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Summary. The choice of the summary statistics in Bayesian inference and in par-

ticular in ABC is paramount to produce a valid outcome. We examine necessary

and sufficient conditions on those statistics for a corresponding Bayes factor to

be convergent. The conditions thus obtained are then usable in ABC settings to

determine which summary statistics are appropriate, following a standard Monte

Carlo validation.

1. Introduction

1.1. Summary statistics

In Robert et al. (2011), the authors showed that the now popular ABC (approxi-
mate Bayesian computation) method (Tavaré et al., 1997, Pritchard et al., 1999,
Toni et al., 2009, Marin et al., 2011) is not necessarily validated when applied to
Bayesian model choice problems. Without embarking upon a complete descrip-
tion of the ABC algorithm, since it is not relevant for our purpose here, we recall
that one specific feature of this approximation method is to consider simulations
θ from the prior distribution and from the corresponding sampling distribution
such that a statistic T (z) of the simulated pseudo-data z is close enough to the
corresponding statistic T (y) for the observed data y. The amount of proximity
can be controlled by an increase in the computational power, however the choice
of the statistic is paramount in that the resulting inference relies on this statistic
and only on this statistic. In particular, when conducting ABC model choice,
the ultimate outcome of the algorithm is the Bayes factor

BT

12(y) =

∫

π1(θ1)g
T

1 (T (y)|θ1) dθ1
∫

π2(θ2)gT

2 (T (y)|θ2) dθ2
,



which is exactly the Bayes factor for testing M1 versus M2 based on the sole
observation of T (y). This value most often differs from the Bayes factor B12(y)
based on the whole data y. As discussed in Robert et al. (2011), in the specific
case when the statistic T (y) is sufficient for both M1 and M2, the difference
between both Bayes factors can be expressed as

B12(y) =
h1(y)

h2(y)
BT

12(y) , (1)

where the ratio of the gi(y)’s often behave like likelihoods of order n, the data
size. This discrepancy implies that ABC model choice cannot always be trusted.
Indeed, even in the limiting ideal case, i.e. when the ABC algorithm uses an
infinite computing power to achieve a zero tolerance, the ABC odds ratio does
not take into account the features of the data besides the value of T (y). Robert
et al. (2011) illustrates that this difference can be such that BT

12(y) leads to an
inconsistent model choice.

The purpose of the current paper is to study asymptotic conditions on the
statistic T under which the Bayes factor for testing M1 versus M2 based on the
sole observation of T (y) either converges or diverges. The main result shows
that a practical choice of summary statistics providing convergent model choice
is available for ABC algorithms.

1.2. Insufficient statistics

We stress that the only case when the extra term in (1) is equal to one is when
the statistic T is sufficient across models M1 and M2, i.e. for the collection
(m,θm) of the model index and of the parameter. This is for instance the case
in Gibbs random fields (Grelaud et al., 2009). Otherwise, the conclusion drawn
on T (y) necessarily differs from the conclusion drawn on y.

Example 1. To illustrate the impact of the choice of a summary statistic
on the Bayes factor, we consider the comparison of model M1 y ∼ N (θ1, 1) with
model M2 y ∼ L(θ2, 1/

√
2), the Laplace or double exponential distribution with

mean θ2 and scale parameter 1/
√

2, which has a variance equal to one.
In this formal setting, four natural statistics can be considered (as suggested

by one referee of Robert et al., 2011):

(a) the sample mean y;
(b) the sample median med(y);
(c) the sample variance var(y);
(d) the median absolute deviation mad(y) = med(y − med(y));

Given the models under comparison, the first statistic is sufficient for both mod-
els, but not jointly across models, the second statistic is not sufficient but its
distribution depends on θi, while both the sample variance and the median abso-
lute deviation are ancillary statistics. As explained later (Section 2.3), the most
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important feature of those statistics is that the first three statistics have the
same expectation under both models (using the pseudo-true value of θi under
both models) while the median absolute deviation has a different expectation
under model 1 and model 2.

Since we are facing standard models in this artificial example, the computa-
tion of the true Bayes factor would be possible (see Appendix 1). However, if we
base our inference only on one or several of the above statistics, the computa-
tion of the corresponding Bayes factors requires an ABC step. Fig. 1 shows the
distribution of the posterior probability that the model is normal (as opposed
to Laplace) when the data is either normal or Laplace and when the summary
statistic in the ABC algorithm is the collection of the first three statistics above.
The outcome is thus that the estimated posterior probability has roughly the
same predictive distribution under both models, hence is not discriminative.
Fig. 2 represents the same outcome when the summary statistic used in the
ABC algorithm is only made of the median absolute deviation of the sample. In
this second case, the two distributions of the estimated posterior probability are
quite opposed under each model, concentrating near zero and one respectively.
Hence, this summary statistic is highly discriminant to compare both models.
From an ABC perspective, this means that using the median absolute deviation
is then satisfactory, as opposed to the first three statistics.

