EH) ≤ C(EH(u)− EH,min)ν) .
(4.4)

Proof: On H1 and H2, the scalar products

〈u , v〉1,ℓV = 〈u , HℓV v〉L2

〈u , v〉2,ℓV = 〈HℓV u , HℓV v〉L2

provide norms ‖u‖k,ℓV , k = 1, 2, respectively equivalent to ‖u‖Hk
. In this proof, all the

“uniform” estimates are actually parameterized by (G, ℓV ) . The nonlinearity
G
2

∫
|u|4(x) dx

as well as the constraint ‖u‖L2 = 1 are continuous functions on L2∩L4 while the quadratic

part of EH(u) is simply ‖u‖21,ℓV with EH(u) ≥ ‖u‖21,ℓV ≥ r+ + r− ≥
√
2
2
. The compact em-

bedding H1 ⊂⊂ L2 ∩ L4 thus implies that the infimum infu∈H1 , ‖u‖L2=1 EH(u) is achieved.
A minimizer ϕ ∈ Argmin EH solves in a distributional sense the Euler-Lagrange equation

HℓV ϕ+G|ϕ|2u = λϕϕ

where λϕ is the Lagrange multiplier associated with the constraint ‖ϕ‖L2 = 1 . By taking
the scalar product with ϕ, one obtains the bounds for λϕ:

EH,min ≤ λϕ ≤ 2EH,min .

Since H1 is also (compactly) embedded in L6(R2), the equation

HℓV ϕ = −G|ϕ|2ϕ+ λϕϕ

ensures that ‖ϕ‖2,ℓV is uniformly bounded on Argmin EH . Therefore Argmin EH is a
bounded susbset of H2 and a compact subset of H1 . In a H1-neighborhood of ϕ ∈
Argmin EH (‖ϕ‖L2 = 1), the L2-sphere {u ∈ H1, ‖u‖L2 = 1} can be parametrized by

u = (1− ‖v‖2L2)ϕ+ v , 〈ϕ , v〉L2 = 0 .

Notice also that the potential G|ϕ|2 is a relatively compact perturbation of HℓV , so that
HℓV + G|ϕ|2 is a self-adjoint operator in L2(R2) with domain H2 and with a compact
resolvent. With 〈ϕ , v〉1,ℓV = −G

∫
R2 |ϕ|2ϕv dx for ϕ is an eigenvector of HℓV +G|ϕ|2 and

v ⊥ ϕ, the energy EH(u) becomes

EH((1− ‖v‖2L2)ϕ+ v) = ‖v‖21,ℓV + (1− ‖v‖L2)〈ϕ , ϕ〉1,ℓV
−2G(1− ‖v‖2L2)Re

∫

R2

|ϕ|2ϕv dx+ G

2

∫

R2

|(1− ‖ϕ‖2L2)ϕ+ v|4 dx

= ‖v‖21,ℓV + Fϕ(v) ,

where v lies in the closed subset H1,ϕ = {v ∈ H1, 〈ϕ , v〉L2 = 0} of H1 and Fϕ(v) is the
composition of the compact embedding H1 → L2 ∩ L4 with a real analytic, real-valued,
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functional on L2 ∩ L4 . Hence on H1,ϕ endowed with the scalar product 〈 , 〉1,ℓV , the
Hessian of EH((1− ‖v‖2L2)ϕ+ v) equals Id+D2FℓV (0), with D

2FℓV (0) compact (and self-
adjoint) . We can apply the Lojasiewicz-Simon inequality which says that there exist two
constants Cϕ > 0, νϕ ∈ (0, 1/2], such that

‖v‖1,ℓV ≤ Cϕ
(
EH((1− ‖v‖2L2)ϕ+ v)− EH,min

)νϕ
.

Since the set Argmin EH is a compact subset of H1, it can be covered by a finite number
of neighborhoods of ϕi ∈ Argmin EH , 1 ≤ i ≤ N , where a Lojasiewicz-Simon inequality
holds. Take

νℓV ,G = min
1≤i≤N

νϕi
and CℓV ,G = 2 max

1≤i≤N
Cϕi

.

Remark 4.3. The Lojasiewicz inequality is a classical result of real algebraic geometry
(see a.e. [Loj, BCR]) proved by Lojasiewicz after Tarski-Seidenberg Theorem. It is usually
written as |∇f(x)| ≤ Cf(x)ν with ν ∈ (0, 1] for a real analytic function of x lying around
x0 with f(x0) = 0 . The variational form is a variant of it. It was extended to the infinite
dimensional case with applications to PDE’s by L. Simon in [Sim]. We refer the reader
also to [Chi, HaJe, Hua] and [BDLM] for recent texts and references concerned with the
infinite dimensional case or the extension with o-minimal structures.

The nonlinear Euler-Lagrange equation is usually studied after linearization via the Liap-
unov-Schmidt process. Here using some coordinate representation of the constraint sub-
manifold, especially when it is a sphere for a simple norm, allows to use directly the
standard result for the minimization of real analytic functionals.

When the minimization problem is non degenerate at every ϕ ∈ Argmin EH, i.e. in
the present case when the kernel of Id+D2Fϕ(0) is rectricted to {0}, the compact set
Argmin EH is made of a finite number of point. When ℓV is fixed so that r+ and r− are
rationnally independent, the spectrum of HℓV is made of simple eigenvalues and when G
is small enough, G < GℓV , the non degeneracy assumption is satisfied via a perturbation
argument from the case G = 0 . For large G, we can only say that the set of (G, ℓV ) ∈
(0,+∞)2 such that all the minima are non degenerate, νℓV ,G = 1/2, is a subanalytic subset
of R2 . In our case with a linear part HℓV which is a complex operator with no rotational
symetry, no standard methods like in [AJR] allow to reduce the minimization problem to
some radial nonlinear ODE.

From the information given by the Lowest-Landau-Level reduction, when G and ℓV are
large, the supposed hexagonal symmetry, after removing some trivial rotational invariance,
of the problem (see [ABN, Nie]) suggests that there are presumably several minimizers.

A change of variable ϕ(x, y)e−ixy/4 = αu(αx, αy) with α2 = 1/(ℓV
√
G) leads to

EH(ϕ) =
1

ℓV
√
G
ẼH(u) =

1

ℓV
√
G

∫
|(∇− i

2
ℓV

√
Gez × r)u|2 +G(r2|u|2 + 1

2
|u|4). (4.5)

This implies that ℓV
√
G is equivalent to a rotation value. We have the following results

from the literature
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• when ℓV
√
G is small and G is large, the minimizer is unique up to rotation and

vortex-free [AJR]: namely u(x, y) = f(r)eic for some real number c, where f does
not vanish. If ℓV

√
G = 0, this is an adaptation of a result of [BrOs]. When ℓV

√
G

is non zero, this requires refined estimates for the jacobian.

• when ℓV
√
G is large, then vortices are expected in the system and this can be

analyzed in details in the LLL regime (lowest Landau level) if additionally
√
G/ℓV

is small [AB, ABN]. More precisely, if
√
G/ℓV is small, then

inf ẼH − 1

2
− inf ELLL = o

(√
G

ℓV

)
(4.6)

where

ELLL(u) =

∫
G(r2|u|2 + 1

2
|u|4) (4.7)

for functions u such that u(x, y)eℓV
√
Gr2/4 is a holomorphic function of x+ iy. This

space is called the LLL. If u is a ground state of ẼH and w its projection onto the
LLL, then |u− w| tends to 0 in H1 and C0,α as

√
G/ℓV tends to 0. If additionally,

ℓV
√
G is large, then one can estimate inf ELLL [ABN] thanks to test functions with

vortices and inf ELLL = O
(√

G
ℓV

)
.

• if ℓV
√
G is large, and

√
G/ℓV is large, then this is a Thomas Fermi regime where

the energy can be estimated as well [Aft] and is of order
√
G/ℓV .

We complete the previous result with another comparison statement which will be
useful in the sequel.

Proposition 4.4. There exists C = CℓV ,G > 0 such that when u ∈ H1 satisfy EH(u) ≤
EH,min + 1, ‖u‖L2 = 1, and solves

HℓV ,Gu+G|u|2u = λuu+ r

with λu ∈ R and r ∈ L2, then

• u ∈ H2 ;

• there exists u0 ∈ Argmin EH , with Lagrange multiplier λu0, such that

|λu − λu0|+ ‖u− u0‖H2 ≤ C (‖r‖L2 + (EH(u)− EH,min)ν) ,

where ν = νℓV ,G ∈ (0, 1
2
] is the exponent given in Proposition 4.2.

Proof: Since Argmin EH is compact, Proposition 4.2 already provides u0 ∈ Argmin EH
such that

‖u− u0‖H1 ≤ C(EH(u)− EH,min)ν .
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Taking the difference of the equation for u and the Euler-Lagrange equation for u0, we
obtain

HℓV ,G(u− u0) = (λu − λu0)u0 + λu(u− u0) +G(|u0|2u0 − |u|2u) + r .

Taking the scalar product with u0, with

‖|u0|2u0 − |u|2u‖L2 ≤ C (EH(u0) + EH(u)) ‖u− u0‖H1 ≤ C ′ (EH(u)− EH,min)ν

implies
|λu − λu0| ≤ C ′′ (‖r‖L2 + (EH(u)− EH,min)ν) .

Using the ellipticity of HℓV ,G and the equivalence of the norms ‖ϕ‖H2 and ‖HℓV ,Gϕ‖L2

ends the proof.

4.3 Comparison of the two reduced minimization problems

In the regime τy = 1 and τx → 0, while ℓV > 0 and G > 0 are fixed, we compare the two
minimization problems for the energies Eτ and EH defined in (4.1)-(4.2). We start with
the next Lemma which is a simple application of the so called IMS localization formula
(see a.e. [CFKS]). We shall use the functional spaces Hs defined by (4.3) associated with
EH as well as the standard Sobolev spaces Hs(R2) associated with Eτ , with s = 1, 2 and
Hs ⊂ Hs(R2) .

Lemma 4.5. Let χ1, χ2 ∈ C∞
b (R2) satisfy χ2

1 +χ2
2 = 1, suppχ1 ⊂ {x2 + y2 < 1} and take

α ∈ (0, 1
2
] . Then the following identities

∀u ∈ H1 , EH(u) = EH(χ1(τ
α
x .)u) + EH(χ2(τ

α
x .)u)− τ 2αx

2∑

j=1

∫

R2

|(∇χj)(ταx .)|2|u|2

+G

∫

R2

(χ2
1χ

2
2)(τ

α
x .)|u|4 , (4.8)

with the same formula for Eτ(u) when u ∈ H1(R2), and

∀u ∈ H1(R2) , Eτ (u) = EH(χ1(τ
α
x .)u) + Eτ (χ2(τ

α
x .)u)− τ 2αx

2∑

j=1

∫

R2

|(∇χj)(ταx .)|2|u|2

+G

∫

R2

(χ2
1χ

2
2)(τ

α
x .)|u|4 +R(u) , (4.9)

hold with

|R(u)| ≤ 1

4

(
Eτ(χ1(τ

α
x .)u)

1/2 + EH(χ1(τ
α
x .)u)

1/2
)
‖u‖L2τ 1−3α

x .
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Proof: The first identity is a direct application of the IMS localization formula (see
a.e. [CFKS]) which comes from the identity

Pχ2P − χP 2χ = [P, χ]2 − 1

2

[
χ2, P

]
P − 1

2
P
[
P, χ2

]

when P is a differential operator of order ≤ 1 and χ is a C∞ function. Simply combine it
with the identity

|u|4 = |χ1(τ
α
x .)u|4 + |χ2(τ

α
x .)u|4 + 2χ2

1χ
2
2(τ

α
x .)|u|4 .

Using the same argument for Eτ provides the same identity after replacing EH with Eτ ,
and it suffices to compare Eτ (χ1(τ

α
x .)u) with EH(χ1(τ

α
x .)u) . The definition (1.14) of the

potential v and the condition α ≤ 1
2
imply

v(τ 1/2x .) = τx(x
2 + y2) on suppχ1(τ

α
x .) .

