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Abstract

Rousseau et al. [8] recently studied the asymptotic behavior of Bayesian esti-
mators in the FEXP-model for spectral densities of Gaussian time-series. For
the L2-norm on the log-spectral densities, they proved that the convergence

rate is at least n− β
2β+1 (log n)

2β+2
2β+1 , β > 1

2
being the Sobolev-regularity of the

true spectral density fo. We will improve upon the logarithmic factor, and
prove that given a prior only depending on βs > 1

2
, we have adaptivity to

any β ≥ βs.

Keywords: Bayesian non-parametric, rates of convergence, adaptive
estimation, long-memory time-series, FEXP-model

1. Introduction

Let Xt, t ∈ Z, be a stationary zero mean Gaussian time series with
spectral density fo(λ), λ ∈ [−π, π] in the form

fo(λ) = |1 − eiλ|−2do exp

{

∞
∑

j=0

θo,j cos(jλ)

}

, θo ∈ Θ(β, Lo) (1.1)

where do ∈ (−1
2
, 1

2
), Θ(β, Lo) = {θ ∈ l2(N) :

∑

j≥0 θ2
j (1 + j)2β ≤ Lo} is a

Sobolev ball. The parameter do is called the long-memory parameter; we
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will refer to exp{∑∞
j=0 θo,j cos(jλ)} as the short-memory part of the spectral

density. The parameter β controls the regularity of the short-memory part.
It is then natural to use the fractionally exponential or FEXP-model (see
Beran [2] and Moulines and Soulier [6] and references therein) F = ∪k≥0Fk,
where

Fk =

{

fd,k,θ(λ) = |1 − eiλ|−2d exp

{

k
∑

j=0

θj cos(jλ)

}

, d ∈
(

− 1

2
,
1

2

)

, θ ∈ R
k+1

}

.

We study Bayesian estimation of fo within this FEXP-model. Let π(d, k, θ)
denote the prior on (d, k, θ); this induces a prior on F which we also de-
note π. Let Tn(f) denote the covariance matrix of the observations X =
(X1, . . . , Xn), and let ln be the associated log-likelihood

ln(d, k, θ) = −k + 1

2
log(2π) − 1

2
log |Tn(f)| − 1

2
X ′T−1

n (f)X (1.2)

Bayesian estimates of the spectral density fo are based on the posterior

π(f ∈ A|X) =

∫

A
eln(d,k,θ)dπ(f)

∫

F
eln(d,k,θ)dπ(f)

, A ⊂ F . (1.3)

For example the posterior mean or median could be taken as ’point’-estimators
of fo. In this work however we focus on the posterior itself, and study the
rate of convergence at which the posterior concentrates at fo. More precisely,
we lower-bound the posterior mass on the sets

B(ǫn) = {f ∈ F : l(f, fo) ≤ ǫ2
n},

where ǫn is a sequence tending to zero and

l(f, fo) =
1

2π

∫ π

−π

(log fo(λ) − log f(λ))2dλ.

Whether π(B(ǫn)|X) tends to one for a certain sequence ǫn critically depends
on the smoothness of fo as well as the smoothness induced by the prior. In
Theorem 4.2 of Rousseau et al. [8] (RCL hereafter) it is shown that when
θo ∈ Θ(β, Lo) and the prior on θ has support contained in a Sobolev ball

Θ(β, L) with L large enough, then the rate is ǫ0(L)n− 2β
2β+1 (log)

4β+4
2β+1 , for fixed

β > 1
2

and ǫ0(L) large enough depending on L. In the present work we prove
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that such priors in fact lead to an adaptive concentration rate (in β) and we
improve upon the constant ǫ0(L) and the logarithmic factor. Adaptivity is
of great interest since it is difficult to know the smoothness of the function
f a priori. Improving on the constant ǫ0 is crucial in Kruijer and Rousseau
[4] but has also interest in its own. Indeed in Theorem 2.1 we prove that
ǫ0 depends only on Lo the radius of the Sobolev ball containing θo. In RCL
however ǫ0 depends on L, with the risk that would L be very large ǫ0 might
also be very large. Here we prove that this is not the case and that we can
choose L as large as the application requires. This suggests that the result
might actually hold without the constraint L in the prior on θ, but we have
not been able to prove that.