◭

The above example illustrates very clearly the major result of this paper,
namely that the mean behaviour of the summary statistic T (y) under both
models under comparison is fundamental for the convergence of the Bayes factor,
i.e. of the Bayesian model choice based on T (y). This result, described in the
next section, thus brings an almost definitive answer to the question raised in
Robert et al. (2011) about the validation of ABC model choice, although it may
require additional simulation experiments in realistic situations.

The paper is organised as follows: Section 2 contains the theoretical deriva-
tion of the asymptotic behaviour of the Bayes factor based on a summary statis-
tic, Section 2.1 covering our main assumptions, Section 2.2 exhibiting the asymp-
totic behaviour of the marginal likelihods, Section 2.3 detailing the consequences
of this result for model choice based on summary statistics. Section 3 illustrates
the relevance of our criterion for evaluating summary statistics, with Section
3.3 deriving from the above a criterion for calibrating the tolerance in the ABC
algorithm. Section 4 concludes the paper with a short discussion.

2. Convergence of Bayes Factors using summary statistics

Let y = (y1, . . . , yn) be the observed sample, not necessarily iid. We de-
note by y ∼ P

n the true distribution of the sample, and by T (y) = T
n =

(T1(y), T2(y), · · · , Td(y)) a d-dimensional vector of summary statistics: T
n ∼

3
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Fig. 1. Comparison of the distributions of the posterior probabilities that the data is from

a normal model (rather than a Laplace model) when the data is made of 25 observations

either from a normal (brown) or Laplace (blue) distribution with mean zero and when

the summary statistic in the ABC algorithm is the made of the collection of the sample

mean, median and variance. The ABC algorithm uses 105 proposals from the prior and

selects the tolerance ǫ as the 1% distance quantile. The densities are estimated by a

kernel estimator density() and rely on 100 replicas.

Gn by projection of P
n. Throughout the paper the sign . (resp. &) means ’less

than up to a multiplicative constant’ and the sign an ∼ bn for two sequences
(an) and (bn) means that |an/bn| is bounded from above and from below by a
positive constant. Finally a ∧ b denotes min(a, b).

In this setting, we assume that two competing models M1 and M2 are under
comparison in terms of providing best adequation to the sample Xn:

– under M1, y ∼ F1,n(·|θ1) where θ1 ∈ Θ1;

– under M2, y ∼ F2,n(·|θ2) where θ2 ∈ Θ2.

The corresponding distributions of T
n are denoted by G1,n(·|θ1) and G2,n(·|θ2),

respectively, and the densities of Fi,n(.|θi) and of G2,n(·|θ2) by fi(.|θi) and
gi(.|θi), with respect to some dominating measures µi,X and µi,T (i = 1, 2),
respectively. Under the respective prior distributions π1 and π2 on θ1 and θ2,
the posterior distributions given T

n are denoted by π1(·|T n) and π2(·|T n).

2.1. Distributional assumptions

Some technical assumptions on the model are necessary to establish our main
result:
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Fig. 2. Same figure as Fig. 1 when ABC is based on the median absolute deviation of

the sample as the sole summary statistic.

([A1]) There exist a positive sequence (vn)n converging to +∞, a distribution Q
absolutely continuous with respect to Lebesgue measure, a definite positive
matrix V0 and a vector µ0 such that

vnV
−1/2
0 (T n − µ0) → Q, as n → +∞

([A2]) For i ∈ {1, 2}

vnVi(θi)
−1/2(T n − µi(θi)) → Q, as n → +∞, under Pθi

where for each θi ∈ Θi, µi(θi) ∈ R
d and Vi(θi) is a positive definite matrix.

([A3]) The density q of Q is positive, continuous and bounded on R
d.

([A4]) For each i ∈ {1, 2}, there exists Fn,i, and ǫi, τi, αi > 0 such that for all
τ > 0,

sup
θi∈Fn,i

Gi,n [|T n − µ(θi)| > τ |µi(θi) − µ0| ∧ ǫi|θi] . v−αi
n (|µi(θi) − µ0| ∧ ǫi)

−αi (2)

with
πi(Fc

n,i) = o(v−τi
n ). (3)

([A5]) If inf{|µi(θi) − µ0|; θi ∈ Θi} = 0, define for u > 0

Sn,i(u) = {θi ∈ Fn,i; |µ(θi) − µ0| ≤ Cv−1
n },

then there exists di ≤ τi with di < αi − 1 such that

πi(Sn,i(u)}) ∼ udiv−di
n , ∀u ≤ cvn, for some c > 0
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([A6]) If inf{|µi(θi) − µ0|; θi ∈ Θi} = 0, there exists C > 0 such that

sup
|t−µ0|<Mvn

sup
θi∈Sn,i(C)

∣

∣

∣
|Vi(θi)|1/2v−d

n gi(t|θi) − q(vnVi(θi)
−1/2(t − µ(θi))

∣

∣

∣
= o(1)

and

lim
M→+∞

lim sup
n

πi(Sn,i(C) ∩ {||Vi(θi)
−1|| > M}) + πi(Sn,i(C) ∩ {||Vi(θi)|| > M})