Therefore, we obtain, by setting uτ = χ1(τ
α
x .)u ,

|Eτ (χ1(τ
α
x .)u)− EH(χ1(τ

α
x .)u)| =

∣∣∣∣
∫

R2

|(∂y − i
x

2
√
1 + τxx2

)uτ |2 − |(∂y − i
x

2
)uτ |2

∣∣∣∣

≤
(
‖(∂y − i

x

2
√
1 + τxx2

)uτ‖L2 + ‖(∂y − i
x

2
)uτ‖L2

)
‖ τxx

3/2

1 +
√
1 + τxx2

χ1(τ
α
x .)u‖L2

≤ 1

4

(
Eτ(χ1(τ

α
x .)u)

1/2 + EH(χ1(τ
α
x .)u)

1/2
)
‖u‖L2τ 1−3α

x .

Proposition 4.6. For any given (ℓV , G) ∈ (0,+∞)2, there exists τℓV ,G > 0 such that the
following properties hold when τx ≤ τℓV ,G .

• The minimization problem

inf
u∈H1(R

2
) , ‖u‖L2=1

Eτ (u)

admits a solution u ∈ H1(R2) .

• A solution u ∈ H1(R2) to the above minimization problem, solves an Euler-Lagrange
equation [

−∂2x − (∂y −
i

2

x√
1 + τxx2

)2 +
v(τ

1/2
x .)

ℓ2V τx
+G|u|2

]
u = λuu

with 0 ≤ λu ≤ 2Eτ,min and belongs to H2(R2) .
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• Moreover the minimum value Eτ,min = minu∈H1(R2) , ‖u‖L2=1 Eτ (u) satisfies the esti-
mate

|Eτ,min − EH,min| ≤ CℓV ,Gτ
2/3
x .

• For u ∈ Argmin Eτ and any pairs χ = (χ1, χ2) in C∞
b (R2)2 such that χ2

1+χ
2
2 = 1 with

suppχ1 ⊂ {x2 + y2 < 1} and χ1 ≡ 1 in {x2 + y2 ≤ 1/2}, the functions χj(τ
1/9
x .)u,

j = 1, 2, satisfy

‖χ2(τ
1/9
x .)u‖2L2 ≤ Cχ,ℓV ,Gτ

2/3
x (4.10)

Eτ (χ1(τ
1/9
x .)u) ≤ Eτ,min + Cχ,ℓV ,Gτ

2/3
x (4.11)

dH2(χ1(τ
1/9
x .)u,Argmin EH) ≤ Cχ,ℓV ,Gτ

2νℓV,G
/3

x , νℓV ,G ∈ (0,
1

2
] . (4.12)

A constant Ca,b,c is a constant which is (or can be) fixed once (a, b, c) are given.

Proof: Fix ℓV and G. We drop the indices ℓV , G in the constants. The exponent α will
be fixed to the value 1

9
within the proof.

First step, upper bound for inf{Eτ (u) , u ∈ H1(R2) , ‖u‖L2 = 1}: Let χ = (χ1, χ2) and
χ̃ = (χ̃1, χ̃2) be two pairs as in our statement such that χ̃1 ≺ χ1 according to Defini-
tion A.2. Take u0 ∈ Argmin EH ⊂ H1 . According to Proposition 4.2, it belongs to a
bounded set to H2 so that ‖|q|2u0‖L2 , with q = (x, y), is uniformly bounded. Hence,
0 6∈ supp∇χ̃j ∪ supp χ̃1χ̃2 implies

∫

R2

|∇χ̃j(ταx .)|2|u0|2 = O(τ 4αx ) while

∫

R2

χ̃2
1χ̃

2
2(τ

α
x .)|u0|4 ≥ 0 .

Lemma 4.5 above with the pair χ̃ and α ∈ (0, 1
2
] gives:

EH,min = EH(u0) ≥ EH(χ̃1(τ
α
x .)u0) + EH(χ̃2(τ

α
x .)u0)− Cτ 6αx .

On supp χ̃2(τ
α
x .), the potential v(τ

1/2
x .)
ℓ2vτx

is bounded from below by 1
C′τ2αx

. Thus we get

EH,min
(
‖χ̃1u0‖2L2 + ‖χ̃2u0‖2L2

)
≥ EH,min‖χ̃1u0‖2L2 +

1

C ′τ 2αx
‖χ̃2u0‖2L2 − Cτ 6αx ,

and finally
‖χ̃2u0‖2L2 ≤ C ′′τ 8αx , ‖χ̃1u0‖2L2 = 1 +O(τ 8αx ) ,

as soon as τx < (C ′EH,min)−1/2α .

The function u1 = ‖χ̃1u0‖−1
L2 χ̃1u0 is normalized with

EH,min ≤ EH(u1) ≤ EH,min +O(τ 6αx ) ,
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and χ1(τ
α
x .)u1 = u1, χ2(τ

α
x .)u1 = 0 . Applying the second formula of Lemma 4.5 with,

now, the pair χ, leads to

Eτ (u1) = EH(u1) +R(u1) = EH,min +O(τ 6αx ) +R(u1)

with R(u1) ≤
1

4
(Eτ(u1)1/2 + (EH,min +O(τ 6αx ))1/2)τ 1−3α

x .

With the estimate
√
2
2

≤ EH,min ≤ C, we deduce

Eτ (u1) = EH,min +O(τ 6αx + τ 1−3α
x ) .

It’s time to fix α to the value 1
9
so that τ 6αx = τ 1−3α

x = τ
2/3
x and

inf
u∈H1(R2)

Eτ (u) ≤ Eτ(u1) ≤ EH,min + κτ 2/3x .

Second step - Existence of a minimizer: Once the function u1 ∈ H1(R2) has been con-

structed as above, consider τx < τ0 with EH,min + κτ
2/3
0 ≤ 1

ℓ2V τ0
. The functional

Eτ(u)−
1

ℓ2V τx
‖u‖2L2 ,

is the sum of a convex strongly continuous functional (and therefore weakly continuous)
on H1(R2) and a negative functional

〈u, 1

ℓ2V τx

[
v(τ 1/2x .)− 1

]
− u〉 .

Due to the compact support of v − 1, it is also continuous w.r.t the weak topology on
H1(R2) . Out a minimizing sequence (un)n∈N∗ , extract a weakly converging subsequence
in H1(R2) . The weak limit, u∞, satisfies

Eτ(u∞)− 1

ℓ2V τx
‖u∞‖2L2 = lim

k→∞
Eτ (unk

)− 1

ℓ2V τx
‖unk

‖2L2 .

with ‖u∞‖L2 ≤ 1 . The same convergence holds also for the energy Eτ (u)− 1
2ℓ2V τx

‖u‖2L2, so

that actually ‖u∞‖L2 = limk→∞ ‖unk
‖L2 = 1 and u∞ realizes the minimum of Eτ (u) under

the constraint ‖u‖L2 = 1 .
The Euler-Lagrange equation can thus be written, with the stated straightforward conse-
quences.
Third step - a priori estimate for minimizers of Eτ : Let u ∈ H1(R2) satisfy ‖u‖L2 = 1 and

Eτ (u) = Eτ,min ≤ EH + κτ
2/3
x . Take two pairs χ̃ = (χ̃1, χ̃2) and χ

′ = (χ′
1, χ

′
2), like in our

statement, and such that χ′
1 ≺ χ̃1. The identities (4.9) for Eτ and (4.9) in Lemma 4.5

provide

Eτ,min ≥ Eτ(χ̃1(τ
1/9
x .)u)− Cχ̃τ

2/9
x

Eτ,min ≥ EH(χ̃1(τ
1/9
x .)u)− Cχ̃τ

2/9
x − 1

4

[
Eτ(χ̃1(τ

1/9
x .)u)1/2 + EH(χ̃1(τ

1/9
x .)u)1/2

]
τ 2/3x .
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The first line says

Eτ(χ̃1(τ
1/9
x .)u) ≤ Eτ,min + Cχ̃τ

2/9
x ≤ EH,min + κτ 2/3x + Cχ̃τ

2/9
x ≤ C ′

χ̃ ,

which combined with the second line provides the uniform estimate

Eτ(χ̃1(τ
1/9
x .)u) ≤ C ′′

χ̃ .

Therefore χ̃1(τ
1/9
x .)u is uniformly bounded in H1 with respect to τx . Consider now the

Euler-Lagrange equation
[
−∂2x − (∂y −

i

2

x√
1 + τxx2

)2 +
v(τ

1/2
x .)

ℓ2V τx
+G|u|2

]
u = λuu

and write its local version for u′1 = χ′
1(τ

2/9
x .)u in the form

[
−∂2x − (∂y −

ix

2
)2 +

x2 + y2

ℓ2V

]
u′1 = λuu

′
1 −G|ũ1|2u′1 + f 1

u + f 2
u (4.13)

with f 1
u = −ix( 1√

1 + τxx2
− 1)χ′(τ 1/9x .)∂yũ1 −

x2

4

τxx
2

1 + τxx2
u′1

and f 2
u = −2τ 1/9x (∇χ′

1)(τ
1/9
x .).∇ũ1 − τ 2/9x (∆χ′

1)(τ
1/9
x .)ũ1 ,

after setting ũ1 = χ̃1(τ
2/9
x .)u . Both functions, ũ1 and therefore u′1 = χ′

1(τ
2/9
x .)ũ1 are

uniformly estimated in H1 and therefore in H1(R2) . From the imbedding H1(R2) ⊂
L6(R2), the term G|ũ1|2u′1 is uniformly bounded in L2(R2) . For the term f 1

u , the support

condition suppχ′
1(τ

1/9
x .) ⊂

{
|x| ≤ τ

−1/9
x

}
imply

‖f 1
u‖L2 ≤ Cχ′(τ 1−1/3

x + τ 1−4/9
x ) ≤ C ′′

χ′ ,

while the estimate
‖f 2

u‖ ≤ Cχ′τ 1/9x ≤ C ′′
χ′

is straightforward. Hence the right-hand side of (4.13) is uniformly bounded in L2(R2)
and we have proved

‖χ′
1(τ

1/9
x .)u‖H2 ≤ C3

χ′ (4.14)

for any good pair of cut-offs χ′ = (χ′
1, χ

′
2) .

Fourth step- accurate comparison of minimal energies: We already know Eτ,min ≤ EH,min+
κτ

2/3
x and we want to check the reverse inequality. Consider a minimizer u of Eτ and take

two pairs of cut-off χ = (χ1, χ2) and χ
′ = (χ′

1, χ
′
2), such that χ1 ≺ χ′

1 . The identity (4.8)
for Eτ and (4.9) of Lemma 4.5 used with χ imply

Eτ,min ≥ Eτ(χ1(τ
1/9
x .)u) + Eτ (χ2(τ

1/9
x .)u)− τ 2/9x

2∑

j=1

∫

R2

|(∇χj)(τ 1/9x .)|2|u|2 (4.15)

Eτ,min ≥ EH(χ1(τ
1/9
x .)u)− τ 2/9x

2∑

j=1

∫

R2

|(∇χj)(τ 1/9x .)|2|u|2 +R(u) . (4.16)
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After setting u′1 = χ′
1(τ

1/9
x .)u, we get the bound

∫

R2

|(∇χj)(τ 1/9x .)|2|u|2 =
∫

R2

|(∇χj)(τ 1/9x .)|2
|q|4 ||q|2u′1|2 ≤ Cχτ

4/9
x ,

while we already know from the third step the bounds E•(χ1(τ
1/9
x .)u) ≤ Cχ when • stands

for τ or H , which implies |R(u)| ≤ Cχτ
2/3
x . From (4.15), we deduce, as we did in the first

step with the energy EH ,

‖χ2(τ
1/9
x .)u‖2L2 ≤ Cχτ

2/3
x , ‖χ1(τ

1/9
x .)u‖L2 = 1 +O(τ 2/3x ) ,

while the second line implies

Eτ,min ≥
(
1− Cχτ

2/3
x

)
EH,min − C ′

χτ
2/3
x ≥ EH,min − C ′′

χτ
2/3
x .

