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Abstract

Following the recent experimental realization of synthetic gauge magnetic forces,
Jean Dalibard adressed the question whether the adiabatic ansatz could be math-
ematically justified for a model of an atom in 2 internal states, shun by a quasi
resonant laser beam. In this paper, we derive rigorously the asymptotic model
guessed by the physicists, and show that this asymptotic analysis contains the in-
formation about the presence of vortices. Surprisingly the main difficulties do not
come from the nonlinear part but from the linear Hamiltonian. More precisely,
the analysis of the nonlinear minimization problem and its asymptotic reduction to
simpler ones, relies on an accurate partition of low and high frequencies (or mo-
menta). This requires to reconsider carefully previous mathematical works about
the adiabatic limit. Although the estimates are not sharp, this asymptotic analysis
provides a good insight about the validity of the asymptotic picture, with respect
to the size of the many parameters initially put in the complete model.

1 Introduction

A lot of interest, both in the mathematical and physical community, has been devoted in
the past 10 years to the study of the rotation of a Bose Einstein condensate: experiments
[IMCWD1, MCWD?2], theoretical works (see [Coo, Fet] for reviews), mathematical contri-
butions [Aft, LiSe|. In [MCWD1, MCWD2], a rotating laser beam is superimposed on the
magnetic trap holding the atoms in order to spin up the condensate by creating a har-
monic anisotropic rotating potential. Recently, a new experimental device has emerged
which consists in realizing artificial or synthetic gauge magnetic forces and leads to the
formation of vortex lattices at rest in the lab frame [LCGPS]. A colloquium [DGJO]
has analyzed in detail the artificial gauge fields and their manifestations. In order to
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understand the main ingredients of the physics of geometrical gauge fields, [DGJO] (see
also [GCYRD]) introduced a toy model: a single quantum particle state with a 2 level
internal structure. A key issue is to determine whether one internal state can be followed
adiabatically. A question raised by Jean Dalibard is to analyze in particular whether
vortex formation may break down the adiabatic process. In [DGJO], some conditions are
provided, that we want to analyze from a mathematical point of view.

We are interested in the minimization of the energy

eue) = [ IVOF +Vilaplo
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the internal degree of freedom of a particle: ground and excited state of the atom. It is
assumed that the atom is shun by a quasi resonnant laser beam. The functions €, 4, (),
vr(y) and 6, (x) are given as in [DGJO] by

where ¢ = ((bl(x,y)) € C? and |¢(x,y)|* = |p1(z,y)|* + |p2(x,y)|*. Here ¢ and ¢, are

oy () = Hsz(;) with Q(z) = V1 + 22,
T 1

0, () = Q(;) with cos(f(x)) = , sin(f(z)) = N

K 372 + 1
or(y) = p(ky) with o(y) =y .

where ¢ is the phase of the propagating laser beam while ¢ is the mixing angle. We define
B cos(f(x)) W) sin(f(z))
(r.9) = 90) (o)~ o) (1)

The matrix M models the coupling between the atom and the laser. The 2 x 2 matrix
M (\/ﬁ, Vl:ky) can be diagonalized in the bases (14,1 _) respectively associated with

o= () o= (57) (12
(7=

with C' = cos(#ﬁk)), S = sin(@) and ¢ = /f,ky. When the particle follows
adiabatically one of the eigenstates, for instance 1 _, this corresponds to set formally
o = u(z,y)1_, where u(z,y) € C. Then u minimizes a GP type energy functional with a
modified trapping potential called the geometrical gauge potential. The scalar potential
Vi(z,y) = Vi(z,y) Idce will be adjusted in order to produce a harmonic potential after the
addition of the geometrical gauge potential from the adiabatic theory. We want to justify
the adiabatic approximation for states close to ¢)_ and analyze the error term between

the initial and effective Hamiltonians.

the eigenvalues +Q(z),



After a rescaling, the parameter occuring in experiments have the following orders of

magnitude
k~10° . G~600 , (.~25 , k~250,

but other values of the parameters can be discussed. Conditions on the strength and
spatial extent of the artificial potential have to be prescribed to induce large circulation.
Two cases, ¢,k > 1 and ¢,k < 1, can be distinguished and the problem has to be rewritten
in two different ways in order to apply semiclassical techniques. In fact, we will focus on
the case (,k > 1, corresponding to the previous numerical values. The complete analysis
is carried out in the asymptotic regime ¢,k — +oo but some partial results are also valid
for (k< 1lor/l.k—0.

A change of scale ¢(z,y) = 4 / w \ / A T y yields a new expression for the energy:

0.8 + 0,08 \f \f P
COS

o (B R g 2))
+ kQ( Mﬁ)(?/} _Zf(my)sl (Q(\/;fT)) —COS(( - ) V)2

Gk, 4
+2—€ﬁ|w| dxdy

According to the two cases .k > 1 or £,k < 1, we define a small parameter € that allows
to rescale the energy. In fact, we define rather the parameter 2+, where § can be taken
as a first step equal to 5/2. The exponent § > 0 is a technical trick which provides the
right quantitative estimates for the adiabatic approximation with a quadratic kinetic enery
term . The suitable choice of this new parameter ¢§ is dicussed further in this introduction,
in Subsections 1.1 and 1.2.

if /.k > 1: then

k2 Gk G
2+25 2+25
= — = —=— , 1.
€ /{’5>0 , G P k:f,f (1.3)
This leads in our example to €2+ = 2.5 1073,
if /.k <1:
1 Gk
B 5>0 G. = — = Gkl 1.4
c 2k’ ' Kl c ' (14)

In both cases, this leads to a linear energy

E () = / 2% |+ Ve (z, )P
]R2
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= (¢, HLin?), (1.6)



with

HLin = _8257-337-3/82A + ‘/577'(3:7 y) + M(“ E'Cl;7 \l %y) ) (17)
Voo(o,y) = & Vi \/ \/ (to be fixed) (1.8)

T —{ <'f%;£> <1 19
With the nonlinear term, the energy equals
E(Y) = (¥, Hpint) + 6T/|1/1\4 dxdy , (1.10)
G.r = Grpr e (1.11)
In both cases, we thus have
KTE(9) = &-(¢) (1.12)

At least when 7, = 7, = 1 and 0 = 0, this problem looks like the standard problem of
spatial adiabatic approximation studied in [Sor], [MaSo|, [PST], although it requires some
adaptations because the symbols are neither bounded nor elliptic.

We shall consider the asymptotic analysis as € — 0 with uniform control with respect
to the parameters G, k¢, which allow to fix the range of validity of the reduced models.
Then we shall consider the asymptotic behaviour of the reduced model and the whole
system as (,k is large. Specifying the right assumptions on V. .(z,y) or V,, possibly in a
scale depending on (/,, k), is also an issue.

1.1 Main result for the Gross Pitaevskii energy

We shall choose the potential V, . such that after addition of the adiabatic potential in
the lower energy band, the effective potential is almost harmonic, namely we assume

2420 2 1

%, /T2 1+ rpa? — 2% e 1.13
v(\/To, \/Toy) + + 722 —¢€ (1+7$x2)2+1+7xx2 , (1.13)

€

Ver(2,y) = —5—
G

with the potential v chosen such that

v(z,y) = (2% + ¥°)xo(2® + ¥°) + (1 — xo(2® + 47)) (1.14)
xo €C5°([0,2)) , 0<x,<1, x,=1onl0,1],

and ¢y > 0 parametrizes the shape of the quadratic potential around the origin.
With these assumptions on the potential V; ;, if one chooses ¢ = u(x, y)1_, where ¢_



the eigenfunction corresponding to —Q(z+/7./7,) of Q(x\/Tu/ 7)) M (/70 /Tys Y\/Ty/ i)

then the linear part Hy;, of & is formally replaced by the scalar €272°7, H_ where

H =-0*— (ay —i (1.15)

2
x 1
— | + 5—v(VTr, /TY) .
21+ TJCxQ) G, ( v)
In the limit 7, — 0, a natural (e, 7)-independent scalar reduced model emerges:

i % 4 2 G
Eu) = u, |- @~ 57+ 5|0+ § [l wmpec
\%4

R2

Because & is large, or ¢ is small, it is natural to expect that the ground state of £, is close,
up to a unitary transform, to a vector u(z,y)1)_. This is the aim of the adiabatic theory
and leads to a scalar problem. In order to get good bounds on the energy, we need to
study the limit 7, small at the same time.

In all our work ¢/, > 0 and G > 0 are assumed to be fixed, while the asymptotic
behaviour is studied as ¢ — 0 and 7, — 0.
The quadratic part of the above energy is associated with the Hamiltonian

. 2 2
Hgvz—ﬁi—(ay—%)2+$;y . (0<fy < +00), (1.16)
174
with the domain
Hy=que LP(R%), > [lg*Diullz < +o0p, q=(z,y) €R?, (1.17)

laf+[8]<2

endowed with the norm || f]j3, = > jal18]<2 lg*DSul|?, and the corresponding distance
dy, - 1t is not difficult (see Section 4.2) to check that the minimization of Ex(y) under
the constraint ||¢||z2 = 1, admits solutions and that the set, Argmin £, of ground states
for £y is a bounded set of H, .

Definition 1.1. For a functional € defined on a Hilbert space H (with 400 as a possible
value), we set

Emin = nf E(u) and Argmin & ={u € H, E(u) = Ein and||ul]| = 1} .

fJufl=1

Theorem 1.2. Fiz the constant ¢y, G and 0 and assume, for some Cs = C(ly,G,d) > 0,

(S

% < ﬁ
=5
Let x = (x1, Xx2) be a pair of cut-off functions such that x* + x5 =1 on R?, x; € C§°(R?)

and x1 = 1 in a neighborhood of 0 .
There exist constants, vy = vy, ¢ € (0, %] and for any given § > 0, 75 = 7({y,G,0) > 0,

> (1.18)

Cys = C(ly,G,0,x) > 0, and a unitary operator U= U(e,T, by, G, 8) which gquarantee
the following properties



e The energy E. introduced in (1.10) admits ground states as soon as T, < 75, with

5
2426 2420 3
‘ge,min — € + ngH,min‘ < 058 + T

o Any 1 € Argmin & written in the form ¢ = U ( 64 .t ) satisfies
e VEq_
2426 Cs
lasllze < Coe™Pr allgz = — -, llallzs + [lallze < G,

xT

1 1
Ix2(72 a2 < Cys7a
1 2vq

dy, (X1 (72 )a—, Argmin E) < Cy5(1° +¢),

2vg

1
lay |z < Cse'™ | dio(x1(78.)a_, Argmin ) < Cy5(2® + 5)% .

All the constants can be chosen uniformly with respect to 6 € (0,0q] for any fized
50 > 0.

Remark 1.3. The proof is made in two steps: 1) the limit € — 0 corresponds to the
adiabatic limit for the linear problem and allows to replace the linear part Hy,, of &, by
the scalar €227, H_ given by (1.15). 2) the limit 7, — 0 allows to reduce the asymptotic
manimization problem to a simpler one where the linear Hamiltonian is exactly Hy, given
by (1.16).

One main point in the proof is to have precise energy estimates for the limiting problem. In
our case, we obtain them in the limit 7, — 0, because explicit calculations are more easily
accessible when the magnetic field is constant, that is in the case of Emmin. In theory,
if one had precise energy estimates for a general T, for the intermediate adiabatic model
with the linear part H_, complete results could be performed for general values of 7, .

Remark 1.4. The exponent vy = vy, ¢ s a Lojasiewicz-Simon exponent. It is % when the

Lagrange multiplier associated with uw € Argmin £y is a simple eigenvalue of ﬁgv +G)?.
There are reasons to think that it is the case for generic values (fy,G) € (0,400) X
[0, +00), namely outside a subanalytic subset of dimension smaller than 1 (and possibly
0). Nevertheless for G = 0, there is a discrete set of values of ly, where vy, o can be made
arbitrarily small.

Consequences and applications: One issue is the possibility to observe vortices (zeroes
of the wave function with circulation around them) in a system with artificial gauge as
presented in [DGJO] and modelled with the energy £.. One may process in the following
way: once G is fixed, choose ¢y such that the minimizers of £y have vortices (detailed
conditions will be given in section 4.2). Then take 7, > 0 and ¢ > 01 small enough so

1 1
that dy, (x(72 .)a_, Argmin £ ) and therefore the L> distance from x (77 .)a_ to a ground
state of £y is small. In the above result, the constants are not explicitely controlled and



this control is worse and worse when § increases. So it is not explicit for given numerical
values of the parameters ¢y, G, 7., € or equivalently ¢y, G, k, k, /... Nevertheless it provides
a framework for numerical simulations, where the observation of vortices can be confirmed
by decreasing € and 7, .

The definitions (1.3) of ¢ and (1.9) of 7., transform the condition (1.18) into

k2 %525 1 3
(5 =(m)

The larger 9, the better, but 0 must not be to large because of the value of the constants

Cs, Csx- A value of a few units for 0 does not affect them to much. Another reason for

keeping ¢ small is that the initial small parameter is £272°, while the final error estimate of
1 1

dag, (x1(72 )a_, Argmin Ep) (or dp(x1(72 .)a_, Argmin Ey)) contains also an O(e) term.

As an example for § = g, the above relation becomes

N B A
(kgﬁ)'?/g K ) Tx - k:fm ) g = K .

1
A given precision of order € + 77, is more easily achieved by taking k& small and ¢,, = T%k
large (for example k& = 0.1, £, = 500 x 25 is better than the values k = 50, ¢,, = 25 given

in the introduction). Note also that the external potential V. ., defined in (1.13) must be

2420 _ k2
=<,

adjusted up to the order e

1.2 Gist of the analysis

Following the general idea of the founding articles [BoFo, BoOp] of Born, Fock and Op-
penheimer, it is well known in the physics literature that a Hamiltonian system

o +ule) (P4 ) e

is unitarily equivalent to a diagonal Hamiltonian

7 o, ) e+ R

where (D, F A(q)) are the covariant derivatives (FA(q) is the adiabatic connection) asso-

ciated with the fiber bundles u,(q) (((0:) and ug(q) <((0:), and | X (q)|? is the Born-Huang

potential.
Since [Kat] and until recently ([NeSo, MaSo, PST, PST2]), this problem has been widely
studied by mathematicians, and the remainder term is formally:

R(e) = Z eCij(q)(Dy,)(eDy,) + O(%)



which for a typical frequency of order é has the same size as the main term. Introducing
0 > 0 allows to obtain at the formal level

o (P A ) +IXG |2}+Ze“4‘50 JD,) (2D, ) +O(E),

where the remainder term is O(¢4) at the typical frequency 1 and thus O(¢*) times
the size of the main term. Such an error estimate can be made in the L?-sense when
applied to some wave function ¢ lying in {|p| < r}, with p quantized into €D, or more
precisely fulfilling ¢ = x(¢D,)¢ for some y € C5°({|p| < 2r}) with

IR()UIl < Cy(*7 + Cne™) el < (Cy 5e)e* ¢

where Cy essentially depends on the estimates of N-derivatives of uy(q), E+(q). For a
fixed 0, we choose N > 2+ 44.

Remark 1.5. (on the choice of §): another strategy could be considered in order to opti-
mize the exponent §, w.r.t : under analyticity assumptions or more generally assumptions
which lead to an explicit control of C in terms of N, one could think of optimizing first
Cne™ w.r.t to N according to the methods of [NeSo, Sor, MaSo]. As an example with
Cyx < NV, this would lead to Cne™ < Ce=< after choosing N = N(e) = [ﬂ, with some
C < 1. Then taking § = 6(g) = —ﬁg(e) would lead to

CC, (e 2+466)+6—2) <2CCye EMJH

2425()  considered as the order 1 term, an

When 6(¢) — oo and as compared with €
O(e¥9E)) remainder term is almost of order 2.
We do not consider this optimization of § w.r.t e, with lim. () = 400, because our

initial small parameter is €*72° and the final result of Theorem 1.2, (the estimate about

1
dy, (X1 (72 )a—, Argmin Ep) in the nonlinear problem), contains an O(e) . Hence we keep
0 > 0 independent of . This is why § is still present in the constants of Theorem 1.2.

We need to perform a frequency (or momentum) truncation. We decompose a general
¢ into x(eD,)Y+(1—x(eD,))¥ and use rough estimates for the part (1 —x(eD,))ty which
will be compensated in the minimization problem for £ by good a priori estimates for
the norm |[|(1 — x(eD,))v|| of the high-frequency part. We also have to check that the
unitary transform U , implementing the adiabatic approximation, does not perturb much
the nonlinear part of £ (¢).

In our case, the limit ¢ — 0 leads to the Born-Oppenheimer Hamiltonians

o el
E-OF e e

which, in a second step, in the limit 7, — 0, leads to Hy,, (with the sign —iz for the lower
energy band). This means that the convergence to the Born-Oppenheimer Hamiltonian as

9



e — 0 has to be uniform w.r.t 7, € (0,1]. This last point requires to reconsider carefully
the work of [PST] by following the uniformity w.r.t 7 of the estimates given by Weyl-
Hoérmander calculus ([Hor, BoLe]) for 7-dependent metric which have uniform structural
constants.

This is done for the low frequency part in Section 2 while the basic tools of semiclassical
calculus are reviewed and adapted in the Appendix A.

In Section 3 the error associated in the high-frequency part is considered, as well as the
effect of the unitary adiabatic transformation on the nonlinear term.

Once the adiabatic approximation is well justified in this rather involved framework,
the accurate analysis, as well as the comparison when 7, is small, of the two reduced
models (the one with Hy,, and the one with H _) is carried out in Section 4. This follows
the general scheme of comparison of minimization problems: 1) Write energy estimates;
2) Use bootstrap arguments and possibly Lojasiewicz-Simon inequalities in order to get
comparison of minimizers in the energy space; 3) Use the Euler-Lagrange equations in
order to get a better comparison in higher regularity spaces.

In Section 5, all the information of the previous sections is gathered in order to prove
Theorem 1.2 : existence of a minimizer for & in Proposition 5.3, key energy estimates in
Proposition 5.4 and bounds for minimizers in Proposition 5.6.

Some comments and additional results are pointed out in Section 6, namely: 1) the
question of the smallness condition of £ w.r.t 7, appearing in Theorem 1.2; 2) the possible
extension to anisotropic nonlinearities (one would have to check that the unitary trans-
form implementing the adiabatic approximation does not perturb the nonlinear part); 3)
the minimization problem for excited states, i.e. locally and approximately carried by
1, instead of ¥_; 4) the extension to the problem of the time nonlinear dynamics of
adiabatically prepared states.