πi(Sn,i(C))
= 0

Conditions [A1]-[A6] are mild conditions. For instance when the summary
statistics are empirical means or empirical quantiles, [A1]-[A3] are satisfied with
vn =

√
n and the limiting distribution Q being the standard Gaussian distribu-

tion. Condition [A4] corresponds to a tail condition on the approximation of
T

n by µ(θ) in each model. For instance in the case where T
n is an empirical

mean, i.e. T
n = n−1

∑n
i=1 h(Yi), where h is a given (possibly vector) function,

then for each θi ∈ Θi,

Gi,n

[√
n|T n − µi(θi)| > u

]

≤ E [|∑n
i=1(h(Yi) − µi(θi))|q]

uqnq/2
≤ C(θi)u

−q, (4)

for potentially large values of q and under very general conditions (weaker than
the independent and identically distributed case ). The main difficulty in this
condition comes from the fact that the term O(uq) in (4) must be uniform in
the sieve sets Fn,i. Set θi : |µi(θi) − µ0| ≤ ǫ, for some positive ǫ assuming that
µ0 ∈ {µi(θi), θi ∈ Θi} and u =

√
n|µi(θi) − µ0| & 1 (otherwise we bound the

above probability by 1), then (4) implies that

Gi,n [|T n − µi(θi)| > |µ0 − µi(θi)|] ≤ C(θi)n
−q/2|µ0−µi(θi)|−q ≤ (

√
n|µ0−µi(θi)|)−α

as soon as C(θi)|µ0 − µi(θi)|−(q−α) ≤ n(q−α)/2 on Fn,i. This is not problematic
if the sets Θi are compact. If they are not compact, then this requires some tail
conditions on the prior distributions πi, see the Gaussian versus Laplace example
detailed in Section 3.1.

Condition [A5] is a prior mass condition, as often encountered in asymptotic
analysis of the posterior distribution, see for instance Ghosal and van der Vaart
(2007). The exponents di can be viewed as effective dimensions of the parameter
under the posteriors, since it corresponds to the minimal number of constraints
on θi required to approximate µ0 by µi(θi).

If the relations θi → µi(θi) can be locally inverted near µ0, the sets Sn,i(C)
can bounded from above and below by sets in the form

|θi − θ∗i | ≤ ciCv−1
n ,

for some θ∗i ∈ Θi or by a finite collection of such sets, then if the prior density
πi is bounded from a bove and below near θ∗i , πi(Sn,i(C)) ∼ Cdv−d

n and di = d.
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In most cases di ≤ d, since assuming that di > d implies that the marginal
prior density of µ(θ) explodes at µ0. The case di < d, corresponds to situations
where the relation θi → µi(θi) is not 1 − 1.

Condition [A6] is a slightly stronger version of [A2], since it is not only
required that vn(T n − µi) converges in distribution to Q but that, locally near
the set of θi’s such that µi(θi) = µ0, the density of vn(T n − µi) is close to q
(up to a rescaling factor). There are many instances of statistics that satisfy
such an assumption. In particular empirical means of continuous variables, un-
der moment and mixing assumptions, verify this condition uniformly over T

n,
see for instance Bhattacharya and Rao (1986). The (absolute) continuity of the
observation is not necessary but nearly so, since the key condition to obtain
uniform approximation of the densities is the so-called Cramer condition, see
Bhattacharya and Rao (1986) for more details. Condition [A6] may become
difficult to check when the sets Sn,i(C) are not compact, typically when the sets
µ−1

i (µ0) are not compact. This essentially implies that the posterior distribu-
tion πi(.|T n) is not informative (at least no more than the prior) on the whole
parameter θi but only on a fraction of it, sumarized by µi(θi). In such a case, for
condition [A6] to be nonetheless verified, it is important to have tail conditions
on the prior so that Fn,i is not too large or to ensure that the distributions Gi,n

of T
n do not dependent on θi.

The last part of condition [A6] is trivially satisfied if the relation θi → µi(θi)
can be locally inverted so that the sets Sn,i(C) can be bounded by balls in θi. If
this is not the case, tail conditions on the prior will be enough to imply that the
constraints ||Vi(θi)

−1|| > M or ||Vi(θi)
−1|| < M−1 can be neglected for M large

enough.

2.2. Asymptotic behaviour of marginal likelihoods

The following result provides some control on the marginal likelihood. In The-
orem 1, m1(·) and m2(·) denote the marginal densities of T

n under models M1

and M2, respectively, namely (i = 1, 2)

mi(t) =

∫

Θi

gi(t|θi) πi(θi) dθi .

Theorem 1. Under assumptions [A1]–[A6], for i = 1, 2, there exist con-
stants Cl, Cu = OPn(1) such that if inf{|µi(θi) − µ0|; θi ∈ Θi} = 0

Clv
d−di
n ≤ mi(T

n) ≤ Cuvd−di
n (5)

and if

inf{|µi(θi) − µ0|; θi ∈ Θi} > 0

mi(T
n) = oPn [vd−τi

n + vd−αi
n ]. (6)

7



The above theorem gives an equivalent to the marginal distribution mi(T
n)

when µ0 can be attained by model Mi. Note that it does not require that Gn is
in model Mi.