Notation:

The m-dimensional identity matrix is denoted Im. For matrices A we write
|A| for the Frobenius or Hilbert-Schmidt norm |A| =

√
trAAt, where At

denotes the transpose of A. The operator or spectral norm is denoted ‖A‖2 =
sup‖x‖=1 x′Ax. We also use ‖ · ‖ for the Euclidean norm of finite dimensional
vectors or sequences in l2(N), and for the L2-norm of functions. If u ∈ l1(N)
we denote ‖u‖1 =

∑

j |uj|. Given a sequence {uj}j≥0 and a nonnegative

integer m, we write u[m] for the vector (u0, . . . , um) and ‖u‖>m for the l2-norm
of the sequence um+1, um+2, . . .. When we write

∑

j≥0(θj−θo,j)
2 or

∑

j≥0 |θj−
θo,j| for a finite-dimensional vector θ and θo ∈ l2(N), θj is understood to be
zero when j > k. For any function h ∈ L1([−π, π]), Tn(h) is the matrix
with entries

∫ π

−π
ei|l−m|λh(λ)dλ, l, m = 1, . . . , n. For example, Tn(f) is the

covariance matrix of observations X = (X1, . . . , Xn) from a time series with
spectral density f . Let Po denote the law associated with the true spectral
density fo and Eo expectations with respect to Po.

2. Main results

Let βs > 1
2

be a fixed constant. We consider the following family of priors
on (d, k, θ). d is a priori independent of (k, θ) with density πd with respect to
Lebesgue measure. For some positive t < 1/2, the support of πd is included
in [−1/2 + t, 1/2 − t] . We consider two cases for the prior on k:
Deterministic sieve πk(k) = δkA,n

(k), i.e. it is the Dirac mass at kA,n =

⌊A(n/ log n)1/(2βs+1)⌋, for some positive A.
Random sieve the support of πk is N and satisfies:

e−c1k log k ≤ πk(k) ≤ e−c2k log k,
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for some positive c1, c2 and k large enough. πθ|k, the prior on θ given k,
has a density with respect to the Lebesgue measure on R

k. This density is
also denoted πθ|k, and is such that, for some constants L > 0 and βs > 1/2,
πθ|k is positive on Θk(β, L) and πθ|k [Θk(βs, L)c] = 0. These priors have
been considered in particular in RCL, in Holan et al. [3] and in Kruijer and
Rousseau [4]. We now state the main result.

Theorem 2.1. Suppose we observe X = (X1, . . . , Xn) from a stationary,

zero mean Gaussian time-series whose spectral density fo is as in (1.1), with

do ∈ [−1
2

+ t, 1
2
− t], θo ∈ Θ(β, Lo) and β ≥ βs > 1

2
. Consider a prior

π = πdπkπθ|k as described above such that there exists c0 > 0 for which

lim inf
n→∞

min
k∈Kn

inf
θ∈Θk(β,Lo)

ec0k log kπθ|k(θ) > 1. (2.1)

where, for some B > 0 and kB,n = ⌊B(n/ log n)1/(2βs+1)⌋, Kn = {0, . . . , kB,n}
in the case of the random sieve prior, and Kn = {kA,n} in the case of the

deterministic prior. Assume also that L is large enough.

• In the case of the random sieve prior, for any β2 > βs, we have the

following uniform result:

sup
fo∈∪βs≤β≤β2

Θ(β,Lo)

Eoπ((d, k, θ) : l(fd,k,θ, fo) ≥ l20ǫ
2
n(β)|X) ≤ n−3, (2.2)

where ǫn(β) = (n/ log n)−
β

2β+1 and l0 only depends on Lo. In particular,

it is independent of L.

• In the case of the deterministic prior, for any β2 > βs, we have the

following uniform result:

sup
fo∈∪βs≤β≤β2

Θ(β,Lo)

Eoπ((d, k, θ) : l(fd,k,θ, fo) ≥ l20ǫ
2
n(βs)|X) ≤ n−3,

(2.3)
where l0 only depends on Lo and is independent of L.

The constraint β > 1/2 is necessary to ensure that the short memory part
exp(

∑

j θoj cos(jx)) is bounded and continuous. As mentioned in the intro-
duction, the fact that l0 is independent of L is interesting since it allows
us, in practice, to choose L arbitrarily high without penalizing the posterior
concentration rate. It suggests that such results could hold with L = ∞,
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however we have no proof for it. The random sieve prior leads to an adap-
tive posterior concentration rate over the range β ≥ βs, since for all β > 1/2,
ǫn(β) is the minimax (up to a log n term) rate over the class of FEXP spectral
densities given by (1.1) and associated to θ ∈ Θ(β, Lo) . The deterministic
sieve prior does not lead to an adaptive procedure since the posterior concen-
tration rate is ǫn(βs) in this case. Obtaining adaptation by putting a prior
on the dimension of the model is a commonly used strategy in Bayesian non
parametrics, see for instance Arbel [1] or Rivoirard and Rousseau [7].