2 Adiabatic approximation for the linear problem

In [PST], the adiabatic approximation is completely justified for bounded symbols or when
global elliptic properties of the complete matricial symbol allow to reduce to this case af-
ter spectral truncation. Unfortunately it is not the case here because the eigenvalues of

the symbol of the linear part Hp;, are e*7,7,|p|> + V., (z,y) + Q(, /:—zx) In [Sor], the

adiabatic theory for unbounded symbols is developed after stopping the complete asymp-
totic expansion in an optimal way, under some analyticity assumptions, but this would
be particularly tricky here with divergences occuring both in the momentum and position
directions. We shall see that the sublinear divergence in position makes no difficulty after
using the right Weyl-Hormander class. The quadratic divergence in momentum, with the
kinetic energy 7,7,|p|? is solved by first considering truncated kinetic energies and using
the additional scaling factor £2°, § > 0, in front of the kinetic energy term.

Our problem shows an anisotropy in the position variables (z,y). The analysis of the
linear problem can be treated in R?. Then we split the position and momentum variables,



q € R% and p € R?, into:
q=(d,q") , p=0,p") d.peR? ¢ peR" | d+d'=d,

and the pair (7., 7,) is accordingly denoted by (7/,7”) € (0,1)?.

2.1 Born-Oppenheimer Hamiltonian

Consider the Hamiltonian in H. = H (q,eDy, €) with the symbol on RZ%

25 1 1 /i

H(q,p,e) = 77" |p/*v(7'7"|pl2) + V(g,T,¢)

E 77-75 0
_ 8267_/7_//|p‘2fy(7'/7'”|p‘3) +uo(gq, 7, €) < +(q0 ) E_(q,7.¢

) it

with § > 0 and (7/,7") € (0,1]?. The following properties, with the splitting of variables
q=(¢,q") € RY, are assumed:

T/ = dq” T
E:I: € Su < 7q,>7 ——+ _,dqﬂz )
T < q—_,’,q/>2 T
—1 7! /
E+<Q7T7 8) - E7<Q7T€) Z C < ﬁq > ) (21)
T_,/,dq/Q !

ﬁ + quﬂ% M, (C)),
T A

7-//

= (ué)f1 € Su(1,

v eCPR;Ry) with y=1¢€(0,2r7].

With these assumptions we are able to justify the Born-Oppenheimer adiabatic approxi-
mation for § > 0, 7/, 7" € (0, 1]. We shall work with the 7-dependent metric

T_//ld 12 L M o2
Gr = 4 + _/dq//Q + %
GzZg)r T (VT'T"p)

T//

on the phase-space ]Rgi,, which is checked to have uniform properties w.r.t 7 € (0,1]% in

Proposition A.8. The exact definition of the parameter dependent Hormander symbol
classes, S,(m, g,; Ms(C)), is given in Appendix A (see in particular its meaning for 7-
dependent metrics in Appendix A.4).

Theorem 2.1. There exists a unitary operator U= U(q,eDy, T, ¢) with symbol

U(vaa T, 6) - uO(Q7 T, 6) + 5“1(q7p> T, 6) + 52“2((]7])7 T, 5) )

1
8725U1,2 S Su( » 93 MQ((j)) )

(J ZO (VT Tp)

10



such that

oy B hpo+(q,eDy, ) 0
UHU = A =
( 0 hpo,—(q,eDy, ¢)

with hBO:l: <Q7p7 T, 8) eq'U,CLZ to

= 52‘57"7'”(|p FeAP + |eX|)?) + Ex

d
= 77D (e F oA + X0’ | + B, (2.3)
k=1
when /7T'7"|p| < 1.y, and
+A, X -
(Xk _Ak) = dug(Ogrtio) -

The remainder terms satisfy Ry, Ry € Su(1, g-; M2(C)) and Ry vanishes in {\/ T'7"|p| < 'ru,}
and those estimates are uniform w.r.t § € (0,8 (and 7 € (0,1]2, € € (0,]).

Remark 2.2. e The remainder term is really negligible only for 6 > 0. This is ex-
plained in Subsection 2.4.
o The quantization of eX7'7"(|p F cA]? + |eX|?) + E+ is nothing but

d
e¥t7ir! [Z —(Ogr T1AR)” + | Xil?

k=1

+ By

2.2 Second order computations for space adiabatic approximate
projections of the reduced Hamiltonian

2d
q,p?

H(qapa T, 5) = fe(pv 7_) + E—i—(qv T, E)Ho(q, T, 5) + E—(Qa T, 5)(1 - HO(qv T, 5))

where Iy(q, 7,¢) = o(q, 7,€)* = Ty(q, 7,€)* € M3(C), v, Ex real-valued, with § > 0 and
the following properties:

We shall consider the matricial symbol, on R

!
Ex € Su({\/ 54}, 90r) + Tho € Su(l, 947 M2(C)) (2.4)
T—,/,d 12 "
with Ggr = i + T_/dq//2’
&) T
_ T/
EJr(Qu T, 8) - E*<Q7T7 8) > C 1< pq/> ) (25)

f-(p,7) =X fL(VT'T"p) , fi € Cgo(Rd;R) ., 0>0.

11



For conciseness, the arguments p, ¢ and the parameters 7,¢, will often be omitted in
Oy f-(p) and 07 E+(q) or O¢Tly .
Remember that the metric
1 dp? T_/’ld r2 - 1 dp?
p — T q _|_ _dq//2 + 71)

T = T +
g gq, < /T/T//p>2 < T—,l,q/>2 T/ < /T/T//p>2

has the gain function

(VT ") { TT—;/(J) (V1'7"p) S (T

7! T

A(g,p) = min

The e-quantized version of the symbol A.(g,p) will be denoted
A = A(Q) qu) .

Note that the symbols E, — E_ is elliptic in its class S,((y/%¢), g-) , and

1
5_26f6 € Su(iooagr) :

(V7'7"p)

Our aim is to compute accurately the adiabatic projection I (q, p) = IIy(q, €)+¢Il1(q, p, €)+
-+ eI, (g, p, e) such that

ﬂ(n) o f[(n) — ﬂ(n) + O(En+1) : [H’ ﬂ(n)] _ O(EnJrl) '

The general theory presented in [PST], tells us that the asymptotic expansion can be
pushed up to n = oo, but we will do here accurate calculations up to n = 2 (with
additional information for n = 3) and then discuss the influence of the factor 2. Those
are feasible and rather easy because the kinetic energy term and the two-level potential
are simple. This allows to reconsider accurately the arguments sketched in [PST] for the
Born-Oppenheimer case with all the technical new specificities of our example.

Like in [PST], [Sor], [MaSo], the calculations are first done at the symbolic level and we
write

(A(e) = Os(e")) & (e A € Su(1, gr; M3(C))) .

For a matricial symbol A(q, p) (possibly depending on (g, 7)), it is convenient to introduce
the diagonal and off-diagonal parts

AP(q.p) = Tolq)A(g, p)Io(q) + (1 — Ho(q))A(g. p)(1 — o (q)) (2.6)
A%P(q,p) = To(q)Alg, p)(1 —o(q)) + (1 — Ho(q))A(q, p)o(q) , (2.7)

where we recall I1y(q) = Ily(q, 7,¢) . Note the equalities
(AB)? = APBP  A°PBOP = (AB)?P = AP BOP 4 A9P P (2.8)
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The “Pauli matrix”
o3(q, 7€) = 20o(q, 7,¢) — Ide2 (2.9)

will also be used, with the relations

o3(q) =1de2,  o3(q)A"(q.p)os(q) = AP(q,p). 03(q)A°" (¢, p)o3(q) = —A9P(q,p),
o3(q)A°P (¢, p) = To(q) Alq, p)(1 — To(q)) — (1 — To(q)) Alq, p)o(q) -

We are looking for

" (q,p, 7,¢) ZeﬂH (@.p,76) € Sull, gr; Ms(C)),

with Hj € Su(l, 9r; MQ(C)) )
and such that

g™ — 11 = Og(e™), (2.10)
em* — 1t | (2.11)
HETI® —TIEH = Og(e™ ™). (2.12)

Like in [MaSo], [PST], this system is solved by induction starting from II¥) (¢, p, 7, ¢) =
Iy(q, 7,€) with

Grpr = e " MWEI™ — 1™ mod Og(e), (2.13)
HEH = _03G£+17 (2.14)
Fopr o= e P [HEEMW 4 em Il ) — () + e 7I2 ) H] mod Og(e)
e [HEEI™ — ™4 H]  mod Og(e), (2.15)
1 1
ner .= — o3 0D = FODg 2.16
4T - T B - @ 219

Remember that the general theory says that the principal symbol of F,.; is off-
diagonal, F,,11 = FZ25 mod Og(e), and F,,11 can be chosen so that

n

P = F95. (2.17)

Below are the computations up to n = 2 in our specific case. In these computations,
we shall use Einstein’s summation rule sit* = 3, s;xt* with the coordinates (p,¢*) or
(p*, ¢%) with p* = p®, ;. = pi like in the examples

0

|p‘2 = pkpk = pkpfég’k - pkpzék,é s (apfe)-aq = (apkfe)ék’za = (8pkf€)8qk

q
n = 0: Start with 1) = IIy(q, 7, ¢) and notice 9,11, = 0 and 9,11y = (9,I1y)°"
n = 1: Take

G1:H00H0—H0:O,
and P =0.
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Next compute

HHE o (q,e) — o(q,0)8°H] = e ' [f-8°Tlo(q, €) — Ho(q, €)8° f-]
= —i0p, f-0p 11y mod Og(e),

and take

F1 = —iapkfgaqkno Zapkfg( kH()) s

€10, f-
and T =TI, + ﬁi}_%@qmw
0, 1
with 87251_[1 = Magg(aqkno)OD S Su , 973 MQ(C)

Bem b (Y Za )V TTp)
n = 2: Consider now

£2G, = MO0 -0 mod Og(?)
= Hoﬁano — HO + E(Hoﬂanl + Hlﬂano) — H1 + €2H1HEH1 mod 05(63) .

According to (A.3), with II#lly = Iy and with
oML + I, 1Ty = OPTIPY + IPPIIE = 10

we can take

GQ = % [—8qu08pkH1 + 8pkH18qu0} + H% .
The first term —0,x1150,, I1;, with Einstein’s summation rule, equals
105, p, f oD oD
—8qu03pkH1 = (E B )(8qu0> O'3<aq£H0)
+
iy, [e
= (EerkpeE,) 3(0,+11p) (0,e11y) ,

while the second term +(9,,I1;)(0,+I1y) gives the same result.
The third term II? is given by

Op, f)(Oy, f- Op J)(Op, [
H% = ——((;fz<Epj{2)Og(aquQ)ODO'g(anHQ)O = —<(%f )(EPZ»;C ) (8 Ho)(aqlno) .
Hence the diagonal second order correction is given by
(By — BTy = —(By — E—)203G2
= — [0 f) Oy f2) + (Bx = B_)(8,,,,f-)03] (011 (Oyely)

and satisfies 1
57251_[5 € Su( L g Mo(C)).

(\/ T ) (VT T"p)>
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Consider now II9P: By referring to (2.17), Fy can be chosen as the off-diagonal part of
g2 [HEFIIW — W5 H] which, according to the previous steps and (A.3), equals

PkyPe PkyPe

1
) [82 Ha;’ﬂqzno - 82’“41‘1%82 H]
1
+ 5 [0, HO 11y — O HOp, 11y — 0, 11100 H + 01110, H]  mod Os(e). (2.18)

Since 93, ,, H = (0;, ,,[-) as a scalar symbol commutes with 9% ,IIy , the first term of

(2.18) vanishes.
Similarly the factor 9,11, appearing in the second term of (2.18) contains three terms

((Op, J2)
(By —E-)

on(Ey — E-
aqkl_.[l = —iw(+—2)03(8p5f5)(8qzﬂo)+

(Op, 1)
(E+ _ E_) 03(6q2H0)+p703(8q2kq[H0) ,

& -E)
where the second one is diagonal. Since d,, H = 0,, f. is diagonal, we get

}OD

1
o7 (00 HOWIL + 0010, H] 7P = (8, £) (D, 02)0s (9 [(By = B) ™0, 1L]) 7" .

In the quantity —0x H0,, 11, — 0, 11,0+ H, the derivatives

i(alzkpe fa)

Wb = E )

0'3(8q£H0)OD

are off-diagonal factors, while
OpH = (Op EL)g + (Op E-)(1 —To) + (B — E_)(0115)°7 .
Since

(8qu+)H00'3(8qu0) -+ 0'3(8q£H0)(8qu+)HO = (8qu+)O'3(8q£H0>
and (9, E_)(1 — Tg)o3(0yeTlg) + 05(0yeTl) (O B ) (1 — Tg) = (D B_)3(0,eTTy)

we get

2
apkpe f"?

S O (B E))os(0,1L).

1
5 [0 HO TLy + 0, T1L,0, H or _ _
This leads to
1 OD
Fy = 0y, J:) Oy, f2)s (O [(By — E-) ™0, TLo))

2
apkpe

- (OB + E))oul0,Th)
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and

HQOD (?pka)( f)) (8qk [<E+ . E,)flaqzl_[o])OD

* Mf’“—f];;y(@qk(& + E.))(0,10) ,

with |
5_26H§D € Su( » 973 MQ(C)) .

(\/ T d) (VT p)>

We have almost proved the

Proposition 2.3. The pseudodifferential operator f[(e) = f[(q,qu,&t) gien by
H(Q7p7 8) = H0<q7 8) + €H1<q7p7 8) + 82H2<q7p7 8)

with (g, p.€) = (g, p, €)= %Us(aqkno) :
My(g, p, €) = Ta(g, p, )D My (g, p, )7,
H2(Q>p75)D = _(E ( apkfe ap[f??) ( )( pkpef€)) ( ’“HO)(anHO) )
1—[2<q’p7 g)OD _ (?pkff-?)( f)) ( - [<E+ . Eﬁ)—lanHO])OD
pkpzf5
+2m(8qk(E+ + E_))(0g1l)
and 6_261_[1, 6_261_[2 c Su( ! y 973 MQ(C)) )

< 77_'_//lq/>< /T/T//p>oo
satisfies
Mofl=T+0O@E™?) | T =1 |, [H,H] — O3+,

in L(L*(R%;C?)). Moreover the estimates of the remainder terms in L(L*(R%; C?)), do
not depend on the parameter 7 = (7', 7") € (0,1]*> and § > 0, as soon as € € (0, &) .

Proof: The above construction gives immediately
Moll=M+0(E) , =1 , [HH] = 0%,
The first improved estimates come from the fact that
Moll —1II
contains only terms which are Moyal products with a II; or a Il factor, with cancellations

up to the €2 coefficient. Both of them have seminorms of order £%° .
For the last one, this is a similar argument after decomposing

[I:I, f[] = [825f1<\/T/T//€Dq),ﬂO] + [ﬁ,gﬁl + &1,
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O

The above result can be improved after considering what happens at step n = 3 when
for(p) = e f1(V/T'7"p) is at most quadratic w.r.t p in some region. Before this, let us
examine the remainders of order 3 in .

n = 3 : The remainder term

86, = N@rn® —g®
= £ (Hoﬂeﬂl —+ HlﬂEHO — Hl) + 82 (Hljjeﬂl —+ HoﬂEHQ —+ HQﬂEHO — HQ)
83(H1u8H2 + HQuaﬂl) + €4H2ﬂEH2 .

Using the construction of II; and Il; and the fact that £ 2°T1; and e XTI, belong to

Sy(——1——, g;; M3(C)), the expansion of the Moyal product (A.2)-(A.3) tells us
W Zrd (V' 7T"p)

IO ® — ® = 8 [AG(9]11y, 02111, €) + BG(9,11y, O,11,6)] + ¥R (2.19)

where Rg € S,(——— , gr; Mo(C)) and AG(.,e), BG(.,e) have an asymptotic
W a7 p)y>

expansion in terms of e, of which all the terms are bilinear differential expressions of their

arguments. For the commutator with H, write

(HFI® — T H] = [f(p)§To(q) — Mo(q)5° f-(p)]
+ [f-(p)s° (elly + £°I0,) — (5H1 + )i f(p)]
+ [(BoIly + E_(1 — To))#*1®) — I (B Iy + E_(1 — TIo))]

After eliminating all the terms which are cancelled while constructing II; and Il,, the
contributions of all three terms of the right-hand side can be analyzed. The contribution
of the third term is similar to what we got for Gj:

e* [AH(92(E+y), 02114, €) + BH(9y(E1Ily), 9,115, €)] + e Ry

with Rpy1 € Su( \/Wp —L g My(C)). With the uniform estimate of e~%II;, =TI,

and e 2°f.. the contribution of the second term is estimated as 53+45RH72 with Ry, €

Su 1 y 91, M C . The first term is of the form Ech 83 ’5, 8311 ,E and we
( ( :/// gV Tp)> 2( )) ( b a0 )
get

(HI® - H] = [CH(03 f., 02Ty, )+
AH(92(E41ly), 0211y, €) + BH(9,(E+ly), 9p1ls,€)| + > Ry (2.20)

where the expansions of AH, BH and CH w.r.t to e have terms which are bilinear differ-
ential expression of their arguments, and Ry € S, (——— \/ﬁ —, g-; M2 (C)).
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Proposition 2.4. With f.(p) = ¢* fi(V7'7"p), assume that the third differential 3 f,
vanishes in {|p| < r} and fiz v’ € (0,7). Then the remainders of Proposition 2.3 equal

Moll - =e*?Rg, + YR, (2.21)
[H, H] = PRy + SRy, (2.22)

. 1 . 1 4.
wlth RG,lorQ S Opsu(< :—,,,q’)(mp)oo’gT’MQ(C))’ RH,lorQ S Opsu(mp>ooagTvM2(C))

and Reora = 0 in {|V/7'7"p| <r'}. Those estimates are uniform for 7 € (0,1]%, § €
[0,50] and € € (0,60) .