Interestingly a by-product of the proof (below) is that if µ0 ∈ {µi(θi); θi ∈ Θi}
then the posterior distribution of µi(θi) given T

n is consistent at the rate 1/vn

as soon as αi, τi > di. Indeed, with large probability

mi(T
n) & vd−di

n

and for all sequences wn → +∞
∫

Sn,i(wn)c

gi(T
n|θi)dπi(θi) . w−αi

n vd−αi
n + vd−τi

n = o(vd−di
n ),

which implies that the posterior distribution verifies

πi(|µ0 − µi(θi)| > wnv−1
n |T n) =

∫

Sn,i(wn)c gi(T
n|θi)dπi(θi)

mi(T
n)

= oPn(1).

Note also that di can be seen as an effective dimension of the model under
the posterior πi(.|T n), since if µ0 ∈ {µi(θi); θi ∈ Θi}, mi(T

n) ∼ vd−di
n and

gn(T n) ∼ vd
n. Thus v−di

n appears as the penlization coming from integrating out
θi in model Mi.

We now prove Theorem 1.
Proof Recall that Gn is the true distribution of T

n. Assume first that inf{|µ0 −
µi(θi)|; θi ∈ Θi} = 0 and consider Sn,i defined in assumption [A5]. Let δ, C > 0
and Mδ such that

Q(|V 1/2
0 X| > Mδ) = δ,

note that Mδ goes to infinity as δ goes to 0. Set M1 satisfying (see assumption
[A6])

πi(Sn,i(C) ∩ {||Vi(θi)
−1|| < M−1

1 }) + πi(Sn,i(C) ∩ {||Vi(θi)
−1|| > M1})

πi(Sn,i(C))
≤ 1/2,

and cδ = inf{q(x); |x| ≤ (Mδ + C)M1}. We have

mi(T
n) ≥

∫

Sn,i(C)

1lvn|Vi(θi)−1/2(T n−µi(θi))|≤(Mδ+C)M1
gi(T

n|θi)dπi(θi)

≥ cδv
d
n

2

∫

Sn,i(C)

|Vi(θi)|−1/21l[{vn|Vi(θi)
−1/2(T n − µi(θi))| ≤ (Mδ + C)M1}]dπi(θi),

where the last inequality comes from the fact that over the set of integration,

gi(T
n|θi) = |Vi(θi)|−1/2vd

n[q(vnVi(θi)
−1/2(t − µ(θi)) + o(1)]

≥ |Vi(θi)|−1/2vd
n inf |x|≤(C+Mδ)M1

q(x)

2
.
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Set S̃n,i = Sn,i(C) ∩ [{|Vi(θi)
−1| > M−1

1 } ∪ {|Vi(θi)
−1| < M1}],

mi(T
n) ≥ cδv

d
nM

−1/2
1

2
πi

[

S̃n,i ∩ {vn|Vi(θi)
−1/2(T n − µi(θi))| > MδM1 + C}

]

.

Since Mδ > 2C for δ small enough, using a Markov inequality we obtain

Gn

[

πi

[

S̃n,i ∩ {vn|Vi(θi)
−1/2(T n − µi(θi))| > (Mδ + C)M1}

]

≥ πi[S̃n,i]

2

]

≤ 2

∫

S̃n,i
Gn

[

vn|Vi(θi)
−1/2(T n − µi(θi))| > (Mδ + C)M1

]

dπi(θi)

πi(S̃n,i)

≤ 2

∫

S̃n,i
Gn [vn|T n − µ0| > Mδ] dπi(θi)

πi(S̃n,i)

≤ 2δ.

Finally this leads to

mi(T
n) & cδv

d
nπi [Sn,i] & vd−di

n (7)

with probability greater than 1 − 2δ. We now bound from above mi(T
n).

mi(T
n) =

∫

Fn,i

gi(T
n|θi)dπi(θi) +

∫

Fc
n,i

gi(T
n|θi)dπi(θi),

let δ > 0 and Mδ defined similarly to before so that Gn[|T n − µ0| > Mδv
−1
n ] <

3δ/2, for n large enough. Using a Markov inequality together with assumption
[A6] we obtain that, for all ǫ > 0,

Gn

[

∫

Fc
n,i

gi(T
n|θi)dπi(θi) > ǫvd

nπi(Sn,i)

]

≤ Gn[|T n − µ0| > Mδv
−1
n ]

+

(

sup
|x|≤M |V0|

q(x) + δ

)

∫

Fc
n,i

|V0|−1/2vd
n

ǫ

∫

gi(t|θi)dtdπi(θi)

. δ +
vd

n

ǫ
π(Fc

n,i) ≤ 2δ,

(8)

when n is large enough. We then split Fn,i into the collection of Sn,i((j+1)Mδ)∩
Sn,i(jMδ)

c, j = 1, ...., Jn = J0vn, for some J0 > 0 and Sn,i(MδJn)c.