Fifth step- accurate comparison of minimizers: The function u1 = ‖χ1(τ
1/9
x .)u‖−1

L2χ1(τ
1/9
x .)u,

satisfies
EH(u1) ≤ EH,min + Cχτ

2/3
x

while χ1(τ
1/9
x .)u solves the equation (4.13) for some pair χ̃ = (χ̃1, χ̃2) such that χ1 ≺

χ̃1 after replacing (χ′, u′1) with (χ, χ1(τ
1/9
x .)u) . After normalization by setting ũ1 =

‖χ(τ 1/9x .)u‖−1
L2χ1(τ

1/9
x .)u it becomes

HℓV ,Gu1 +G|u1|2u1 = λuu1 + f 1
u + f 2

u + f 3
u (4.17)

u1 = ‖χ(τ 1/9x .)u‖−1
L2χ1(τ

1/9
x .)u , ũ1 = ‖χ(τ 1/9x .)u‖−1

L2 χ̃1(τ
1/9
x .)u ,

with f 1
u = −ix( 1√

1 + τxx2
− 1)χ(τ 1/9x .)∂yũ1 −

x2

4

τxx
2

1 + τxx2
u1

f 2
u = −2τ 1/9x (∇χ1)(τ

1/9
x .).∇ũ1 − τ 2/9x (∆χ1)(τ

1/9
x .)ũ1 ,

and f 3
u = G‖χ1(τ

1/9
x .)u‖2L2(|ũ1|2 − |u1|2)u1 +G(1− ‖χ1(τ

1/9
x .)u‖2L2)|u1|2u1

The estimate (4.14), for any new good pair χ′ = (χ′
1, χ

′
2) such that χ1 ≺ χ̃1 ≺ χ′

1,
implies that the terms f 1

u and f 2
u of the right-hand side of (4.17) have an L2-norm of order

τ
2/3
x . For the third term the estimate (4.14) also implies that

(|ũ1|2 − |u1|2)u1 =
(
1− χ2

1(τ
1/9
x .)

)
|ũ1|2u1 ,

has an L2-norm of order O(τ
2/3
x ) (use the L∞ bound for |ũ1|2 with ‖|q|2u1‖L2 ≤ Cχ). We

conclude by applying Proposition 4.4 .

We end this section with a comparison property similar to Proposition 4.4.

Proposition 4.7. Let ℓV , G be fixed positive numbers and take u ∈ H1(R2) such that

Eτ (u) ≤ Eτ,min + CℓV,G
τ 2/3x
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and which solves

−∂2xu− (∂y − i
x√

1 + τxx2
)2 +

v(τ
1/2
x .)

ℓ2V τx
u+G|u|2u = λuu+ ru

with λu ∈ R and ‖ru‖L2 ≤ 1 . Then for any pair χ = (χ1, χ2) ∈ C∞
b (R2) so that χ2

1+χ
2
2 = 1

with suppχ1 ⊂ {x2 + y2 < 1} and χ1 ≡ 1 in {x2 + y2 ≤ 1/2} , there exists τχ,ℓV ,G and
Cχ,ℓV such that

‖χ2(τ
1/9
x .)u‖2L2 ≤ Cχ,ℓV ,Gτ

2/3
x (4.18)

|Eτ (χ1(τ
1/9
x .)u)− EH,min| ≤ Cχ,ℓV ,Gτ

2/3
x (4.19)

dH2(χ1(τ
1/9
x .)u,Argmin EH) ≤ Cχ,ℓV ,G(τ

2νℓV,G
/3

x + ‖ru‖L2) , (4.20)

when τx < τχ,ℓV ,G and where νℓV ,G ∈ (0, 1
2
] is the exponent given in Proposition 4.2.

Proof: The analysis follows essentially the same line as the study of the minimizers of
Eτ in the proof of Proposition 4.6. By taking two pairs χ′ = (χ′

1, χ
′
2) and χ̃ = (̃χ̃1, χ̃2) such

that χ′
1 ≺ χ̃1, we obtain successively like in the Third Step in the proof of Proposition 4.6 :

• Eτ (χ̃1(τ
1/9
x .)u) + Eτ (χ̃2(τ

1/9
x .)u) ≤ Cχ̃ ;

•
[
−∂2x − (∂y − ix

2
)2 + x2+y2

ℓ2V

]
u′1 = λuu

′
1 − G|ũ1|2u′1 + f 1

u + f 2
u + ru where u′1,ũ1, f

1,2
u

have the same expressions as in (4.13);

• ‖χ′
1(τ

1/9
x .)u‖H2 ≤ Cχ′ owing to ‖ru‖L2 ≤ 1 .

From the last estimate, the refined comparaison of energies like in the Fourth Step gives
for a pair χ = (χ1, χ2) such that χ1 ≺ χ′

1:

‖χ2(τ
1/9
x .)u‖2L2 ≤ Cχτ

2/3
x EH(u1) ≤ EH,min + Cχτ

2/3
x ,

with u1 = ‖χ1(τ
1/9
x .)u‖−1χ1(τ

1/9
x .)u and Cχτ

2/3
x ≤ 1 for τx ≤ τχ . The equation (4.17) is

replaced by

HℓV ,Gu1 +G|u1|2u1 = λuu1 + f 1
u + f 2

u + f 3
u + ‖χ1(τ

1/9
x .)u‖−1ru

without changing the expressions of f 1,2,3
u . Again the estimate ‖χ′

1(τ
1/9
x .)u‖H2 ≤ Cχ′ is

used with various cut-offs χ′
1, in order to get ‖f 1

u + f 2
u + f 3

u‖L2 = O(τ
2/3
x ) . We conclude

with the help of Proposition 4.4 applied to u1 .

5 Analysis of the complete minimization problem

We consider the complete minimization problem for the energy

Eε(ψ) = 〈ψ,HLinψ〉+
Gε,τ

2

∫
|ψ4| = ε2+2δτx

[
〈ψ, ε−2−2δτ−1

x HLinψ〉+
G

2

∫
|ψ4|

]

and compare its solutions to the minimization of the reduced energies Eτ and EH , intro-
duced in the previous sections. We work with τy = 1, τx → 0, ε → 0, while ℓV , G and
δ ∈ (0, δ0] are fixed. The analysis follows the same lines as the proof of Proposition 4.6.

46



5.1 Upper bound for inf {Eε(ψ), ‖ψ‖L2 = 1}
The potential Vε is chosen according to (1.13)-(1.14) while ℓV and G are fixed. The
parameter τx is assumed to be smaller than τℓV ,G so that the minimal energy Eτ,min(τx)
of Eτ is achieved (see Proposition 4.6) and |Eτ,min(τx) − EH,min| ≤ CℓV ,Gτ

2/3
x . Moreover

Proposition 4.6 also says that by truncating an element of Argmin Eτ , one can find a− ∈ H2

such that

‖a−‖L2 = 1 , |Eτ (a−)− EH,min| ≤ CℓV ,Gτ
2/3
x and ‖a−‖H2 ≤ CℓV ,G . (5.1)

Proposition 5.1. Under the above assumptions, take ψ = Û

(
0

e
−i y

2
√

τx a−

)
where a−

satisfies (5.1) and Û = U(q, εDq, τ, ε) is the unitary operator introduced in Theorem 2.1.
The estimate ∣∣Eε(ψ)− ε2+2δτxEτ (a−)

∣∣ ≤ CℓV ,Gε
2+4δ . (5.2)

hold uniformly w.r.t τx ∈ (0, τℓV ,G] and δ ∈ (0, δ0] .

Proof: Let us compare first the linear part by estimating

∣∣∣∣〈ψ ,HLinψ〉 − ε2+2δτx〈a− ,
[
−∂2x − (∂y − i

x

2
√
1 + τxx2

)2 +
v(
√
τx.)

ℓ2V τx

]
a−〉
∣∣∣∣

=
∣∣〈ψ , (HLin − ε2+2δτxU

∗HBOU)ψ〉
∣∣

By Proposition 3.2, it suffices to estimate

‖(1− χ̂)ψ‖L2 and ‖√τx|εDq|(1− χ̂)ψ‖L2

for some given cut-off function χ ∈ C∞
0 (R) with χ̂ = χ(τxε

2D2
q) . Notice

e
i y
2
√

τx (
√
τxεDq)e

−i y
2
√

τx =

( √
τxεDx√

τxεDy − ε
2

)

Hence by using the functional calculus of
√
εDq, we can say that there exists a cut-off

χ′ ∈ C∞
0 (−r2γ , r2γ), with χ′ ≡ 1 around 0 and χ′ ≺ χ such that

e
i y
2
√

τx (1− χ̂)2e
−i y

2
√

τx ≤ (1− χ̂′)2 ,

and e
i y
2
√

τx (τxε
2|Dq|2)(1− χ̂)2e

−i y
2
√

τx ≤ 2(τxε
2|Dq|2)(1− χ̂′)2 + 2(1− χ̂′)2

as soon as ε ≤ ε0 ≤ 1, for a convenient choice of ε0 and rγ . By using ‖a‖H2(R2) ≤ CℓV ,G,
we deduce

‖(1− χ̂)ψ‖2L2 ≤ ‖(1− χ̂′)a−‖2L2 ≤ CℓV ,Gτ
2
xε

4 and

‖(√τxε|Dq|)(1− χ̂)ψ‖2L2 ≤ 2‖(√τxε|Dq|)(1− χ̂′)a−‖2L2 + 2‖(1− χ̂′)a−‖2L2

≤ CℓV ,Gτxε
2 .
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By Proposition 3.2, we obtain

∣∣〈ψ , (HLin − ε2+2δτxU
∗HBOU)ψ〉

∣∣

≤ CℓV ,G
[
ε2+4δ + ε5+2δτ 2x + ε4+2δτ 3/2x

]
≤ C ′

ℓV ,G
ε2+4δ . (5.3)

For the nonlinear part of the energy, Proposition 3.3 gives

(1− Cε1+2δ)

∫

R2

|a−|4 ≤
∫

R2

|ψ|4 ≤ (1 + Cε1+2δ)

∫

R2

|a−|4

and the bound,
∫
R2 |e−i

y
2
√

τx a−|4 =
∫
R2 |a−|4 ≤ CℓV ,G, leads to

∣∣∣∣
Gτxε

2+2δ

2

∫

R2

|ψ|4 − ε2+2δGτx
2

∫

R2

|a−|4
∣∣∣∣ ≤ CℓV ,Gε

2+2δτx × ε1+2δ ,

which is smaller than the error term for the linear part. This ends the proof of (5.2) .

Remark 5.2. • The energy Eτ (a−) = EH,min+O(τ
2/3
x ) . Therefore the error given by

(5.2) is relevant, as compared with the energy scale of ε2+2δτxEτ,min, when

ε2δ ≤ cℓV ,Gτx , (5.4)

with cℓV ,G small enough, and accurate when

ε2δ ≤ CℓV ,Gτ
5/3
x . (5.5)

Remember that the constants cℓV ,G and CℓV ,G depend also on δ0, when δ ∈ (0, δ0] .

• It is interesting to notice that the worst term in the right-hand side of (5.3) comes
from the error of order O(ε2+2δ) in the Born-Oppenheimer approximation. There
seems to be no way to get an additional factor τ νx with ν > 0 because the initial
problem is rapidly oscillatory in the y-variable in a τx-dependent scale. This can
be seen on the gain associated with the metric gτ , for τy = 1 and τx > 0, which is
simply 〈√τxp〉, of order 1 in the (very) low frequencies .

5.2 Existence of a minimizer for Eε
With the choice (1.13)-(1.14) of the potential Vε,τ , the linear Hamiltonian HLin can be
written

HLin = −ε2+2δτx∆+ u0(q, τ)

(
2
√
1 + τxx2 0
0 0

)
u0(q, τ)

∗

+ε2+2δ v(τ
1/2
x .)

ℓ2V
− ε2+2δWτ (x, y) ,

with Wτ (x, y) =
τ 2x

(1 + τxx2)2
+

1

1 + τxx2
.
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For t ≤ ε2+2δ

2ℓ2V
, the negative part

(
ε2+2δ v(

√
τx.)

ℓ2V
− t
)
−
is compactly supported. Set

HLin,t,+ = −ε2+2δτx∆+ u0(q, τ)

(
2
√
1 + τxx2 0
0 0

)
u0(q, τ)

∗ +

(
ε2+2δ v(

√
τx.)

ℓ2V
− t

)

+

,

so that

Eε(ψ)−t‖ψ‖2 = 〈ψ ,HLin,t,+ψ〉+
Gε,τ

2

∫
|ψ|4+〈ψ , ε2+2δ

[(
v(
√
τx.)

ℓ2V
− t

ε2+2δ

)

−
−Wτ

]
ψ〉 .

(5.6)

Proposition 5.3. Assume ε ≤ εℓV ,G and τx ≤ τℓV ,G with τℓV ,G small enough. Then the
infimum

inf{Eε(u), u ∈ H1(R2), ‖u‖L2 = 1}
is achieved. Any element ψ of Argmin Eε solves an Euler-Lagrange equation

HLinψ +Gε,τ |ψ|2ψ = λψψ

with the estimates

|Eε(ψ)|+ |λψ| ≤ CℓV ,Gε
2+2δ , ‖(1 + τx|Dq|2)1/2ψ‖L2 ≤ CℓV ,G ,

Eε(ψ) = Eε,min ≤ ε2+2δ
[
Eτ,min + CℓV ,Gε

2δ)
]
≤ ε2+2δ

[
τxEH,min + C ′

ℓV ,G
(τ 5/3x + ε2δ)

]
.