Proof:  After noticing that the symbol I is a linear expression in 9, f. while the symbol
I15 is the sum of a linear expression of 8; fe and quadratic expression in J, f., the identities
(2.19) and (2.20) imply

H(Q) ﬂ€H(2) _ H(Q) — €3+26+NRN + 53+46RG’,
[HuEH(Q) . H(2) ﬂeH] _ 83+25+NRN + 83+45RH ’

for an arbitrary large N € N, in {\/ T'7"|p| < 2r}. Choose! N > 2§ and take a cut-off
function x € C§° ({|p| < r}) such that x =1 in a neigborhood {|p| < '} . Writing for the
symbol S = H@II® —TI® or § = [HFN® — P §H],

S=8xx(V1't"p)+ S x (1 —x(VT'T"p)),

yields the result. O

2.3 Unitaries and effective Hamiltonian

We strengthen a little bit the assumptions (2.4)-(2.5), with the condition

H0<Q7T7 8) = u0<Q7T7 8>P+U‘0(Q7T7 8)* (223)

: 10 .
with P, = (O O) ,up = (ug) ™t € S(1, g4 M2(C)),

fulfilled in our example. The operator g is nothing but the local unitary transformation
ug(q, 7), on L?(R%; C?).
With the approximate projection I = f[(q,qu, T,€) given in Proposition 2.3, Proposi-
tion A.4 tells us that a true orthogonal projection P can be associated when &, is chosen
small enough, by taking

1 ~

P=_— (z—T)"' dz, (2.24)
2im |z—1|=1/2

'Here the estimates become d-dependent, because a large & requires a large N. It is uniformly con-
trolled when § < dg.
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with

P =P(q,eD,1,e) , Pe€S,(1, g3 MsC)), (2.25)
P(Q7p7 T, 6) - H(Q7p7 T, 5) - 53+26R1 (q7p7 T, 6) + €3+46R2(Q7p7 T, 5) ) (226)
1
with Rl, RQ - Su( y 93 MQ(C)) 5

(\/ T d) (VT T"p)>
PoP=P=P",
[f:[, ]5] = B (1, 6) + (1, e) (2.27)
with €1, Cs € S,u(1, g-; M»(C)),
A ‘L(LQ) < Ce. (2.28)

and P — 1y P 1y

For a general f; € C§°, Ry and Cj are included in the main remainder term. When f; is
quadratic in {|[p| < r}, then one can assume that R, and C; vanishes in {v/7/7"|p| <’}
for " < r, according to Proposition 2.4 and Proposition A.4

Instead of constructing unitaries between p(T, ¢) and P, by the induction presented in
[PST] and similar to (2.13), (2.14),(2.15),(2.16), we use like in [MaSo] Nagy’s formula

([NeSol, [MaSo], [PST])
P=WPW* | WW=WW"=1
with W= (1—-(P—P)*) 2 [RP+(1-P)(1-P), (2.29)
when Pj:PjQ:Pj* forj=1,2, and|P—P<1,

easier to handle for direct second order computations in our case.

Proposition 2.5. With the definitions (2.23) and (2.24) after Proposition 2.3, there
exists a unitary operator U on L*(R; C?) such that

p — UP+U* y
U=1U(qg,eD,1,e) , UE€Su(1,g,; My(C)),
with U<Q7p7 T, 8) = U‘O(Qu T, 8) + 8u1<Q7p7 T, 8) + €2U2<q,p, T, 8) 9
10y, f-
ul(Q7p7€) = _(E1++kau_)(aqu0)u07

and e Puy, e Puy € Sy (

, 9 Ms(C)).
W2 T

Moreover, when fi is a quadratic function in {|p| < r} and v’ is fized in (0,r), the term
Uy can be decomposed into

u?(Q) b, T, E) = 526’02((]7 b, T, E) + 546’172((]7 b, T, E)

where vy does not depend on p in {/7'7"|p| < '} and vy, Uy € Sy (——1——, gr; M5(C)) .
2 (V7] < 7} and v, By € Sul o 0 MAC)

19



Proof: The notation Rz will denote a generic remainder term of the form R =

R(q,eD,,7,¢) with R € S,(——— ,gr; M5(C)) . The notation R is used for a
W a7 p)y>

symbol R, like R but which vanishes around {\/ /7" |p| <1’ } . We apply Nagy’s formula
(2.29) with P, = GgPy 0% = Iy(q, 7,€) and P, = P(r,¢) with

~

P =1y(q,7,¢)+¢clli(q,eDy, 7€) + 52H2(q,€Dq,7‘,5) + 53+25B+ SO

In the expression of W (e) given by (2.29), the first factor is nothing but
2

A B e A
(1 - (P - HO(Qu T, 8))2) 12 =1 + §<H1)2<q78DQ7T7 8) + 83+45R7

owing to P —1Ily = Og(e%?) . In the factor [P P + (1 — P)(1 — P,)], the first term equals

Po Io(q,e) =y(q, e) + €lli(q, 7,eD,, 7,¢) o Iy(q, 7, €)
+ &°,(q, eD,, 1,¢)oIly(q, 7,¢) + VR €3+45R’

while the second term is

A~

(1 — P) o (1 — H0<q77'7 5)) = (1 — H()(q,’?', 8)) — ‘ng(q’qu,T, 8) o (1 o HO(q,T, 8))
— eMly(q,eDy, 7, ) 0 (1 — Io(q, 7€) + PR 4+ 3T9R.

Hence we get

A

W=[RP+(1-PR)1-h) =1+elligeDy 7€) 0 03, 7)
+ €2H2<q,5Dq,T, 5) 0] 0'3<q77—) + 83+25E_'_ €3+4JR.

The operator U(e) is given by U(e) = W (e) o @y. The semiclassical calculus recalled in
(A.2)-(A.3) yields the result. In the decomposition of us, when f; is quadratic around 0,
the terms which are linear in €2 come with the second derivative of f., which does not
depend on p. O

Proposition 2.6. Introduce the notation for k € {1,...,d}

« (A X
ug(Ogetto) = —1i (YZ _jk) :

If U is the unitary operator introduced in Proposition 2.5, the conjugated Hamiltonian

Ule)*H(e)U(e) equals

0D — <h0+ ; ) LR S (2.30)
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where the remainder terms RLQ = Ri2(q,eDy, 7,¢) satisfy Rio € S, (1, g,; M2(C)) and
additionally Ry = 0 in {V/7'7"|p| < r'} when fy is quadratic in {|p| < r}, with " <r.
The symbol hy and h_ are given by

2

hi = L)+ Ei() = (0 fo) A+ S(02,, 0 A

fe e g2 8k < 0 c —
( p;pz )Xng+ <Ep,+f_)<Epi)XkXﬁ,

(2.31)

2

he = folp)+ E-(q) + =(0pf) A+ 532, 1) A

( pkpzfe) 52(6 f)(a f)_
Xp Xy — Prie/ 2 PEl X X 2.32
s 2 R E,—E_ " (2.32)
Proof: From the semiclassical calculus, we already know that U*HU is a semiclassical

operator with a symbol in S,((1/Z¢), gr; M2(C)). Its off-diagonal part equals

(1-P)UHUP, + P.U'HU(1—Py)
_ [p, {p,ﬁ” 0.

The almost diagonal form (2.30) of U*HU is then a consequence of (2.27).
For the second result, it is necessary to compute the diagonal part of the symbol U*t* H4U
up to O(e32) in S, (1, g;; M) . Let us compute the diagonal part of

B = (uj + eu} + 2ul) i  Hi (uo + up + e2uy),

or equivalently (uoBug)” with our notations.
Since ug = ug(q, 7, ) and H = 2 f1(v/7'7"p) + V(q, 7, €) , the first Moyal product equals
according to (A.2)-(A.3),

(uy + eui + EQu’g)]jEH = upH + eulH + *usH
2 2

{uo7H}+ {ul,H}——( g o) (Opp H) + 7R

=upH +¢ |ujH — p’“f€8 u0}+s [;H+2—i{u’{,H}
1
—g(ﬁgquu{;)( pmfs)] 3+25E+83+453,

where R and R denote generic element of S, (1, g,; M5(C)), with the additional property
that R vanishes in {v/7/7|p| <1’} when f; is quadratic in {|p| <r} with +' < r. The
reason for the possible decomposition of the remainder, comes again from the fact that at
the third order the remainder term proportional to €3¥2° arise with the third derivative
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of f., the second derivative w.r.t p of u; and the first derivative w.r.t p of us .
In the same way, the complete expression of B is given by

O, J= 0y, f-
B(e) =usHug + ¢ {uSHul +uj Hug — %(aﬁu;)uo + ( p2kz'f )US(aqkuo)]
2 * * 1 * 1 * 1 ¥
+e” JugHug + ugHugy + % {ugH, w1} + % {uiH, uo}t + 1 {(Dp f2) (D), uo }

8 ka * 1 *
(pTZ.)(aqkuo)ul + 2—Z {Ul, H} Ug

+uiHuy —
1 * 1 *
_g(agquuo)(ﬁimfa))uo — guo(a;kmfa)(agkqwo)] G SR
By recalling that (ujuj)” = 0 by Proposition 2.5, we get

(UOB(g)US)D =H+ 5%(8pkf6) [Uo(aqkug) — (8qku0)ug] P + EszD -+ €3+26E + gStopn.

where BY is made of several terms to be analyzed. We need the relations

Oy = —up(0gito)uy (2.33)

02ty = (0, uo)ug(Ogitio)ug + g (Oyitio)ug (8o ug — (9 5rtto)ug

= —(9y 1) (Dguo)ug — (Dgrug) (D uo)uy — ug (2 ruo)ug , (2.34)

and  [ue(8,uf)]?” = —(9,11y)0s, (2.35)

coming from ujuy = 1 and the differentiation of ujllyuy = Py .
For example, the first one simplifies the O(¢)-term into

(uoB(e)up)” = H — £i(,, f2) [(8qkuo)u3]D + &2BY 4 VR 4 SR,

Many cancelations appear after assembling all the terms in BY . We need accurate ex-
pressions for all of them:

e By using again (ujug)? = 0, the term [uguiH 4+ Huguf + uout Huyuf]” equals

(fe + E5)Ho(uouy + ugug)o + (fe + E-)(1 — o) (uous + ugug) (1 — Ilo)
+<f€ -+ E,)Ho(UOUT’UlUS)HQ -+ (fe —+ E+)(1 — H0)<UOUTU1US)<1 — Ho)

In the relation

1 1
USUQ + u;uo + uiul + 2—2 {US, Ul} + 2_Z {u’{, uo} = 51+25& + 51+45R1

the remainder terms satisfy Ry, R, € S,(——— , gr; Mo (C)), with the same
W/ a7 p)>

convention as for R, R. This identity is obtained by writing that the O(g?) remain-
der of U*§°U — 1 vanishes and by noticing that the remainder R; + 2 R, involves
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second derivatives of u; w.r.t p and first derivatives of us w.r.t p. We obtain

[ugus H + Huzuf + uoui Hurug)” = (E- — ) (ugufurug) "oy
1 ~ ~
= o H o {ug i + o {uf, oy ug]” + PR+ e HUR.

with R, R € Su(1, gr; M3(C)), again with the same convention.
2
Again with (9pu;)ufy = (puquf)?P = ) 11y and (2.35), the last factor is

~ W(Es—E )
oD <8I%epkf€>

(o {ug, wr } uf + wo {uf, uo} ug)” — (w00 ug) (B, — B (Oge1lo)
02 f.
— )51 (0 o)
02 f.
= —2%(@1&10)(&151—[0)03 . (236)

With uyuf = Z.(ka_g) (0,:11p) , we have proved

p_ _ (Opf) (O f)

s+ Hy + o Hu” = 00 6,110 0,0 )
H <a§£pkf5) D RTIN (O 11 1426 1+45R )
- E, _ E (q"C 0)( qt 0)U3+5 &"‘5 1. (37)
Jr —_
e The t 1 * * 1 * * (apkfs) * * P
e term | 5-ug {upfe, ur}ug + 5uo {ul fo, uo} ug — 5 ug(Opug)uiug|  equals
1 * * * %1 D
Q_Z.fa [wo {ug, ur } ug + uo {uy, o} ug)
a £ * * * * *
+7< b f2) [(8qku1)u0 + uou (Ogruo)uy — uo(aqkuo)uluO]D

21
The diagonal part of (0 ruq)ug is

[(Bgeun)u)” = %@WHO)D |
But differentiating the relation (9,IIo)IIy + IIy(9,ILy) = 9Ly w.r.t ¢ leads to
(024 10)” = — (8 o Bye Iy 4 Dy 11g0,e 1) (2.38)
With (2.35) and (uyug) = (uguf)9P = Z.(Eaf‘_{g_)aqzﬂo, we obtain
[uoui (Oprug)uf — uo(aqkuS)ulua}D = [—uouios(011o) + (0,0 1g)oguiug)
= s P [(0,T1)(0pTho) + (2o} 0] .
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We have found

1 1 (O, f-) v

57 U0 {ug fesur fug + —uo {ul fo, uot ug — —2—1o (00 ug)uruy

2i 2i
€ 0? € apk . apg .
= %(aqkﬂo)<aqfﬂo)03 —+ 2%(8(1191_[0)(6(][1_[0)03 ) (239>

The diagonal part of ug [{ufV, ui} + {ufV, uo}] uj equals

1 * * * * *
Z [_uo(aq’“uo)v(apkul)uo - (8q’“v)(apku1)u0 + uo(apkul)v(aqkuo)uo}D :

By using (2.35) with

azkpzfe
(B, — E_)
(0,V)7 = (Ey — E-)(9,1Ty) ,
and E_ I+ E.(1-1I))=V+ (E_-—FE,)os,

(Opyur)ufy = [(Fppur )ug) = (0,eTy)

it becomes

algkpffe 1 * * * x1 D

T(aqkno)@q‘fno) + 2_¢V [uo {ug, ua} ug + uo {uf, uo} ug)

1
+ 5, (E- = By) [uo {ug, ur}ug + o {u, uo} ug]” 0.

The relation (2.36) yields

1 * * * * algkpefe

¥ [uo {ugV, us } ug + up {uiV, uo} ug) = —T(aqkﬂo)(aqgno)

8131@?[]05
+ Vi(aqkﬂo)(aqzﬂo) . (2.40)

E, - E_
The term o [ug {uj, H}]" is the sum of two terms
1
21

o {ut, F1” + o [ i, VY

2
Since w0, uj = i(g’ff“gi) (O,x11y) is off-diagonal while

(0, V)P = (B — B_)(9,1y),
the second term equals

2, -
%”JC(aquO)(aqu) .
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The first term a priori contains more terms because uj has to be differentiated:

8 € 817[ € 2
31— @0, 100 () 0 - O g

uo(aqeug)W(aqkno) v

The first part is off-diagonal and vanishes after taking the diagonal part. By using
again (2.35) and (2.38) and 9,11y = (9,I1)°?, we obtain

(apkfff)(apszf) (8qu0)(8qu0)ag + (8pkf€><8pzf€> (8qu0)0'3(aq£H0) — 0 )

E, - FE_ E,—-FE_
Hence we have proved
1 . Oy p.fe
o [vo {ui, H}P = %(aqkno)(aqmo). (2.41)
e The last term is
1 . . D
T= g [2’&0 {(apkf:?)(aqkuO)?uO} Uy — u(](a;kqeuO)( pkpgft?) - ( pkpgfci)( k ZUO)uO]

Forgetting the § factor, the first part equals 2(892 | f-)uo(0gsu)(9yetio)us . By using
(2.34) in the second part gives

8T = 4(Dpyp f-) [tt0(Dgetuf) (Dyero)ug]
Owing to (2.8) and (2.35), this gives
= (Tpypy o) [0 (0 )] [(Dge o)) + (Tp, 5, f2) (0 TT0) (Oye o)
With ug(0rug) = —(0,0u0)ug, the last term equals

( pkpzfe) ( pkpgf€>
2 2

T = [(Dgruo)ug] P [(Dgero)ug)” + —PE= (06 o) (O Tho) .+ (2:42)

By summing (2.37),(2.39),(2.40),(2.41),(2.42), we obtain

(8131@175 f’f)

) g g LDy + PN o m

BY = —
2 E, —E_

02 f - -
+ pk;lf (aquO)(anHO) + €1+2(5&+ €1+46R1 .
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Hence the diagonal symbol that we seek, is

<h0+ hO ) _ <fe(p, 7) +OE+(CI,T) o —EE(q,T)) i Oy L)1t [(Detio)] " e

k zf€ ut * * 8k € 84 ) x
52 p P Ug [(8qku0)u0}D [(8qu0)UO]DU0 + EQMUO(&]/@HO)(@#HO)@%

2 E. - E_
+ &2 pk;ff “u (0,6 TTo) (e o Yug
The symbol u [(8qku0)u8]D ug equals
ug LTy (O o ) ugoug + ug(1 — o) (Ogruo)ug(1 — o) ug
= Poty(Oetn) P+ (1 — Py (o) (1 — Pu) = (f‘é’f _Zk) .

For the last term we deduce from Ily = uoPruf and (O,ug)ug + wo(0,up) = 0,
Py [uf(0 o) uo | [ug(9yeo)uo) Ps
= Py [uf(0ru0) Py + Py(9pug)uo] [ug(9,eu0) Py + Py (0,euf)uo] Ps
= Prug(0uo) Prug(0,eu0) Py 4 Prug(Ogsto) Py (0 eug ) uo Py
+ P (0 rup)uoug(0yeuo) Py + Py (Ogeug)uo Py (Ogeug ) uo Py
= —Prub(Opu)(1 — Pp)ug(9euo) Py = XX,

Taking the bracket with (1 — P, ) is even simpler and gives
(]_ - P+) [US(aqu())UO] [Ug(aquQ)UQ] (]_ - P+)
—(1 = Py)ug(Opuo) Prug(d,eu) (1 — Pr) = Xip X, .
This ends the proof. O

2.4 Discussion about the adiabatic approximation of the Born-
Oppenheimer Hamiltonian

The Theorem 2.1 is a direct application of Proposition 2.6 by taking
f€< ) _ 8257'/7'//|p‘2’}/(7'/7'//|p‘2)-

The operators

Weyl

2+26 / //Z |Xk|2

1
_ 220 [—A + A2 T2 {(;V)A + A(;V)} + ‘Xﬂ

d
hipo(q,eDg, ) = 7’7" [Z(pk TeA,)?
k=1

1
= g2t [|;V F AP+ \X|2}
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is nothing but the usual adiabatic effective Hamiltonians which can be found in the physics
litterature, including the Born-Huang potential |X|> = 327, |Xx|?. We refer to [PST)]
and [PST2] for a discussion of the various presentations of the calculations and additional
references.