∫

Fn,i

gi(T
n|θi)dπi(θi) =

Jn−1
∑

j=0

∫

Sn,i((j+1)Mδ)∩Sn,i(jMδ)c

gi(T
n|θi)dπi(θi)

+

∫

Fn,i∩Sc
n,i(MδJn)

gi(T
n|θi)dπi(θi).

(9)
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If j = 0 and K > di, using the bound

sup
|t−µ0|≤Mδvn

gn(t) ≤ vd
n|V0|−1/2[ sup

x∈Rd

q(x) + δ] . vd
n, (10)

we have

Gn

[

∫

Sn,i(Mδ)

gi(T
n|θi)dπi(θi) > MK

δ vd−di
n

]

.
vd

n

MK
δ vd−di

n

πi(Sn,i(Mδ)) + δ

= O(Mdi−K
δ ) + δ.

which goes to zero as Mδ goes to infinity, i.e. if δ goes to 0. Using assumption
[A4] and (10), we obtain

Gn

[

∫

Sn,i((j+1)Mδ)∩Sn,i(jMδ)c

gi(T
n|θi)dπi(θi) > MK

δ vd−di
n

]

.
vdi

n

MK
δ

∫

Sn,i((j+1)Mδ)∩Sn,i(jMδ)c

Gi,n

[

|T n − µ(θi)| > (j − 1/2)Mδv
−1
n |θi

]

dπi(θi)

+ Gn [vn|T n − µ0| > Mδ/2]

. Q(|V 1/2
0 X| > Mδ/2) + Mdi−αi−K

δ jdi−αi

and similarly

Gn

[

∫

Sn,i(JnMδ)c

gi(T
n|θi)dπi(θi) > vd−di

n

]

. vdi
n

∫

Sn,i(JnMδ)c

Gi,n [|T n − µ(θi)| > J0/2|θi] dπi(θi)

+ Gn [vn|T n − µ0| > Mδ]

. 3δ/2 + vdi−αi
n ≤ 2δ,

(11)

for n large enough, under assumption [A5]. Combining the above inequalities
with (9), we obtain for n large enough,

Gn

[

∫

Fn,i

gi(T
n|θi)dπi(θi) > (2MK

δ + 1)vd−di
n

]

. Gn [vn|T n − µ0| > Mδ/2] + Mdi−K
δ

which can be made arbitrarily small by choosing δ small enough, which combined
by (8) implies that

∫

Θi

gi(T
n|θi)dπi(θi) = OPn(vd−di

n ).
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If inf{|µ2(θ2) − µ0|; θ2 ∈ Θ2} > 0, there exists j0 > 0 such that for all j ≤ j0
Sn,2(j0vn) = ∅. This leads to, using the same computation as in (11), together
with (8),

Gn

[

∫

Fn,2

g2(T
n|θ2)dπ2(θ2) > ǫ(vd−τ1

n + vd−α1
n )

]

. Gn [vn|T n − µ0| > Mδ] +
vd1

n

ǫ

∫

Fn,2

G2,n [|T n − µ2| > j0vn/2] dπ2(θ2) + 2δ

≤ 3δ,

for n large enough and all ǫ > 0, and Theorem 1 is proved. ✷.

2.3. Consequences

Theorem 1 implies that, the asymptotic behaviour of the Bayes factor is driven by
the asymptotic mean value of T

n under both models. To see this assume that the
true distribution is in M1 and consider first the case where inf{|µ0−µ2(θ2)|; θ2 ∈
Θ2} = 0 or vice-versa. Under assumptions [A1]-[A6]

Clv
−(d1−d2)
n ≤ m1(T

n)

m2(T
n)

≤ Cuv−(d1−d2)
n ,

where Cl, Cu = OPn(1), irrespective of the true model. The asymptotic be-
haviour of the Bayes factor depends solely on the difference d1 − d2 and for
instance if d1 < d2 and Gn is in M1, the Bayes factor goes to 0, instead of
infinity. Note that the asymptotic behaviour remains the same even if Gn is in
neither of the two models but if

inf{|µ0 − µ2(θ2)|; θ2 ∈ Θ2} = inf{|µ0 − µ1(θ1)|; θ1 ∈ Θ1} = 0

On the contrary if the true distribution is in model M1 say and if inf{|µ0 −
µ2(θ2)|; θ2 ∈ Θ2} > 0, then the Bayes factor, under assumptions [A1]-[A6],
satisfies

m1(T
n)

m2(T
n)

≥ Cu min
(

v−(d1−α2)
n , v−(d1−τ2)

n

)

,

and if min(α2, τ2) > d1,

lim
n→+∞

m1(T
n)

m2(T
n)

= +∞.

The conclusion of this discussion is summarized in the following result.

Theorem 2. Under [A1] − [A6] and if

{|µ0 − µ2(θ2)|; θ2 ∈ Θ2} = inf{|µ0 − µ1(θ1)|; θ1 ∈ Θ1} = 0,
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the Bayes factor BT

12 has the same asymptotic behaviour as v
−(d1−d2)
n irrespective

of the true model. It is then consistent if and only if Pn is in the model having
the smallest (strictly) dimension di.

