
HAL Id: hal-00641535
https://hal.science/hal-00641535v1

Submitted on 16 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Applications of liquid chromatography coupled to mass
spectrometry-based metabolomics in clinical chemistry

and toxicology: A review.
Aurélie Roux, Dominique Lison, Christophe Junot, Jean-François Heillier

To cite this version:
Aurélie Roux, Dominique Lison, Christophe Junot, Jean-François Heillier. Applications of liquid chro-
matography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology:
A review.. Clinical Biochemistry, 2011, 44 (1), pp.119-135. �hal-00641535�

https://hal.science/hal-00641535v1
https://hal.archives-ouvertes.fr


 1

Applications of liquid chromatography coupled to mass spectrometry-based 

metabolomics in clinical chemistry and toxicology: a review 

 

Aurélie Rouxa, Dominique Lisonb, Christophe Junota* and Jean-François Heiliera, b, c 

a Service de Pharmacologie et d’Immunoanalyse, DSV/iBiTec-S, CEA/Saclay, 91191 Gif-sur-

Yvette cedex, France.  

b Université catholique de Louvain, Louvain centre for Toxicology and Applied 

Pharmacology (LTAP), 1200 - Brussels, Belgique.  

c Institut National de Recherche et de Sécurité. Laboratoire de Surveillance Biologique de 

l'Exposition aux Substances Inorganiques. 54519 Vandœuvre-lès-Nancy.  

*Author for correspondence. Phone: 33-1-69-08-43-66. Fax: 33-1-1-69-08-59-07. 

christophe.junot@cea.fr 

 



 2

Abstract 

The metabolome is the set of small molecular mass organic compounds found in a 

given biological media. It includes all organic substances naturally occurring from the 

metabolism of the studied living organism, except biological polymers, but also xenobiotics 

and their biotransformation products. The metabolic fingerprints of biofluids obtained by 

mass spectrometry (MS) or nuclear magnetic resonance (NMR)-based methods contain a few 

hundreds to thousands of signals related to both genetic and environmental contributions. 

Metabolomics, which refers to the untargeted quantitative or semi-quantitative analysis of the 

metabolome, is a promising tool for biomarker discovery. Although proof-of-concept studies 

by metabolomics-based approaches in the field of toxicology and clinical chemistry have 

initially been performed using NMR, the use of liquid chromatography hyphenated to mass 

spectrometry (LC/MS) has increased over the recent years, providing complementary results 

to those obtained with other approaches. This paper reviews and comments the input of 

LC/MS in this field. We describe here the overall process of analysis, review some seminal 

papers in the field and discuss the perspectives of metabolomics for the biomonitoring of 

exposure and diagnosis of diseases.  
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Abbreviations 

MS: mass spectrometry; NMR: nuclear magnetic resonance; LC: liquid chromatography; 

MHz: MegaHertz; UPLC: Ultra performance liquid chromatography; HPLC: High 

performance liquid chromatography; TOF: time of flight; MS/MS: tandem mass 

spectrometry; API: atmospheric pressure ionisation; GSH: glutathione; NAPQI: N-acetyl-p-

quinone-imine; APAP: N-actetyl-p-aminophenol; GC: gas chromatography; MMC: Methyl 

mercury chloride; RC: respiratory chain; RCD: respiratory chain disease; Cr: creatine; PCr : 

phosphocreatine; CRC: Colorectal cancer; FT-ICR: Fourier Transform Ion Cyclotron 

Resonance; Q-Trap: Quadrupole linear trap; Q-TOF: Quadrupole Time-of-flight; CID : 

collision induced dissociation; DNA: Deoxyribonucleic acid; RNA: Ribonucleic acid; ESI: 

Electrospray ionization; QC: Quality control; PCA: Principal Components Analysis; PLS: 

Partial least squares or projection to latent structures; PLS-DA: Partial least squares 

discriminant analysis; OPLS: Orthogonal partial least squares; ALT: Alanine transaminase; 

AST: Aspartate transaminase; BUN: Blood urea nitrogen; ATP: Adenosine triphosphate; PC: 

Phosphatidylcholine; PSA: Prostate-Specific Antigen; TCA cycle: Tricarboxylic acid cycle; 

D-AAO: D-amino-acid oxidase; CYP: Cytochrome P450; PPARα: Peroxisome proliferator-

activated receptor alpha; ANIT: R-naphthyl isothiocyanate; CCl4: carbon tetrachloride; LDH: 

lactate dehydrogenase; GABA: γ-Aminobutyric acid ; H/D exchange : Hydrogen-deuterium 

exchange 

 

 



 4

Contents 

Introduction ........................................................................................................... 5 

What is a metabolite? ............................................................................................................. 5 

Metabolomics: a new approach for biomarker discovery ..................................................... 6 

How to measure metabolites? ................................................................................................ 9 

LC/MS based metabolomics: a practical approach ............................................. 10 

Design of the experiment ...................................................................................................... 11 

Sample preparation .............................................................................................................. 12 

Acquisition of metabolic fingerprints using LC/ESI-MS systems ......................................... 13 

Automatic detection of ions .................................................................................................. 14 

Statistical analyses ............................................................................................................... 15 

Identification ........................................................................................................................ 16 

Selected applications in the field of toxicology .................................................. 18 

LC/MS based metabolomics for toxicity biomarkers discovery. .......................................... 20 

LC/MS-based metabolomics for the building of predictive models of toxicity. ................... 22 

Toward mechanistic considerations ..................................................................................... 24 

Selected applications in the field of clinical chemistry ....................................... 25 

Conclusion and perspectives ............................................................................... 30 

 



 5

Introduction 

The metabolome is a set of small molecular mass organic compounds found in a given 

biological medium. Polymerized structures such as proteins and nucleic acids are excluded 

from the metabolome but small peptides such as the tripeptide glutathione are included. 

Molecules that constitute the metabolome are called metabolites.  

What is a metabolite? 

For some scientists, the concept of metabolite includes all the organic substances 

naturally occurring from the metabolism of a living organism and that do not directly come 

from gene expression. It should be stressed here that this definition could be applied as well to 

a microorganism, a human being or a plant. Two different kinds of metabolites can be 

distinguished based on their origin: endogenous and exogenous metabolites. 

Endogenous metabolites could be classified as primary and secondary metabolites. 

The firsts have a broad distribution in living species and are directly involved in essential life 

processes such as growth, development and reproduction. This is for example the case for 

amino-acids or glycolysis intermediates. At the opposite, secondary metabolites are species-

specific, have a restricted distribution and are synthesized for a particular biological function, 

as alkaloids for plants or hormones for mammals [1].  

Exogenous metabolites represent the biotransformation or metabolism products of 

exogenous compounds, resulting from phase I (modification of the original molecule to 

introduce a functional group) and/or phase II (conjugation) enzymatic conversion [2]. In this 

particular context, Holmes et al [3] proposed the concept of xenometabolome which is a 

description of the xenobiotic metabolite profile of an individual exposed to environmental 

pollutants, drugs, or exogenous molecules coming from food/dietary components such as 

phytochemicals [4]. This concept expands the approach developed in the early nineties in the 
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field of molecular epidemiology [5;6], thanks to the technical advances in analytical 

chemistry. 

In epidemiological studies, analyzing the xenometabolome could especially allow 

characterising environmental or occupational exposures to chemicals and contributes 

therefore to the determination of a metabolic phenotype. Crockford et al [7] demonstrated the 

potential of this approach by identifying metabolites of drugs such as acetaminophen or 

disopyramide by heterospectroscopy on data acquired with 600-MHz 1H NMR and UPLC-

TOF-MSE on urines obtained from more than 80 patients.  

Metabolomics: a new approach for biomarker discovery 

Biochemists have long been doing metabolomics, just like the Bourgeois 

Gentilhomme was speaking prose without knowing it (Molière – Bourgeois Gentilhomme II. 

4). It means that they suspected that patterns of biochemical substances could explain or 

describe inter-individual variation. Gates and Sweeley [8] mention that the concept of 

metabolic pattern was introduced by Williams [9;10] who used paper chromatography to 

compare the urines of 200,000 subjects including alcoholics, schizophrenics and residents of 

mental hospitals. He demonstrated that some characteristics of metabolic pattern could be 

associated with each of these groups. 

Griffiths and Wang [11] reported that metabolomics origins are found in the 60’s and 

70’s in the work of the Horning. Horning and Horning published several papers about 

metabolic profiles determination in urine by Gas Chromatography hyphenated among others 

to mass spectrometry [12;13]. At the same time, Robinson and Pauling performed a 

quantitative analysis of urine vapour and breath by gas chromatography [14].  