3. Proof of Theorem 2.1

We first introduce some notions that are useful throughout the proof.

3.1. Notation and preliminary results

We first introduce various (pseudo)-distances. We denote the Kullback -
Leibler divergence between the Gaussian distributions associated with spec-
tral densities fo and f by

KLn(fo; f) =
1

2n

{

tr
[

Tn(fo)T
−1
n (f) − In

]

− log det(Tn(fo)T
−1
n (f))

}

,

a symmetrized version of it by hn(fo, f) = KLn(fo; f) + KLn(f ; fo) and the
variance of the log-likelihood ratio by

bn(fo, f) =
1

n
tr
{

T−1
n (f)(Tn(fo − f)T−1

n (f)Tn(fo − f)
}

.

The limiting values of bn(fo, f) and hn(fo, f) are denoted

h(fo, f) =
1

4π

∫ π

−π

[

fo(λ)

f(λ)
+

f(λ)

fo(λ)
− 2

]

dλ, b(fo, f) = (2π)−1

∫ π

−π

(

fo

f
(λ) − 1

)2

dλ.

Then h(fo, f) ≥ l(fo, f) (RCL, p.6). Using Lemma 2 in RCL we find that
for all k ∈ N,

bn(fo, fd,k,θ) ≤ ||Tn(fo)
1/2Tn(f)−1/2||2hn(fo, fd,k,θ)

≤ C(‖θo‖1 + ‖θ‖1)n
2(do−d)+hn(fo, f),

(3.1)

where C is a universal constant. Similarly,

hn(fo, f) ≤ ‖T− 1
2

n (f)T
1
2

n (fo)‖2bn(fo, f). (3.2)
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In line with the notation of (1.2), let φ(x; d, k, θ) denote the density of X,
which is the Gaussian density with mean zero and covariance matrix Tn(fd,k,θ)
and let φ(x; do, θo) denote the Gaussian density associated with Tn(fo). We
write Rn(fd,k,θ) = φ(X; d, k, θ)/φ(X; do, θo) for the likelihood-ratio.

The proof of Theorem 2.1 contains two parts. First, it needs to be shown
that the rate is l20ǫ

2
n, for a constant l0 that may depend on L and βs. Then

by re-insertion of the rate obtained in the first part, we improve upon the
constant l0. In particular, it is shown to be independent of L for L large
enough.

3.2. Proof of Theorem 2.1

Throughout the proof C denotes a universal constant. Let 0 < t < 1/2
and

Gk(t, βs, L) =

{

fd,k,θ : d ∈ [−1

2
+ t,

1

2
− t], θ ∈ Θk(βs, L)

}

, G = ∪∞
k=0Gk(t, βs, L).

By the results of RCL (Theorem 3.1, and Corollary 1 in the supplement) we
have consistency for h(fo, fd,k,θ) and |d − do|, i.e. for all δ, ǫ > 0,
π (fd,k,θ : h(fd,k,θ, fo) < ǫ2, |d − do| < δ|X) tends to one in probability. Hence
it suffices to show that

π [Wn|X] =

∫

Wn
Rn(f)dπ(f)

∫

Rn(f)dπ(f)
:=

Nn

Dn

Po→ 0, (3.3)

where in the case of the random sieve prior,

Wn =
{

fd,k,θ ∈ G : l(fo, fd,k,θ) ≥ l0ǫ
2
n(β), h(fo, fd,k,θ) ≤ ǫ2, |d − do| ≤ δ

}

,

for a constant l0 > 0 depending only on Lo, βs and the prior on k. In the case
of the deterministic sieve prior, we replace ǫ2

n(β) in this definition by ǫ2
n(βs).