If P
n belongs to one of the two models and if µ0 cannot be attained by the

other one :

0 = min (inf{|µ0 − µi(θi)|; θi ∈ Θi}, i = 1, 2)

< max (inf{|µ0 − µi(θi)|; θi ∈ Θi}, i = 1, 2) ,

then the Bayes factor BT

12 is consistent.

Interestingly, note that the Bayes factor is merely driven by the means
µi(θi) and the relative positive of µ0 in both sets {µi(θi); θi ∈ Θi}, i = 1, 2.
If Gn is in neither of the models but µ0 ∈ {µ1(θ1), θ1 ∈ Θ1} but not in
{µ2(θ2), θ2 ∈ Θ2}, then the Bayes factor will asymptotically favor M1. If Q
is the standard Gaussian distribution and if the convergence in distribution of√

n(T n−µi(θi)) can be written in terms of Kullback-Leibler divergence between
gn and gi(.|θi), i.e. if the Kullback-Leibler divergence between gn and gi(.|θi) is

close the the Kullback-Leibler divergence between |V0|−1/2q(
√

nV
−1/2
0 (T n−µ0))

and |Vi(θi)|−1/2q(
√

nVi(θi)
−1/2(T n − µi(θi)) then

1

n
KL(g0(T

n), gi(T
n|θi)) ≈

(µ0 − µi(θi))
tVi(θi)

−1(µ0 − µi(θi))

2
+ o(1),

so that the difference between µ0 and µi(θi) is the key measure to evaluate the
distance between gn and gi,n(.|θi).

Interestingly, the best statistics T
n to be used in an ABC - Bayes factor

context are ancillary statistics which have different mean values under both
models. Indeed if T

n depends asymptotically on some of the parameters of one
of the models, say model M1, then it is quite likely that there exists θ1 ∈ Θ1

such that µ1(θ1) = µ0 even though model M1 is misspecified, specially if d the
dimension of T

n is the same or smaller than the dimension of θ1. To illustrate
this remark consider the case where d = 1 and {µ1(θ1), θ1 ∈ Θ1} = R (or a large
enough interval) then then T

n is not a satisfactory statistic for discriminating
between models M1 and M2, when M2 is true. Consider the example of the
Laplace versus the Gaussian distribution with T

n = n−1
∑n

i=1 X4
i , then assume

that the true distribution is the Laplace with mean 0, so that µ0 = 6. Since
under the Gaussian model µ(θ) = 3 + θ4 + 6θ2, the value θ∗ = 2

√
3 − 3 leads

to µ0 = µ(θ∗) and a Bayes factor associated to such a statistic is not consistent
(here d1 = d2 = d = 1).

However if T
n is ancillary (asymptotically), {µ1(θ1), θ1 ∈ Θ1} is a singleton

and it is sufficient that this singleton is different from µ0. These remarks are
illustrated in Section 3.

In the special case of M1 being a submodel of M2, and if the true dis-
tribution belongs to the smaller model M1, any summary statistic satisfies

12



µ0 ∈ {µ1(θ1); θ1 ∈ Θ1} ⊂ {µ2(θ2); θ2 ∈ Θ2}, so that the Bayes factor is of

order v
−(d1−d2)
n . If the summary statistic is informative merely on a parame-

ter which is the same under both models, i.e if d1 = d2, then the Bayes factor
is not consistent. Else, d1 < d2 and the Bayes factor is consistent under M1.
If the true distribution does not belong to M1, then the same phenomenon as
described above occures and the Bayes factor is consistent only if µ1 6= µ2 = µ0.

3. Illustrations

3.1. Gaussian versus Laplace distributions

In this example θi ∈ R, both for i = 1, 2. We denote by M1 the Gaussian
model and by M2 the Laplace model. In each model the prior on θ is a centered
Gaussian distribution with variance 2, and in each case the data are simulated
under θ0 = 0. We consider the following summary statistics :

• Fourth empirical moment : Tn = n−1
∑n

i=1 y4
i . In that case µ1(θ) =

θ4 + 3 + 6θ2, µ2(θ) = θ4 + 6 + 6θ2 and V1(θ) and V2(θ) are polynomial
functions in θ2 with degree 3.

• Sixth empirical moment : Tn = n−1
∑n

i=1 y4
i In that case µ1(θ) = θ6 +

15 + 45θ2 + 15θ4, µ2(θ) = θ6 + 90 + 15θ4 + 90θ2 and V1(θ) and V2(θ) are
polynomial functions in θ2 with degree 5.

• Sixth and fourth empirical moments : Tn = n−1
∑n

i=1(y
4
i , y6

i ) The means
and marginal variances are the same as before, and the determinant of the
covariance matrix is a positive polynomial function in θ2 with degree 8.