Metabolomics belongs to the “omics” techniques together with genomics, 

transcriptomics and proteomics that are related to the genome (DNA), the transcriptome 

(RNA), and proteome (proteins), respectively (Figure 1). The term metabolome (and 
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obviously metabolomics) was coined on the basis of genome and transcriptome. It appeared 

for the first time in a publication by Oliver in 1998 [15]. The metabolome reflects past events 

that include whole metabolism and the interaction with the environment, whereas the genome 

reflects the real and potential functional information of organism.  

Metabolomics/Metabonomics is the analysis of metabolome in a given condition. Both 

terms can be interchanged. Initially, metabolomics refers to  the measurement of the pool of 

cell metabolites [16] whereas metabonomics describes "the quantitative measurement of the 

dynamic multiparametric metabolic response of living systems to pathophysiological stimuli 

or genetic modification" [17;18]. Nicholson’s definition underlines the role of two major 

scientific disciplines used in metabonomics: analytical chemistry and biostatistics. By 

consistency, we use the term metabolomics in this manuscript. Metabolomics is therefore a 

data-driven approach, i.e. a technology based on the interpretation of information-rich data 

aimed at complementing the understanding of biological processes [19].  

Each individual (from every living species) owns his steady-state equilibrium called 

homeostasis. Interactions with the environment (exposure to drugs or chemicals) or the onset 

of a disease disrupts this homeostasis at different levels of the biological organization, 

including the metabolome. The concentrations of endogenous metabolites may be altered and 

xenometabolites may appear. Whereas the latter are obviously markers of exposure 

(biomarker of exposure for instance), specific signatures of disease or exposure (often referred 

to as metabolomic profile) could be found by the subtle analysis of endogenous metabolites. 

Biological markers or biomarkers are measurable internal indicators of molecular 

and/or cellular alterations that may appear in an organism after or during exposure to a 

toxicant and possible disease [20;21]. This definition is used in environmental and 

occupational toxicology and is larger than that of the National Institute of Health (NIH) that 

focuses on drug development and defines a biomarker as “a characteristic that is objectively 
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measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or 

pharmacological processes to a therapeutic intervention” [22]. 

Biomarkers could be divided into several categories that include biomarkers of 

exposure, biomarkers of effect and biomarker of susceptibility. Biomarkers are compounds or 

a set of compounds (metabolomic profile) that must be quantitatively, sensitively, 

specifically, and easily measurable on non-invasively collected biological media [23]. A 

biomarker of exposure is an indication of the occurrence and extent of exposure. It depends 

on the chemical fate of the exposed toxicant in the body. The biomonitoring of exposure has 

been used for a long time in occupational settings e.g. for the determination of lead [24] or 

benzene metabolites [25] in blood or urine.  

Biomarkers of (biochemical) effect(s) indicate that exposure has resulted in an 

interaction between the toxicant and a biological target. Mutagenic and carcinogenic 

substances that possess electrophilic function(s) bind to macromolecules such as proteins, 

DNA or lipids. Hemoglobin is often used in biomonitoring because of its long life span and 

ease of access. Oxidative stress perturbs the homeostasis of cell and leads to the production of 

specific substances such as 8-Hydroxy-2’-deoxyguanosine or to an imbalance of glutathione 

pathway [26].  

Biomarkers of susceptibility describe inter-individual differences in response to 

toxicants from genetic causes or from non genetics factors (age, liver disease, kidney disease, 

diet, dietary supplementation…). Polymorphisms of activating/detoxificating enzymes have 

been identified as key factors in the relationship between external (e.g. ambient air) and 

internal exposure (e.g. urinary excretion). Haufroid et al [27] demonstrated the relationship 

between the urinary excretion of phenylhydroxyethylmercapturic acids (a mercapturic acid 

metabolite of styrene) and the genetic polymorphism of glutathione S-transferase M1. A 

similar approach, referred to as pharmacometabolomics, has already been proposed to study 
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the response to drugs [28;29]. In this particular context, metabolomics acts as a functional 

genomics tool. 

How to measure metabolites? 

Because metabolites exhibit a high chemical diversity, ranging from sugars to lipids, it 

is impossible to perform their analysis in biological media with a single and universal 

technique. The two main analytical platforms which provide structural information relevant 

for metabolite identification rely on nuclear magnetic resonance (NMR) [30], or on mass 

spectrometry with different ion sources and mass analyzers [31-40]. Each of these tools 

provides complementary but sometimes redundant information, as emphasized by Lindon and 

Nicholson [41]. Beside NMR and Gas chromatography which were pioneering techniques for 

metabolomics, liquid chromatography hyphenated to mass spectrometry (LC/MS) has 

emerged as a popular and powerful tool, as shown in figure 2.  

Nuclear Magnetic Resonance (NMR) was one of the first method used for 

metabolomics [41-44]. It is a non destructive, rapid, and highly robust technique which 

produces highly informative structural information. However, NMR is less sensitive than 

mass spectrometry and requires, therefore, larger amounts of samples. NMR is often used 

without any prior separative method and does not require development as is the case with 

chromatography. However, as each metabolite participates to the NMR spectra, the 

deconvolution of signals is often a tedious process.  

The development of LC/MS significantly impacted biological research, including 

metabolomics. Initially, gas chromatography was the only separative method able to be 

hyphenated to mass spectrometry. However the use of gas chromatography is restricted to a 

small set of biological molecules, i.e., those that are volatile or could be derivatized. As a 

consequence, biological molecules of high molecular weight, such as proteins or nucleic 

acids, were excluded. The situation was improved by the introduction of atmospheric pressure 
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ionization mass spectrometry (API-MS)-based techniques combined with liquid 

chromatography which exhibit a good sensitivity, high dynamic range and versatility but also 

provide soft ionization conditions giving access to the molecular mass of intact biological 

molecules.  

One of the strengths of API-MS-derived tool is the high diversity of analyzers 

available: triple quadrupoles, ion traps, time of flight, Orbitrap and Fourier transform-ion 

cyclotron resonance instruments, the three latter providing high resolution and accurate mass 

measurements. Among these technologies, high resolution analyzers are becoming 

increasingly popular in the field of metabolomics because they provide (i) accurate mass 

measurement, which are useful for the determination of elemental composition of metabolites, 

and (ii) structural information with MS/MS or sequential MSn experiment, especially when 

ion products are analyzed at high resolution.  

The aim of this paper is to review the metabolomic approach for biomarker discovery 

in the field of toxicology and clinical chemistry, by focusing on the use of LC/MS. We will 

successively describe the overall process of analysis (i.e., data acquisition, statistical analyses 

and metabolites identification), review some seminal papers in the field and discuss the 

perspectives of metabolomics for biomonitoring of exposure and diagnosis of diseases.  

LC/MS based metabolomics: a practical approach 

A metabolomics experiment starts with an appropriate experimental design ensuring 

that the data will be relevant for further biological interpretation. The experimental step 

begins with the treatment of the biological samples before injection into LC/MS systems. The 

resulting metabolic fingerprints are then pre-processed using automatic peak detection 

softwares before being analyzed with appropriate statistical tools. Finally, identification of the 

discriminating signals is undertaken by combining mass spectrum analysis, database 
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consultation and other mathematics and informatics tools. All these critical steps are 

displayed in the Figure 3 and will be detailed in this section.  

 Design of the experiment 

One of the issues in metabolomics is the occurrence of confounding factors that mask 

the biological phenomenon to be investigated. These confounding factors can be of either 

analytical or biological origin and their impact has to be anticipated as far as possible by 

properly designing the experiment.  

Many putative confounding factors of biological origins have already been pointed out 

in published papers: age [45], gender [46], chronobiological effects [47;48], animal species 

and strains [49;50] and even environmental factors such as diet and gut microflora [51-53]. 

Some of these factors such as diet vary from one subject to another and cannot be easily 

controlled; the only possible option is to keep their presence in mind. Other factors such as 

age and gender should be balanced throughout the different groups to limit their impact on 

further statistical analyses. In this context, it is of special interest to investigate the metabolic 

profiles recorded from biofluids of “normal” healthy subjects in order to evaluate the impact 

of these physiological factors on the metabolite levels [54;55]. This should underpin the use 

of LC/MS based metabolomics in the clinical chemistry and toxicology arenas.  

Another important issue is the normalization of results. This is especially the case for 

urine samples. Indeed, contrary to most biological fluid or tissue samples, in which 

metabolites concentration is clearly related to volume or quantity drawn, urinary metabolites 

concentrations are very fluctuating because of urine volume and clearance variations. Thus, 

normalization of data is necessary to compare urinary metabolic profiles. It can be performed 

by weighting the signal abundances in each sample by the urinary volume, creatinine 

concentration, osmolality or total useful MS signal recorded from mass spectra [56], 
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according to the type of sample (spot urine or 24h collection) and information available 

(urinary creatinine concentration or volume, for example).  