Even in the region {|p| < r,} with p quantized into €D,, this approximation makes sense,
only for 6 > 0, because of the additional term

€2+45 7_/ 7_//

¢2E+TX1§X£(55%)(58¢14)

coming from the last terms of (2.31) and (2.32), that we have included in the remainder.
It is not surprising (see [Sor|, [MaSo]) that the degree of the differential operators increases
with the degree in ¢ in the adiabatic expansion of Schrodinger type Hamiltonians. The
argument of physicists says that this effective Hamiltonian is used for relatively small
frequencies (or momentum) so that X X,p*p® is negligible w.r.t |[p — ¢ A|? + &2|X|*. The
introduction of the additional factor €2 with § > 0 provides a mathematically accurate
and rather flexible implementation of this approximation.

3 Adaptation of the adiabatic asymptotics to the full
nonlinear minimization problem

In this section, we adapt our rather general adiabatic result to our nonlinear problem. In
a first step, we give an explicit form of Theorem 2.1 in our specific framework. Those
results are effective when applied with wave functions localized in the frequency variable,
Y = x(/TaTyeDy)y for some compactly supported x. It could suffice if we considered
minimizing the energy among such well prepared quantum states. We can do better
by using a partition of unity in the frequency variable, which will be combined, in the
end, with the a priori estimates coming from the complete and reduced minimization
problems. Finally an estimate of the effect of the unitary transform U on the nonlinear
term is provided.

3.1 Adiabatic approximation for the explicit Schrodinger Hamil-
tonian

Let us specify the result of Theorem 2.1 by going back to the coordinates ¢ = (¢, ¢") =
(z,y) and 7 = (7', 7") = (74, 7). Provided that V. .(z,y) fulfills the proper assumptions,
the unitary transform introduced in Theorem 2.1 transforms Hp;, given by (1.7) into the
Born-Oppenheimer Hamiltonian with a good accuracy in the low frequency region, that
is when applied to wave functions v such that ¢ = X(ngqW for some compactly
supported x .
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The operator Hy;, is the e-quantization of the symbol
E.(q,T,¢) 0
20 2 +\45 7 *
€ TxTy‘p| + U‘O(Qu T) ( 0 E—(q, T, 5) uO(q; 7-) 5

with  Ei(q,7,8) = Ver(2,9) £ [ 0) = Ver(a,y) & [T+ a2,
Ty Ty

The operator ug(q, 7) equals
C  Se¥ .
uo(a. ) = (S %) = e

with  C' = cos(=), = sin( Z)

[T, [T,
and cot (6 “x y
T g2

Proposition 3.1. Assume 6 € (0,8)], (7:,7,) € (0,1]* and V., € S.({, [Fx), <T”Lxm>2 +

[\D'Cb

T 2 . .
idy ) then the matricial potential

Vig.me) = Voot + 9, 2o (200, 750

fulfills the assumption of Theorem 2.1.
Choose a cut-off v, v(|p|*) = 1 in a neighborhood of {|p| < r.}, as in Theorem 2.1 and con-
sider a cut-off function x € Cg°((—r2,72)). WhenU = U(q,eDy,7,¢) € OpSu(1, g-; Ms(C))
15 given in Theorem 2.1, the identities

—H\/Zgﬁ B —i :—g%

= = ToTyleDyl?

. _@2}[6\/%% X(7o7yleDg[%)

+e2™R (1,¢), (3.1)

€+i %%ﬁ_i_eiz\/zg
0

U* HpinUx (17 |eDy?) = e 7,7, | ©

HyinX(1.7,|eDy|?) = g2t xTyU

_ Uy (1,7, |eD,|?
\/7%]:[ \/g% X( y| q|)
+52+45R2(r, £) (3.2)
hold with

B 9 . T 1 / To
H+ - _ax - 8y_'_Zz\/ﬁ _'_E:JFTM |:‘/€,T<x7y>+ 1+T_yx :| +WT(x7y)7
Ty
T 1 T,
A = - |0, —i—— | 4= |Vir(ay) — 1+ Za2| + W,
. y ZZ\/HT:EQ + T { cr(T,y) + Tyx] + Wiz, y),
Ty
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and the estimates
R (7€)l cez2) + [ Ra(T,€)lloer2y < C

which are uniform w.r.t 6 € (0,0, 7 € (0,1]* and € € (0, &) .

Proof: Following the approach of Section 2, the Hamiltonian Hp;, is decomposed into

HLin - H(Qaqua T, 5) + R’Y(gDQ’ T, 6)

i E. (q,7,¢ 0 .
with H(qvpa 5) = 526T$Ty|p|72'7(7—$7—y|p|2) + uO(Q) T) ( +<q0 ) E_(q T E)) uO(qa 7_) ;

and  Ry(p,7,¢) = 1,7 [p[ (1 — v(7amy Ip*)) -
The Hamiltonian H(q,eD,, 7,¢) fulfills the assumptions of Theorem 2.1, with the metric

Tz g2 2 Tz o2
— Ty To o? 4 TeTudp [Tz Ty T oy
90 = fmm T dy” + Wk because we assumed V., € S, (( = ), = T dy?)
Ty Ty

and the gap F,(q,7,¢) — F_(q,7,¢) equals 2, /1 + :—ij . Actually the estimates

—|a \a\g\ﬁ\
a 03 Tx Tx
ozojunte)] < Con (2o ) (Z)
are due to 0,0 = —% and 0, =i,/ :—zew. Moreover the explicit computation
with a 4+ 8 =1 leads to ’

A, X, 7y S —Ce'®
and (Yy —Ay) = juy(Oyup) = T—mS (—C’ew g ) . (3.4)

Hence the effective Hamiltonians hpo 1 (g, €Dy, €) restricted to the region {|p|, < r,} are
given by the symbols

0 1
hpos = e¥1,7, [pi, + (py F 2y [ sin®(5)2 + 710,00 + sin2(6'))]

T

+ Ver(z,y) £ /14 Tz,
Ty

With cos(f) = # and sin(f) = Hlm _, the Schrodinger Hamiltonian corre-
Ty Ty T v

. . T s i T
sponding to the RHS is e2* X 7,7, e 2V H e

ﬁ

Y
“2v7Y with

2
Ty Ty

X
+ +
. To 2)2 To .2
2,/1+Za? (1 +22%)? (14 2a?)
L W)+ 1+ 2
— -z, —x?| .
ToT,e2t2 | Yy T

[A{i:—ai— 8yiz
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The remainder term in Theorem 2.1 is
7™ R(q,eDy, 7,€) + ¥V Ry(q, €Dy, 7, €)

with Ry 5 € Su(1, g-; M2(C)) and where R, vanishes in a neighborhood of {1 [TaTy|D| < 'ru,} )
The first term provides the expected O(e**%°) estimate in L?(R?; C?).
It remains to check the effect of truncations. All the factors, including the left terms

. 5,0
Ry(p.7e), e'nmy o+ (py Fesin’(3))* | (1= y(mamylpl))

belong to OpS,({\/TaTyp)?, g-; M2(C)). For any a,b € OpS.({\/TuTyp)? g-; M2(C)),
where b vanishes in a neighborhood of { [TaTy|D| < r,y}, and two cut-off functions 1, x2 €
C5°((—=r2,72)) such that x; < x2 (see Definition A.2), the pseudo-differential calculus says

(1 = x2(7e7y [p*) Eat* X1 (7o [P?) € Mo,
b1 x1(Ipl?) € Nug, »

with uniform estimates of all the seminorms w.r.t 7 € (0,1]? and § € (0,dy]. Applying
this with y; = x and various x5 such that y; < x2 < 7y, implies that the remainder terms
due to truncations are O(e”) elements of £(L?) for any N € N, uniformly w.r.t 7 € (0, 1}?
and 0 € (0, ). Fixing N > 2 + 40, ends the proof of (3.1).

For (3.2) use (3.1) with a cut-off function y; such that xy < x; and conjugate with U :

HyinUx1 (757, |eDy|2)U

Y[, e ey 0

2426 € +€ ik

€ TxTyU LTy T, X1(TaTyle Dg[*)U
0 e = H eV

+ 2R (e).
Right-composing with x(7,7,|eD,|?) and noticing that
Xl(T:va‘5Dq‘2>U*X<TxTy‘5Dq|2) - U*X(TIETy|5Dq|2) = R(q,eDy, 7,¢€),

with R € NV, . lead to (3.2) like above. O

3.2 Linear energy estimates for non truncated states

Proposition 3.2. Assume ¢ € (0,00), 7 = (72, 7,) € (0,1]* and that V., belongs to the
parametric symbol class Su((\/%x), (\;_%fﬁ + 2dy?) . Set X = x(TumyleDy|?) for x €
Ce((—=12,12)). When U = U(q,eDq,7,¢) € OpSu(l,gr; Ma(C)) is the unitary operator
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gwen in Theorem 2.1 and parametrized by a truncation in {1 [TaTy|D| < 73,}, then for any
X € C5°((—72,72)) the estimates

‘<1/17 [U*HLmU - 52+25TxTyHBO}w>‘ (3.5)
< Ce™ [l + 11 = YNz + 11 = 0¥ le % IlyTaTyle Dol (1 = )l 22]
)<’l/} ) [HLG - 82+25Tm7—yUHBOU*:|w>‘ (36)

< Ce™ [l + 11 = YNz + 11 = ¥ le x [Ty le Dol (1 = )l 2]
hold uniformly w.r.t T € (0,1]* and 6 € (0, ], for all ¢ € L*(R?;C?), with

iy i L
ezl H e 2vm? 0
HBO - VT A N
0 e "2V H e
2
~ €T B g
He = 0= 8‘1’”2\/? + e Vo, y) + VI + 22| + We(a,y)
_Ix - -
Ty
2
A~ €T B g
Hoo= o0 8y_iz\/ﬁ + e V() — VI 22| + We(,y)
_zx - -
Ty
T, T,
W (z, = = /
@) = A eyt it =
Proof: Set
Y iy
D = U*HL‘ U— ¥t 1 en=iie 0
! 0 e vEYH el

and bound the terms (X, Dy) and ((1 — X, D) by Ce*||¢)||2, with the help of
Proposition 3.1. The remaining term is

(1=x)v, D - X(TxTy|EDq|2))¢> .
The operator D can be decomposed according to D = 22 ToTyDrin + Dpor With

|D, — A]? 4 | X|? 0
0 |Dg+ AP+ |X[2)

Dhin U*|D,*U — ( (3.7)

rvr (E 0\ fur Ta +1 0
Dpot = U UO ( 0+ E) UOU_ %,T<x7y> - 1 + — 2 < 0 _1) . (38>

Ty

The normalization in (3.8) allows to use directly the semiclassical calculus if one remem-
bers that UFU = Id +¢R and U*Uy = Id +¢R’ with e R, e 2R € 8, (<\/ﬁ 72 9r My(C))

and Fy(q,7,¢) = Vor(z,y) £, /1+ :—z:ﬁ. We obtain

(1= X)), Dyorl(1 = X)) < CF2[(1 = X)lI72
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which corresponds to the second term of our right-hand sides.

The kinetic energy term (3.7) is decomposed into e**% 7,7, Dy, = e 7,7,DY, + D},
with
Dy = XU nmy|eD, U — e Us7o7,|eDy| U, (3.9)
o _ eipoein_ (1Pa— AP HIXP 0
Dy = UO‘Dq| Uo ( 0 |Dq+A|2+ |X|3 (3-1())

Writing (3.9) in the form
D, = X (U* — Up)1uty|eDy|*U + XU m,m,|e DX (U — Ty)
while 7,7, [eD,|* € OpS.({\/TaTyD), gr; M2(C)), U, U, € OpS.(1, g-; M3(C)) and 8_1_26<U—
d 1
: |
Up) € OpSu(<\/gm>< Tﬂypﬁo’g” M, (C)) | leads to

(1= X)¥, D1 = )0)| < Ce" 211 = 0172 -

which is even smaller than the D, upper bound.
In (3.10), the first term can be computed via

(@, Us|DglUs(@)¥) = D (Dy, (uo(q, 7)®), Dy, (uo(g, 7)¥))

g;€{z,y}

with Dy (uof) = uo(Dg; — iug0y,uo) f and equals

US‘DqFUO = \Dq—iugﬁqu0|2
= 3" [P2 — Gui @0, u0(0)2) Dy, — Dy (i1j(0) 0y, u0la)?)
qJ'E{:B,y}

(10 (@), 10(0))?

Meanwhile expanding the entries of the second term in (3.10) gives

D, FA@P =Y | DL F A(@)Dy, F Dy Asla) + A0 -

By using the expresions (3.3) and (3.4) for A, X and iu{0,uo, we obtain

170 R_
0 —
with R = £i(D,(0,0) + (06)D,)e™ — | L sin(8)(D,e™ + 7% D)
T

and  (8,0) = —— YT sin(g) = ——

R+ ER) N
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Therefore, we obtain

(1= ¢, DYl — )] < 4max( \f T 111 = Rl ll(L — R)ebllze
and, owing to 7., 7, € (0,1],

(1= X)¢, 2y D1 — X)¥)| < 46|\ /mmy|eDyl (1 = )¢l 2 (1 = X))l 2 -

This ends the proof of (3.5).

For (3.6) it suffices to replace 1 in (3.5) by U*i) with a cut-off function y; such that
X < x1 and then to use (1 — x1(|eDg)2))U*x(|eDy|?) € OpN,.,., with uniform seminorm
estimates w.r.t 7 € (0,1]*> and 6 € (0,d]. The L*norm of the corresponding additional
error term is O(eV), for any N, and one fixes N > 2 + 4. O

3.3 Control of the nonlinear term

In this subsection, we estimate the effect of the operator U=U (q,eDy, 7, ¢) belonging to
OpS.(1, g-; M2(C)) on the nonlinear term [, [¢|* dody .

Proposition 3.3. Let U be the unitary operator introduced in Theorem 2.1. The inequal-
ities

[ 1wta )t dudy > (- 0245 [1@0) @yl dedy, @)
[10telt dady > (- 0245 [ (@ 0) @yl dedy @12
hold for any « € L*(R?; C?).
Proof: For 41 and ¢ belonging to L*(R?; C?), the local relations
il'(a) = (Ja(a)]* + 2Re(¥a(q) , (¥1 — ) (@) + [¢1()]?)’

2
— ala)]* + 2l — ¢2|2+4(Re<wz,¢1 o) + Sl - |)

+4|al* Re(ys , (1 — 12))
> |a(@)|* — 429 [¥1(q) — ¥a2(q)]

is integrated w.r.t ¢ = (z,y) € R?, with Holder inequality, into

[l 74 = / [pr|* dady > ([eha| e — 4lle2llFallthr — ol 1a -

With ¢, = Ugth = uo(q), [00(q)2 = |11 (q)|? for all ¢ € R, and v = Utp = o +(U—TUp)0,

we obtain

[l12s = lnllze > 10950 = 4107010 — Uo)d s -
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The operator U — Uy equals ' t%r(q,eD,, 7,¢) with 7 € S,( gr; Ms(C)),

( ><\/TacT P>’

Tz Jqo2

where we recall g, = <\7’?§$>2 + 2 dy* +
on L*(R?;C?)

T Ty dp?

(/TzTyp)?

. After 1ntroducmg the isometric transform

(T2 r0) (2, y) = e3/TaTyP(E/TaTyT, E5/TaTyY) »

the difference U — UO becomes

A

o 14+8—1
U—Uy=e T _ ri(erex,eTyy, Dy, Dy, e, 7)T2

with r; uniformly bounded in S(1, :’xg +d(,y)* + f; : M5(C)) . A fortiori, the symbol
r1(eTpx, €7y, £, m; €, 7) is uniformly bounded in S(1, dg* + <dp ) and the Lemma 3.4 below
provides the uniform bound

”U — UO”L(L“) S CO€1+5

We have proved ) )
1lzs 2 U170 — Ce* 2N U Zalle] e
which implies (3.11). The second inequality (3.12) is proved similarly with U = U({ +
(U*—Ug). O
The result below is a particular C&SGQOf the general L” bound, 1 < p < oo, for pseu-
dodifferential operator in OpS(1, dg*+ z)%; L(Hq1;H2)), H; Hilbert spaces, stated in [Tay]-
Proposition 5.7 and relying on Calderon-Zygmund analysis of singular integral operators.

Lemma 3.4. For any p € (1,+00), there exists a seminorm n on S(1,dq> + 2 ; ./\/lg((C))
such that

dp?
Va € S(1,d¢* + —

(p)*
Proof: The Proposition 5.7 of [Tay] says that for any a € S(1,dq* + %2; M;,(C)), the
operator a(q, D,) is bounded on LP(R?*; C?). Tt is not difficult to follow the control of the
constants in the previous pages of [Tay] in order to check that ||a(q, D) z(z») is estimated
by a seminorm of a. More efficiently, one can refer to the uniform boundedness principle,
because S(1, dg* + %; My(C)) 2 a — alq, D,) € L(LP(R? C?)) is a linear operator from
a Fréchet space to a Banach space. O

; M3(C)), lalg, Do)llewry < m(a).

4 Reduced minimization problems

In this section, we assume that potential V., satisfies (1.13)-(1.14). After the first para-
graph of this section and in the rest of the paper, we focus on the case 7, =1, 7, — 0
(and ¢ — 0). Two reduced problems have to be considered: 1) the one obtained as
e — 0 and 7, is fixed; 2) the one derived from the previous one as 7, — 0 and which is
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parameterized only by (G, ¢y ). The linear part of this latter reduced problem is a purely
quadratic Schrédinger Hamiltonian (with a constant magnetic field), from which many
a priori information can be obtained. This section is divided into three parts. First we
specify the potential V, . and check our main assumptions for the general theory. Then we
review some properties of the reduced Gross-Pitaevskii problem parametrized by (G, £y ) .
Finally we make the comparison with the reduced Gross-Pitaevskii problem parametrized
by (G, ¢y, 7,) as 7, — 0 and deduce properties which will be necessary for the study of
the complete minimization problem.

4.1 Reduced minimization problems

Lemma 4.1. The potential V., defined by (1.13)-(1.14) belongs to S, ((‘ /:—z:@,gw)

with the metric g, = ﬁgﬁ) + :_ZdyQ ,
Ty

Proof:  After the change of variable (2/,y") = ( /7, /7+y), it is equivalent to check

2+26 7-2 2

— 72 dx
2, VT Tey) 4 V1t = e [(1 + 22)2 * 1+y:c2} € Sulln, (x)? Ha).