Proof: From Proposition 5.1, we know that

inf
‖u‖L2=1

Eε(u) ≤ ε2+2δτxEτ,min + CℓV ,Gε
2+4δ =:

t

2

For ε ≤ εℓV ,G and τx ≤ τℓV ,G, t smaller than ε2+2δ

2ℓ2V
. Consider the decomposition (5.6) for

the energy Eε(u) − t‖u‖2L2 . By the same argument (convexity of the positive part and
compacity of the negative part) as we used for Eτ in the proof of Proposition 4.6 (second
step), a weak limit of an extracted sequence of minimizers in H1(R2) is a minimum for
Eε on {‖u‖L2 = 1} .
A element ψ of Argmin Eε satisfies

ε2+2δτx

[
〈ψ , −∆ψ〉 + G

2

∫
|ψ|4

]
≤ 〈ψ , HLin,t,+ψ〉+

Gε,τ

2

∫
|ψ|4

≤ Eε,min − 〈ψ , ε2+2δ

[(
v(
√
τx.)

ℓ2V
− t

ε2+2δ

)

−
−Wτ

]
ψ〉

≤ t

2
+ t + (1 + τ 2x)ε

2+2δ ≤ C ′
ℓV ,G

ε2+2δ ,

by recalling v ≥ 0 for the last line. This implies

‖ψ‖2H1 ≤ C ′
ℓV ,G

τ−1
x , ‖ψ‖4L4 ≤

2C ′
ℓV ,G

G
τ−1
x ,
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and by interpolation with ‖u‖L6 ≤ C‖∇u‖2/3L2 ‖u‖1/3L2 , ‖ψ‖L6 = O(τ
−1/3
x ) . The first in-

equality with ‖ψ‖L2 = 1, gives ‖(1 + τ |Dq|2)1/2ψ‖L2 = O(1) .
The Euler-Lagrange equation

HLinψ +Gε,τ |ψ|2ψ = λψ

implies

|λ| ≤ 2

[
〈ψ , HLin,t,+ψ〉+

Gε,τ

2

∫
|ψ|4

]
− 〈ψ , ε2+2δ

[(
v(
√
τx.)

ℓ2V
− t

ε2+2δ

)

−
−Wτ

]
ψ〉

≤ C ′′
ℓV ,G

ε2+2δ .

Similarly, the lower bound Eε(ψ) ≥ −2ε2+2δ is due to Wτ ≥ −2 . The upper bound of
Eε(ψ) = Eε,min comes from Proposition 5.1 and (5.1).

5.3 Comparison of minimal energies between Eε and Eτ
In this subsection, we specify a priori estimates for the minimizers of Eε and compare
the energies Eε,min and Eτ,min without imposing relations between ε2δ and τx . This is not
necessary at this level, if one uses carefully bootstrap arguments.

Proposition 5.4. Let Vε,τ be given by (1.13)-(1.14) and assume τx ≤ τℓV ,G and ε ≤ εℓV ,G
so that Eε admits a ground state according to Proposition 5.3 . The operator Û is the
unitary transform provided by Theorem 2.1 and an element ψ ∈ Argmin Eε is written

Û

(
e
+i y

2
√

τx a+

e
−i y

2
√

τx a−

)
. Then, the estimates

‖(1 + τx|Dq|2)1/2a‖L2 ≤ CℓV ,G , (5.7)

‖a+‖2L2 +Gε,τ

∫
|a|4 ≤ CℓV ,Gε

2+4δ + Eε,min , (5.8)

|Eε(ψ)− ε2+2δτxEτ (a−)| ≤ CℓV ,Gε
2+4δ , (5.9)

|Eε,min − ε2+2δτxEτ,min| ≤ CℓV ,Gε
2+4δ . (5.10)

hold with right-hand sides which can be replaced by CℓV ,Gε
2+2δτx when ε2δ ≤ cℓV ,Gτx .

Proof: For ã =

(
e
i y
2
√

τx a+

e
−i y

2
√

τx a−

)
and a =

(
a+
a−

)
, the norms ‖(1 + τ |Dq|2)1/2a‖L2 and

‖(1 + τx|Dq|2)1/2ã‖L2 are uniformly equivalent because

e
±i y

2
√

τx (
√
τxDy)e

∓i y
2
√

τx = (
√
τxDy)∓

1

2
.

Hence it suffices to estimate
√
τxεDqÛ

∗ψ . Remember that Û = U(q, εDq, τ, ε) with U ∈
Su(1, gτ ;M2(C)), while

√
τxp ∈ Su(〈

√
τxp〉, gτ ;R2) . With ‖(1 + τ |Dq|2)1/2ψ‖L2 ≤ CℓV ,G

in Proposition 5.3, simply compute:

√
τxεDqÛ

∗ψ = εÛ∗√τxDqψ +
[√

τxεDq, Û
∗
]
ψ = O(ε) in L2(R2;C2) ,
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and divide by ε for (5.7).
In order to compare the energies, consider first the linear part by writing
∣∣∣〈ψ ,HLinψ〉 − ε2+2δτx

[
〈a+ , Ĥ+a+〉+ 〈a− , Ĥ−a−〉

]∣∣∣ =
∣∣∣〈ã , (Û∗HLinÛ − ε2+2δHBO)ã〉

∣∣∣ ,

with

ã =

(
e
i y
2
√

τx a+

e
−i y

2
√

τx a−

)
,

HBO =

(
e
i y
2
√

τx Ĥ+e
−i y

2
√

τx 0

0 e
−i y

2
√

τx Ĥ−e
i y
2
√

τx

)
,

Ĥ± = −∂2x − (∂y ± i
x

2
√
1 + τxx2

)2 +
v(
√
τx.)

ℓ2V τx
+

(1± 1)

ε2+2δτx
(1 + τxx

2)1/2 .

Here it is convenient to write

ε2+2δτxHBO = ε2δB̂ +

(
2(1 + τxx

2)1/2

0

)

with B̂ =

(
B̂+ 0

0 B̂−

)
, B̂± = B±(q, εDq, τ, ε) (5.11)

and B±(q, p, τ, ε) = τxp
2
x + (

√
τxpy ±

ε

2
(

√
τxx√

1 + τxx2
−√

τx))
2 +

ε2v(
√
τx.)

ℓ2V
(5.12)

With the notation χ̂ = χ(τxε
2|Dq|2) of Proposition 3.2, Lemma 5.5 below says in particular

‖(1− χ̂)ψ‖2L2 ≤ CℓV ,G

[
〈ã, B̂ã〉+ ε1+2δ‖ã‖2L2

]
,

‖√τxε|Dq|(1− χ̂)ψ‖2L2 ≤ CℓV ,G

[
〈ã, B̂ã〉+ ε1+2δ‖ã‖2L2

]
.

Proposition 3.2 yields
∣∣∣∣〈ã ,

(
Û∗HLinÛ − ε2δB̂ −

(
2(1 + τxx

2)1/2

0

))
ã〉
∣∣∣∣ ≤ CℓV ,G

[
ε2+4δ + ε1+2δ〈ã , B̂ã〉

]

For the nonlinear part of the energy, Proposition 3.3 gives

(1− Cε1+2δ)

∫

R2

|ψ|4 ≤
∫

R2

|ã|4 =
∫

R2

|a|4 ≤ (1 + Cε1+2δ)

∫

R2

|ψ|4

with ã =

(
e
i y
2
√

τx a+

e
−i y

2
√

τx a−

)
and a =

(
a+
a−

)
. The bound

∫
R2 |ψ|4 ≤ CℓV ,Gτ

−1
x coming from

Eε(ψ) = O(ε2+2δ) with ε2+2δWτ = O(ε2+2δ), leads to
∣∣∣∣
Gτxε

2+2δ

2

∫

R2

|ψ|4 − Gτxε
2+2δ

2

∫

R2

|ã|4
∣∣∣∣ ≤ CℓV ,Gε

2+2δτx × ε1+2δτ−1
x = CℓV ,Gε

3+4δ ,
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which is smaller than the error term for the linear part. We have proved
∣∣∣∣Eε(ψ)− ε2δ〈ã , B̂ã〉 − 〈ã+ , 2(1 + τxx

2)1/2ã+〉 −
Gε,τ

2

∫
|a|4
∣∣∣∣ ≤ CℓV ,G

[
ε2+4δ + ε× ε2δ〈ã , B̂ã〉

]
.

With Eε(ψ) = Eε,min (= O(ε2+2δ)), this gives

(1− Cε)ε2δ〈ã , B̂a〉+ 2〈ã+ , (1 + τxx
2)1/2ã+〉+

Gε,τ

2

∫
|a|4 ≤ Cε2+4δ + Eε,min .

where all the terms of the left-hand side are now non negative. We deduce (5.8) and by
bootstrapping

ε2+2δτx〈a− , Ĥ−a−〉+
Gε,τ

2

∫
|a|4 ≤ ε2δ〈ã , B̂ã〉+ Gε,τ

2

∫
|ã|4 ≤ Eε,min + CℓV ,Gε

2+4δ .

Additionally,
∫
|a|4 =

∫
(|a−|2 + |a+|2)2 ≥

∫
|a−|4 also gives

0 ≤ ‖a−‖4L2Eτ,min ≤ Eτ (a−) ≤ CℓV ,G
ε2δ

τx
+

Eε,min
ε2+2δτx

≤ Eτ,min + C ′
ℓV ,G

ε2δ

τx
.

With ‖a−‖2L2 = 1 − ‖a+‖2 = 1 + O(ε2+2δ) = 1 + O( ε
2δ

τx
) and Eτ,min = EH,min + O(τ

2/3
x ),

this finally leads to

| Eε,min
ε2+2δτx

− Eτ (a−)| ≤ C ′′
ℓV ,G

ε2δ

τx
.

Lemma 5.5. Assume B(q, p, τ, ε) = τx|p|2+εr with r ∈ Su(〈
√
τxp〉, gτ ;M2(C)), take any

χ ∈ C∞
0 (R) and set B̂ = B(q, εDq, τ, ε) and χ̂ = χ(τxε|Dq|2) . Then there exists εB,χ > 0

and CB,χ > 0 such that the estimates

and ‖(1− χ̂)u‖2L2 + ‖√τx|εDq|(1− χ̂)u‖2L2 ≤ CB,χ

[
〈u , B̂u〉+ ε1+2δ‖u‖2L2

]
,

and ‖(1− χ̂)u‖L2 + ‖√τx|εDq|(1− χ̂)u‖L2 ≤ CB,χ

[
‖B̂u‖L2 + ε1+2δ‖u‖L2

]
,

hold uniformly w.r.t δ ∈ (0, δ0] and ε ∈ (0, εB,χ) .

Proof: For χ0 ∈ C∞
0 (R) such that χ0 ≥ 0 and χ0 ≡ 1 around 0, the symbol

χ0(τxp
2) + B is an elliptic symbol in Su(〈

√
τxp〉2, gτ : M2(C)) . For ε > 0 small enough

according to (χ0, B), its quantization χ̂0 + B̂ is invertible and its inverse belongs to
OpSu(〈

√
τxp〉, gτ ,M2(C)) . Next we notice that in

(1− χ̂) = (1− χ̂) ◦
[
χ̂0 + B̂

]−1

◦ B̂ + (1− χ̂) ◦
[
χ̂0 + B̂

]−1

◦ χ̂0 ,

the last term belongs to OpNu,gτ if χ0 ≺ χ . All the estimates are consequences of

(1− χ̂) = (1− χ̂) ◦
[
χ̂0 + B̂

]−1

◦ B̂ + ε1+2δρ ,

with ρ ∈ Su(
1

〈pτ 〉∞ , gτ ;M2(C)) .
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5.4 Adiabatic Euler-Lagrange equation

As suggested by Proposition 4.7, or the last steps in the proof of Proposition 4.6, an
accurate comparison of minimizers requires some comparison of the Euler-Lagrange equa-
tions. We check here that the a− component in Proposition 5.4 solves approximately the
Euler-Lagrange equations for minimizers of Eτ . Here the bootstrap argument is made in
terms of operators instead of quadratic forms. In order to get reliable results, we now
assume

ε2δ ≤ cℓV ,Gτx ,

with cℓV ,G chosen small enough.
With such an assumption we know:

• from (5.10) and |Eτ,min(τx)− EH,min| = O(τ
2/3
x ),

C−1ε2+2δτx ≤ Eε,min ≤ Cε2+2δτx .