Beside these biological confounding factors, analytical issues also have to be 

considered. This is for example the case with the clogging of the electrospray source which 

progressively alters the detection of analytes. This leads to a clear discrimination between 

samples analyzed at the beginning and at the end of an experiment which could hamper the 

visualization of the biological effect of interest. A way to address this issue is to randomize 

the samples throughout the sequence of injections.  

Sample preparation 

 Metabolite extraction strongly depends on the type of biological medium (i.e., cell 

extracts or biofluids), and also on the chemical structures of the metabolites to be preferably 

detected (i.e., polar compounds or lipids). Urines samples are often just diluted with water 

before injection into the LC/MS system [57-59], whereas other protein-rich biofluids such as 

plasma or cerebrospinal fluids are processed using organic solvents such as methanol, ethanol 

or acetonitrile [60;61]. The same kind of procedures may be applied to cell samples: after 

having been centrifuged to separate cells from supernatant, the cell pellet may be resuspended 

in water/cold organic solvent mixtures and then sonicated or mechanically agitated to disrupt 

cell membranes [62]. Tissues have first to be quickly collected and frozen by plunging them 

in liquid nitrogen for example. This is followed by homogenization in cold organic solvents 

such as methanol. A Folch derived extraction protocol can then be used either to clean the 

polar fraction from insoluble lipids or to analyze both polar and apolar fractions [63;64]. 

Then, depending on the type of organic solvent used for metabolite extraction, samples are 

diluted in the mobile phase or centrifuged, evaporated to dryness and finally resuspended in a 

solvent compatible with further injection into the LC/MS system.  
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Acquisition of metabolic fingerprints using LC/ESI-MS systems 

Initially, the acquisition of metabolic fingerprints was performed using LC coupled to 

electrospray mass spectrometers equipped with low resolution detectors such as triple 

quadrupole [65;66] or ion trap [67] analyzers. By these means, it was possible to separate and 

detect thousands of ions in biofluid samples. However, the interpretation of data was limited 

by both insufficient chromatographic separations and also identification issues. Indeed, it was 

difficult to link an experimental mass measured at low resolution and low accuracy to a 

metabolite among many others having the same nominal mass. These two issues have been 

partly addressed by the implementation of (i) ultra performance liquid chromatography 

(UPLC), which improved chromatographic resolution, peak capacity, and even sensitivity 

[39] and (ii) high-resolution mass spectrometers such as time-of-flight (TOF) and Fourier 

transform (FT) mass spectrometers.  

High- and ultra-high-resolution analyzers are becoming increasingly popular in the 

field of metabolite profiling because they provide accurate mass measurements which are 

useful for the discrimination between isobaric ions, and even isomers if their fragmentation 

patterns are different [68], leading to the detection of a higher number of signals than that 

obtained with low-resolution analyzers. Of course, accurate mass measurements also enable 

the determination of elemental compositions of metabolites for further identification.  

Finally, it is important to check for the consistency of analytical results before 

biological interpretation. Indeed ion abundances can decrease for long-term analysis (intra-

experiment variability), but also from an experiment to another (inter-experiments variability) 

because of the degradation of MS or chromatographic separation performances [69]. This 

complicates the automatic detection and alignment of features, and also stitching together of 

datasets. A  normalization step is thus required. To this end, a mixture of reference 

compounds can be injected at regular intervals to assess the performances of both the 
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chromatographic column (i.e.,consistency of retention times and peak widths of reference 

compounds) and the mass spectrometer during the experiments (i.e., consistency of mass 

accuracy and signal intensity of reference compounds). The same kind of approach can also 

be performed by using quality control (QC) samples that are representative of the biological 

samples to analyze [70], but this is not sufficient to normalize peak intensities. That is why 

many normalization approaches have been developed to overcome analytical variability, such 

as NOMIS (Normalization using Optimal selection of Multiple Internal Standards) or CCMN 

(Cross-Contribution Compensating Multiple Standard Normalization) [71], and also to 

facilitate comparison of datasets [72;73]. 

 Automatic detection of ions 

The aim is to represent the initial raw data in a matrix format which is compatible with 

subsequent statistical and biochemical analyses. As data formats are proprietary, a conversion 

step into universal data formats such as netCDF (Network Common Data Form - 

www.unidata.ucar.edu/software/netcdf/) [74] or mzXML [75] are required before running the 

data processing. A typical processing pipeline includes filtering, feature detection, alignment 

and normalization. This can be achieved by using dedicated commercial, or free and/or open-

access software, as already reviewed by Katajamaa et al. [76]. In the latter case, it is possible 

to have access to the algorithm and to modify or improve them. This is for example the case 

for XCMS [77;78] and MZmine [79].  

These software tools also differ by the implemented approaches. While the subtraction 

of the background noise often relies on filtering algorithms classically used in signal 

processing, large differences are observed at the level of the detection and alignment of the 

signals. As an example, the detection of peaks is achieved in both the retention time and m/z 

dimensions in an independent way with the software Mzmine (http: 

//mzmine.sourceforge.net/) [79], whereas the MatchedFilter algorithm of the XCMS software 
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detects the ions from m/z windows [77]. As an alternative of binning approaches, the 

centWave algorithm, which is also part of the XCMS software, performs a two-dimensional 

feature detection by using a combination of a density based technique to detect regions of 

interest in the m/z domain, and a Wavelet based approach to resolve chromatographic peaks 

[78]. At the opposite, other tools such as MathDamp (http:// mathdamp.iab.keio.ac.jp/) [80] 

make a comparative analysis from the original data without any signal detection step.  

Limited information about the validation of signal detection softwares is available in 

the literature. The main reasons are that most of the signals present in the metabolic 

fingerprints remain uncharacterized and the results of an automatic detection procedure of 

metabolites may be impacted by both the type of instrument and the biological medium. As a 

consequence, users have to evaluate the software with their own criteria in order to select that 

or the most suited one(s) regarding their instruments and the biological matrix.  

Tautenhahn et al. proposed an interesting approach to evaluate signal extraction 

software. It is based on the estimation of three parameters: the recall, which measures the 

fraction of relevant features that are extracted by the algorithm, the precision, which is the 

percentage of relevant items compared with the false positives, and the run time, which is the 

time required for the algorithm to achieve feature detection from a given data set [78]. 

Actually, many artefactual signals are present in the data matrices following automatic data 

extraction and signal alignment. They have been evaluated as around 400 for 100 relevant 

features [78]. One way to address this issue is to perform serial dilution of QC samples and 

select the features whose levels are correlated to the dilution factor [62;78].  

 Statistical analyses  

As for transcriptomics or proteomics, metabolomics relies on differential analyses of 

metabolic fingerprints which lead to a semi-quantitative expression of the results (i.e., 

decreased or increased area or intensity ratios). As it appears difficult to handle and to 
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compare data sets which contain several hundreds to thousands of signals, multivariate 

statistical analyses are required to address this issue [81] (Figure 4).  

Data exported from automatic peak detection software tools have first of all to be 

scaled. A typical procedure relies on unit variance scaling: the variables are centered and 

divided by their standard deviation. This gives an equal weight to signals exhibiting very 

different abundances. However, in some case, this may lead to a dilution of the analytical 

information of biological relevance and other methods such as pareto-scaling (the variables 

are centered and divided by the square root of their standard deviation) may be preferred.   

Once the data have been scaled, a preliminary step often relies on the use of 

unsupervised analyses such as principal component analysis. This descriptive method does 

not require any information about the nature of samples. It enables to visualize the 

organization of the original data in a two or three dimensional space by reducing the 

dimensionality of complex data sets. Explicative analyses are then performed by using 

supervised tools such as PLS (projection to latent structures or partial least squares) 

regression, PLS-discriminant analysis (PLS-DA), or more recently OPLS (Orthogonal 

Projection on Latent Structure) in order to facilitate the isolation of the ions responsible for 

the discrimination between groups [82].  

Finally, a clear distinction has to be done between exploratory studies that try to reveal 

new biomarkers whose biological relevance has to be established, and predictive studies that 

aim at classifying unknown subjects and for which the issues of statistical powerfulness and 

validation are critical [83]. 

 Identification  

The metabolite identification process using atmospheric pressure ionization mass 

spectrometry-based tools starts with the interpretation of the mass spectra in order to ensure 

that the signal of interest really corresponds to a monoisotopic ion and not to an isotope, 
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adduct or ion product generated during the ionization process. Several informatics and 

mathematics tools are available for that purpose. They are grouping the signals related to 

given metabolites according to (i) specific mass differences corresponding to isotopes, 

adducts, and product ions, and (ii) the correlations between the intensities of pairs of ions, 

either across several spectra within a sample or across all samples where the signals are 

observed [59;84;85] (Figure 5).  