For each model set Fn,1 = Fn,2 = {|θ| ≤ C
√

log n}, where C >
√

2 so that

π1(Fc
n) = π2(Fc

n) = o(n−C2/4)

and condition [A6] is satisfied. Indeed, in model M1, in the case of the fourth
empirical moment, if µ0 = 3 (resp. 15 and (3, 15) for the other summary statis-
tics) and in model M2 if µ0 = 6 (resp. 90 and (6, 90)), Sn,1(C) and Sn,2(C) can
be bounded from above and below by balls in the form

|θ| ≤ cC1/2n1/4,

so that d1 = d2 = 1/2 in those cases. Otherwise if µ0 > 3 (resp. > 15 ) in
modem M1 and mu0 > 6 (resp. > 90) in model M2, Sn,1(C) and Sn,2(C) can
be bounded from above and below by balls in the form

|θ2 − θ2
∗| ≤ cCn−1/2, |θ∗| > 0

so that d1 = d2 = 0 in those cases. For the bi-dimensional summary statistic, as
soon as θ0 6= 0 Sn,i(C) 6= ∅ for n large enough only if Mi is the true model.

13



In our simulation study, we have considered θ0 = 0, so that d1 = d2 = 1/2
µ0 is under model M2 and inf{|µ0 −µ2(θ)|; θ ∈ R} > 0 if µ0 is under model M1.

Since Y 6 allows for any moment under both distributions, and since both dis-
tributions satisfy Cramer condition, T

n allows for an Edgeworth expansion under
both models, which can be made uniform in sets in the form {|θ| ≤ Cn−1/4}, see
Bhattacharya and Rao (1986). Hence conditions [A1]-[A3] and [A5] are sat-
isfied. Condition [A4] is verified using Tchebyshev inequalities (presented here
in the case of the fourth empirical moment, but this remain valid for the other
statistics) : Since for all M > 0 large enough Vi(θ) ≤ M implies that |θ| > cM ,
we have if |θ| ≤ M

Gi,n





∣

∣

∣

∣

∣

∣

n−1
n
∑

j=1

(y4
j − µj(θ))

∣

∣

∣

∣

∣

∣

> τ |µj(θ) − µ0|

∣

∣

∣

∣

∣

∣

θ



 ≤ Vi(θ)

nτ2|µj(θ) − µ0|2

= O(n−1|µj(θ) − µ0|−2).

uniformly over |θ| ≤ M and if θ > M , then there exists ǫi > 0 such that
|µj(θ) − µ0| > ǫi and

Gi,n





∣

∣

∣

∣

∣

∣

n−1
n
∑

j=1

(y4
j − µj(θ))

∣

∣

∣

∣

∣

∣

> ǫi

∣

∣

∣

∣

∣

∣

θ



 ≤ Vi(θ)

nǫ2i
= O(n−1(log n)6).

since in Fn, Vi(θ) ≤ Ci(log n)6, and assumption [A4] is satisfied with α > 3/2
so that [A5] is also satisfied.

Fig. 3. Same figure as Fig. 1 when ABC is based on the 4th empirical moment as the

sole summary statistic.

Fig. 4. Same figure as Fig. 1 when ABC is based on the 4th and 6th empirical moments

as summary statistic.

3.2. Quantile distributions

We consider the simulation from the four-parameter g-and-k distribution, defined
through its quantile function

Q(p;A, B, g, k) = A + B

(

1 +
1 − exp(−gz(p))

1 + exp(−gz(p))

)

(

1 + z(p)2
)k

z(p)

where z(p) is the pth standard normal quantile and the parameters A, B, g and
k represent location, scale, skewness and kurtosis, respectively. The parameter
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c measures the overall asymmetry and, following historical practice, is fixed at
0.8 Haynes et al. (1997). While the quantile function F−1(p; θ) is well-defined,
there is no closed-form expression for the corresponding density function, which
makes the implementation of an MCMC algorithm quite delicate. We fix A = 0
and B = 1 and consider model M1 such that g = 0 and k ∼ U [−1/2, 5] versus
model M2 such that g ∼ U [0, 4] and k ∼ U [−1/2, 5]. Model M1 is a sub-model
of model M2. For such a case, we consider an ABC procedures which use 105

proposals from the prior and select the tolerance as the 1% quantile of the L1

distances between some empirical quantiles. First, we use the empirical quantile
of order 10% as summary statistics. Then, we use the empirical quantiles of
order 10, 40, 60 and 90%. The results are presented in Figures 5 and 6. They
are quite satisfactory when the fourth empirical quantiles are used.

Fig. 5. Comparison of the distributions of the posterior probabilities that the data is from

model M1 when the data is made of 100 observations either from model M1 (brown) or

M2 (blue) distribution when the summary statistic in the ABC algorithm is the empirical

quantile of order 10%. The densities are estimated by a kernel estimator density() and

rely on 100 replicas.

Fig. 6. Same figure as Fig. 5 when ABC is based on the empirical quantiles of order 10,

40, 60 and 90% as set of summary statistics.