We present the proof of (3.3) for the case of the random sieve prior; the proof
for the case of the deterministic sieve prior can be deduced by replacing β
by βs. The proof consists of two parts: first we show that for some c > 0,

Po

[

Dn < e−2nu0ǫ2n(β)/2
]

≤ e−cnǫ2n(β), (3.4)

for which we will establish a lower bound the prior mass on a Kullback-
Leibler neighborhood of fo. In the second part we show that under the event
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Dn ≥ 1
2
e−nu0ǫ2n(β) we can control Nn/Dn. This will be done by giving a bound

on the upper-bracketing entropy of the model.
For the proof of (3.4), note that RCL already found that if β ≥ βs > 1/2,

there exists u0 ≥ 0 depending only on Lo such that

Po

[

Dn < e−nu0ǫ2n(β)(log n)1/(2β+1)

/2
]

= o(n−1).

To prove (3.4), we thus need to improve on the log n term in the preceding
equation. Set

B̄n = {(d, k, θ); KLn(fo, fd,k,θ) ≤
ǫ2
n(β)

4
, bn(fo, fd,k,θ) ≤ ǫ2

n(β), do ≤ d ≤ do+δ},

for some positive δ. Recall that

Dn =
∑

k

πk(k)

∫

eln(d,k,θ)−ln(fo)dπθ|k(θ)dπd(d),

P n
o

[

Dn < e−2nu0ǫ2n(β)
]

≤ P n
o

[∫

B̄n

eln(f)−ln(fo)dπ(f) < e−2nu0ǫ2n(β)

]

.

From the proof of Theorem 4.1 in RCL (section 5.2.1), it follows that

P n
0

(

Dn ≤ e−nu0ǫ2n(β)π(B̄n)/2
)

≤ e−Cnǫ2n(β)

for some constant C > 0 (independent of L). We now show that

π(B̄n) ≥ e−nu0ǫ2n(β)/4. (3.5)

Define

B̃n = {(d, kB,n, θ); do ≤ d ≤ do+ǫ2
n(β)n−a, |θj−θo,j| ≤ (1+j)−βǫn(β)n−a, j = 0, . . . , kB,n}.

We first prove that π(B̃n) ≥ e−nu0ǫ2n(β)/4 and then that B̃n ⊂ B̄n. As in RCL
(see the paragraph following equation (29) on p. 26), we find that

∞
∑

j=1

(1 + j)2βθ2
j ≤ 2Lo + ǫ2

n(β)n−2a ≤ 3Lo,∀θ ∈ B̃n

for n large enough. Combined with condition (2.1) on πθ|k, this implies

π(B̃n) ≥
(

cǫn(β)k−β
B,nn−a

)k+3

e−c0kB,n log kB,n ≥ e−c(βs)k0nǫ2n(β), ∀β ≥ βs.
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This achieves the proof of (3.4) with u0 = c(βs)k0.
To show that B̃n is included in B̄n, first note that equation (3.1) im-

plies that it is enough to bound hn(fo, f) on B̃n. To this end, we use the
decomposition fo = fo,kB,n

e∆do,kB,n , where fo,kB,n
= fdo,kB,n,θo and

∆do,kB,n
(λ) =

∞
∑

j=kB,n+1

θo,j cos(jx), ∀λ ∈ [−π, π].

Then we have the expansion

fo = fo,kB,n
(1 + ∆do,kB,n

+ ∆2
do,kB,n

/2 + O(∆3
do,kB,n

)), |∆do,kB,n
|∞ = o(1)

and
hn(fo, f) ≤ 2[hn(fo, fo,kB,n

) + hn(fo,kB,n
, f)]. (3.6)

We first deal with the first term above. Let bo,n = e∆do,kB,n − 1 and without
loss of generality we can assume that bo,n is positive in the expression of
hn(fo, fo,kB,n

) so that for all β > 1/2,

hn(fo, fo,kB,n
) :=

1

2n
tr
[

T−1
n (fo)Tn(fobo,n)T−1

n (fo)Tn(fobo,n)
]

≤ c

n
tr
[

T−1
n (go)Tn(gobo,n)T−1

n (go)Tn(gobo,n)
]

=
c

n
tr[T 2

n(bo,n)] + cγ1 + cγ2 (3.7)

where go(λ) = |λ|−2do and c depends only on
∑∞

j=0 |θo,j| ≤ L
1/2
o (2β − 1)−1/2,

and

γ1 =
1

n

(

tr

[

(

Tn(
1

4π2go

)Tn(gobo,n)

)2
]

− tr[T 2
n(bo,n)]

)

γ2 =
1

n

(

tr
[

(T−1
n (go)Tn(gobo,n))2

]

− tr

[

(

Tn(
1

4π2go

)Tn(gobo,n)

)2
])

.