One or few relevant elemental composition(s) is/are deduced from accurate mass 

measurements if high or very high resolution mass spectrometry is available, for further 

database queries. Collision induced dissociation (CID) spectra are then acquired and 

interpreted in order to get information about the chemical structure. At this stage, chemical 

database queries may be refined and the highlighted compounds, if any, are kept for further 

consideration or ruled out based on chromatographic retention time and CID mass spectra 

information. Complementary experiments (i.e., other sequential MSn experiments or H/D 

exchanges) may be required before obtaining or synthesizing the reference compounds. 

Finally, formal identification is achieved when the metabolite to be characterized exhibits the 

same retention time and CID spectra than those of the reference molecule.  

In the Metabolomics Standards Initiative [86], Sumner and al. have reported four 

different levels of identification according to the information provided :  

 (i) Identified compounds: a minimum of two independent and orthogonal types of data 

relative to an authentic compound analyzed under identical experimental conditions. In MS-

based techniques this could include: retention time/index and mass spectrum, or accurate 

mass and tandem MS.  

 (ii) Putatively annotated compounds: without chemical reference standards, based 

upon physicochemical properties and/or spectral similarity with public/commercial spectral 

libraries.  
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 (iii) Putatively characterized compound classes: based upon characteristic 

physicochemical properties of a chemical class of compounds, or by spectral similarity to 

known compounds of a chemical class.  

 (iv) Unknown compounds: although unidentified or unclassified these metabolites can 

still be differentiated based upon spectral data, thus enabling relative quantification.  

Mass spectrometry experiments alone may be sufficient when the metabolites to 

characterize are well described in databases, commercially available and discriminated from 

isomers thanks to an adequate chromatographic separation and/or characteristic MSn spectra. 

In this case, identification is achieved by matching the retention time and CID spectra of the 

compound of interest to those of the putatively related synthetic reference molecule. 

However, in many cases, the metabolites of interest are not reported in any biochemical or 

metabolomic databases and additional analytical tools such as NMR cannot be used due to a 

lack of sensitivity and/or insufficient chromatographic separation. The only solution is then to 

perform a careful and precise interpretation of CID spectra combined with additional 

experiments such as H/D exchange in order to provide new structural hypotheses that have to 

be assessed by further chemical synthesis [85].  

Selected applications in the field of toxicology 

Toxicology aims at studying adverse effects of chemicals (xenobiotics) on living 

organisms. The toxicity of a given compound refers to its ability to disrupt some biological 

functions at a certain level of biological organization (i.e., cell, tissue, or organ). It is related 

to the amplitude and the duration of the exposure and also to the degree of absorption of the 

substance by the organism, its distribution, biotransformation and elimination or 

accumulation. Understanding the mechanism of a toxic event is a challenging task, especially 

in the field of drug research and development. Indeed, target organ toxicity remains an issue 

and idiosyncratic toxicity, which refers to individual susceptibility in drug induced toxicity, is 
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often not detected before the drug has been on the market (Rofecoxib [87], Rimonabant [88]). 

Many in vitro, cell and animal models are designed to address these issues, but they may not 

be easily extrapolated to human. Biomarkers are useful to predict a toxic event before the 

occurrence of clinical events (biomarkers of early effect), to evaluate the severity of the 

poisoning (biomarkers of effect), and also to monitor exposed patients (biomarkers of 

exposure). This is another challenge because the occurrence of adverse effects has multiple 

origins including host environment interactions that are difficult to be caught using 

conventional approaches for biomarker discovery which are focused on limited biochemical 

and metabolic aspects.   

By achieving a global detection of molecular events at the different levels of 

biological organization, omics approaches may provide answers to these issues, as 

emphasized by early proof-of-concept studies in toxicogenomics [27], transcriptomics [89] 

and proteomics [90]. Metabolomics, which enables to track homeostatic disruptions and host-

environment interactions, is of particular interest in this context. Pioneering studies using 

NMR have already been published and also reviewed [17;19;44;91-96], and the consortium 

on metabonomic toxicology (COMET), coordinated by the Imperial College and including 

pharmaceutical companies, has started to develop expert models for the classification of 

toxicity based on 1H-NMR analysis [19]. However, none of them have ever been published 

until now. The development of LC/MS in this field is relatively recent. Several publications 

illustrating metabolomics applications in the field of toxicology are displayed in the table 1. 

They address biomarker discovery, predictive models and mechanistic considerations mainly 

in the field of hepato- and nephrotoxicity by using model toxicants. The input of LC/MS 

based approaches will be reviewed and discussed in this section.  
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 LC/MS based metabolomics for toxicity biomarkers discovery. 

Many studies are performed using different analytical platforms, such as 1H-NMR, 

GC/MS and LC/MS in order to maximize the metabolite detection coverage. Most studies 

attempt to address the issue of organ toxicity and aim at finding metabolite concentration 

changes related to the toxicant, occurring before clinical or histopathological detections and 

being more specific than conventional biomarkers such as alanine aminotransferase (ALT) 

and aspartate aminotransferase (AST) enzyme activities or bilirubin for hepatotoxicity, or 

blood urea nitrogen (BUN) for nephrotoxicity.  

Among these studies, acetaminophen (also known as N-acetyl-p-aminophenol, APAP) 

is frequently used as a model drug for hepatotoxicity. It is cleared from the body through 

hepatic glucuronide and sulphate conjugation. However, in case of overdose, these metabolic 

pathways are saturated and reactive metabolites such as N-acetyl-p-benzoquinone imine 

(NAPQI) are produced. NAPQI reacts with glutathione (GSH) to form a conjugate, which is 

subsequently degraded to a mercapturic acid derivative that can be detected in urine. 

However, NAPQI can also oxidize glutathione and in turn be reduced back to paracetamol 

[97]. When the GSH pool is depleted, NAPQI reacts with cell macromolecules. This 

mechanism is supposed to be one of the explanations for hepatic necrosis recorded in cases of 

APAP poisoning.   

Sun et al. (2008) investigated the acute and chronic toxicity of acetaminophen on male 

Sprague-Dawley rats by metabolomics using NMR and UPLC coupled to an electrospray Q-

TOF mass spectrometer [98]. Metabolic changes were matched up with histopathological 

observations and others markers of liver injury (serum ALT, AST and bilirubin) to highlight 

metabolites related to APAP induced toxicity. Necrosis was not observed in the course of the 

chronic study and was only detected at the highest dose (i.e., 1600 mg/kg) of the acute study 

at the 48 h time point. Urinary metabolite concentration changes were observed in both acute 
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and chronic studies from the 400 mg/kg dose. Both NMR and UPLC/MS pointed out 

depletions of antioxidants and energy metabolites. The decrease of 1-methylnicotinate levels 

observed by NMR was of particular interest because this molecule is linked to the glutathione 

biosynthesis pathway (this metabolite is produced during the conversion of S-

adenosylmethionine to S-adenosylhomocysteine). The decrease of urine 1-methylnicotinate 

concentration could be related to the depletion of S-adenosylmethionine observed by the 

authors using a targeted LC/MS/MS assay.  

These results have been confirmed by another study that focused on the regulation of 

the trans-sulfuration pathway in liver toxicity conditions using NMR, LC/MS, and also gene 

expression data: the expression of genes involved in the trans-sulfuration pathway was 

decreased in the liver, whereas taurine, creatine (observed by NMR) and S-

adenosylmethionine (observed with LC/MS) levels were increased in urine following APAP 

administration to rats [99].  

One of the strength of LC/MS-based metabolomics is the possibility to detect many 

xenobiotic related metabolites thanks to its high sensitivity. Sun et al. detected 6 APAP 

metabolites in rat urine and concluded that approximately 95 and 65 ions were related to 

APAP metabolites in negative and positive modes, respectively. They decided to remove 

these signals in order to facilitate the observation of endogenous metabolites whose levels 

were altered following APAP administration [98]. However, some of these so-called 

xenometabolites can also provide the toxicologist with mechanistic information about drug 

toxicity and thus being used as biomarkers. In a following study, Sun et al. [100] investigated 

the excretion kinetics of APAP metabolites in rat urine and observed that the concentrations 

of the APAP-N-acetylcysteine conjugate exhibited a significant correlation with AST activity, 

bilirubin, creatine and histopathological observations, and a significant anticorrelation with S-
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adenosylmethionine levels, suggesting that it is a good indicator of APAP-induced liver 

injury.  