• When ψ ∈ Argmin Eε,min is written ψ = Û

(
e
i y
2
√

τx a+

e
− y

2
√

τx a+

)
the L4-norm of a is uni-

formly bounded,
∫
|a|4 ≤ CℓV ,G, according to (5.8). By applying Lemma 3.4 this

also gives
∫
|ψ|4 ≤ CℓV ,G . We also have ‖a+‖2L2 ≤ CℓV ,Gε

2+2δτx .

• The Lagrange multiplier λψ, associated with ψ ∈ Argmin Eε,min, equals Eε(ψ) +
Gε,τ

2

∫
|ψ|4 . Thus it is of order O(ε2+2δτx) .

Proposition 5.6. Under the same assumptions as in Proposition 5.4 and with the above

condition ε2δ ≤ cℓV ,Gτx, write a minimizer ψ of Eε in the form ψ = Û

(
e
i y
2
√

τx a+

e
−i y

2
√

τx a−

)
. Then

the component a− solves the equation

Ĥ−a− +G

∫
|a−|2a− = λψa− + rε with ‖rε‖L2 ≤ CℓV ,G(ε+

ε2δ

τx
) ,

while ‖a+‖L2 ≤ CℓV ,Gε
2+2δτx .

The Lp-norms of a and ψ are uniformly bounded by CℓV ,G for p ∈ [2, 6] .

Moreover if B̂ is the operator defined in (5.11)-(5.12), ã =

(
e
i y
2
√

τx a+

e
−i y

2
√

τx a−

)
satisfies

‖B̂ã‖L2 ≤ CℓV ,Gε
2τx . (5.13)

Remark 5.7. The relation of ‖B̂ã‖L2 with ‖ã‖H2 is given by

C−1
[
ε2τx‖D2

q ã‖+ ε2‖ã‖L2

]
≤ ‖B̂ã‖L2 + ε2‖ã‖L2 ≤ C

[
ε2τx‖D2

q ã‖+ ε2‖ã‖L2

]
.

Note that the L2 remainder terms have a factor ε2 and not ε2τx .
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Proof: Playing with the Euler-Lagrange equation for ψ, we shall first prove (5.13)
argument as we did for 〈ã , B̂a〉 in the variational proof of Proposition 5.4 and then use
it in order to estimate ‖r‖L2 . The Euler-Lagrange equation for ψ

HLinψ +Gε,τ |ψ|2ψ = λψψ

becomes
Û∗HLinÛ ã+Gε,τ Û

∗ (|ψ|2ψ
)
= λψã .

Remember that Born-Oppenheimer Hamiltonian is given by

ε2+2δτxHB0 = ε2+2δτx

(
e
i y
2
√

τx Ĥ+e
−i y

2
√

τx 0

0 e
−i y

2
√

τx Ĥ−e
i

√
τy

2
√

τx
y

)
,

= ε2δB̂ +

(
2
√
1 + τxx2

0

)
,

by using the notations of (5.11)-(5.12).
Let us consider first the linear part after decomposing ã into ã = χ̂ã+(1− χ̂)ã, where

the low frequency cut-off operator χ̂ = χ(q, εDq, τ, ε) has been introduced in Proposi-
tion 3.2:

Û∗HLinÛ ã = Û∗HLinÛ χ̂ã︸ ︷︷ ︸
(I)

+ (Û∗ − Û∗
0 )HLinÛ(1− χ̂)ã+ Û∗

0HLin(Û − Û0)(1− χ̂)ã︸ ︷︷ ︸
(II)

+ Û∗
0HLinÛ0(1− χ̂)ã︸ ︷︷ ︸

(III)

.

The three terms are treated by reconsidering the computations done for Proposition 3.2.
By inserting a cut-off χ̂1 , χ ≺ χ1 , in χ1Û

∗HLinÛ χ̂ã with (1 − χ̂1)Û
∗HLinÛ χ̂ ∈ OpNu,gτ ,

we get
(I) = ε2+2δτxHBOχ̂ã+O(ε2+4δ) inL2(R2) .

With ε−1−2δ(Û − Û0) ∈ OpSu(
1

〈√τxp〉
∞, gτ ;M2(C)) and by using Lemma 5.5, the second

term is estimated by

‖(II)‖L2 ≤ Cε1+2δ‖(1− χ̂)ã‖L2 ≤ C ′
[
ε‖ε2δB̂ã‖L2 + ε2+4δ

]
.

We write the third term as

(III) = ε2+2δτxHBO(1− χ̂)ã + ε2+2δτxDkin(1− χ̂)ã+Dpot(1− χ̂)ã ,

where Dkin and Dpot are defined by (3.7)-(3.8). Following the arguments given in the
proof of Proposition (3.2) after these definitions, we get

‖Dpot(1− χ̂)ã‖L2 ≤ Cε1+2δ‖(1− χ̂)ã‖L2 ≤
≤ C ′

[
ε‖ε2δB̂ã‖L2 + ε2+4δ

]
,

‖Dkin(1− χ̂)ã‖L2 ≤ C
[
ε1+4δ‖(1− χ̂)ã‖L2 + ε1+2δ‖(ε√τx|Dq|)(1− χ̂)ã‖L2

]

≤ C ′
[
ε‖ε2δB̂ã‖L2 + ε2+4δ

]
.
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Hence the Euler-Lagrange equation can be written

ε2+2δτxHBOã = λψã− ε2+2δτxGÛ
∗ (|ψ|2ψ

)
+ r

with ‖r‖L2 ≤ C
[
ε‖ε2δB̂ã‖L2 + ε2+4δ

]
.

From Proposition 5.3, with ε2δ ≤ cτx, we know ‖ψ‖L4 ≤ C . It can be transformed into
‖ã‖L4 = ‖Û∗ψ‖L4 ≤ C with

‖|ψ|2ψ‖L2 ≤ C‖ψ‖3L6 ≤ C ′‖ã‖3L6 ,

by applying Lemma 3.4, adapted for the metric gτ like in the proof Proposition 3.3. We
start from the interpolation inequality

‖f‖L6 ≤ C‖D2
qf‖

1
9

L2‖f‖
8
9

L4 ≤
C

(τxε)
2
9

‖τ 2xε2D2
qf‖

1
9

L2‖f‖
8
9

L4.

By introducing the operator B̃ = B(τ
−1/2
x εq, τ

1
2
x Dq, τ, ε) with

B±(τ
−1/2
x q, τ 1/2x Dq, τ, ε) = (τxε)

2D2
q ±

ε

2

(
x√

1 + x2
−√

τx

)
(τxε)Dy

+
ε2

4

[(
x√

1 + x2
−√

τx

)2

+
4v

ℓ2V

]
,

it becomes

‖f‖L6 ≤ CℓV

(τxε)
2
9

[
‖B̃f‖

1
9

L2‖f‖
8
9

L4 + ε
2
9‖f‖

1
9

L2‖f‖
8
9

L4

]
.

The above relation with f = τ
− 1

2
x ã(τ

− 1
2

x .) which satisfies

‖f‖L6 = τ
− 1

3
x ‖ã‖L6 , ‖f‖L4 = τ

− 1
2

x ‖ã‖L4 and ‖B̃f‖L2 = ‖B̂ã‖L2

leads to

τ
− 1

3
x ‖ã‖L6 ≤ CℓV

(τxε)
2
9

[
‖B̂ã‖

1
9

L2τ
− 4

9
x ‖ã‖

8
9

L4 + ε
2
9‖ã‖

1
9

L2τ
− 4

9
x ‖ã‖

8
9

L4

]

≤ CℓV ,Gτ
− 1

3
x

[
ε−

2
9‖B̂ã‖

1
9

L2 + 1
]
,

and finally

Gε,τ‖|ψ|2ψ‖L2 ≤ Gε2+2δτx‖ψ‖3L6 ≤ CℓV ,G

[
ε4/3τx‖ε2δB̂ã‖L2 + ε2+2δτx

]

With |λψ| = O(ε2+2δτx), we obtain

‖ε2+2δτxHBOã‖L2 ≤ C
[
ε‖ε2δB̂ã‖L2 + ε2+4δ + ε2+2δτx

]
,
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and recall

ε2+2δτxHBO =

(
ε2δB̂+ + 2

√
1 + τxx2

ε2δB̂−

)
.

According to Lemma 5.8 below

‖ε2δB̂+ã+‖L2 + ‖2
√

1 + τxx2ã+‖L2 ≤ C‖(ε2δB̂+ + 2
√
1 + τxx2)ã+‖L2 .

We deduce
‖ε2δB̂ã‖L2 ≤ Cε2+2δτx .

Plugging this result into the estimate of the remainder r gives

ε2+2δτxHBOã = λτ ã+Gε,τ Û
∗(|ψ|2ψ) +O(ε3+2δτx + ε2+4δ) .

Consider now more carefully the nonlinear term

Û∗ (|ψ|2ψ
)
= Û∗

0

[
|Û0ã|2(Û0ã)

]

︸ ︷︷ ︸
(1)

+ (Û∗ − Û∗
0 )
[
|Û0ã|2(Û0ã)

]

︸ ︷︷ ︸
(2)

+ Û∗
[
|Û ã|2(Û ã)− |Û0ã|2(Û0ã)

]

︸ ︷︷ ︸
(3)

.

By differentiating the relation
∫
|f |4 =

∫
|Û0f |4 w.r.t f , the first term equals

(1) = |ã|4ã .

By semiclassical calculus in the metric gτ , the operator
√
τεDqÛ0 equals

√
τxεDqÛ0 = Û0

√
τxεDq +

[√
τxεDq, Û0

]
ψ = Û0

√
τxεDq +O(ε) in L(L2(R2;C2)) .

We have already proved ‖ã‖L6 ≤ C and Lemma 3.4 leads again to

‖Û ã‖L6 + ‖Û0ã‖L6 ≤ C .

With ε−1−2δ(Û − Û0) ∈ OpSu(1, gτ ;M2(C)), this gives

‖(2)‖ ≤ Cε1+2δ .

For the third term, we use

‖
[
|Û ã|2(Û ã)− |Û0ã|2(Û0ã)

]
‖L2 ≤ C0‖(Û − Û0)ã‖L6

[
‖Û ã‖2L6 + ‖Û0ã‖2L6

]
≤ Cε1+2δ .

We have proved
Gτ,εÛ

∗(|ψ|2ψ)−Gτ,ε|ã|2ã = O(ε3+4δτx) ,

which is even better than the estimate for the linear part.
For the ã− component, we get

HBO

(
0
ã−

)
+G(|ã−|2 + |ã+|2)ã− =

λψ
ε2+2δτx

ã− +O(ε+
ε2δ

τx
) ,
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and it remains to estimate the term |ã+|2ã− . The first line of the system may be written

ε2δB̂+ã+ + 2
√

1 + τxx2ã+ +Gε,τ

(
|ã+|2 + |ã−|2

)
ã+ = λψã+ +O(ε3+2δτx + ε2+2δτx) .

Taking the scalar product with ã+, with λτ = O(ε2+2δτx) and B̂+ ≥ 0, gives
∫

|ã+|4 ≤ C[‖ã+‖2L2 + (ε+
ε2δ

τx
)‖a+‖L2] ≤ C ′ε2+2δτx .

Then the same argument as in the estimate of ‖ã‖L6 gives

‖ã+‖L6 ≤ C
[
ε−

2
9‖B̂+ã+‖

1
9

L2‖ã+‖
8
9

L4 + ‖ã+‖
1
9

L2‖ã+‖
8
9

L4

]

≤ C ′
[
(ε−2−2δ‖ε2δB̂ã‖L2)

1
9 + (ε2+2δτx)

1
18

]
(ε2+2δτx)

2
9

≤ C ′′τ
1
9
x (ε

2+2δτx)
2
9 ≤ C ′′ε

4+4δ
9 τ

1
3
x .

Again with ‖ã‖L6 ≤ C, we deduce

‖|ã+|2ã−‖L2 ≤ CℓV ,Gε
8+8δ

3 τ
2
3
x ≤ C ′

ℓV ,G
ε .

The final result is just a transcription in terms of a .