It is done if v(7,z, 7,y) € Su((z), % + dy?). We know v € S(1, ffiiyyz) Hence for all
(o, B) € N? there exists C,, g > 0 such that

TBT
vre (0.1 Vr.y € B, (300 ((re.my))| < Cug b
(1+T 24+ T2y?) " 2
1
< - < 1—-|al
= Ca,ﬁ (T% + ZEQ)O“//Q — Ca75<x> ?
Y
which is what we seek. O

If the error terms of Proposition 3.2 and Proposition 3.3 are assumed to be negligible,

the energy £.(1) of a state ¢ = U* <a0 ) is close to

with & (a_) = (a_,H_a_ /|a |4 dxdy, (4.1)

L 9 /14 g2 E%/Tﬂy V(VTTy T TaTyY)
Ty
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with the potential v chosen from (1.14).
When :—z and 7,7, are small, in particular in the regime 7, < 1 and 7, = 1 that we shall
consider, this energy is well approximated by

1

z? + y? G
ue) = o, [ - @ - 52+ T2 b+ 5 [l (4.2
\%4

as this will be checked and specified in the next paragraph. Although more general
asymptotics could be considered, we concentrate from now on the regime 7, < 1, 7, = 1.
The parameters ¢, and GG are assumed to be fixed as 7, — 0.

In order to prove that the ground states of £ and &, are close, we need to have good
estimates on the energy &y.

4.2 Properties of the harmonic approximation

Let us recall that the energy functional £y does not any more depend on 7, and is
parameterized only by (G, ¢y). Let us start with its properties. We introduce the spaces
‘H, and Hs, which are given by

Ho=Suel’®) Y |[¢"Djullz <+00p, s=1,2,(q=(2,9)) (4.3)
lol+]B8]<s

endowed with the norm |[ul)3, = > jaltl8l<s l¢*D5ul|7, . For a compact set K of H, and
for u € Hs, the distance dg(u, K) follows the usual definition min,cx ||u — vl||3, . The
self-ajoint operator associated with the linear part of £y is denoted by
1T
Hy =0 —(0,~ 2+

22 4 g2

Ty, (0 < by < +00).
%

Its domain is Hs while its form domain is H; . Note also the compact embeddings Hy CC

H, cC L?> N L*. Following the general scheme presented in [HiPr, Sjol, its spectrum

equals

o(He,)={(1+2n)ry + (1+2n_)r_, (ny,n_) €N’}

Withrizﬁ\/l—k%i s

Proposition 4.2. The functional £y admits minima on {u € Hy, ||u||2 =1}, with a
minimum value Ef min satisfying

V2

5H,min Z Ty +r_ Z 7 .

The set of minimizers Argmin Ey is a bounded subset of Hy and therefore a compact
subset of {u € Hy, ||ul|r2 = 1}. Morever for any ¢ € Argmin Ey, ¢ is an eigenvector of
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Hoy + G|o|*. Finally there exist two constants C = Cp, ¢ > 0 and v = vy, ¢ € (0,1/2]
such that

Yu - 7—[1 , (HUHL2 = 1,5H(u) S (‘:H,min + 1) = (dq.[l (u,Argmin SH) S C((‘:H(U) — (C:H,mm)y) .
(4.4)

Proof: On H; and Hs, the scalar products
(u, v)10, = (u, Hp,v)p2
(u, v)op, = (Hp,u, Hp,v) g2

provide norms ||ul|xe,, &k = 1,2, respectively equivalent to ||u||3, . In this proof, all the
“uniform” estimates are actually parameterized by (G, (i) . The nonlinearity $ [ |u|*(z) dz
as well as the constraint ||u||z2 = 1 are continuous functions on LN L* while the quadratic
part of Ey(u) is simply [lull? , with Eg(u) > |lullf,, >ry +ro > ? . The compact em-
bedding H; CcC L? N L* thus implies that the infimum inf,en, l[ull 2 =1 Ep(u) is achieved.
A minimizer ¢ € Argmin £y solves in a distributional sense the Euler-Lagrange equation

Hey o+ Glolu = Aoy

where A, is the Lagrange multiplier associated with the constraint ||¢||,2 = 1. By taking
the scalar product with ¢, one obtains the bounds for A,:

5H,min S )\4,0 S 2gH,mm .
Since H; is also (compactly) embedded in L%(R?), the equation
HZVQO = _G‘(PPSO + )‘gogo

ensures that |||z, is uniformly bounded on Argmin £y . Therefore Argmin &y is a
bounded susbset of Hy, and a compact subset of H;. In a H;-neighborhood of ¢ €
Argmin £y (||¢llz2 = 1), the L?-sphere {u € H;, ||ul|z2 = 1} can be parametrized by

u = (1 - H'U”%2)(,0+U, <907 U>L2 =0.

Notice also that the potential G|g|? is a relatively compact perturbation of Hy,,, so that
Hy, + Glp|* is a self-adjoint operator in L?(R?) with domain H, and with a compact
resolvent. With (¢, v)1e, = —G [ |¢[*Pv dz for ¢ is an eigenvector of Hy,, + G|¢]* and
v L ¢, the energy £y (u) becomes

En((1 - e +0) = ol + (0~ loll)le, Phre
_ G
~2G(1 = ol Re [ JoPpudo+ 5 [ (1= ll)e+ off do
R2 R2
= ol + Bl

where v lies in the closed subset H;, = {v € Hi,{(¢,v)2 = 0} of Hy and F,(v) is the
composition of the compact embedding H; — L?* N L* with a real analytic, real-valued,
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functional on L? N L*. Hence on H;, endowed with the scalar product { , )i, the
Hessian of Ex((1 — [[v]|3.)¢ + v) equals Id +D?*Fy,, (0), with D?F},, (0) compact (and self-
adjoint) . We can apply the Lojasiewicz-Simon inequality which says that there exist two
constants Cy, > 0, v, € (0,1/2], such that

lWllve, < Cp (Er((L = IlvlIZ2)e + v) = Emmin) ™ -

Since the set Argmin £y is a compact subset of H;, it can be covered by a finite number
of neighborhoods of ¢; € Argmin £y, 1 < i < N, where a Lojasiewicz-Simon inequality
holds. Take

v = min v, and =2 max C,. .
by ,G 1<i<N Pi by ,G 1<i<N Pi

O

Remark 4.3. The Lojasiewicz inequality is a classical result of real algebraic geometry
(see a.e. [Loj, BCR]) proved by Lojasiewicz after Tarski-Seidenberg Theorem. It is usually
written as |V f(x)| < Cf(x)” with v € (0,1] for a real analytic function of x lying around
xg with f(xg) = 0. The variational form is a variant of it. It was extended to the infinite
dimensional case with applications to PDE’s by L. Simon in [Sim]. We refer the reader
also to [Chi, HaJe, Hua] and [BDLM] for recent texts and references concerned with the
infinite dimensional case or the extension with o-minimal structures.

The nonlinear Fuler-Lagrange equation is usually studied after linearization via the Liap-
unov-Schmidt process. Here using some coordinate representation of the constraint sub-
manifold, especially when it is a sphere for a simple norm, allows to use directly the
standard result for the minimization of real analytic functionals.

When the minimization problem is non degenerate at every ¢ € Argmin Ey, i.e. in
the present case when the kernel of Id +D?*F,(0) is rectricted to {0}, the compact set
Argmin Ey is made of a finite number of point. When by is fized so that ry and r_ are
rationnally independent, the spectrum of Hy, is made of simple eigenvalues and when G
s small enough, G < Gy,,, the non degeneracy assumption is satisfied via a perturbation
argument from the case G = 0. For large G, we can only say that the set of (G,ly) €
(0, +00)? such that all the minima are non degenerate, vy, ¢ = 1/2, is a subanalytic subset
of R?. In our case with a linear part Hy, which is a complex operator with no rotational
symetry, no standard methods like in [AJR] allow to reduce the minimization problem to
some radial nonlinear ODE.

From the information given by the Lowest-Landau-Level reduction, when G and {y are
large, the supposed hexagonal symmetry, after removing some trivial rotational invariance,
of the problem (see [ABN, Nie]) sugqgests that there are presumably several minimizers.

A change of variable p(z,y)e ™¥%/* = au(az, ay) with o® = 1/(fyV/G) leads to

1 1
=G 0VG

This implies that £,,v/G is equivalent to a rotation value. We have the following results
from the literature

SH(u) =

/\(V — %ﬁv\/@ez x r)ul* + G(r*lul* + %|u|4) (4.5)

38



e when /,v/G is small and G is large, the minimizer is unique up to rotation and
vortex-free [AJR]: namely u(z,y) = f(r)e® for some real number ¢, where f does
not vanish. If £,,+/G = 0, this is an adaptation of a result of [BrOs]. When ¢,+/G

is non zero, this requires refined estimates for the jacobian.

e when (/G is large, then vortices are expected in the system and this can be
analyzed in details in the LLL regime (lowest Landau level) if additionally v/G/fy
is small [AB, ABN]. More precisely, if v/G//y is small, then

inf &y — & —inf Eipp=o VG (4.6)
2 Uy
where .
ELLL(U) = /G(T2|U|2 + §‘U‘4) (47)

for functions w such that u(z, y)ef‘“@ﬂ/ Yis a holomorphic function of = + 4y. This
space is called the LLL. If u is a ground state of £ and w its projection onto the

LLL, then |u — w| tends to 0 in H' and C%* as v/G/fy tends to 0. If additionally,
VG is large, then one can estimate inf E;;; [ABN] thanks to test functions with

vortices and inf Errr, = O (‘g—f)

o if (\/G is large, and /G/ly is large, then this is a Thomas Fermi regime where
the energy can be estimated as well [Aft] and is of order /G /¢y

We complete the previous result with another comparison statement which will be
useful in the sequel.

Proposition 4.4. There ezists C = Cy, ¢ > 0 such that when w € Hy satisfy Ep(u) <
Etmin + 1, ||ul|z2 = 1, and solves

Hy, cu+ Glu|®u = Mu +r
with A\, € R and r € L?, then
o u€E Hy,
o there exists ugp € Argmin Ey, with Lagrange multiplier \,,, such that
[Aw = Ao+ llu = wollr, < C(I7llz2 + (En(u) = Epmin)”)
where v = vy, ¢ € (0, %] 15 the exponent given in Proposition 4.2.

Proof: Since Argmin £y is compact, Proposition 4.2 already provides ug € Argmin g
such that
lu = uollr, < C(En(u) = Ermin)”-
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Taking the difference of the equation for u and the Euler-Lagrange equation for ug, we
obtain

Hyy, co(u—up) = (Ay — Auy) %o + Au(u — ug) + G(|upPuo — |ul*u) + 7.
Taking the scalar product with ug, with
[[wol*uo — [ulullr2 < C (Ex(uo) + En(w)) lu — uollz, < O (En(w) = Emmin)”

implies
A= Aol < C"([Irllz2 + (En(w) = Exmin)”) -

Using the ellipticity of Hy, ¢ and the equivalence of the norms ||¢||y, and ||Hy, c@|| L2
ends the proof. O

4.3 Comparison of the two reduced minimization problems

In the regime 7, = 1 and 7, — 0, while ¢;; > 0 and G > 0 are fixed, we compare the two
minimization problems for the energies £, and £y defined in (4.1)-(4.2). We start with
the next Lemma which is a simple application of the so called IMS localization formula
(see a.e. [CFKS]). We shall use the functional spaces H, defined by (4.3) associated with
&y as well as the standard Sobolev spaces H*(R?) associated with &, with s = 1,2 and
Hs C H5(R?).

Lemma 4.5. Let x1, x2 € Ci°(R?) satisfy X3+ x5 = 1, supp x1 C {2 +y? < 1} and take

a € (0, %] . Then the following identities

2
VueHr, En(u)=En(alr)u) + Enlxa(ry Ju) — 72 Z/ (V) () ul®
j=1 /R
+6 [ et @)
R2
with the same formula for &, (u) when v € H*(R?), and
2
Vue H'(R?), & (u) = Enla(rlu) + (ol Ju) — 7 Z/ (V) (7 ) P
j=1 7%

+6 [ (Al + R, (49)

hold with

[R(w)] < 7 (& )w)!'? + En(xa(re)u)'?) lfull ary =

e~ =
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Proof:  The first identity is a direct application of the IMS localization formula (see
a.e. [CFKS]) which comes from the identity

1 1
PYP = xP*x = [P = 5 [\ P P = 5P [Py]

when P is a differential operator of order < 1 and y is a C* function. Simply combine it
with the identity

Jul® = [xa (2 Jul® + xa(m Jul* + 23 (70 ) [l

Using the same argument for &£, provides the same identity after replacing £y with &,
and it suffices to compare & (x1(72.)u) with Ex(x1(75.)u). The definition (1.14) of the
potential v and the condition o < % imply

v(T, 1/2) m.(z* +y*)  on suppx1(72.).

Therefore, we obtain, by setting u, = x1(7%.)u

£:00(72Ju) = Enln (- w)] = o=l 10— i
< (1o, - ’N%wm +10, 2>uTHL ) I jj’%m s
< 1 (ECalr ) + Enla(u) ) Jull k.

O

Proposition 4.6. For any given (v, G) € (0,+00)?, there exists 74, ¢ > 0 such that the
following properties hold when 7, < 7, ¢ .

e The minimization problem

inf E-(u)

ueH (R?), |lul| 2 =1
admits a solution v € H'(R?).

o A solution u € H'(R?) to the above minimization problem, solves an Euler-Lagrange
equation
i x U(T%/ %)

2
= +
2\/1+7'$x2) G,

with 0 < A, < 2&; 1in and belongs to H*(R?) .

—o* — (0, —

xT

+ Glul?| u = \u
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o Moreover the minimum value & ynin = MiNyep(gr2), |uf|, =1 E-(u) satisfies the esti-

mate
2 3
‘gﬂ-,mm SH mm| < CZV,GT /

e Foru € Argmin &, and any pairs x = (x1, x2) in C°(R?)? such that x3+x3 = 1 with

suppx1 C {z? +y* < 1} and x1 = 1 in {2* + y* < 1/2}, the functions Xj(Tml/g.)u,
J=1,2, satisfy
Ixa(ma"*JullZe < Oy 072" (4.10)
gT(Xl( ;/9) ) < g’r,min + Cx,EV,GTg/g (411)
2v 3 1
Ay, (1 (722 )u, Argmin Ex) < Cpy .07 v/ . vy € (0, 5] . (4.12)

A constant Cyyp. is a constant which is (or can be) fixed once (a,b,c) are given.

Proof: Fix ¢y and G. We drop the indices ¢y, G in the constants. The exponent a will
be fixed to the value % within the proof.

First step, upper bound for inf{& (u), u € H'(R?), ||ul|z: = 1}: Let x = (x1,x2) and
X = (X1, X2) be two pairs as in our statement such that y; < x; according to Defini-
tion A.2. Take ug € Argmin £y C H;. According to Proposition 4.2, it belongs to a
bounded set to Ho so that |||q|?ugl|z2, with ¢ = (x,y), is uniformly bounded. Hence,

0 ¢ supp Vx; Usupp x1X2 implies

/ V(72 Pluol? = O(*)  while / PR uol* > 0.

Lemma 4.5 above with the pair x and « € (0, %] gives:

Ermin = En (o) > Eu(Xa (75 Juo) + En (X2 (75 Juo) — CTE" .

’U(Tx 2.

On supp x2(7<.), the potential is bounded from below by = QQ . Thus we get

Ertmin ([X1u0llZ2 + [IX2t0l72) > EnpminlX1tollZ2 + IX2uol72 — O

1
C'r2e

and finally
IXauollze < C"7 . [Xauollze = 1+ O(r%),

as soon as 7, < (C"Exmin) 2.

The function u; = || Y1uo|| ;2 X1t is normalized with

gH,min S gH(ul) S gH,min + O(Tfa) )
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and x1(78)ur = uq, x2(78.)u; = 0. Applying the second formula of Lemma 4.5 with,
now, the pair x, leads to

Er(ur) = Ex(wr) + R(ur) = Emin + O(7,%) + R(wy)
1
with  R(ur) < 2(E () + (Epmin + O(727) /)7,

ok

With the estimate %2 < Ermin < C, we deduce

ET(Ul) = EH,min + O(TGa + 7';730{) .

xT

It’s time to fix « to the value § so that 75* = 7173 = 7% and

inf 5T < 5T <& min 2/3 .
weH1(R2) () < &) < Ermin + 7,

Second step - Existence of a minimizer: Once the function u; € H'(R?) has been con-

structed as above, consider 7, < 79 with Ep pin + /<;7'02 /3 < EQITO . The functional
\%

1 2
&)~ Il

is the sum of a convex strongly continuous functional (and therefore weakly continuous)

on H'(R?) and a negative functional

1

2
0Ty

(u, [v(rj/Q.) — 1}7 u) .

Due to the compact support of v — 1, it is also continuous w.r.t the weak topology on
H'(R?). Out a minimizing sequence (u,)nen+, extract a weakly converging subsequence
in H'(R?). The weak limit, u., satisfies

1

Er(uso) = @—Txlluwllé = lim & (up,) — E%/—Txﬂunk!\é :
_ 1

2[%/7'90
that actually [|ueo||r2 = limyeo ||tn, || 22 = 1 and us realizes the minimum of &; (u) under
the constraint ||ul/zz = 1.
The Euler-Lagrange equation can thus be written, with the stated straightforward conse-
quences.
Third step - a priori estimate for minimizers of &,: Let u € H'(R?) satisfy |lul[z2 = 1 and

with ||tusl|/z2 < 1. The same convergence holds also for the energy &, (u) |ul|,, so

E(u) = Ermin < Em + ke® . Take two pairs ¥ = (%1, %2) and y' = (x}, x4), like in our

statement, and such that x} < xi. The identities (4.9) for &, and (4.9) in Lemma 4.5
provide

Ermin = E(1 (T )u) — Cyr?/°

Ermin > EH()Zl(Tml/g.)u) — C}(Tg/g — i [57(21(7'11/9.)@1/2 + 5H(>~<1(Tml/9.)u)1/2} T§/3.
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The first line says
E (X1 (T, 19 yu) < Ermin + CXTJ%/Q < EHmin + /‘67}?/3 + C;zTg?/g < C;Z’
which combined with the second line provides the uniform estimate

E(xu(r" )u) < CF.