 Although urine is the biofluid of choice for metabolomics (easily sampled, simple to 

analyze and providing investigators with information about polar metabolites including 

energy metabolites and xenometabolites) complementary information about lipids can be 

obtained from other biological media such as plasma. For example, using a LC/MS-based 

metabolomic approach, Chen et al. detected an accumulation of long chain acylcarnitines in 

plasma from APAP treated mice [101]. This was reinforced by the concomitant observation of 

increased free fatty acids and triglycerides plasma levels using colorimetric assays. Thanks to 

additional experiments performed on CYP 2E1 and PPARα null mice, the authors concluded 

that inhibition of fatty acid β-oxidation through the suppression of PPARα activation is a 

contributing mechanism of APAP-induced hepatotoxicity and that long chain acylcarnitines 

could be early biomarkers of APAP hepatotoxicity that may complement the measurements of 

GSH levels and serum AST or ALT activities.  

LC/MS-based metabolomics for the building of predictive models of toxicity.  

Beside biomarker discovery, other studies report the development of metabolomic-

based approaches for predicting and classifying different modes of toxicity. This is for 

example the case with La et al. in the field of chemical-induced hepatotoxicity [102]. They 

applied LC/MS to analyse urine samples of rats treated with four different hepatotoxins: R-

naphthyl isothiocyanate (ANIT), carbon tetrachloride (CCl4), APAP, and diclofenac. They 

found specific patterns of metabolites concentration changes that were characteristic of each 

hepatotoxin and managed to build a mathematical model exhibiting predictability higher than 

95% by using linear discriminant analysis and soft independent modelling of class analogy 

with residual distance. However, it is challenging to determine whether these patterns of 

metabolite concentrations are specific of a mode of organ toxicity (i.e., necrosis or 
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cholestasis), or rather of compounds or chemical families. To address this issue, several 

toxicants exhibiting different chemical structures, but the same mode of organ toxicity should 

have been included in the experimental protocol. Such an approach has been performed by 

Boudonk et al. in the field of nephrotoxicity.  

Boudonck et al. [103] reported on a metabolomic investigation on 3 drugs 

(gentamicin, cisplatin and tobramycin) inducing  proximal tubule nephrotoxicity. Urine and 

kidney were collected after one, five and twenty-eight dosing days and the samples were 

analyzed using GC and LC/MS. About 30% and 70% of the metabolites observed in kidney 

extracts were detected by GC/MS and LC/MS, respectively, whereas half of them were 

measured by both techniques in urine. Increases in amino-acids and polyamines were 

observed in urine and decreases in purine and pyrimidine nucleosides were detected in kidney 

tissues before observable kidney injury by conventional histology and clinical chemistry 

tools. Urinary metabolites exhibiting significant changes with all 3 drugs, such as branched 

chain amino-acids, hippurate and glucose at day 28 were then selected to build a predictive 

model based on classification trees in order to predict the onset of the nephrotoxicity at days 1 

and 5.  

Van Vliet et al. developed an in vitro model to evaluate neurotoxicity based on rat 

primary re-aggregating brain cell cultures followed by LC/MS-based metabolomics [104]. 

Cell cultures were exposed to the neurotoxic methyl mercury chloride (MMC) at 

concentrations ranging from 0.1 to 100µM or to the brain stimulant caffeine at concentrations 

ranging from 1 to100µM. The occurrence of cytotoxicity was assessed by the detection of an 

increased activity of the lactate dehydrogenase (LDH) in the culture media. No neurotoxicity 

was observed with caffeine, whereas it occurred from 1 µM with MMC. Interestingly, 

differences in metabolite concentrations were observed between control and MMC exposed 

sample, as emphasized by concentration dependent clusters observed on principal component 
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analysis score plots. The concentration of five metabolites was either increased (creatine, 

spermine) or decreased (glutamine, GABA and choline) in MMC samples, and these 

metabolites were found responsible for this clustering. To evaluate their model, van Vliet et 

al. tested 8 compounds exhibiting different modes of organ toxicity. On the PCA score plots, 

controls and hepato- and nephrotoxic compounds were part of the same cluster whereas 

neurotoxic compounds were clearly individualized.  

 Toward mechanistic considerations 

Williams et al (2005) showed the value of using MS-based metabonomics for 

elucidating the mechanism of toxicity of D-serine in rat. D-serine is a nephrotoxic amino acid 

that causes selective necrosis of renal proximal tubule cells in rats [105] by an unknown 

mechanism. Using 1H-NMR, Williams et al. [106] showed that D-serine-induced kidney 

tubular damage was associated with proteinuria, glucosuria and aminoaciduria, which have 

already been described as unspecific markers of tubular nephrotoxicity. Further LC/MS 

analyses led to the identification of several metabolites (hydroxypyruvate, glycerate, sebacic, 

xanthurenic and methyl succinic acids, acyl carnitine) that had not previously been detected 

by 1H NMR [107]. Interestingly, glycerate and hydroxypyruvate are produced from serine by 

the peroxisomal enzyme D-amino-acid oxidase (D-AAO). The authors hypothesized that 

hydroxypyruvate generates hydrogen peroxide, which induces a peroxisomal oxidative stress. 

The resulting peroxisomal dysfunction leads to decreased fatty acid metabolism and 

oxidation, as emphasized by the observation of decreased levels of the dicarboxylic acids such 

as sebacic and methylsuccinic acid, and acylcarnitins. Of note, a relationship between 

tryptophan catabolism and peroxisomal metabolism has already been reported [108] and is 

consistent with the perturbations observed in this study: increased excretion of tryptophan and 

decrease of xanthurenic acid and other TCA cycle intermediates. Finally, it has been shown in 

another study that the co-administration of D-serine and sodium benzoate, a potent 
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competitive inhibitor of renal D-amino-acid oxidase, prevents kidney injury, thus confirming 

the implication of this enzyme in the mechanism of toxicity [109].  

Finally, new insights into mechanisms of toxicity will probably be obtained through 

the coupling of classical histological and biochemical tools with other more recent omics and 

imaging approaches. In this context, a collaborative research effort in molecular system 

toxicology has been launched by the FDA's National Center for Toxicological Research and 

BG Medicine Inc. It is supported by 7 pharmaceutical companies and 3 technology providers 

and aims at investigating drug induced liver toxicity. Three days and twenty-eight days dosing 

studies are performed on related compound pairs, including a "clean" compound and a toxic 

one in order to highlight off-target molecular responses. Proteomics, LC/MS-based 

metabolomics and gene expression data are obtained from liver extracts, proteomics and 

LC/MS based metabolomics are obtained from plasma samples, and NMR based 

metabolomics experiments are performed on urine samples. These data are then confronted 

with histology and classical clinical chemistry tools. Preliminary findings are reported in a 

publication in which the performances of the analytical platforms on a first compound pair 

(entacapone and tolcapone) are presented and discussed [110]. 

Selected applications in the field of clinical chemistry 

 Clinical chemistry deals with any analysis performed on body fluids for medical 

purpose, including disease diagnosis and follow–up, and also therapeutic drug monitoring. 

MS-based approaches are used in clinical laboratories since the 1970s [111]. Most of them are 

targeted methods focusing on particular metabolites or chemical families. Currently existing 

tandem MS methods are used to carry out neonatal screening analysis using the same 

principles as metabolomics{American College of Medical Genetics/American Society of 

Human Genetics Test and Technology Transfer Committee Working Group, 2000 459 /id}. 

This is ultimately the tangible use of MS-derived discovery of novel biomarkers. Now, 
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technological and bioinformatical improvements of this last decade have enabled the 

implementation of MS-based global approaches, namely metabolomics, in the field of clinical 

chemistry. Table 2 displays some key applications of MS-based metabolomics to clinical 

chemistry. They address different medical areas such as cardiology, transplantation, human 

reproduction, diabetes, central nervous system diseases, or oncology.  

Thanks to the versatility of API-MS-based tools, MS-based metabolomics offers the 

possibility to provide chemists and physicians with various snapshots of different biological 

media such as plasma, urine, cerebrospinal fluids, cell extracts or tissue extracts obtained 

from biopsies, as shown in table 2. These snapshots may focus on concentration changes of 

selected metabolites sometime occurring at trace levels. Triple quadrupole mass spectrometers 

operated in the selected reaction monitoring mode are the instruments of choice for such 

targeted approaches thanks to their sensitivity. Snapshots may also focus on particular 

metabolite families such as carnitine species or lipids. In the first case, the selectivity of the 

detection may be brought by MS/MS detection, thanks to the constant neutral loss or parent 

ion scanning modes that are available on triple quadrupole instruments, whereas, in the 

second situation, it is rather obtained by specific sample treatment procedures, such as Folch 

extraction [112]. At last, the pictures may provide the user with an overview containing many 

features related to both genetic and environmental contributions (i.e., diet, lifestyle, gut 

microbial activity, drug intake, and exposure to pesticides, plasticizers or food 

preservatives…). The terminology of global approach has been coined for this kind of picture 

and high and ultra-high resolution mass spectrometers are the most frequently used 

instruments in this context. These aspects will be discussed in this section with selected 

applications.  