Lemma 5.8. Let B+ be the symbol

B+(q, p, τx, ε) = τxp
2
x + (

√
τxpy +

ε

2
(

√
τxx√

1 + τxx2
−√

τx))
2 +

ε2v(
√
τx.)

ℓ2V

introduced in (5.12). By setting B̂+ = B+(q, εDq, τx, ε), the operator A = ε2δB̂+ +
2
√
1 + τxx2 is self-adjoint with domain D(A) = {u ∈ L2(R2), Au ∈ L2(R2)} as soon as

ε ≤ ε0, with ε0 independent of τx . Moreover the inequality

∀u ∈ D(A), ‖ε2δB̂+u‖L2 + ‖2
√
1 + τxx‖ ≤ C‖Au‖L2

holds with a constant C independent of (ε, τx) .

Proof: The operator A can be written A = a0(q, ε
1+δDq, τx) + ε1+δa1(q, ε

1+δDq, τx) +
ε2+2δa2(q, τx), with ak ∈ Su(〈

√
τxp〉2−k + 〈√τxx〉(1−k)+ , gτ ) and

a0(q, p, τx) = p2 + 2
√
1 + τxx2 .

Therefore the operator A is elliptic in OpSu(〈
√
τxp〉2 + 〈√τxx〉, gτ ) and the result about

the domain follows with

‖ε2δB̂+u‖L2 + ‖2
√
1 + τxx‖ ≤ C(‖Au‖L2 + ‖u‖L2)

for all u ∈ D(A) . We conclude with

2‖u‖2L2 ≤ 〈u , Au〉 ≤ ‖u‖L2‖Au‖L2

due to B̂+ ≥ 0 .
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5.5 End of the proof of Theorem 1.2

Assume G, ℓV > 0 be fixed and δ ∈ (0, δ0] . Although we dropped δ0 in our notations,
all the constants in the previous inequalities depend on (G, ℓV , δ0) . We assume now
τx ≤ τℓV ,G,δ0, ε ≤ εℓV ,G,δ0 and

ε2δ ≤ τ
5
3
x .

Proposition 5.4 says

|Eε,min − ε2+2δτxEτ,min| ≤ Cε2+4δ ≤ C ′ε2+2δτ
5
3
x

and we recall
|Eτ,min − EH,min| ≤ Cτ

2
3
x

by Proposition 4.6.

When ψ = Û

(
e
i y
2
√

τx a+

e
−i y

2
√

τx a−

)
, Proposition 5.6 says

‖a+‖L2 ≤ Cε2+2δτx , ‖a‖H2 ≤ C

τx
and ‖a‖L4 + ‖a‖L6 ≤ C ,

while a− solves the approximate Euler-Lagrange equation

Ĥ−a− +G

∫
|a−|2a− = λψa− + rε with ‖rε‖L2 ≤ CℓV ,G(ε+

ε2δ

τx
) .

For u = ‖a−‖L2a− the energy Eτ (u) satisfy

|Eτ (u)− Eτ,min| ≤ Cτ
2
3
x

and the above equation becomes

Ĥ−u+G

∫
|u|2u = λψu+O(ε+

ε2δ

τx
) .

We conclude by referring to Proposition 4.7 applied to u and then renormalizing for a−:
For χ = (χ1, χ2) with χ1 ∈ C∞

0 (R2), χ2
1 + χ2

2 ≡ 1, χ1 = 1 in a neighborhood of 0

‖χ2(τ
1
9
x .)a−‖L2 ≤ Cτ

1
3
x

|Eτ(χ1(τ
1
9
x a−)− EH,min)| ≤ Cτ

2
3
x

dH2(χ1(τ
1
9
x .)a−,Argmin EH) ≤ C(τ

2νℓV ,G

3
x + ε) , νℓV ,G ∈ (0,

1

2
] .

For the L∞-estimates of a+ and dL∞(χ1(τ
1
9
x .)a−,Argmin EH), we simply use the interpo-

lation inequality

‖u‖L∞ ≤ C‖u‖
1
2

L2‖∆u‖
1
2

L2 ≤ C‖u‖
1
2

L2‖u‖
1
2

H2 ,

valid for any u ∈ H2(R2) (write u(0) =
∫
R2 û(ξ)

dξ
(2π)2

, cut the integral according to |ξ| ≶ R,

estimate both term by Cauchy-Schwartz with û = 1
|ξ|2 (|ξ|2û) when |ξ| ≥ R, and then

optimize w.r.t R).
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6 Additional comments

We briefly discuss and sketch how our analysis could be adapted to other problems. No
definite statement is given. Complete proofs require additional work, which may be done
in the future.

6.1 About the smallness condition of ε w.r.t τx

In our main result, Theorem 1.2, condition (1.18) is used, namely

ε2δ ≤ τ
5
3
x

Cδ
.

One may wonder whether such a condition is necessary in order to compare the minimiza-
tion problems for Eε and ε2+2δτxEH . When comparing the minimal energies in Proposi-
tion 5.4, we found

|Eε,min − ε2+2δEH,min| ≤ Cε2+4δ ,

while we know that EH,min = EH,min(ℓV , G) is a positive number independent of τx and
ε . Hence it seems natural to say that ε2δ ≪ τx, at least, is required for ensuring that
ε2+2δτxEH,min is a good approximation of Eε,min . The error is made of three parts:

• the error term for the Born-Oppenheimer approximation in the low-frequency range
given in Theorem 2.1;

• the error term coming from the truncated high frequency part;

• the non linear term.

The non linear term is Gε2+2δτx
2

∫
|ψ|4, so that a small error in ‖ψ‖4L4 will give a negligible

term w.r.t ε2+2δτxEH,min . The question is thus mainly about the linear problem. If one
looks more carefully at the error term of Theorem 2.1, it is made of the term

−ε2 (∂pkfε)(∂pℓfε)
E+ −E−

XkXℓ , (6.1)

according to Proposition 2.6, and of terms coming from the third order term of Moyal prod-
ucts. The function fε is in our case fε(p) = ε2δτxp

2γ(τxp
2), p = (px, py), k, ℓ ∈ {x, y} , and

the factors Xx and Xy computed in the proof of Proposition 3.1 are at most of order 1√
τx
.

Hence the quantity (6.1) is an O(ε2+4δτx) which is again negligible w.r.t ε2+2δτxEH,min .
By considering the higher order terms in the Moyal product, the fast oscillating part of
the symbol w.r.t y, at the frequency 1√

τx
, deteriorates the estimates: although there are

compensations with the slow variations w.r.t py, always multiplied by
√
τx, only an εk

factor without τx appears in the k-th order term.
Hence, computing the higher order terms, at least up to order 3, in the adiabatic approx-
imation and then considering the question of the high-frequency truncation, is a way to
understand whether the smallness of ε w.r.t τx is necessary.
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6.2 Anisotropic nonlinearity

Our work assumes an isotropic nonlinearity. A more general nonlinear term would be

Gε2+2δτx
2

∫
α1|ψ1|4 + 2α12|ψ1|2|ψ2|2 + α2|ψ2|4 dxdy , ψ =

(
ψ1

ψ2

)
.

Our case is α1 = α2 = α12 = 1. Let ψ = Ûφ, with the unitary tranform Û = Û0 + ε1+2δR̂,
(or conversely φ = Û∗ψ). Then the same arguments as in Subsection 3.3 will lead to

∫
α1|ψ1|4 + 2α12|ψ1|2|ψ2|2 + α2|ψ2|4 dxdy

=

(∫
α1|ψ0

1 |4 + 2α12|ψ0
1 |2|ψ0

2|2 + α2|ψ0
2 |4 dxdy

)
(1 +O(ε1+2δ)) ,

after setting ψ0(q) = u0(q)φ(q) at every q = (x, y) . In our case

u0(x, y) =

(
C Seiϕ

Se−iϕ −C

)
, C = cos

(
θ

2

)
, S = sin

(
θ

2

)
, θ = θ(

√
τxx) , ϕ =

y√
τx
.

The pointwise identities

|ψ0
1|2+ |ψ0

2|2 = |φ1|2+ |φ2|2 , |ψ0
1|2−|ψ0

2|2 = cos(θ)
(
|φ1|2 − |φ2|2

)
+2 sin(θ)Re(φ1eiϕφ2)

lead to

α1|ψ0
1|4 + 2α12|ψ0

1 |2|ψ0
2|2 + α2|ψ0

2 |4 =
α1 + 2α12 + α2

4

(
|φ1|2 + |φ2|2

)2

+
α1 − α2

2

(
|φ1|2 + |φ2|2

) (
cos(θ)(|φ1|2 − |φ2|2) + 2 sin(θ)Re(φ1eiϕφ2)

)

+
α1 − 2α12 + α2

4

(
cos(θ)(|φ1|2 − |φ2|2) + 2 sin(θ)Re(φ1eiϕφ2)

)2

=

[
α1 cos

4(
θ

2
) + α2 sin

4(
θ

2
) +

α12

2
sin2(θ)

]
|φ1|4

+

[
α1 sin

4(
θ

2
) + α2 cos

4(
θ

2
) +

α12

2
sin2(θ)

]
|φ2|4

+

[
(α1 + α2)

2
sin2(θ) + α12(1 + cos2(θ))

]
|φ1|2|φ2|2

+ [(α1 − α2) + (α1 − 2α12 + α2) cos(θ)] sin(θ)|φ1|2Re(φ1eiϕφ2)

+ [(α1 − α2)− (α1 − 2α12 + α2) cos(θ)] sin(θ)|φ2|2Re(φ1eiϕφ2)

+(α1 − 2α12 + α2) sin
2(θ)Re

[
(φ2eiϕφ2)

]
.

At least three points have to be adapted from the previous analysis:
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1) When we take a test function ψ = Û

(
0

e
−i y√

τx a−

)
the energy Eε(ψ) will be close to

ε2+2δτxEτ (a−), with

Eτ(a−) = 〈a− , Ĥ−a−〉+
G

2

∫ [
α1 cos

4(
θ

2
) + α2 sin

4(
θ

2
) +

α12

2
sin2(θ)

]
|a−|4 dxdy ,

and cos(θ) =
√
τxx√

1+τxx2
. Hence before taking the limit τx → 0 we have a position

dependent nonlinearity. This will induce another error term when comparing with
the energy EH(a−) = 〈a− , HℓV a−〉+ G(α1+α2+2α12)

8

∫
|a−|4 , in the limit τx → 0 .

Another possibility consists in considering the case when |α2 − α1| + |α12 − α1| is
small as (ε, τx) → (0, 0) . The energy Eτ (ψ) , written as,

〈a− , Ĥ−a−〉+
G

2

∫ [
α1 + (α2 − α1) sin

4(
θ

2
) +

(α12 − α1)

2
sin2(θ)

]
|a−|4 dxdy ,

will converge to EH(a−) = 〈a− , HℓV a−〉+ Gα1

2

∫
|a−|4 .

2) The existence of a minimizer for Eε and the variational argument showing that ‖a+‖2L2 =

O(ε2+4δ)+Eε,min when ψ = Û

(
e
i y√

τx a+

e
−i y√

τx a−

)
is a ground state for Eε will be essentially

the same as in the isotropic case.

3) The analysis and the use of the Euler-Lagrange equation for ground states of Eε, like
in Subsection 5.4, will certainly be more delicate because it will be a system, and
the vanishing of the crossing terms have to be considered more carefully.

6.3 Minimization for excited states

One may consider like in [DGJO] the question of minimizing the energy, for states prepared
according to ψ+ local eigenvector of the potential. Two things have to be modified in order
to adapt the previous analysis:

1) The space of states, on which the energy is minimized has to be specified. The unitary
transform Û introduced in Theorem 2.1 provides a simple way to formulate this

minimization problem: set F+ = Ran ÛP+ with P+ =

(
1 0
0 0

)
and consider

inf
ψ∈F+ , ‖ψ‖=1

Eε(ψ) .

2) In order to get asymptotically as ε→ 0, the same scalar minimization problems with
Eτ and EH , the external potential Vε,τ has to be changed. It must be now

Vε,τ(x, y) =
ε2+2δ

ℓ2V
v(
√
τxx,

√
τxy)−

√
1 + τxx2 − ε2+2δ

[
τ 2x

(1 + τxx2)2
+

1

1 + τxx2

]
.
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The analysis of this problem is essentially the same as for the complete minimization
problem. It is even simpler because the unitary Û is directly introduced. A slightly
different question is about the minimization of the energy Eε in the space F0

+ = Ran Û0P+,

but the accurate comparison between Û and Û0 widely used through this article would
lead to similar results.
Possibly this extension can even be generalized to higher rank matricial potentials with
eigenvectors ψ1, . . . , ψN , for states modelled on any given ψk .