We first bound the first term of the right hand side of (3.7). Note that
bo,n(λ) = ∆̃do,kB,n,Kn + R0, where

∆̃do,kB,n,Kn(λ) =
Kn
∑

j=kB,n+1

θo,j cos(jλ), Kn = ǫn(β)−1/β(log n)1/β
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and ‖R0‖2 ≤ ǫ2
n(β)(log n)−2 so that

tr
[

T 2
n(bo,n)

]

= tr
[

T 2
n(∆̃do,kB,n,Kn)

]

+ O(log n[K−2β
n + K−β

n k−β
B,n])

= tr
[

T 2
n(∆̃do,kB,n,Kn)

]

+ O(ǫ2
n(β)),

(3.8)

where the term O(log n[K−2β
n + K−β

n k−β
B,n]) comes from the fact that

∣

∣

∣
tr
[

T 2
n(bo,n)

]

− tr
[

T 2
n(∆̃do,kB,n,Kn)

]∣

∣

∣ ≤ tr
[

T 2
n(R0)

]

+ |Tn(R0)||Tn(b̃o,n)|

and from the use of inequality (20) in Lemma 6 of RCL, with f1 = f2 = 1,
δ = 0 and b either equal to ∆̃do,kB,n,Kn or R0. Note that the constant in the
term O(ǫ2

n(β)) in (3.8) does not depend on L. Lemma 2.1 in Kruijer and
Rousseau [5] together with the fact that

|∆̃do,kB,n,Kn(λ) − ∆̃do,kB,n,Kn(y)| ≤
Kn
∑

j=kB,n

j|θo,j| ≤ C(β)L0K
−β+3/2
n ∨ k

−β+3/2
B,n

implies that for large enough n,

n−1
∣

∣

∣
tr
[

T 2
n(∆̃do,kB,n,Kn)

]

− 2πtr
[

Tn(∆̃2
do,kB,n,Kn

)
]∣

∣

∣

≤ KC(β)Lon
−2β+1+ǫǫ2

n(β) = o(ǫ2
n(β)), ∀ǫ > 0,

uniformly over βs ≤ β ≤ β2 and θo ∈ Θ(β, Lo). Consequently,

c

n
tr[T 2

n(bo,n)] ≤ tr
[

T 2
n(∆̃do,kB,n,Kn)

]

+ C(Lo, β)ǫ2
n(β), (3.9)

for a constant C(Lo, β) independent of L. Next we apply Lemma 2.4 in
Kruijer and Rousseau [5] with f = go and b1 = b2 = bo,n; it then follows that

γ1 ≤ ‖bo,n‖2
∞nδ−1nǫ−1 = o(ǫ2

n(β)), ∀ǫ > 0. (3.10)

Finally Lemma 2.3 in Kruijer and Rousseau [5] implies that for all ǫ > 0,

γ2 ≤ ‖bo,n‖2
∞n−1+ǫ = o(ǫ2

n(β)). (3.11)

Combining (3.9), (3.10) and (3.11), it follows that

hn(fo,kB,n
, fo) = n−1tr

[

Tn(∆̃2
do,kB,n,Kn

)
]

+ C(Lo, β)ǫ2
n(β) ≤ 2C ′(Lo, β)ǫ2

n(β),

9



where also C ′(Lo, β) is independent of L. The last inequality follows from

n−1tr
[

Tn(∆̃2
do,kB,n,Kn

)
]

=
1

2π

∫ π

−π

∆̃2
do,kB,n,Kn

(λ)dλ

=
Kn
∑

j=kB,n+1

θ2
o,j ≤ C ′(Lo, β)ǫ2

n(β).

We now bound the last term in (3.6), which we write as

hn(fo,kB,n
, f) =

1

2n
tr
[

Tn(fo,kB,n
)−1Tn(fb)Tn(f)−1Tn(fb)

]

, b = (f−fo,kB,n
)/f.