In targeted approaches, metabolites are selected with regards to their biological 

relevance to the field of investigation, or because they are representative for known metabolic 
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pathways. Metabolites exhibit very different structures and several analytical methods may be 

used in parallel for their detection. Sabatine et al. [113] and also Lewis et al. [114] used 3 LC 

columns for sugars and nucleotide, organic acids and amino-acid analyses, whereas Turer et 

al., used colorimetric methods to detect glucose, lactate, free fatty acids and pyruvate, and a 

MS-based method to profile amino-acids and carnitine derivatives [115]. Several tens to 

hundreds of metabolites may be detected using MS/MS analysis performed on triple 

quadrupole instruments in most cases. These metabolites are mainly amino-acids, sugars, 

organic acids involved in central and energetic metabolism, and also lipids (carnitine 

derivatives and phospholipids).    

Shaham et al. conducted a 3 steps study to highlight metabolic disorders linked to 

respiratory chain dysfunction [116]. They started to work on a cell model of chemical 

inhibition of the respiratory chain by applying LC-MS/MS using a triple quadrupole device 

and also 1H NMR. Among the 191 detected metabolites by LC-MS/MS, the levels of 32 of 

them were found to be altered by the RC inhibition. This was for example the case for 

alanine, lactate (both current biomarkers of RCD), glucose, creatine and others TCA-cycle 

intermediates. In the second step, they screened human plasma from two cohorts of patients 

with pathogenic mutation or abnormally low respiratory chain enzyme activity in muscle 

using the LC-MS/MS method. Concentration trends similar to those observed in culture 

media were found in the first cohort (16 patients and 25 controls) for 26 of the 32 metabolites 

previously pointed out. The levels of lactate (+107%), alanine (+46%), creatine (+233%) and 

uridine (-24%) were significantly different between patients and controls. To confirm the 

huge increase in creatine in plasma samples from patients suffering of a respiratory chain 

dysfunction, a second independent cohort (14 patients and 4 controls) was analyzed using 

another LC-MS/MS method. Increased concentrations of creatine (201%) were observed in 

patients whereas alanine and lactate levels did not significantly differ. This study suggests that 
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plasma creatine levels are more powerful biomarkers of respiratory chain dysfunction than 

alanine or lactate. Actually, creatine (Cr) is converted to phosphocreatine (PCr) by creatine 

kinase in the presence of ATP and the PCr/Cr balance reflects the cell energy state. In case of 

respiratory chain dysfunction, the low energy state makes that low intracellular ATP and PCr 

concentrations are observed, together with an accumulation of intracellular Cr which leads to 

an increased excretion of Cr in the extracellular medium.  

Oresic et al. reported on an ongoing cohort of children who progressed to type 1 

diabetes [117]. They analyzed serum metabolites before, around the time and after conversion 

using an UPLC/Q-TOF for lipid profiling and two dimensional gas chromatography coupled 

to a TOF mass spectrometer for polar metabolites. Although the mass detection was 

performed on a large mass range, these authors decided to keep only identified metabolites, 

i.e., 53 lipids and 75 metabolites, for further statistical analyses and biological interpretation. 

Results show that children who developed diabetes had metabolic perturbations before and 

during conversion such as increased levels of lysophosphatidylcholine, GABA, glutamic acid 

and leucine and decreased levels of succinic acid, PC, ketoleucine and glutamine. 

Normalization of profiles after the conversion indicates that those metabolic dysregulations 

precede B cell autoimmunity and disease onset. The interdependence of metabolic and 

immune system factors raises many questions, including the possible role of choline and 

intestinal microbiota in lipid dysregulation, or plasmalogen and oxidative damages toward B 

cells. However, tissue-specific mechanisms behind metabolic disturbances remain unclear: is 

the autoimmunity a physiological response aimed at restoring the metabolic homeostasis, or 

do metabolic dysregulations reflect an early stage of this immune response toward the B cell 

autoantigens that are not yet detectable?  

 Few papers using untargeted LC/MS based approaches in the field of clinical 

chemistry have been published. Two of them address the issue of cancer biomarker discovery. 
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Sreekumar et al. applied MS-based metabolomics in an attempt to identify biomarkers for 

non-invasive diagnosis and prognostic cancer invasion and disease aggressiveness [118]. To 

this end, they analyzed with two complementary GC and LC/MS methods the concentrations 

of several hundreds of metabolites across 262 prostate-related samples (42 tissues extracts, 

110 plasma and urine samples from biopsy-positive and negative prostate cancer patients). As 

amino acid metabolism and methylation of biomolecules were known to be involved in 

prostate cancer progression, they focused on metabolites of these pathways the levels of 

which were found increased in tissue samples from cancer patients. This was the case for 

sarcosine, a N-methyl derivative of glycine, which was significantly increased in tissues 

during disease progression from benign disease (undetectable) to metastatic stage (higher 

levels than in organ-confined disease). However, monitoring sarcosine levels in prostate 

tissues appears of limited interest because histology is already available and more powerful 

for the diagnosis and the prognosis of cancer. The authors then decided to turn to urine and 

found out that sarcosine was detectable but occurred at trace levels, with a modest but 

significant predictive value (more sensitive than PSA) for prostate-cancer diagnosis and 

disease progression. Beside the discussion about methylation and sarcosine, many other 

discriminating metabolites, identified or not were not taken into account. One reason for that 

is the lack of appropriate tools to visualize and synthesize omics data sets.  

Richie et al. [119] applied both targeted and non targeted metabolomics-based 

approaches in order to identify non invasive biomarkers of colorectal cancer (CRC). They 

started with a large-scale study on serum samples from several populations of different 

origins. Discriminating metabolites common to CRC patients whatever their ethnic or 

geographic origin were highlighted using a non targeted FT-ICR MS-based method combined 

with statistical analyses. A group of metabolites the levels of which were dramatically 

decreased in the 3 populations was pointed out, and thanks to the high resolution and accurate 
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mass measurement, the authors attributed a mass formula to each signal and noticed that these 

molecules belong to the same family. Then, they performed MS/MS experiments using a Q-

TOF instrument and identified the molecules of interest to be hydroxylated polyunsaturated 

ultra long-chain fatty acids. This was further confirmed by NMR experiments and MS/MS 

analysis of reference compounds. Finally a semi-quantitative method was developed on a 

triple quadrupole instrument operated in the selected reaction monitoring mode for biomarker 

validation purposes.  

Finally, although results from exploratory studies in the field of clinical medicine are 

promising, many of them should be cautiously interpreted. Indeed, many published studies 

involve reduced cohorts. This limits the power of statistical analyses and further isolation of 

discriminating ions. Furthermore, even thought such ions are underlined, their formal 

identification and the demonstration of their biological relevance will be required for further 

medical applications.  

Conclusion and perspectives 

The metabolome is characterized by a large diversity of chemical structures requiring 

diverse analytical platforms to reach its extensive coverage. NMR has been extensively used 

since the beginning of metabolomics, whereas the use of LC-MS has progressed and is now 

very popular because it is versatile, sensitive and brings complementary information about 

biomolecules such as peptides and lipids. The aim of this review was to introduce LC/MS-

based metabolomics and to present and discuss key applications focusing on toxicology and 

disease biomarkers. Whereas the published applications in the field of toxicology still remain 

proof-of-concept studies, due to the complexity and multifactorial origin of toxicity, the 

situation seems different in the field of clinical chemistry for which multiplexed targeted 

approaches provide the clinician with information on few tens to hundreds of metabolites by 

using MS/MS analysis performed on triple quadrupole mass spectrometers. Furthermore, 
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recent improvements in mass spectrometry have improved the efficacy of global approaches 

by facilitating the identification of metabolites of interest thanks to high resolution and 

accurate mass measurements.  

From a technical point of view, metabolomics is the combination of analytical 

chemistry, statistics and bioinformatics tools that are used separately or together to perform (i) 

sample preparation, (ii) acquisition of metabolic fingerprints, (iii) automatic detection of ions, 

(iv) statistical analyses and (v) identification. However, despite recent technological and 

conceptual improvements, metabolomics appears to be still in its infancy and each step that is 

mentioned above is a bottleneck in itself. How to accelerate metabolomics studies is therefore 

a titillating issue.  

Three major pitfalls must be highlighted: (i) analytical issues such as the difficulty to 

compare experiments one to another (developed in the “Acquisition of metabolic fingerprints 

using LC/ESI-MS systems”), (ii) the amount of information generated by metabolomics and 

(iii) the lack of chemical repositories designed for metabolomics studies (i.e., a central open 

source of mass and CID spectra acquired with various instruments in different laboratories) 

that will be helpful in the identification of discriminating signal. 

Metabolomic analysis processes generate, especially at the output of automatic ion 

detection, large matrix of data containing tens of thousands of variables (m/z–retention time). 