6.4 Time dynamics of adiabatically prepared states

When ψ0 = Û

(
0
a−,0

)
(resp. ψ0 = Û

(
a+,0
0

)
), the question is whether the solution ψ(t)

to
i∂tψ = HLinψ +Gε,τ |ψ|2ψ , ψ(t = 0) = ψ0

remains close to Û

(
0

a−(t)

)
(resp.

(
a+(t)
0

)
) with

i∂ta− = ε2+2δτxĤ−a− +
Gε2+2δτx

2
|a−|2a− , a−(t = 0) = a−,0 ,

resp. i∂ta+ = ε2+2δτxĤ+a+ +
Gε2+2δτx

2
|a+|2a+ , a+(t = 0) = a+,0 .

More precisely, the question is about the range of time where this approximation is

valid: what is the size of Tε w.r.t ε such that supt∈[−Tε,Tε] ‖ψ(t) − Û

(
0

a−(t)

)
‖ (resp.

supt∈[−Tε,Tε] ‖ψ(t)−
(
a+(t)
0

)
‖) remains small.

Since the approximation of Û∗HLinÛ by

(
Ĥ+ 0

0 Ĥ−

)
is good in the low frequency range, a

natural assumption will be that the initial data are supported in the low frequency region

a0,± = χ(ε2τxD
2
q)a0,± ,

for some compactly supported χ . Then the question is whether the norm of (1 −
χ̃(ε2τxD

2
q ))ψ(t) remains small for t ∈ [0, Tε] for χ̃ ∈ C∞

0 (R), χ ≺ χ̃ . Then the two

last parts of Section 3, concerned with the high frequency part and the effect of Û on the
nonlinear term, have to be reconsidered.

Note that the adiabatically prepared state with ψ0 = Û

(
a0,+
0

)
are probably not stable

for very long time, Tε = O(e
c
ε ), because the characteristic set

Cλ =
{
(q, p) ∈ R

4, det
(
ε2δτxp

2 + Vε,τ (q) +M(q)− λ
)
= 0
}

contains two components when λ ≥ minE+, one corresponding to the higher level of
M(q) with |p|2 ≤ C(λ), and another one for the lower level of M(q) but with large p’s.
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This means that a tunnel effect will occur between the two levels, so that adiabatically
prepared states, with energies close to λ ≥ minE+, will not remain in this state for (very)
large times.

A Semiclassical calculus

A.1 Short review in the scalar case

Consider a Hörmander metric, g, that is a metric on R2d
q,p, which satisfies the uncertainty

principle, the slowness and temperance conditions (see [Hor, BoLe]) and consider g-weights
(slow and tempered for g) M , M1, M2 . The symplectic form on R2d

q,p is denoted by σ :

σ(X,X ′) =

d∑

j=1

pjq′j − qjp
′j , X = (q, p) , X ′ = (q′, p′) .

The dual metric gσ is given by gσX(T ) = supT ′ 6=0
|σ(T,T ′)|2
gX(T ′) and the gain associated with g is

λ(X) = inf
T 6=0

(
gσX(T )

gX(T )

)1/2

≥ 1 (uncertainty) . (A.1)

In the scalar case, the space S(M, g) is then the subspace of C∞(R2d
p,q;C) of functions such

that
∀N ∈ N, ∃CN sup

gX(Tℓ)=1

|(T1 . . . TNa)(X)| ≤ CNM(X) ,

after identifying a vector field Tℓ with a first-order differentiation operator. For a given
N ∈ N, the system of seminorms (pN,M,g)N∈N defined by

pN,M,g(a) = sup
X∈R2d

sup
gX(Tℓ)=1

M(X)−1|(T1, . . . , Tℓa)(X)|

makes S(M, g) a Fréchet space.
For a ∈ S ′(R2d

q,p) and ε > 0, the Weyl quantized operator aW (q, εDq) : S(Rd) → S ′(Rd) is
given by its kernel

aW (q, εDq)(q, q
′) =

∫

Rd

ei
(q−q′).p

ε a(
q + q′

2
, p)

dp

(2πε)d
.

When no confusion is possible, we shall use the shortest notations

aW (q, εDq) = aW = a(q, εDq) .

When a ∈ S(M, g), it sends S(Rd) (resp. S ′(Rd)) into itself and the composition a1 ◦ a2
makes sense for aj ∈ S(Mj , g) . The Moyal product a1♯

εa2 is then defined as the Weyl-
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symbol of aW1 (q, εDq) ◦ aW2 (q, εDq):

a1♯
εa2(X) =

(
e

iε
2
σ(DX1

,DX2
)a1(X1)a2(X2)

) ∣∣∣
X1=X2=X

=

J−1∑

j=0

(
iε
2
σ(DX1, DX2)

)j

j!
a1(X1)a2(X2)

∣∣∣
X1=X2=X

+

∫ 1

0

(1− θ)J−1

(J − 1)!
e

iε
2
θσ(DX1

,DX2
)

(
iε

2
σ(DX1, DX2)

)J
a1(X1)a2(X2)

∣∣∣
X1=X2=X

=
J−1∑

j=0

(
iε
2
σ(DX1, DX2)

)j

j!
a1(X1)a2(X2)

∣∣∣
X1=X2=X

+ εJRJ(a1, a2, ε)(X) , (A.2)

where RJ (., ., ε) is a uniformly continuous bilinear operator from S(M1, g) × S(M2, g)
into S(M1M2λ

−J , g) (i.e. any seminorm of RJ(a1, a2, ε) is uniformly controlled by some
bilinear expression of a finite number of seminorms of a1 and a2).
The three first terms of the previous expansion are given by

a1♯
εa2 = a1a2 +

ε

2i

[
∂pka1∂qka2 − ∂qka1∂pka2

]

−ε
2

8

[
(∂2pk,pℓa1)(∂

2
qkqℓa2) + (∂2qk ,qℓa1)(∂

2
pk,pℓ

a2)− 2(∂2pk,qℓa1)(∂
2
qk,pℓ

a2)
]

(A.3)

+ε3R3(a1, a2, ε) ,

by making use of the Einstein convention sjtj =
∑

j s
jtj .

With the small parameter ε ∈ (0, ε0), it is more convenient to consider the Fréchet-
space Su(M, g) of bounded functions from (0, ε0) to S(M, g) endowed with the seminorms:

PN,M,g(a) = sup
ε∈(0,ε0)

pN,M,g(a(ε)) .

The subscript u stands for uniform seminorm estimates and we shall give a variation of
this definition in Subsection A.4 below. The space of ε-quantized family of symbols will
be denoted by OpSu(M, g):

(a(ε) ∈ Su(M, g)) ⇔
(
aW (q, εDq, ε) ∈ OpSu(M, g)

)
.

We recall the Beals-criterion proved in [BoCh] (see [NaNi] for the ε-dependent version)

for diagonal Hörmander metrics of the form g =
∑d

j=1
dqj

2

ϕj(X)2
+

dpj2

ψj(X)2
.

Set D = (Dq1, . . . , Dqd, q
1, . . . , qd) and for E ∈ N

2d introduce the multi-commutator

adED =
∏|E|

j=1 ad
Ej

Dj
acting on the continuous operators from S(Rd) to S ′(Rd) and the

weight ME(X) = (ϕ(X), ψ(X))E .
Then the Beals criterion says that an operator A : S(Rd) → S ′(Rd) belongs to OpS(1, g)
if and only if

adEDA ∈ L(L2(Rd), Hε(ME))
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for all E ∈ N
2d , when the Sobolev space Hε(ME) is given by

‖u‖Hε(ME) = ‖ME(q, εDq)u‖L2 .

Moreover the family of seminorms (QN)N∈N, defined by,

QN(A) = sup
ε∈(0,ε0)

max
|E|=N

ε−N‖ adEDA(ε)‖L(L2(Rd),Hε(ME ,g)) (A.4)

on OpSu(M, g), is uniformly equivalent to the family (PN(a))N∈N on Su(M, g) after the
identification A(ε) = aW (q, εDq, ε) . “Uniformly” means here that the comparison of the
two topologies is expressed with constants independent of ε ∈ (0, ε0) .
Below is an example of a metric which satisfies all the assumptions and which is used in
our computations

g =
dq′2

(1 + |q′|2)̺ + dq′′
2
+

dp2

(1 + |p|2)̺′ , m ≥ 0 , ̺, ̺′ ∈ [0, 1] , (A.5)

with the gain function λ(q, p) = 〈p〉̺′ .
It is convenient to introduce the class of negligible symbols and operators.

Definition A.1. An element a ∈ Su(1, g), belongs to Nu,g if

∀N,N ′ ∈ N, ∃CN,N ′ > 0, ε−Na(ε) ∈ Su(λ
−N ′

, g) .

Similarly, OpNu,g denotes the ε-quantized version:

(
aW (q, εDq, ε) ∈ OpNu,g

)
⇔ (a ∈ Nu,g) .

Combined with the following relation between cut-off functions it provides easy esti-
mates from phase-space localization.

Definition A.2. For two cut-off functions χ1, χ2 ∈ C∞
0 (R2d), 0 ≤ χ1,2 ≤ 1, the notation

χ1 ≺ χ2 means that χ2 ≡ 1 in a neighborhood of suppχ1 .

For example the pseudodifferential calculus leads to

(χ1 ≺ χ2) ⇒ (∀a ∈ Su(M, g), (1− χ2)♯
εa♯εχ1 ∈ Nu,g) , (A.6)

when the weight M satisfies M ≤ CλC for some C > 0 .

A.2 Applications to matricial operators

Operator valued pseudodifferential calculus has been studied in [Bak]. When h is a Hilbert
space it suffices to tensorize the previous calculus with L(h), which corresponds to the com-
ponentwise definition in Mn(C) when h = Cn . The corresponding class of symbols associ-
ated with a Hörmander metric g and a g-tempered weight M is denoted by S(M, g;L(h))
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while the set of bounded families in S(M, g;L(h)) parametrized by ε ∈ (0, ε0) is denoted
by Su(M, g;L(h)) .
The asymptotic expansions (A.2)-(A.3) of the Moyal product clearly holds (see [PST]
for a presentation without specifying the remainder terms) if one takes care of the or-
der of the symbols. For example, the two first terms of the expansion of a commutator
[a1(q, εDq), a2(q, εDQ)] are

a1♯
εa2−a2♯

εa1 = [a1(q, p), a2(q, p)]+
ε

2i
(∂pa1∂qa2−∂qa1∂pa2)−

ε

2i
(∂pa2∂qa1−∂qa2∂pa1)

+ ε2 [R2(a1, a2, ε)− R2(a2, a1, ε)] (A.7)

with no simpler expression when the matricial symbols do not commmute.

When the Hörmander metric g has the form
∑

j
dqj

2

ϕ2
j

+
dp2j
ψ2
j

the uniform Beals criterion

also holds: In the seminorms Q(a) defined in (A.4) simply replace L2(Rd) by the Hilbert
tensor product L2(Rd)⊗ h and consider the operators D and ME(q, εDq) as the diagonal
ones D⊗ Idh and ME(, εDq)⊗ Idh .
Finally the Definition A.1 of negligible symbols also makes sense for matricial symbols
after replacing OpS(λ−N

′
, g) by OpS(λ−N

′
, g;L(h)) .

We end this section with standard applications of the Beals criterion.

Proposition A.3. Consider a diagonal Hörmander metric g =
∑d

j=1
dqj

2

ϕj(X)2
+

dp2j
ψj(X)2

and

the constant metric g0 = dq2 + dp2 . Assume that any f ∈ {ϕj , ψj, j ∈ {1, . . . , d}} is g0
slow and tempered weight such that f(q, εDq)

s belongs OpSu(f
s, g0) for any s ∈ N2.

Assume that A ∈ OpSu(1, g;L(h)) is a family of invertible operators in L(L2(Rd) ⊗ h)
and such that ‖A−1(ε)‖ is uniformly bounded in w.r.t ε ∈ (0, ε0) . Then A−1 belongs to
OpSu(1, g;L(h)) .
Proof: We start from the relation

adEDA
−1 =

∑

|E′|=|E|,E′∈N|E|

cE,E′A−1

|E|∏

j=1

[(
ad

E′
j

D A
)
A−1

]
. (A.8)

which holds in L(L2(Rd) ⊗ h) for all E ∈ N2d . Hence the Beals criterion in the metric
g0 says that A

−1 belongs to OpSu(1, g : L(h)) . In particular A−1 belongs to L(Hε(ME”))
for any E” ∈ N2d . This allows to apply the Beals criterion in the metric g and yields the
result.