Therefore )21(73}/ ? )u is uniformly bounded in H; with respect to 7,. Consider now the
Euler-Lagrange equation

. 1/2
I L o
[ 97 — (0, 2\/@) + e, +G\u\]u—)\uu

and write its local version for u] = x (7% 2/9 Ju in the form

X % 4 2
[ — (0, — —) + 1z Y ] uy = — Glag|*uy + fr + 2 (4.13)
v
1 x? Tl
-1 1/9 o .
N e 1+ a2 !

and  fi = =20,/°(VX))(m/). Vi — 722 (A (7 )

after setting u; = 21(75/9.)% Both functions, @; and therefore u) = X/l(n?/g.)al are

uniformly estimated in H; and therefore in H'(R?). From the imbedding H'(R?) C
L5(R?), the term G|u;|?u} is uniformly bounded in L?*(R?). For the term f], the support

condition supp X’l(Tml/g.) C {|x| < T{l/g} imply

with  f} = —iz(———

1fillze < Co(mg™ 2 4+ 7,7%) < OF,,

while the estimate
L1/9 <
12 < Corh/® < CY

is straightforward. Hence the right-hand side of (4.13) is uniformly bounded in L?(R?)
and we have proved

I3 (722 Jullag, < G (4.14)

for any good pair of cut-offs X' = (X}, x5) -
Fourth step- accurate comparison of minimal energies: We already know &- i < Exmin+

rk72/® and we want to check the reverse inequality. Consider a minimizer u of £, and take
two pairs of cut-off x = (x1, x2) and X' = (X}, x4), such that x; < x} . The identity (4.8)

for £, and (4.9) of Lemma 4.5 used with x imply

Ermin = EO0 (T2 )u) + E-(xa(m)u 2/92 / (V) (7 )P |uf? (4.15)
2

Ermin > En(xa(ry/?Ju) = 729) / [(Vx) (722 ) Plul® + R(u). (4.16)
j=17F
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After setting u} = X'I(Tml/g.)u, we get the bound

Vi 73}/9. 2 ,
[ iaeyp = [ I g < o e,

while we already know from the third step the bounds 5.()(1(7'%/ ? Ju) < C, when e stands

for 7 or H, which implies |R(u)| < Cmez/g . From (4.15), we deduce, as we did in the first
step with the energy &y,

b )uls < G2 (i Julle =1+ 0(2),

T

while the second line implies
gr,min Z (]- - CXTQ%/?’) gH,min - C),(Ta%/g Z gH,min - C;,Ta%/g .

Fifth step- accurate comparison of minimizers: The function u; = ||X1(Tml/ ?)

satisfies

_ 1/9
ull 7ixa (7 ),

8H<u1> S 5H,min + CXT;?/?)

while Xl(Tg}/g.)u solves the equation (4.13) for some pair Y = (X1, X2) such that y; <

X1 after replacing (y/,u}) with (X,Xl(n}/g.)u). After normalization by setting @, =

||X(Ta}/g-)u||221X1(Tml/9.)u it becomes

Hy, qui + Glug[Puy = Ny + fL+ f2+ f2 (4.17)
wr = Xl (e = Il A,
1 r? Tl

with  f) = —ix(

u

— 1)X(7'1/9.)8y711 - —

xT

V1+ 122
fi==2m(Vx) () Vi — 722 (Axa) (1, i
and 2 = Glpxa(m"Julfa (i = fun*)un + G(1 = [xa(r® ul|22) fua[Pus
The estimate (4.14), for any new good pair X = (X}, x5) such that x1 < x1 < X7,

implies that the terms f} and f?2 of the right-hand side of (4.17) have an L*-norm of order
72/* | For the third term the estimate (4.14) also implies that

(@] = Jur)?)ur = (1 = x5 (72/2.) [P

has an L2-norm of order O(72/%) (use the L bound for |i|? with [[|g|2us|z2 < Cy). We
conclude by applying Proposition 4.4 . O

We end this section with a comparison property similar to Proposition 4.4.

Proposition 4.7. Let ly, G be fized positive numbers and take u € H'(R?) such that

xT

87’(“‘) S ST,min + CZV7GT2/3

45



and which solves
2 z 2 U<Tl/2 ) 2
—0;u— (0, —1 + =2 'u—i—Gu U= AU+ Ty,
with A\, € R and ||r,||z2 < 1. Then for any pair x = (x1, X2) € C:°(R?) so that x3+x3 =1
with supp x1 C {2* +y* <1} and x1 = 1 in {2* +y* < 1/2}, there exists Ty4,.c and
Cy e such that

Ixa(r2 " Jul72 < Cryams? (4.18)
& (1 (722 ) = Epmin| < Crey 7! (4.19)

2v, /3
T i) (4.20)

dyg, (X1 (722 )u, Argmin Ex) < Cpyo(Ta
when T, < Ty, and where vy, ¢ € (0,3] is the exponent given in Proposition 4.2.

Proof: The analysis follows essentially the same line as the study of the minimizers of
&, in the proof of Proposition 4.6. By taking two pairs x' = (X}, x5) and x = (X1, X2) such
that x} < X1, we obtain successively like in the Third Step in the proof of Proposition 4.6 :

o & )u) + & (Ra(m” Ju) < Cy;

-Lﬁﬁ%%—%F+%ﬁ]m—Aur4%m24J$aﬁ+mwmmM@hﬁ2

have the same expressions as in (4.13);
o ||X’1(7'ml/9.)u||71{2 < Cy owing to ||r,|lz <1.

From the last estimate, the refined comparaison of energies like in the Fourth Step gives
for a pair x = (x1, x2) such that x; < x}:
o Jullfs < 2 Enlum) < Enmin + Cy2f?,

with u; = ||X1(Tml/9.)u||*lxl(7'%/9 Ju and C), 2 < 1for 7, < 7, . The equation (4.17) is
replaced by

Hy, cuy + Glug[Puy = Nus + fo + 24 2+ a(r, /9 Jul| 7ty
without changing the expressions of f1%3. Again the estimate ||X’1(7'ml/9.)u||71{2 < Cy is
used with various cut-offs X/, in order to get |[f! + f2 + f3]|2 = (9(7‘3/ %). We conclude
with the help of Proposition 4.4 applied to u; . O

5 Analysis of the complete minimization problem

We consider the complete minimization problem for the energy

E.() = (b, Huath) + fﬂW—ﬁﬁkw o Hyt) + /w@

and compare its solutions to the minimization of the reduced energies £, and £y, intro-
duced in the previous sections. We work with 7, = 1, 7, — 0, ¢ — 0, while ¢y, G and
d € (0, 9] are fixed. The analysis follows the same lines as the proof of Proposition 4.6.
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5.1 Upper bound for inf {&.(¢), |||z =1}

The potential V. is chosen according to (1.13)-(1.14) while ¢,y and G are fixed. The
parameter 7, is assumed to be smaller than 7, ¢ so that the minimal energy &; ,in(72)
of & is achieved (see Proposition 4.6) and |E; min(72) — Emmin] < Cgvgn?/ Moreover
Proposition 4.6 also says that by truncating an element of Argmin &, one can find a_ € H,

such that

la_llzz =1, [€(a-) = Enpminl < Copoy? and ol < Crpe. (5.1)
» | (0
Proposition 5.1. Under the above assumptions, take v = U o where a_
e Va_

satisfies (5.1) and U = U(q,eD,, 7, €) is the unitary operator introduced in Theorem 2.1.
The estimate

‘5 2+25 ;,;(%-(CL,)‘ S CgV,GE2+45 . (52)
hold uniformly w.r.t 7, € (0, Tgvg] and § € (0, d] .

Proof: Let us compare first the linear part by estimating

2425 2 : T 5 U(y/Tz.)
W Huint)) = 75 ralan | =00 = Oy —ig e = }Ml

= (¥, (Hpim — e 1,U" HpoU)Y) |

By Proposition 3.2, it suffices to estimate

11 =3)¢ll2 and  [|v/TaleDg|(1 = X)¥| 2

for some given cut-off function x € C5°(R) with ¥ = x(7,£°Dj) . Notice

% (yTeD,)e T = ( \/;_/g;Df g)

Hence by using the functional calculus of /D,, we can say that there exists a cut-off
X' € Cge(—r2, r,QY), with ¥’ = 1 around 0 and y’ < x such that

(1= R)%emE < (1-Y)?,
and e' 7 (1,82 Dyl ) (1 — ¥)%e ™% < 2(1,?| D) (1 — ¥')2 +2(1 — y')?

as soon as € < gy < 1, for a convenient choice of ¢y and .. By using ||a||g2@2) < Cyy, q,
we deduce

11 = X)wlze <11 = X)a- |z
(V72| Dgl) (1 = )17z

Cgv GT 8 and
2/ (/7| Dgl) (1 = x)a-|l7> + 2//(1 = X)a— |72
CgV,GTma?Q.

IA N IA
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By Proposition 3.2, we obtain

[, (Hpin — 21, U HpoU )|

S CZV,G [82+45 + 55Jr257_§ + E4+25T§/2} S CéV,G€2+45 ] (53)

For the nonlinear part of the energy, Proposition 3.3 gives

(=) [ aft< [ < @) [
R2 R2 R2

and the bound, [p. |e_iﬁa_|4 = Jpo la—|* < Cy, ¢, leads to

’GT$E2+25/ w|4_82+25%/ la_|*
2 2 B
R? R?

which is smaller than the error term for the linear part. This ends the proof of (5.2).
O

< CZV,G52+257—$ % €1+25’

Remark 5.2. o The energy E-(a—) = Epmin + (9(7'12/3) . Therefore the error given by
(5.2) is relevant, as compared with the energy scale of €2+25Tx5ﬂmm, when

£20 < Coy.GTa s (5.4)
with ¢y, ¢ small enough, and accurate when
e < Cp g (5.5)
Remember that the constants ¢y, ¢ and Cy, ¢ depend also on &y, when 6 € (0,0 .

e [t is interesting to notice that the worst term in the right-hand side of (5.3) comes
from the error of order O(£**%) in the Born-Oppenheimer approvimation. There
seems to be no way to get an additional factor 77 with v > 0 because the initial
problem is rapidly oscillatory in the y-variable in a T,.-dependent scale. This can
be seen on the gain associated with the metric g., for 7, = 1 and 7, > 0, which s
simply (\/7,p), of order 1 in the (very) low frequencies.

5.2 Existence of a minimizer for &

With the choice (1.13)-(1.14) of the potential V., the linear Hamiltonian Hy;, can be
written

21+ a2 0 .
Hipin = 2™ 71,A + ug(q, 7) < 0 O) uo(q, 7)
1/2
+€2+25U(;a:2 ) _ 52+25W7(x,y),
%
2
1
with W (z,y) = B

(1 + 7,22)? * 147,22
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£2+26
2
2ZV

the negative part (52“5% — t) is compactly supported. Set
v _

21 2 .
O O s (2 0E))

For ¢t <

Hiping+ = —52+257'xA +uo(q, 7) <

so that

G.r v(\/Tz-) t
)=Vl = 0 Humgo)+ 52 [, 20 | (- ) —w] vy,
(5.6)
Proposition 5.3. Assume € < ¢y, ¢ and 7, < 74, ¢ with 7, ¢ small enough. Then the

nfimum
inf{&(v), ue H'(R?),|lufr: =1}

is achieved. Any element 1) of Argmin E. solves an Fuler-Lagrange equation

Hme + G5,7'|77Z)|277Z) - )\¢’l7/)

with the estimates

EO+ Myl € Crp o™ (14 7| Do) *l|12 < Ciy
é:s(w) = gs,min S 52+25 [(‘:T,min + CZV,G‘C:%)} S 52+25 [TxgH,min + CéV,G<T;;?/3 + 825)} .

Proof: From Proposition 5.1, we know that

t
: 2425 2445
| |1|nf 15€(u) <78 min + Coy g™ =1 =
ul| 2=

£2+26
202,
the energy &.(u) — t||ul|3.. By the same argument (convexity of the positive part and
compacity of the negative part) as we used for &, in the proof of Proposition 4.6 (second
step), a weak limit of an extracted sequence of minimizers in H'(R?) is a minimum for
E. on {||ul|2 =1}.

A element 1 of Argmin &, satisfies

For e < ey, ¢ and 7, < 74, @, t smaller than . Consider the decomposition (5.6) for

82+26T;}: [W}’ —AIM +%/|¢‘4] < <q/,’ HLm’t,Jr@@ +%/|¢\4
< Emin — (1, 77 [(U(\/T_x) B 52;5)_ - WT} v)

G

t
< 5+ t+ 1+ 7)™ <) (e,

by recalling v > 0 for the last line. This implies

/

_ CéGf
190 < Chars® o Illh < =28,
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and by interpolation with [|ul/ze < C||Vu||i/23||u||2/23, 1¥][ e = O(ra /). The first in-

equality with [[1]|z2 = 1, gives ||(1 + 7| D,4|?)Y?]|2 = O(1) .
The Euler-Lagrange equation

HLin’l/} + GE,T‘w|2w - )‘1/}
implies

A< 2 [t ) + 5 [1olt] =, (B0 L) —w )

" 2426
< 0y .GE .

Similarly, the lower bound &.(¢) > —2¢2¥% is due to W, > —2. The upper bound of
E(¢) = & yin comes from Proposition 5.1 and (5.1). O

5.3 Comparison of minimal energies between &£ and &,

In this subsection, we specify a priori estimates for the minimizers of £ and compare
the energies & ;i and & i, wWithout imposing relations between e? and 7, . This is not
necessary at this level, if one uses carefully bootstrap arguments.

Proposition 5.4. Let V. ; be given by (1.13)-(1.14) and assume 7, < 7y, ¢ and € < &4, &
so that & admits a ground state according to Proposition 5.3. The operator U 1is the
unitary transform provided by Theorem 2.1 and an element ¢ € Argmin &. is written

U (6 iy a+> . Then, the estimates

e VT q_

(1 + 72| Dy*)all 2 < Coy i+ (5.7)
lay|Ps + G.r / lal' < Cop 622 4+ Expin (5.8)
(1) — 27,8, (al)| < Cy o™, (5.9)
‘ge,min - 82+25Tm£7—,min‘ S CYZV-,CT'S2+45 . (510)

2426

hold with right-hand sides which can be replaced by Cy,, ce* %1, when e* < ¢4, aTs -

—1

e 2VTrq_

1Y
2z
Proof:  For a = (e y a+> and a = <Z+), the norms ||(1 + 7|D,|*)'/%a||2 and

(1 + 7| D,|?)"/%a]| > are uniformly equivalent because

i -y 1
I (V7 D,)eTVE = (VD) F 5

Hence it suffices to estimate \/ﬁstqU*w. Remember that U = U(q,eDy,7,¢) with U €
Su(1, gr; M5(C)), while \/Top € Su((\/Tep), 9 R?) . With [[(1 4 7]Dy[*) 29|12 < Cop

in Proposition 5.3, simply compute:

VreDU" b = eU 7Dy + |7z Dy, U7 | 1 = O(e)  im AR C),

20



and divide by ¢ for (5.7).
In order to compare the energies, consider first the linear part by writing

(W, Hpnt) = 297, [{a,, Hoay) + o, Hoa )| = (@, (0 Huinll = 22 Hpo)a)

‘ Yy
~ e Ny
a = iy s
e Wrq_

with

(ei%},ﬁ I%re*i?\}/ﬁ 0 )
Hpo = BIF S /RN N T
0 e 2V H e 2V
A Tz 1£1

2v1+ 1,22

2 212
037y g2+20r,

Here it is convenient to write

. 211/2
B B (2(1 + T 2”) )

0
with B = (%* Eg ) . Bi=Bi(q,eD,7,¢) (5.11)

5 Tl s (/T
S A VT (61

With the notation X = x(7.£2|D,|*) of Proposition 3.2, Lemma 5.5 below says in particular

and  By(q,p,7.€) = Tup2 + (V/Tuby £

10 = ¢l < Coy. | (@ Ba) + = all3s]
IVl Dal(1 = )¥ll32 < Coy. [ (. Ba) + % a3
Proposition 3.2 yields

R R R 2\1/2
@, (U*HLmU MR <2<1 + 7e2) )) @)

: < Chc [€2+45 . 5”25(&, B&}]

For the nonlinear part of the energy, Proposition 3.3 gives

(- [ i< [t = [ i< oo [
R2 R2 R?2 R?2

i—Y
1~ e NV q a .
with @ = , "] and a = <a+) . The bound [, [¢|* < Cp, ¢7, " coming from

e 2VTrq_
E.() = O(e7%) with 272, = O(£2+%), leads to

Gr,e2t? Gr,e2t? -
G [ o= S
R2 R2

S CZV,G€2+26T1 % 514r257_:;1 — CZV,G53+457

o1



which is smaller than the error term for the linear part. We have proved

E-() —®(a, Ba) — (ay, 2(1+ 7a®)%ay) — Gz / jal*

<Cupc [82+45 +exe*(a, Ba)

With &£.(¢¥) = & pin (= O(£272)), this gives

G..
267 / ‘CL|4 S C€2+46 + gs,min .

(1 —Ce)e®(a, Ba) + 2(a, , (1 +ma®)?a,) +

where all the terms of the left-hand side are now non negative. We deduce (5.8) and by
bootstrapping

. G . oA G, .
62”5733(&,, H a )+ 26 /|a\4 < 525<a, Ba) + — /|a\4 < &min + Cgv7g82+45.

2
Additionally, [ |a|* = [ (la_|>+ |a4]?)* > []a_|* also gives

26 26

€ Ee mi €
0< ||a—||i25’r,min < 57-((1_) < CKV,GT_x + E2iZ;Z:$ < g’r,min + 02V7G’7__x .

With [la_[2, = 1 — [lax|? = 1 + O(**) = 1+ O(22) and Ermin = Ergnin + O(12'%),
this finally leads to
20

ge,min 7 5
|82+25Tm - 87—(@_)| S C€V7GT_1- .

0

Lemma 5.5. Assume B(q,p, 7€) = 7,|p|* +er with r € S,((\/72p), 9-; M2(C)), take any
X € C°(R) and set B = B(q,eDy, 7,¢) and X = X (72| Dy|?) . Then there exists e, > 0
and Cp, > 0 such that the estimates

and (1 = R)ullZs + IVTleDyl(1 = Dul?: < Cpy [(u, Bu) + e juf%] |
and  |[(1 = Rullzz + VD1 = Dullzz < Cry [ Bullzz + e ullze]

hold uniformly w.r.t 6 € (0,0o] and € € (0,ep,) .