The reduction of data could be performed by taking advantage of signal redundancy, as 

previously explained. However, the main part of the information remains, until now, 

unexploited. The only alternative should be the systematic (and automatic) identification of 

all signals. This is actually one of the major rate-determining steps of metabolomics. The data 

sets obtained from high and ultra-high resolution mass spectrometry can be processed by 

informatics tool for automatic query in metabolic and metabolomic public databases with the 

measured accurate masses. Although such annotations are useful to start with biological data 
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interpretation, they have to be confirmed by a careful interpretation of the mass spectra, as 

shown in figure 6.  

The bottom of the figure 6 displays a peak list extract generated by an automatic 

detection software from a LC/MS based metabolomic analysis of human cell extracts. 

Putative annotations of signals are provided in the fourth column. They have been obtained by 

matching the experimentally measured masses with those of metabolites contained in public 

databases such as HMDB [120], KEGG [121] and Metlin [122]. They indicate the putative 

presence of spermidine, diaminopropane, 3-buten-1-amine, 1-Methylpyrrolinium and 

cyclopropylamine in cell extracts. Another annotation using a home-made spectral database 

confirmed the presence of spermidine, but shows that 3 of the other annotations are erratic 

because the related ions actually correspond to ion products of spermidine generated in the 

electrospray source during the desolvation process. This example highlights the complexity of 

API-MS-based data sets and a thorough inspection of mass spectra requiring spectral libraries 

is necessary before biological interpretation.   

Two different kinds of libraries are available for API-MS-based metabolomics: mass 

spectral and CID mass spectral libraries. The building of the first ones relies on careful 

interpretations of mass and CID spectra of reference compounds. They aim at annotating 

biological datasets, as shown in figure 6, whereas the latter are useful to confirm peak list 

annotations and to characterize unknown compounds. These libraries should be shared 

between users in order to make metabolite identification in various biofluids effective. 

Unfortunately, API-MS exhibits poor reproducibility and high inter-instrument variability in 

the generation of fragmentation patterns, thus hampering the constitution of universal 

databases as done with electron ionization mass spectrometry [123] or with NMR [124].  

  Despite these limitations, databases containing API mass spectra combined with CID 

spectra such as HMDB, Metlin, mass bank from metabolome.jp, and lipid maps are beginning 
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to be released. However, the use of such spectra for comparison and identification must be 

performed carefully and may lead to erroneous results [85]. This issue of spectral comparison 

begins to be addressed. For instance, Palit et al. proposed a fragmentation energy index for the 

normalization of collision energy [125] which is nevertheless restricted to ion trap 

instruments. Oberacher et al. designed a multicenter study in which 22 test compounds (drug 

standards) were sent to three different laboratories, where 418 tandem mass spectra were 

acquired using four different instruments from two manufacturers including Q-TOF, triple 

quadrupole, Q-Trap and FTICR mass spectrometers [126]. CID mass spectra were recorded 

without any standardization of experimental conditions and they were matched against a 

reference library using a sophisticated matching algorithm [127]. The high percentage of 

correct assignments suggests that it is possible to compare CID spectra obtained from 

different instruments and laboratories. The possibility of sharing CID spectral libraries and 

also MS data set repositories should improve the characterization of unknown metabolites of 

toxicological and clinical relevance.  
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Table1: MS-based metabolomics applications in toxicology 

Experimental conditions Topic Application Biological medium comment Reference 

HPLC(C18)/QTOF-MS Mechanistic 
considerations 

Aristolochic induced 
nephrotoxicity 

Rat urine  Chan et Al. 2008 
[128] 

HPLC(C18)/QTOF-MS Mechanistic 
considerations 

Aristolochic induced 
nephrotoxicity 

Rat urine and plasma  Chan et Al. 2008 
[129] 

HPLC(HILIC) / IT-MS Mechanistic 
considerations 

CCl4 induced hepatotoxicity Rat urine  Lin et al. 2009 
[130] 

HPLC(C18)/IT-MS Mechanistic 
considerations 

Fenofibrate-induced 
hepatotoxicity 

Rat urine and plasma Additionnal GC/MS experiments Ohta et al. 2009 
[131] 

HPLC(C18)/QTOF-MS Mechanistic 
considerations 

D-serine induced 
nephrotoxicity 

Rat urine Previous study by 1H and 31P NMR 
(Williams et al. 2003) 

Williams et al. 
2005 [48] 

UPLC(C18)/QTOF Mechanistic 
considerations 

Acetaminophen-induced 
hepatotoxicity : role of 
PPARa 

Mouse serum  Chen et al. 2009 
[101] 

UPLC(C18)/IT-MS Mechanistic 
considerations and 
biomarker 
discovery 

Ochratoxin A induced 
nephrotoxicity 

Rat urine Additionnal GC/MS and 1H NMR 
experiments 

Sieber et al. 2008 
[132] 

HPLC(C18)/QTOF-MS Mechanistic 
considerations and 
biomarker 
discovery 

mercuric chloride induced 
nephrotoxicity 

Rat urine Additional 1H NMR experiments Lenz et al. 2004 
[133] 

UPLC(C18)/TOF-MS Biomarker 
discovery 
(xenometabolome) 

Acetaminophen 
hepatotoxicity 

Rat urine Additional 1H NMR experiments Sun et al. 2009 
[100] 

UPLC(C18)/TOF-MS Biomarker 
discovery 

Acetaminophen 
hepatotoxicity 

Rat urine and serum Additional 1H NMR experiments Sun et al. 2008 
[98] 

UPLC(C18)/QTOF-MS Biomarker 
discovery 

Doxorubicine toxicity Rat urine  Wang et al. 2009 
[58] 
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UPLC(C18)/QTOF-MS Biomarker 
discovery 

Tolcapone toxicity Rat urine  Sun et al. 2009 
[134] 

HPLC/LTQ-Orbitrap-MS Biomarker 
discovery 

Liver Toxicity Biomarker Rat urine, plasma and 
liver 

Targeted: lipid, AA and polar LC-MS 
metabolomics 

McBurney et al. 
2009 [110] 

UPLC(C18)/TQ-MS Biomarker 
discovery 

Drugs-Induced 
Hepatotoxicity 

Rat urine Additional 1H NMR experiments Schnackenberg et 
al. 2009 [99] 

HPLC(C18)/QTOF-MS 
and QTRAP-MS 

Biomarker 
discovery 

Detection of mercapturic 
acid metabolites of 
acetaminophen 

Human urine  Wagner et al. 
2006 [135] 

HPLC(C18)/QTRAP-MS Biomarker 
discovery 

Detection of mercapturic 
acid  

Human urine 

 

Wagner et al. 
2007 [73] 

HPLC(C18)/QTOF-MS Biomarker 
discovery 

Cyclosporine A induced 
nephrotoxicity 

Rat urine Additional 1H NMR experiments Lenz et al. 2004 
[136] 

UPLC(C18)/QTOF-MS Biomarker 
discovery 

Ionizing radiation Human cells  Patterson et al. 
2008 [137] 

UPLC/TQ-MS Predictive model 
and biomarker 
discovery 

CCl4 and ANIT induced 
hepatotoxicity 

Rat serum Targeted on bile acids Yang et al. 2008 
[138] 

HPLC(C18)/IT-MS Predictive model Drug-induced 
nephrotoxicity 

Rat urine and kidney Additionnal GC/MS experiments Boudonck et al. 
2009 [103] 

direct introduction/TQ-MS Predictive model Methyl mercury chloride 
induced neurotoxicity 

Rat brain cell cultures  Van Vliet et 
al.2008 [104] 

HPLC(C18)/TQ-MS Predictive model Drug-induced hepatotoxicity Rat urine   La et al. 2005 
[102] 
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Table 2: MS-based metabolomics applications in clinical chemistry 

Experimental conditions Topic Application Biological medium comment Reference 

UPLC(HILIC, C18)/IT-MS Cancer Kidney cancer Human urine Additional GC/MS experiments Kind at al. 2007 
[139] 

HPLC(HILIC)/IT-MS Cancer Kidney cancer Human urine  Kim et al. 2009 
[140] 

HPLC(C18)/IT-MS 

Cancer Woman's cancer (breast, 
ovarian, cervical) 

Human urine Targeted on hormones and 
nucleosides. Additional GC/MS 
experiments 

Woo et al. 2009 
[141] 

HPLC(C18)/IT-MS 

Cancer Breast cancer before and 
after tumor resection 

Human urine Targeted on nucleosides Cho et al. 2009 
[142] 

HPLC(C18)/IT-MS 
Cancer Breast cancer Human urine Targeted on nucleosides Cho et al. 2006 

[143] 
HPLC/IT-MS Cancer Breast cancer Human urine Targeted on nucleosides Frickenschmidt at 

al. 2008 [144] 