A.3 Pseudodifferential projections

An application of the Beals criterion says that a true pseudodifferential projection can
be made from an approximate one at the principal symbol level. This holds for matricial
symbols.

2This last condition is redundant after a possible modification of ϕj adn ψj if one refers to [BoCh],
but easier to check directly in our examples than giving the general proof.
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Proposition A.4. Consider a diagonal Hörmander metric g =
∑d

j=1
dqj

2

ϕj(X)2
+

dp2j
ψj(X)2

with

the same properties as in Proposition A.3. Assume that the operator Π̂ ∈ OpSu(1, g;L(h))
satisfies

(
Π̂ ◦ Π̂− Π̂

)
= εµR̂µ + ενR̂ν ,

with Rµ ∈ Su(M, g;L(h)), Rν ∈ Su(N, g;L(h)) ν > µ > 0 and M,N ≤ 1 . Assume
additionally that there exist χ, χ′ ∈ Su(1, g;L(h)), 0 ≤ χ ≤ χ′ ≤ 1 such that χ ≺ χ′ and
χ′Rµ = 0 .
Then for ε1 ≤ ε0 small enough, the operator

P̂ =
1

2iπ

∫

|z−1|=1/2

(z − Π̂)−1 dz

is well defined for ε ∈ (0, ε1) and satisfies

P̂ ◦ P̂ = P̂ in L(L2(Rd)⊗ h) ,

and ε−ν
(
P̂ − Π̂

)
= εµΠ̂µ + ενΠ̂ν , OpSu(M, g;M2(C)) , (ε ≤ ε1) .

with Πµ ∈ Su(M, g;L(h)), Πν ∈ Su(N, g;L(h)) and Π̂µ ◦ χ̂ ∈ OpNu,g .

Proof: The first result concerned with the definition of P̂ is a direct application of the
simple general result in Lemma A.5 applied with T = Π̂ and H = L2(Rd)⊗ h . Note that
our assumptions ν > 1 and M ≤ 1 ensure that ‖Π̂2 − Π̂‖ ≤ 1

8
as soon as ε ≤ ε1 with ε1

small enough.
Writing

Π̂− P̂ = (Π̂2 − Π̂)(A1 − A0)

with

Ax =
1

2iπ

∫

|z−x|
(z − Π̂)−1 dz , x ∈ {0, 1} ,

reduces the problem to proving Ax ∈ OpSu(1, g;L(h)) or (z − Π̂)−1 ∈ OpSu(1, g;L(h))
when {|z − x| = 1/2} with uniform bounds. But this was proved in Proposition A.3 as a
consequence of the Beals criterion. This ends the proof.

Lemma A.5. Assume that in an Hilbert space H, the operator T ∈ L(H) satisfies ‖T 2−
T‖ ≤ δ < 1/4 and ‖T‖ ≤ C then

σ(T ) ⊂ {z ∈ C , |z(z − 1)| ≤ δ} ⊂ {z ∈ C , |z| ≤ cδ} ∪ {z ∈ C , |z − 1| ≤ cδ} , cδ <
1

2
,

max

{
‖(z − T )−1‖, |z − 1| = 1

2

}
≤ 2

2C + 1

1− 4δ
.
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Moreover, the operator

P =
1

2iπ

∫

|z−1|=1/2

(z − T )−1 dz .

differs from T according to

T − P = (T 2 − T )(A1 − A0) = (A1 − A0)(T
2 − T ) , (A.9)

with A1 =
1

2iπ

∫

|z−1|= 1
2

(T − z)−1(1− z)−1 dz (A.10)

and A0 =
1

2iπ

∫

|z|= 1
2

(T − z)−1z−1 dz . (A.11)

Proof: If z ∈ σ(T ) then z(z − 1) belongs to σ(T (T − 1)) ⊂
{
z ∈ C, |z(z − 1)| ≤ 1

4

}

(Remember that |z(z − 1)| = 1
4
means |Z − 1

4
| = 1

4
with Z = (z − 1

2
)2). Consider z ∈ C

such that |z − 1| = 1
2
, then the relation

(T − z)(T − (1− z)) = z(1− z) + (T 2 − T ) ,

with |z(1− z)| ≥ 1
4
and ‖T 2 − T‖ ≤ δ < 1

4
, implies

‖(T − z)−1‖ ≤ ‖T − (1− z)‖‖[z(1 − z) + T 2 − T ]−1‖ ≤ C + 1
2

1
4
− δ

for |z − 1| = 1

2
.

The symmetry with respect to z = 1
2
due to (1 − T )(1 − T )− (1 − T ) = T 2 − T implies

also

‖(T − z)−1‖ ≤ C + 1
2

1
4
− δ

for |z| = 1

2
.

Compute

T − P =
1

2iπ

∫

|z−1|= 1
2

[
T (z − 1)−1 − (z − T )−1

]
dz

= (T − 1)P + (T 2 − T )A1 with A1 =
1

2iπ

∫

|z−1|= 1
2

(T − z)−1(1− z)−1 dz .

In particular this implies to T (1− P ) = (T 2 − T )A1 while replacing T with (1− T ) and
P with 1− P leads to

P − T = −T (1− P ) + (T 2 − T )A0 with A0 =
1

2iπ

∫

|z|= 1
2

(T − z)−1z−1 dz .

Summing the two previous identities yields the result.
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A.4 Extension to parameter dependent metrics

Additionnally to the semiclassical (or adiabatic) parameter, we need other parameters
τ = (τ ′, τ ′′) ∈ (0, 1]2 on which the metric g = gτ depends. In general consider τ ∈ T ⊂ Rν

and a family of Hörmander metrics (γτ )τ∈T defined on R2d
q,p .

Definition A.6. The familly of metric (gτ )τ∈T is said admissible if the uncertainty prin-
ciple (A.1) is satisfied and if the slowness and temperance constants C1, C2, N2 involved
in

(slowness)

(
gτ,X(X − Y ) ≤ 1

C1

)
⇒
((

gτ,X
gτ,Y

)±1

≤ C1

)
,

(temperance)

(
gτ,X
gY

)±1

≤ C2(1 + gστ,X(X − Y ))N2 ,

can be chosen uniformly w.r.t τ ∈ T .
Accordingly a family of weights (Mτ )τ∈T will be admissible if the slowness and temperance
constants of Mτ w.r.t gτ can be chosen uniform w.r.t τ ∈ T .

The important point is that all the estimates of the Weyl-Hörmander pseudodifferential
calculus (see [Hor, BoLe]), including the equivalence of norms in the Beals criterion of
[BoCh], occur with constants which are determined by the dimension d, the uncertainty
lower bound (which is 1 here), the slowness and temperance constants. Hence all the
pseudodifferential and semiclassical estimates, (operator norms or seminorms of remainder
terms) are uniform w.r.t to (ε, τ) as long as the symbols, ak(ε, τ), k = 1, 2, have uniformly
controlled seminorm in S(Mτ,k, gτ), w.r.t (ε, τ) ∈ (0, ε0]× T .
The definition of symbol classes Su(M, g) with uniform control of seminorms w.r.t ε ∈
(0, ε0] can be extended to admissible families (Mτ , gτ )τ∈T .

Definition A.7. For an admissible family (Mτ , gτ)τ∈T , the set of parameter dependent
symbol a(X, ε, τ), X ∈ R2d, (ε, τ) ∈ (0, ε0]× τ with uniform estimates

∀N ∈ N, ∃CN > 0, ∀(ε, τ) ∈ (0, ε0]× T , pN,Mτ ,gτ (a(ε, τ)) ≤ CN ,

is denoted by Su(Mτ , gτ ,L(h)), τ ∈ T .
Equivalently the set of semiclassically quantized operators a(q, εDq, ε, τ) when the symbol
a belongs to Su(Mτ , gτ ;L(h)) is denoted by OpSu(Mτ , gτ ;L(h)) .
The set of negligible symbols and operators associated with (gτ )τ∈T with uniform estimates
in Definition A.1 w.r.t τ ∈ T is denoted by Nu,gτ and OpNu,gτ .

Proposition A.8. For τ = (τ ′, τ ′′) ∈ (0, 1]2 the family (gτ )τ∈(0,1]2 defined on R
2d =

R
2(d′+d′′) by

gτ =
τ ′dq′2

〈
√
τ ′q′〉2

+ τ ′′dq′′
2
+

τ ′τ ′′dp2

〈
√
τ ′τ ′′p〉2

is admissible.
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Proof: It is easier to consider the symplectically equivalent metric (use the transform

(q′, q′′, p′, p′′) → (τ ′
1
2 q′, τ ′′

1
2 q′′, τ ′−

1
2p′, τ ′′−

1
2p′′))

g̃τ =
dq′2

〈q′〉2 + dq′′ +
τ ′2dp′2 + τ ′′2dp′′2

〈p〉2τ
after setting 〈p〉2τ = 1 + τ ′2p′2 + τ ′′2p′′2 . Firstly remember that the metric

g(1,1) =
dq′2

〈q′〉2 + dq′′ +
dp2

〈p〉2 .

is a Hörmander metric. The metric g̃στ is given by

g̃στ =
〈p〉2τ
τ ′2

dq′2 +
〈p〉2τ
τ ′′2

dq′′2 + 〈q′〉2dp′2 + dp′′2 .

Hence the uncertainty principle (A.1) is satisfied with

λτ (q
′, q′′, p′, p′′) = min

{
〈q′〉〈p〉τ

τ ′
,
〈p〉τ
τ ′′

}
≥ 〈p〉τ ≥ 1 .

In order to check the uniform slowness and temperance of g̃τ , introduce the new variables
Xτ = (q′, q′′, τ ′p′, τ ′′p′′) when X = (q′, q′′, p′, p′′) with a similar definition for Yτ and Tτ .

Slowness: Write
(
g̃τ,X(X − Y ) ≤ 1

C1

)
⇔
(
g̃(1,1),Xτ (Xτ − Yτ ) ≤

1

C1

)
.

When C1 is slowness constant of g̃(1,1), this implies

(
g̃(1,1),Xτ

g̃(1,1),Yτ

)±1

≤ C1

which is nothing but (
g̃τ,X
g̃τ,Y

)±1

≤ C1 .

Temperance: Write
(
g̃τ,X(T )

g̃τ,Y (T )

)±1

=

(
g̃(1,1),Xτ (Tτ )

g̃(1,1),Yτ (Tτ )

)±1

≤ C2(1 + g̃σ(1,1),Xτ
(Xτ − Yτ ))

N2 ,

when C2 and N2 are the temperance constants for g̃(1,1) . The problem is reduced to
showing

∀X, T ∈ R
2d , g̃σ(1,1),Xτ

(Tτ ) ≤ g̃στ,X(T ) .

The expression of g̃στ gives with X = (q′, q′′, p′, p′′) and T = (θ′, θ′′, π′, π′′)

g̃σ(1,1)Xτ
(Tτ ) = 〈p〉2τθ′2 + 〈p〉2τθ′′2 + 〈q′〉2τ ′2π′2 + τ ′′2π′′2 ≤ g̃στ,X(T )

owing to max{τ ′, τ ′′} ≤ 1 .
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neutral atoms. arXiv:1008.5378.

[Fet] A.L. Fetter. Rotating trapped Bose-Einstein condensates Rev. Mod. Phys. 81, 647
(2009).

[LCGPS] Y.J. Lin, R.L. Compton, K.J. Garcia, J.V. Porto, I.B. Spielman. Synthetic
magnetic fields for ultracold neutral atoms Nature 462, 628 (2009)

[GCYRD] K.J. Günter, M. Cheneau, T. Yefsah, S.P. Rath, J. Dalibard. Practical scheme
for a light-induced gauge field in an atomic Bose gas. Phys. Rev. A 79, 011604(R)
(2009).

[HaJe] A. Haraux, M.A. Jendoubi. The Lojasiewicz gradient inequality in the infinite-
dimensional Hilbert space framework. J. Funct. Anal. 260 no. 9 (2011), pp 2826–2842.

[HiPr] M. Hitrik, K. Pravda-Starov. Spectra and semigroup smoothing for non-elliptic
quadratic operators. Mathematische Annalen, 344 (2009), no.4, pp 801–846.
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