Proof: For xo € C§°(R) such that xo > 0 and yo = 1 around 0, the symbol
Xo(7zp?) + B is an elliptic symbol in S, ({\/7zp)?, g- : M2(C)). For € > 0 small enough
according to (xo, B), its quantization xo -+ B is invertible and its inverse belongs to

OpS.((\/T2p), g-» M2(C)) . Next we notice that in
-1 11
- =(1-%o[t+B] oB+1-%o[w+B] o,
the last term belongs to OpN, 4. if xo < x . All the estimates are consequences of
N A
(1-R) == o [to+B] oB+e*p,

with p € Su(==, gr; M2(C)). -

(pr)e?
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5.4 Adiabatic Euler-Lagrange equation

As suggested by Proposition 4.7, or the last steps in the proof of Proposition 4.6, an
accurate comparison of minimizers requires some comparison of the Euler-Lagrange equa-
tions. We check here that the a_ component in Proposition 5.4 solves approximately the
Euler-Lagrange equations for minimizers of £, . Here the bootstrap argument is made in
terms of operators instead of quadratic forms. In order to get reliable results, we now
assume

e? < epy6Ta

with ¢, ¢ chosen small enough.
With such an assumption we know:

o from (5.10) and |, min(72) — Expmin| = O,

12426 2425
C e To < Ecmin < Ce Ty .

iy
e N a,
Y

e When ¢ € Argmin &, ,,;,, is written ¢ = U the L*-norm of a is uni-

e Vra,
formly bounded, [ |al* < Cj, ¢, according to (5.8). By applying Lemma 3.4 this
also gives [ |[¢|* < C, . We also have ||ai||2, < Cp, ce*™7, .

e The Lagrange multiplier Ay, associated with ¢ € Argmin &. ,.n, equals E.(¢) +
Ger [p|*. Thus it is of order O(e2+%7,).

Proposition 5.6. Under the same assumptions as in Proposition 5.4 and with the above

;Y
., 25 . L. . 2 ezQﬁCL+
condition €*° < ¢y, Tz, write a minimizer  of & in the formy =U | _, 4 . Then
’ VT a_

the component a_ solves the equation
26

X 5
H a_ + G/ la_|Pa_ = Apa_ +r.  with ||re|ze < Copale+ 7_—),

xT

while ||ay]|ze < Cr, ce* 27, .
The LP-norms of a and ¢ are uniformly bounded by Cy,, & for p € [2,6].

ig
Moreover if B is the operator defined in (5.11)-(5.12), a = %iera+ ) satisfies
e Wwa_
1Bl < Coy &7 - (5.13)

Remark 5.7. The relation of || Ba||2 with ||@|| g2 is given by
O [EnllDjall + 2l 2] < [|Ballzz + €|l e < C [ Diall + €l 2] -

Note that the L* remainder terms have a factor €2 and not 7, .

23



Proof: Playing with the Euler-Lagrange equation for 1, we shall first prove (5.13)
argument as we did for (@, Ba) in the variational proof of Proposition 5.4 and then use
it in order to estimate |||z . The Euler-Lagrange equation for

HLinw + GE,T

becomes X . .
U*HpinUd + Ge U™ ([0") = Ay

Remember that Born-Oppenheimer Hamiltonian is given by

inym [ e v 0

6 Tx +e Tx

2V [l = g2 v |
0 e = H e 2V

A 2
2p (2\/146@1; ) |

by using the notations of (5.11)-(5.12).

Let us consider first the linear part after decomposing a into @ = xa + (1 — y)a, where
the low frequency cut-off operator x = x(q,eD,, 7,¢) has been introduced in Proposi-
tion 3.2:

A

U*HpinUdi = U HpinUXa+ (U = Ug) HpinU(1 = R)i + U Hyin (U = Ug)(1 = R)a
(7) (E)

+ U*HLmUO(l - X)a .

(I11)

The three terms are treated by reconsidering the computations done for Proposition 3.2.
By inserting a cut-off Y1, x < x1, in x1U*Hp:mUxa with (1-— X1)U HpinUx € OpN, g
we get

(I) = 2+2‘57-1HBoxa+(9( 2Hin L2(R?) .
With e 1=2(0U — U,) € OpS, ( =), 97 M>(C)) and by using Lemma 5.5, the second
term is estimated by

1)z < CE# 21 = R)allzz < O [elle® Bz + 2]

We write the third term as
(I11) = ™7, Hpo(1 — X)a + 7, Dgin(1 — X)a + Dpor(1 — X)a

where Dy, and D,y are defined by (3.7)-(3.8). Following the arguments given in the
proof of Proposition (3.2) after these definitions, we get

IDpor(1 — R)ill 2 < Ce"™™(1 = X)allr2 <
< [5“52‘5361\@ + 62+4‘1 ,

|Drin(1 = X)allz < C (1 = R)allr2 + 7 |(ey/Tal D) (1 = Xl 2]
< ' [5]\525B&]\L2 + 62+4‘1 .

o4



Hence the Euler-Lagrange equation can be written

e Hpoa = Ay — e, U (W)ﬁb) T

with  ||r|2 < C g||525Ba||L2+52+45} .

From Proposition 5.3, with €2 < c7,, we know [[1||;«+ < C'. It can be transformed into
Jallze = 10" llzs < C with

1 *lle < Cllglize < Cllallzs

by applying Lemma 3.4, adapted for the metric g, like in the proof Proposition 3.3. We
start from the interpolation inequality

1 8 1 8
1£lle < CIDZAIZNf NI < I7ze” DaflI7= 1 £ 117

(ng)%
. 1
By introducing the operator B = B(T{l/Qeq, 12 Dy, 7, €) with

(o= - vE) e,

3

2 x Sy
*Z[(i\m‘@) ‘e

Bi(Tx_l/Qq, T;/QDQ, T, €)= (T$€)2D§ +

I

it becomes

CYy L1 8 2 1 8
Il < =2 (B G+ U512
1

11
The above relation with f = 7, 2a(7, *.) which satisfies

1 1 . .
[fllze =7 *lalles  flls = 7 *llallps and [[Bf[|z2 = || Bal L2
leads to
1 Cy, A1 48 5, 1 4 8
e < 2 [IBallgrs Nallf + < lallgrs  al
(T2€)0
_1 2 A L
< Cuame’ [€7§||Ba||22 +1] :
and finally

GurllbP s < G0l < Copa [ % Bl o + 24207
With [Ay| = O(e7%#7,), we obtain

H52+257—1HBOC~L”L2 < C [8”825§C~LHL2 +82+45 _'_€2+257_m] :

25



and recall

24207, (526§+ +2v1+ TxSUQ)
3 HBO = .

e2B_
According to Lemma 5.8 below
1eXBar |12 + |2V 1 4+ mex2ay|| 2 < C||(e¥ By + 2/1 + mpa2)a || 12 -

We deduce )
]\525BELHL2 < C€2+25Tm .

Plugging this result into the estimate of the remainder r gives

00 Hpot = Mi + G U ([0|2) + O(37 27, 4 2149
Consider now more carefully the nonlinear term
0 () = Uy [106a2(0oa)| + (0 = Tg) |106a2(0oa) | + 0 |[Tal*(0a) — |0al*(oa)| -

-~ -~ -~

(1) 2) ®3)

By differentiating the relation [|f[* = [ |Uof|4 w.r.t f, the first term equals
(1) =lal'a.

By semiclassical calculus in the metric g,, the operator \/FquUO equals

V7D, Uy = Upn/Tae Dy + [\/agpq, UO} b = Up/TeD, + O(e) in L(L2(R%C?)).
We have already proved ||al/,s < C and Lemma 3.4 leads again to

|Ualls + Uil zs < C.
With e 172(U — Uy) € OpS,(1, gr; M5(C)), this gives
1)) < Ce2.

For the third term, we use

| [10a2(0a) — 106 (06d)| 122 < Coll(T = Do)l [I10al3s + |Toall3s] < C=12.

We have proved )
G U (|[0[*Y) — Grelafa = O™,

which is even better than the estimate for the linear part.
For the a_ component, we get

Hoo (0 + G2 + s 2)a. = =2 a4+ 0@ + =
BO i + (|a—| +|a’+| )a—_82+257_ma’—+ (E+_)7

Tx
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and it remains to estimate the term |a|?a_ . The first line of the system may be written
¥ Bydi + 21+ mady + Gy (Jasl® + |a—?) s = Apay + 0¥ r, +71%7,) .

Taking the scalar product with a,, with A\, = O(¢>*?7,) and B, >0, gives

xT

~ ~ 625
[l < Cllas e+ (e + S)lasli) < 04,

Then the same argument as in the estimate of ||a||rs gives

IN

_ 2~ o 8L 8
ol < e 3 Byalpalaliy + lasgalas s

' [(872725”826361”[/2)% + (82+25Tx)ﬁ} (82+25Tx)%

IN

IN

1
C'r2 (2 r,)8 < OV 7
Again with ||a||zs < C, we deduce

2
a2 lls2 < Coy o™ < €y e

The final result is just a transcription in terms of a . O

Lemma 5.8. Let By be the symbol
Tk
Atna

introduced in (5.12). By setting B, = By (q,eDy, Ty, €), the operator A = ¥ B, +
21 + 7,22 is self-adjoint with domain D(A) = {u € L*(R?), Au € L*(R?)} as soon as
e < &g, with g independent of 7,,. Moreover the inequality

Yu € D(A), ¥ Byl + [|2V1 + 72| < O Aul| 2

)+ W)

13
Bi(q,p,Tuy€) = D2 + (VTapy + 5 e
1%

holds with a constant C' independent of (e, 7,) .

Proof:  The operator A can be written A = ag(q,e'™°D,, 7,.) + a1 (q, e Dy, 7)) +
e Pay(q, 1), with ay € S, ((/Top)* F + <\/ﬁ:p>(1*k)+,g7) and

afO(Qapa Tx) = p2 + 2 V 1 + Tazxz .

Therefore the operator A is elliptic in OpS,((v/72p)? + (\/72), g-) and the result about
the domain follows with

| Beull e + 1201+ 7ol| < O(|Aulz2 + JJull2)
for all w € D(A). We conclude with
2]jullfz < (u, Au) < Jlul| 2| Au| -

duetoB+ZO. U
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5.5 End of the proof of Theorem 1.2

Assume G, 0y > 0 be fixed and ¢ € (0,9y]. Although we dropped ¢y in our notations,
all the constants in the previous inequalities depend on (G, ¢y, dy). We assume now
Te < Toy Goor € < €0y 6.6, and

lem

<

Proposition 5.4 says
2426 2+45 1 _2+26_3
|5€,min —¢€ Tz Tmm‘ < (Ce < (e TS

and we recall )
|57',min - 5H,mln| < Cré

by Proposition 4. 6

T a
When ¢ = U i O+ , Proposition 5.6 says
e 2Vra_
C
latllzs < Ce***r lalme < — and aflps + flafle < C,

while a_ solves the approximate Euler-Lagrange equation

26
H_a_+ G/ la_|Pa_ = Apa_ +r. with |jr||z2 < Cppa(e+ 87_—)

xT

For u = ||a_||2a_ the energy &, (u) satisfy
2
|57—(U) - 87',min| < CT;}?

and the above equation becomes

20
Hou+G [ ulfu= ut O+ ).
Tx

We conclude by referring to Proposition 4.7 applied to v and then renormalizing for a_:
For x = (x1, x2) with x; € C°(R?), x? +x3 =1, x1 = 1 in a neighborhood of 0

1 1
Ix2(72 a2 < C7
1 2
‘87(X1<T$9a*) - 5H,mln)‘ < CTxg
27/@‘/,G 1

d'HQ(Xl( 335) —>Argmin gH) < C(Tm 5+ 5), VoG € (O, 5] .

1
For the L*-estimates of a; and dp(x1(72.)a_, Argmin Ey), we simply use the interpo-
lation inequality

1 1 1o
luflze < CHUHEQHAUHEQ < Cllullza llullze ,
valid for any u € H*(R?) (write u(0) = [g, a( 27T —& cut the integral according to |¢] <

estimate both term by Cauchy—SChwartz Wlth u = ‘5‘2(|§|2 @) when [£] > R, and then
optimize w.r.t R).
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6 Additional comments

We briefly discuss and sketch how our analysis could be adapted to other problems. No
definite statement is given. Complete proofs require additional work, which may be done
in the future.

6.1 About the smallness condition of ¢ w.r.t 7,

In our main result, Theorem 1.2, condition (1.18) is used, namely

One may wonder whether such a condition is necessary in order to compare the minimiza-
tion problems for &. and £2t?7,E; . When comparing the minimal energies in Proposi-
tion 5.4, we found

|€5,min - 52+265H,min| S 052+46 ;

while we know that g min = Egmin(fv, G) is a positive number independent of 7, and
. Hence it seems natural to say that €2 < 7,, at least, is required for ensuring that
gt2%r & H.min 15 @ good approximation of & .., . The error is made of three parts:

e the error term for the Born-Oppenheimer approximation in the low-frequency range
given in Theorem 2.1;

e the error term coming from the truncated high frequency part;

e the non linear term.

The non linear term is % [ [¥]*, so that a small error in |[1)[|7, will give a negligible
term w.r.t e2t¥r,.€ Hmin - 1he question is thus mainly about the linear problem. If one
looks more carefully at the error term of Theorem 2.1, it is made of the term

Opy [2)(Op, [2) <

according to Proposition 2.6, and of terms coming from the third order term of Moyal prod-
ucts. The function f. is in our case f.(p) = e®7.p*y(1.p?), p = (P2, py), k, L € {2, 9y}, and
the factors X, and X, computed in the proof of Proposition 3.1 are at most of order —

VT
Hence the quantity (6.1) is an O(e2¥%7,) which is again negligible w.r.t €27, x nin -

By considering the higher order terms in the Moyal product, the fast oscillating part of
the symbol w.r.t y, at the frequency \/LT_Z, deteriorates the estimates: although there are

compensations with the slow variations w.r.t p,, always multiplied by ,/7,, only an ek
factor without 7, appears in the k-th order term.

Hence, computing the higher order terms, at least up to order 3, in the adiabatic approx-
imation and then considering the question of the high-frequency truncation, is a way to
understand whether the smallness of € w.r.t 7, is necessary.
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6.2 Anisotropic nonlinearity

Our work assumes an isotropic nonlinearity. A more general nonlinear term would be

Ge*t2r,

9 /041|¢1|4 +2a12|1/11|2|1/12|2 +a2|@/)2|4 dedy, = (%) .

V2

Our case is a1 = az = agp = 1. Let ¢ = Ug, with the unitary tranform U = Uy + "2 R,
(or conversely ¢ = U*1)). Then the same arguments as in Subsection 3.3 will lead to

/041|@/)1|4 + 2012 |t1 [P [2]* + ||t dady

— </ a9t + 20027 Pl [° + anlyd|* dxdy) (14 O(+2)),

after setting ¢¥°(q) = uo(q)é(q) at every ¢ = (x,y). In our case

[ C  Se¥ B 0 (0 B oy
uo(x,y)— (Sew —C) ) C = cos (5) ) S = sin (5) ) 9_Q< T:Bx)a ¥ = \/a
The pointwise identities
[P+ = |oal* + el (117 =[5 = cos(B) (|é1]* — [62]*) +25sin(0) Re(¢1e#6y)

lead to

o1 + 2009 + ap

2
ar [P + 20|y PlY9P 4 aolvd]t = 1 (Io1)* + |92]?)
a1 — Qg

2 (1011 + [92?) (cos(O)(|n]* = |al?) + 25in(0) Re(61¢76,) )

+HR 2 (c5(0) (61 — [0af) + 2500 (0) Re(@re6) )

0 0
- lal cos4(§) + ay sin4(§) + % SiHQ(Q):| |pe|*

+ lal sin4(g) + an COS4(g) + % sin2(6’)} || *

2
+ (o1 — ) + (a1 — 2012 + ) cos(0)] sin(6) |y | Re(qﬁl—_ewqﬁg)
+ [(a1 — ag) — (a1 — 2012 + az) cos(6)] sin(8) | s |* Re (¢ eiepy)
+(a1 — 2019 + ) sin®(0) Re [(W@)} :

# 1292 G2 1 a1+ o) fo o

At least three points have to be adapted from the previous analysis:
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- 0
1) When we take a test function ¢» = U ( iy ) the energy &.(v) will be close to

e Vrq_
e?27 & (a_), with

E(a_)=(a_, H_a_) + %/ [al COS4(g) + o sin4(g) + % sin?(0)| |a_|* dxdy,

and cos(f) = HT” Hence before taking the limit 7, — 0 we have a position
dependent nonlinearity. This will induce another error term when comparing with

the energy Ey(a-) = (a—, Hp,a_) + w [ la_|*, in the limit 7, — 0.

Another possibility consists in considering the case when |ag — aq| + |12 — g is
small as (g,7,) — (0,0). The energy &,(¢)), written as,

(a_, H_a_) + %/ [al + (g — o) sin4(g) + w sin®(0)| |a_|* ddy,

will converge to Ex(a_) = (a_, Hy,a_) + <2 [a_|.

2) The existence of a minimizer for £, and the variational argument showing that ||a |3, =

ei\/ﬁaJr

O(e2t9) 1 &, .min When 1 = U ( ) is a ground state for &, will be essentially

e Vma_
the same as in the isotropic case.

3) The analysis and the use of the Euler-Lagrange equation for ground states of &, like
in Subsection 5.4, will certainly be more delicate because it will be a system, and
the vanishing of the crossing terms have to be considered more carefully.

6.3 Minimization for excited states

One may consider like in [DGJO] the question of minimizing the energy, for states prepared
according to ¥, local eigenvector of the potential. Two things have to be modified in order
to adapt the previous analysis:

1) The space of states, on which the energy is minimized has to be specified. The unitary
transform U introduced in Theorem 2.1 provides a simple way to formulate this

1 O) and consider

minimization problem: set F, = Ran U P, with P, = (O 0

inf  E.(¢).

(3
peFs, lvl=1

2) In order to get asymptotically as € — 0, the same scalar minimization problems with
&; and &y, the external potential V. ; has to be changed. It must be now

2+26

2
v/ 1
Ver(z,y) = 62 —— (T, T2y) — V1 + T — £2+20 {( Ty n

1+ 722)2 14 722
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The analysis of this problem is essentially the same as for the complete minimization
problem. It is even simpler because the unitary U is directly introduced. A slightly
different question is about the minimization of the energy &. in the space F? = Ran Uy P.,

but the accurate comparison between U and U, widely used through this article would
lead to similar results.