HPLC(C18)/TOF-MS Cancer Ovarian cancer Human serum  Guan et al. 2009 
[145] 

HPLC/IT-FT-MS Cancer Prostate cancer Human plasma, urine 
and tissue 

Additional GC/MS experiments Sreekumar et al. 
2009 [118] 

HPLC(C18)/QTOF-MS or 
TQ-MS, and Direct 
introduction/FTICR-MS 

Cancer Colorectal cancer Human serum Both targeted (Q-TOF TQ-MRM) and 
non targeted (FTICR) 

Ritchie et al. 2010 
[119] 

HPLC(C18)/QTOF-MS Cancer Bladder Cancer Human urine  Issaq et al. 2008 
[146] 

UPLC(C18)/TOF–MS Cancer Colorectal cancer Human urine  Ma et al. 2009 
[147] 

HPLC(C18)/TOF-MS Cancer Oral squamous cell 
carcinoma, oral lichen 
planus and oral leukoplakia 

Human saliva  Yan et al. 2008 
[148] 

Direct introduction or 
HPLC/QTRAP-MS 

Cancer Prostate cancer Human serum  Osl et al. 2008 
[149] 
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HPLC/TQ-MS Cardiology Myocardial ischemia Human plasma Targeted: Sugars and ribonucleotides 
(luna normal phase column), Organic 
acids (polar-RP column) and amino 
acids (Luna phenyl-hexyl column) 

Sabatine et al. 
2010 [113] 

HPLC/TQ-MS Cardiology Myocardial injury Human plasma Targeted: Sugars and ribonucleotides 
(luna normal phase column), Organic 
acids (polar-RP column) and amino 
acids (Luna phenyl-hexyl column) 

Lewis et al. 2008 
[114] 

Direct introduction/TQ-MS Cardiology Coronary Artery Disease or 
Left Ventricular 
Dysfunction 

Huma plasma Targeted Turer et al. 2009 
[115] 

HPLC(phenyl)/TQ-MS Cardiology Coronary artery disease  Human urine Targeted on amino acids Wang et al. 2009 
[150] 

UPLC(C18)/QTOF-MS Cardiology Silent myocardial ischemia Human plasma  Lin et al. 2009 
[151] 

UPLC(HILIC)/TQ-MS Endrocrinology Type 1 diabetes Rat urine Additionnal 1H NMR experiments Jankevics et al. 
2009 [57] 

UPLC(C18)/QTOF-MS Endrocrinology Type 1 diabetes Human plasma Targeted: lipidomics. Additionnal 
GC/MS experiments 

Oresic et al. 2008 
[117] 

HPLC(nucleosil)/QTRAP-
MS 

Endrocrinology Type 2 diabetes mellitus Human plasma Targeted on phospholipids Wang et al. 2005 
[152] 

HPLC(C8)/QTRAP-MS Hepato-
Gastroenterology 

Chronic hepatitis B Human serum  Yang et al. 2006 
[153] 

HPLC(RP)/QTRAP-MS Hepato-
Gastroenterology 

Roux-en-Y gastric bypass 
(RYGB) surgery 

Human serum Additional GC/MS experiments Mutch et al. 2009 
[154] 

HPLC(C18)/IT-MS Hepato-
Gastroenterology 

Hepatic steatosis Mouse liver and blood Targeted: lipidomics Van Ginneken et 
al. 2007 [155] 

UPLC(C18)/QTOF-MS Hepato-
Gastroenterology 

Intestinal fistulas Human blood  Yin et al. 2006 
[156] 

Direct introduction/FT-
ICR-MS 

Hepato-
Gastroenterology 

Crohn disease Human fecal samples  Jansson et al. 
2009 [157] 
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HPLC(C18)/IT-MS or 
UPLC(C18)/TOF-MS 

Hepato-
Gastroenterology 

Liver transplantation Human whole bile and 
extract 

Additionnal 1H NMR and HPLC-
NMR/MS experiments 

Duarte et al. 2009 
[158] 

UPLC(C18)/QTOF-MS Hepato-
Gastroenterology 

Intestinal transplantation Huma plasma  Li et al . 2008 
[159] 

UPLC(C18)/QTOF-MS Neurology Alzheimer’s disease Human plasma  Greenberg et al. 
2009 [160] 

HPLC(C18)/QTOF-MS or 
IT-MS 

Neurology Motor neuron disease Human plasma Additional GC/MS experiments Rozen et al. 2005 
[161] 

HPLC(Luna SCX)/IT-MS Reproduction Human embryo selection Human embryo 
culture medium 

 Marhuenda-Egea 
at al. 2009 [162] 

HPLC(C18)/IT-MS Reproduction Preterm birth biomarkers Human cervicovaginal 
fluid 

 Shah et al. 2008 
[163] 

UPLC(C18)/QTOF-MS Uigur chinese 
traditionnal 
medicine 

abnormal savda Huma serum  Yin et al. 2008 
[164] 

UPLC(C18)/QTOF-MS Endrocrinology 
and metabolism 

Dietary carbohydrate and 
metabolic syndrome 

Human plasma and 
tissue 

Targeted: lipidomics. Additionnal 
GC/MS experiments 

Lankinen et al. 
2009 [165] 

UPLC(C18)/QTOF-MS Rheumatology Ankylosing spondylitis  Human plasma Additional GC/MS experiments Gao et al. 2008 
[166] 

UPLC(C18)/QTOF-MS Nephrology Kidney injury in children 
after cardiac surgery 

Human urine 

 

Beger et al. 2007 
[167] 

HPLC(C18)/TOF-MS Inborn errors of 
metabolism 

Methylmalonic acidemia 
(MMA) and propionic 
acidemia (PA) 

Human plasma 

 

Wikoff et al. 2007 
[168] 

HPLC/QTRAP-MS Inborn errors of 
metabolism 

Respiratory chain diseases Human plasma Additionnal 1H NMR experiments. 
Targeted: Sugars and ribonucleotides 
(luna normal phase column), Organic 
acids (polar-RP or ion paring column) 
and amino acids (Luna phenyl-hexyl 
or HILIC column) 

Shaham et al. 
2010 [116] 
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Figure Legends 

Figure 1: Schematic representation of omics technologies. The flow of information starts 

from genes to metabolites running through transcripts and proteins.  

Figure 2: Number of publications dealing with metabolomics based on LC/MS in the fields of 

toxicology, clinical chemistry and others in the past 10 years (left axis) versus all 

metabolomics related publications (right axis). Search criteria in Pubmed were (metabolomics 

OR metabonomics) AND (liquid chromatography) AND (mass spectrometry) AND subject 

AND year[DP]” (subject are toxicology or disease, year ranges from 1999 to 2009). 

Figure 3: The MS-based metabolomics flow chart. 

Figure 4:  Multivariate statistical analyses 

Multivariate statistical analyses results are summarized into score and loading plots. The score 

plot represents the projection in two dimensions of samples onto principal components (PCs). 

The PCs constitute a new space which best carries the variation in the original data. The score 

plot shows how samples are dispersed in a 2- or 3-dimension space. Samples belonging to the 

same group are close from each other. The loading plot represents the projection of variables 

(m/z and retention time) onto PCs. Variables responsible for the discrimination between 

groups are far from the center of the loading plot, as emphasized with the two bar plots. 

Figure 5: How to address signal redundancy? 

This figure represents a Liquid Chromatography (LC) - Mass Spectrometry (MS) process and 

shows the origin of redundancy in MS signals. Four molecules represented by orange, green, 

yellow and blue dots are separated by LC. At retention time t=1, the “yellow molecule” is 

introduced into the ESI source. Into the source, pseudo molecular, adducts (e.g. with formic 

acid) and fragments (e.g. loss of functional group) ions are formed during the ionisation 

process (A). The resulting mass spectrum (B) reports the presence of those ions. The isotopic 

pattern of each ion (e.g. those of pseudo-molecular ion (C)) could be visualized when 
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enlarging the scale around the ion. Signals appearing at M+1, M+2 correspond to the 

isotopologues (13C, 15N…) of the ion. When fragments and adducts as well as isotopologue 

ions are taken account, it appears that many signals are actually related to the single yellow 

molecules. This phenomenon is called signal redundancy.  

Figure 6:  

Top of the figure: spermidine is analyzed by flow injection analysis–high resolution mass 

spectrometry (FIA-HRMS). The mass spectrum is exported as a list of signals (with 

composition and attribution) that constitutes a home-made spectral database after data 

interpretation.  

Bottom of the figure: Samples are analyzed by UPLC-MS and ions are extracted using 

automatic signal detection software. The m/z–retention time list is firstly annotated by search 

in Kegg, HMDB and Metlin databases and secondly by search in home-made spectral 

database.  

 

 

 

 

 

 
 