3.3. Calibration of the ABC tolerance

Let π(M1|T n) be the posterior probability of model M1. In the ABC paradigm
we approximate the previous quantity using

π̂ǫ(M1|T n) =
1

Nǫ

Nǫ
∑

i=1

Im(i)=M1

where m(1), . . . ,m(Nǫ) are iid sample sample from the πǫ(M1|T n) the ABC ap-
proximation of π(M1|T n) (in the crude sense) and Nǫ is the number of accepted
ABC proposals using N sample from the prior. We have

(π(M1|T n) − π̂ǫ(M1|T n))
2 ≤ (π(M1|T n) − πǫ(M1|T n))

2
+(πǫ(M1|T n) − π̂ǫ(M1|T n))

2
.

We propose to select the value of ǫ that minimizes the sum of the two error terms
above. The first one can be approximated by

π̂ǫ(M1|T n)π̂ǫ(M2|T n)
/

Nǫ .

and, the second one by
 

|V1|
−1/2 exp

`

−n(T n − µ1)
′V −1

1
(T n − µ1)/2

´

|V1|−1/2 exp
`

−n(T n − µ1)′V
−1

1
(T n − µ1)/2

´

+ |V2|−1/2 exp
`

−n(T n − µ2)′V
−1

2
(T n − µ2)/2

´ − π̂ǫ(M1
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Example 2. (Continuation of Example 1.) In the comparison of the normal
and the Laplace models, the asymptotic distributions for the empirical fourth
and sixth moments can be derived:

mu1=c(3,15)

V1=matrix(c(96,900,900,10170),ncol=2)

V2=matrix(c(2484,112860,112860,7476300),ncol=2)

mu2=c(6,90)

We are thus able to use the optimal normal approximation to the true posterior,
even though in practice we would have to use instead a Monte Carlo experiment
under both models to approximate those normal distributions. Fig. 7 represents
the distribution of the ABC tolerance ǫ in this setting when the data is either
normal or Laplace, and when the summary statistics are the empirical fourth
and sixth moments, separately (left and centre) or jointly (right). Both moments
have different expectations under the two distributions, hence are acceptable
candidates to run the test. The distributions are quite similar between the three
choices. ◭

Fig. 7. Comparison of the distributions of the selected tolerances ǫ using the two-part

error decomposition. The tolerance is expressed as a percentage of the maximal simu-

lated distances under either the normal (brown) or the Laplace (blue) distribution. The

data is made of 50 observations from a normal distribution with mean zero. The three

graphs correspond to choices of summary statistics in the ABC algorithm equal to the

fourth, the sixth, and both fourth and sixth moments. The normal approximation uses

the true asymptotic means and variances of those statistics under both models. The R

density() function is applied to 50 replications under each model.

4. Discussion

The fact that the means of the summary statistics under both models must
differ for model choice to take place (in a convergent manner) is both natural,
in that the asymptotic normality implies that only first moments matter, and
fundamental, in that it drives the choice of summary statistics in practical ABC
settings. Indeed, Theorem ?? implies that estimation statistics should not be
used in ABC algorithms aiming at model comparison. This means that (a)
different statistics should be used for estimation and for testing and (b) that
they should not be mixed in a single summary statistic. Note that the distinction
differs from the sufficient/ancillary opposition found in classical statistics (Cox
and Hinkley, 1994) in that it is enough that the summary statistic Tn has a
different asymptotic mean under both models. As shown in the normal-Laplace
example, some ancillary statistics may not be appropriate for testing.
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Appendix 1

Laplace marginal likelihood

Consider a sorted sample x1, . . . , xn from the Laplace (double-exponential) L(µ, 1/
√

2)
distribution

f(x|µ) =
1√
2

exp{−
√

2|x − µ|} .

Under a normal N (0, σ2) prior, the marginal likelihood is given by

m0(x1, . . . , xn) =

∫

2−n/2
n
∏

i=1

exp{−
√

2|xi − µ|} exp{−µ2/2σ2} dµ/
√

2πσ

= 2−n/2
n
∑

i=0

∫ xi+1

xi

i
∏

j=1

e
√

2xj−
√

2µ
n
∏

j=i+1

e−
√

2xj+
√

2µe−µ2/2σ2

dµ/
√

2πσ

= 2−n/2
n
∑

i=0

∫ xi+1

xi

e
√

2
Pi

j=1 xj−
√

2
Pn

j=i+1 xj+
√

2(n−2i)µe−µ2/2σ2

dµ/
√

2πσ

= 2−n/2
n
∑

i=0

e
√

2
Pi

j=1 xj−
√

2
Pn

j=i+1 xj+2(n−2i)2σ2/2

∫ xi+1

xi

e−{µ−
√

2(n−2i)σ2}/2σ2

dµ/
√

2πσ

= 2−n/2
n
∑

i=0

e
√

2
Pi

j=1 xj−
√

2
Pn

j=i+1 xj+2(n−2i)2σ2/2

[

Φ({xi+1 −
√

2(n − 2i)σ2}/σ) − Φ({xi −
√

2(n − 2i)σ2}/σ)
]

with usual conventions when i = 0 (x0 = −∞) and i = n (xn+1 = +∞).
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