Possibly this extension can even be generalized to higher rank matricial potentials with
eigenvectors 11, ..., Yy, for states modelled on any given vy, .

6.4 Time dynamics of adiabatically prepared states

When ¢ = U (ao ) (resp. ¥ = < 60) ), the question is whether the solution ()
-0

to

100 = Hynt + Geg |01, (= 0) = tho
remains close to U (a_()( t)) (resp. <a+0(t))) with

G 2+26
iOa_ = H a_ + u| _? ., a_(t=0)=a_p,
R G 2426
resp. i, = >0, H oa, + u|a+|2aJr . ar(t=0)=ayp.

2

More precisely, the question is about the range of time where this approximation is

o) =0, %)) 1 oo

valid: what is the size of T, w.r.t € such that sup,ei_q 7

a4 (t .
supyei_7. 1) 19(t) — ( +O< )) |) remains small.

Since the approximation of U* H ;U by (h(f)+ hg ) is good in the low frequency range, a

natural assumption will be that the initial data are supported in the low frequency region
g+ = X(52TxD§)a'0,:|: )

for some compactly supported x. Then the question is whether the norm of (1 —

X(e°7,D2))(t) remains small for t € [0,T.] for x € C°(R), x < Xx. Then the two

last parts of Section 3, concerned with the high frequency part and the effect of U on the
nonlinear term, have to be reconsidered.
Note that the adiabatically prepared state with 1y = < %Jr) are probably not stable

for very long time, T, = O(e*), because the characteristic set
C)\ - {(q’p) € R4’ det (6267_96172 + Ve,r( ) + M ) = O}

contains two components when A > min £, one corresponding to the higher level of
M (q) with |p|* < C()), and another one for the lower level of M(gq) but with large p’s.
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This means that a tunnel effect will occur between the two levels, so that adiabatically
prepared states, with energies close to A > min F, will not remain in this state for (very)
large times.

A Semiclassical calculus

A.1 Short review in the scalar case

Consider a Hormander metric, g, that is a metric on Rgi,, which satisfies the uncertainty
principle, the slowness and temperance conditions (see [Hor, BoLe|) and consider g-weights
(slow and tempered for g) M, My, M;. The symplectic form on Rgi) is denoted by o :

d
(X, X)=> pgi—qp’. X=(¢.p), X =(d.7).
j=1

The dual metric g7 is given by g% (T) = supyr % and the gain associated with g is
o 1/2
. QX(T)) .
AX) = inf > 1 (uncertainty) . Al
o= (BE5) =1 y) (A1)

In the scalar case, the space S(M, g) is then the subspace of C“(Rijiq; C) of functions such
that
VN € N, 3Cy sup [(T1...Tya)(X)| < CyM(X),
gx (Tr)=1
after identifying a vector field T, with a first-order differentiation operator. For a given
N € N, the system of seminorms (py ) ven defined by

Png(a) = sup  sup M(X)_1|(T1,...,Tga)(X)|

X€eR2d gx (Ty)=1

makes S(M, g) a Fréchet space.
For a € §'(R) and € > 0, the Weyl quantized operator ' (¢,eDy) : S(R?) — S'(R?) is
given by its kernel

/

W / ja=d)e q+q dp
D = E )
a <Q78 q)(Q7q ) /Rde (I( 2 7p) (27T€)d

When no confusion is possible, we shall use the shortest notations
a"(q,eD,) = a" =a(q,eD,) .

When a € S(M,g), it sends S(R?) (resp. S'(R%)) into itself and the composition a; o ay
makes sense for a; € S(M;, g). The Moyal product a;f%as is then defined as the Weyl-
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symbol of a}’(¢,eD,) o ay' (q,eD,):

aljjeag(X) = (G%J(Dxl ’DX2)a1 (Xl)a,g(XQ))

X1=Xo=X
J—1
Dx ,D
_ Z ( ( X1'7 X2)) (Xl)(ILQ(XQ)
pr 7! X1=X2=X
1 J—1 ) 7
(]' - 0) £ 0o e
+/0 ﬂGQG (Dx,,Dx5) EU(DX17DX2) al(Xl)ag(Xg) P
J—1
Dy, D
_ ( ( X1 Xz)) (Xl)CLQ(XQ) + 8JRJ<CL1, a275)(X) , (AQ)
e ]‘ X1=Xo=X

where Ry(.,.,e) is a uniformly continuous bilinear operator from S(Mj,g) x S(Ma,g)
into S(M;My\=7, g) (i.e. any seminorm of R;(ay,as,¢) is uniformly controlled by some
bilinear expression of a finite number of seminorms of a; and as).

The three first terms of the previous expansion are given by

(lljj a9 = 109 + — 92 [8pka18 kAg — 8 kalﬁpkag]

[(82 1) (0P1005) + (0% ear) (2, ,,02) — 2P, oar) (2, a2)]  (A.3)

Pk,Pe Pk-Pe q7;Pe

+€ Rs(al,am’f),

by making use of the Einstein convention s/t; = i sit; .

With the small parameter ¢ € (0,&g), it is more convenient to consider the Fréchet-
space S, (M, g) of bounded functions from (0, g9) to S(M, g) endowed with the seminorms:

Pyargla) = sup pyarg(a(e)) .
e€(0,e0)
The subscript , stands for uniform seminorm estimates and we shall give a variation of

this definition in Subsection A.4 below. The space of e-quantized family of symbols will
be denoted by OpS, (M, g):

(a(e) € Su(M, g)) < (a" (q,eDq, ) € OpSu(M, g)) .

We recall the Beals-criterion proved in [BoCh] (see [NaNi] for the e-dependent version)
d dqu dp;

J=1 5 (X7 T g x02

Set ® = (Dg1,..., Dy, q",. ..,q%Y) and for E € N? introduce the multi-commutator
ady = Hle:|1 adgj_ acting on the continuous operators from S(R?) to S'(R?) and the
weight My (X) = (p(X), (X))

Then the Beals criterion says that an operator A : S(R?) — S’(R?) belongs to OpS(1, g)
if and only if

for diagonal Hormander metrics of the form g = >

adgy A € L(L*(R), H*(Mp))
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for all £ € N?? | when the Sobolev space H¢(Mp) is given by

[l a1y = M (g, Dy )] 2 -

Moreover the family of seminorms (Qy)nen, defined by,

Qn(A) = sup max e V|| adg A(e)|| 2y 1o (11s.0)) (A.4)
€€(0,e0) |El=N

on OpS, (M, g), is uniformly equivalent to the family (Py(a))yen on S, (M, g) after the
identification A(e) = a"(q,eD,,€). “Uniformly” means here that the comparison of the
two topologies is expressed with constants independent of £ € (0, ¢g) .

Below is an example of a metric which satisfies all the assumptions and which is used in
our computations

dqlz 2 dp2
= 4 dd"t — >0 e [0,1 A5
g (1 ‘q,P)Q q (1 ‘ |2)Q' 9 m_ 9 Q)Q 6 [ 9 ]7 ( )

with the gain function A(q,p) = (p)?".
It is convenient to introduce the class of negligible symbols and operators.

Definition A.1. An element a € S,(1,g), belongs to N, 4 if
VN,N' €N, ICyn >0, e Va(e) e Su(A\™,9).
Similarly, OpN,, , denotes the e-quantized version:
(a"(q,eDy,2) € OpN,y) < (a € Noy)

Combined with the following relation between cut-off functions it provides easy esti-
mates from phase-space localization.

Definition A.2. For two cut-off functions x1, x2 € C¢(R??), 0 < x12 < 1, the notation
X1 < X2 means that xo = 1 in a neighborhood of supp x; -

For example the pseudodifferential calculus leads to
(x1 < x2) = (Va € Su(M,g), (1—x2)faf X1 € Nuy) , (A.6)

when the weight M satisfies M < CA¢ for some C' > 0.

A.2 Applications to matricial operators

Operator valued pseudodifferential calculus has been studied in [Bak]. When b is a Hilbert
space it suffices to tensorize the previous calculus with £(h), which corresponds to the com-
ponentwise definition in M,,(C) when h = C". The corresponding class of symbols associ-
ated with a Héormander metric g and a g-tempered weight M is denoted by S(M, g; L(h))
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while the set of bounded families in S(M, g; £(h)) parametrized by ¢ € (0,¢p) is denoted
by Su(M, g; L(h)).

The asymptotic expansions (A.2)-(A.3) of the Moyal product clearly holds (see [PST]
for a presentation without specifying the remainder terms) if one takes care of the or-
der of the symbols. For example, the two first terms of the expansion of a commutator

la1(q,eDy), az(q,eDg)] are

5 5
arffas — axffar = lai(q, p), az(q, p)] + Q—i(apalﬁan — 0ya10,a2) — Q—i(apaﬁqal — 0,a20,a1)
+ &% [Ry(ay, ag, €) — Ro(ag, ar,e)] (A7)

with no simpler expression when the matricial symbols do not commmute.

32 2
When the Hormander metric g has the form ) y d:iT + % the uniform Beals criterion
also holds: In the seminorms Q(a) defined in (A.4) simply replace L?(R%) by the Hilbert
tensor product L*(R?) ® h and consider the operators ® and Mg(g,eD,) as the diagonal
ones ® ® Idy and Mg(,eD,) ® Idy .
Finally the Definition A.1 of negligible symbols also makes sense for matricial symbols

after replacing OpS(A~', g) by OpS(A™', ¢; L(h)).

We end this section with standard applications of the Beals criterion.

32 dp?
-1 iR+ RGP
the constant metric gy = dg* + dp* . Assume that any f € {¢;,v;, 7 € {1,...,d}} is go
slow and tempered weight such that f(q,eD,)* belongs OpS,(f*, go) for any s € N?.
Assume that A € OpS,(1,g;L(h)) is a family of invertible operators in L(L*(R?) ® b)
and such that ||A=(e)|| is uniformly bounded in w.r.t € € (0,g0). Then A™' belongs to
OpSu(1,9; £(h)) -

Proof: We start from the relation

adfA =Y cEvE/A‘lﬁKadg;A) a7 (A.8)
j=1

|EY|=|B|,E"eNI P

Proposition A.3. Consider a diagonal Hérmander metric g = and

which holds in £(L*(R%) @ ) for all £ € N??. Hence the Beals criterion in the metric
go says that A~! belongs to OpS,(1,g: £(h)). In particular A~ belongs to L(H®(Mg»))
for any E” € N?¢ . This allows to apply the Beals criterion in the metric ¢ and yields the
result. 0J

A.3 Pseudodifferential projections

An application of the Beals criterion says that a true pseudodifferential projection can
be made from an approximate one at the principal symbol level. This holds for matricial
symbols.

2This last condition is redundant after a possible modification of ¢; adn v; if one refers to [BoCh],
but easier to check directly in our examples than giving the general proof.

66



d dqj
J=1 ¢;(X
the same properties as in Proposition A.3. Assume that the operator II € OpS, (1,9;L(h))

satisfies

Proposition A.4. Consider a diagonal Hérmander metric g = > % 57 T ( )2 with

A

(fTolt—11) =& fy + = Fr,
with R, € S,(M,g; L)), R, € Su(N,g; L)) v > p > 0 and M,N < 1. Assume
additionally that there ezist x,x" € Su(1,9;L£(h)), 0 < x < x' < 1 such that x < X' and
X'R,=0.
Then for e1 < gg small enough, the operator

- 1
P=—
20 J|._1)=1)2

(z—I1)7" dz
is well defined for € € (0,e1) and satisfies
PoP=P in LI*RY)®H),
and 7" (]5 — f[) = 5“11” + 11, , OpS, (M, g; My(C)), (e <eq).
with 11,, € S.(M, g; £(0)), 1L, € Su(N, g; £(h)) and [, 0 § € OpNiyy .

Proof: The first result concerned with the definition of P is a direct application of the
simple general result in Lemma A.5 applied with T" = IT and H = L*(R?) @b . Note that
our assumptions ¥ > 1 and M < 1 ensure that ||12[2 — f[|| < % as soon as ¢ < g with &;
small enough.

Writing o ) )
II— P = (I —)(A; — A)
with )
_ -l
Agg—%7T (z—=1I)"" dz, x€{0,1},

|z—z|

reduces the problem to proving A, € OpS,(1,g:£(h)) or (z —II)~! € OpS,(1,g: L(H))
when {|z — x| = 1/2} with uniform bounds. But this was proved in Proposition A.3 as a
consequence of the Beals criterion. This ends the proof. O

Lemma A.5. Assume that in an Hilbert space H, the operator T € L(H) satisfies || T? —
T <6 <1/4 and ||T|| < C then

1
o(T)C{zeC,lz2(z—1)| <} C{z€C,|z| <ctU{ze€C,|lz—1| <cs}, <=,

2
B 1 20 + 1
max {1 = 7 -1 = 5 b <230
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Moreover, the operator

1
P:f (Z—T)_le
2w |z—1|=1/2
differs from T according to

T—P=(T"-T)(A — A) = (A — Ap)(T* = T),

(A.9)
27 ) (T —2) 1 -2t dz (A.10)
and Ay = % m:%(T —2) et dz.
Proof:

(A.11)
If z € o(T) then z(z — 1) belongs to o(T(T — 1)) C {z € C,|2(z —1)| < 1}
(Remember that [2(z — 1)| = 1 means |Z — 1| = § with Z = (2 — 3)?). Consider z € C
such that |z — 1] = 1, then the relation

(T—2)(T—(1—2)==21-2)+(T"-T),
with [2(1 — z)| > { and ||T? — T|| <6 < 1, implies

[T =27 < 1T = (L= [0 — 2) + T2 — 7)) <

2

1
T forlz—1f=.
4
The symmetry with respect to z = 3 due to (1 —T)(1 —=T)— (1 —=1T)
also

T? — T implies

C 1
(T -2 < S

2
1_
Compute

1
for |z| = 3

1
T—-P

1
(T2 — T)Al with A1 = —

2

T—2)7'(1-2)""d
i [, T s
In particular this implies to T'(1 — P)
P with 1 — P leads to

(T% — T)A; while replacing T with (1 — T') and

P-T=-T(1—-P)+(T?*-T)A, with Aozi

(T —2) 'z dz.
1T Jy=1
|2|=3
Summing the two previous identities yields the result.
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A.4 Extension to parameter dependent metrics

Additionnally to the semiclassical (or adiabatic) parameter, we need other parameters
7= (7/,7") € (0,1]? on which the metric g = g, depends. In general consider 7 € T C R”
and a family of Hérmander metrics (7, ),c7 defined on Rgz}.

Definition A.6. The familly of metric (g, )re7 is said admissible if the uncertainty prin-
ciple (A.1) is satisfied and if the slowness and temperance constants Cy,Co, Ny involved

in
1 +1
(slowness) (gﬂX(X -Y)< —) = ((gT’X) < Cl> :
Cl gry

+1
(temperance) (gﬂx) < Ca(L+ gl (X —Y))™,
gy ’

can be chosen uniformly w.r.t T € T .
Accordingly a family of weights (M.),er will be admissible if the slowness and temperance
constants of M. w.r.t g, can be chosen uniform w.r.t ™ €T .

The important point is that all the estimates of the Weyl-Hormander pseudodifferential
calculus (see [Hor, BoLe|), including the equivalence of norms in the Beals criterion of
[BoCh], occur with constants which are determined by the dimension d, the uncertainty
lower bound (which is 1 here), the slowness and temperance constants. Hence all the
pseudodifferential and semiclassical estimates, (operator norms or seminorms of remainder
terms) are uniform w.r.t to (¢, 7) as long as the symbols, ax(e,7), k = 1,2, have uniformly
controlled seminorm in S(M;, g,), w.r.t (e,7) € (0,20] X T .

The definition of symbol classes S, (M, g) with uniform control of seminorms w.r.t € €
(0, 0] can be extended to admissible families (M., g, ) e7 -

Definition A.7. For an admissible family (M, g.).e1, the set of parameter dependent
symbol a(X,e,7), X € R*, (e,7) € (0,e0] x T with uniform estimates

VN eN, 3Cy >0, V(e,7) € (0,e0] X T, PN .M, (a(e, 7)) < Cn,

is denoted by S,(M;, g, L(h)), T €T .

Equivalently the set of semiclassically quantized operators a(q,eDy, €, T) when the symbol
a belongs to S, (M, g-; L(h)) is denoted by OpS,(M;, g-; L()) .

The set of negligible symbols and operators associated with (g, )rer with uniform estimates
in Definition A.1 w.r.t 7 € T is denoted by Ny 4. and OpNy . .

Proposition A.8. For 7 = (7,7") € (0,1]* the family (g;)rc1y2 defined on R* =
R2(@+d") g,
” +7_//dq//2+ T/T//dp2

(VTT'p)?

_ T'dg
T W)

18 admissible.
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Proof: It is easier to consider the symplectically equivalent metric (use the transform
(¢, q", 1, p") — (T3¢, 7"3¢" 7 2p i)

7

B da'? /2d 2 + 7_//2d 112
gT q + d ! + p 5 p
{q)? (p)?
after setting (p)2 =1+ 7/ 20?4 7" | Firstly remember that the metric
d q/2 dp2

o "
g0 = g T E

is a Hormander metric. The metric g7 is given by

go _ < >Td /2_'_ < >Td //2 < />2dp/2—|—dp”2.

T //2

Hence the uncertainty principle (A.1) is satisfied with

M@@mnwzmm@w@%“?}z@»zy

T T

In order to check the uniform slowness and temperance of g,, introduce the new variables
"1

X, =(¢,q", 7P, 7"p") when X = (¢, q¢",p',p") with a similar definition for Y, and T, .

Slowness: Write

(xtx -1 = 5 ) & (g6 -1 < ).

When C is slowness constant of g(; 1), this implies
~ +1
()
g1y,
j +1
( ~’r,X) S Cl .
gT,Y
Temperance: Write

~ +1 ~ +1
gTy)((T) g 171 7XT <TT) ~0
() - () =ttt

when Cy and N are the temperance constants for g 1y. The problem is reduced to
showing

which is nothing but

VX, T e R2d7 g?l,l),X.,— (TT) S gZ,X<T) :
The expression of g7 gives with X = (¢/,¢",p',p") and T' = (¢',0", 7', 7")

T (T) = ()20° + (5207 + (/75 + 775" < 37 ()

owing to max{7’, 7"} < 1.
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