Since d ≥ do, |b|∞ < +∞ and applying Lemma 6 inequality (20) of RCL, we
obtain if d, θ ∈ B̃n with a > 0,

hn(fo,kB,n
, f) ≤ C log n

(

|b|22 + |d − do||b|2∞
)

≤ C log n





kB,n
∑

j=1

(θj − θo,j)
2 + n−aǫ2

n(β)



 = o(ǫ2
n(β)),

which finally implies that π(B̄n) ≥ π(B̃n) and that (3.4) is proved. We
now find an upper bound on Nn. First write W̄n = Wn ∩ Fn where Fn =
{fd,k,θ; k ≤ kB1,n} and kB1,n = B1(n/ log n)1/(2β+1). Then, since the prior on
k is Poisson,

π(F c
n) ≤ e−c2kB1,n log kB1,n ≤ e−2nu0ǫ2n(β)

if B1 is large enough (depending on Lo, c2, βs, β2) and Wn can be replaced
by W̄n in the definition of Nn. Following the proof of RCL, we decompose
W̄n = ∪ln

l=l0
Wn,l, where l0 ≥ 2, ln = ⌈ǫ2/ǫ2

n(β)⌉ − 1 and

Wn,l =
{

fd,k,θ ∈ G : k ≤ kB1,n, h(fd,k,θ, fo) ≤ ǫ2, |d − do| ≤ δ,

ǫ2
nl ≤ hn(fo, fd,k,θ) ≤ un(l + 1)

}

.

In addition let Nn,l =
∫

Wn,l
Rn(f)dπ(f); then Nn =

∑ln
l=l0

Nn,l, and we have

Eo

[

Nn

Dn

]

≤ P n
o

(

Dn ≤ e−nu0ǫ2n(β)/2
)

+ Eo

[

ln
∑

l=l0

Nn,l

Dn

1
{Dn≥e−nu0ǫ2n(β)/2}

]

.

(3.12)
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We construct tests φ̄l (l = l0, . . . , ln) and write

Eo

[

ln
∑

l=l0

Nn,l

Dn

1{Dn≥e−nun/2}(φ̄l + 1 − φ̄l)

]

≤
ln
∑

l=l0

Eo

(

φ̄l

)

+ 2enun

ln
∑

l=l0

Eo

[

Nn,l(1 − φ̄l)
]

.

(3.13)

The tests are based on a collection of spectral densities Hn,l = ∪kB1,n

k=0 Hn,l,k ⊂
Wn,l defined as follows. Let Dl be a grid over {d : |d− do| ≤ δ} with spacing

lǫ2
n(β)/(log n). Let Tl,k denote the centers of hypercubes of radius lǫ2n(β)

k
,

covering Θk(βs, L). We define Hn,l,k as the collection of spectral densities
fl,i = (2e)lǫ2n(β)fdl,i,k,θl,i , with dl,i ∈ Dl and θl,i ∈ Tl,k. With every fl,i we
associate a test

φl,i = 1{X′(T−1
n (fo)−T−1

n (fl,i))X≥tr{In−Tn(fo)T−1
n (fl,i)+

n
4

hn(fo,fl,i)}}
, (3.14)

and set φ̄l = maxi φl,i.
The set Hn,l can be seen as a collection of upper-bracket spectral densities,

since for each fd,k,θ ∈ Wn,l there exists a fl,i ∈ Hn,l,k such that fl,i ≥ fd,k,θ,
0 ≤ dl,i − d ≤ lǫ2

n(β)/(log n) and

0 ≤ (2e)lǫ2n(β) exp

{

k
∑

j=0

θl,i
j cos(jx)

}

− exp

{

k
∑

j=0

θj cos(jx)

}

≤ lǫ2
n(β)

32
(2e)lǫ2n(β) exp

{

k
∑

j=0

θl,i
j cos(jx)

}

.

(3.15)

The cardinality of ∪kB1,n

k=0 Hn,l,k is at most

(

l−1kB1,nǫn(β)−4)kB1,n δ log n

lǫ2
n(β)

≤ exp{2kB1,n log n} = Cn,l, (3.16)

for all l ≥ 2. To bound the right hand side of (3.13), we use (3.16) in
combination with the following error bounds for each of the tests φl,i. Let
f ∈ Wn,l and let fl,i ∈ Hn,l be such that (3.15) holds, φl,i being the associated
test-function. Then, from equation (4.4) in RCL together with the bound
(3.1) on bn(fo, fl,i)/hn(fo, fl,i) which again depends on ‖θl,i‖1 and L0, we

11



obtain that for all 0 < α < 1, there exists constants d1, d2 > 0 depending on
Lo and ‖θl,i‖1 such that

Eoφl,i ≤ e−d1nlαǫ2n(β), En
f (1 − φl,i) ≤ e−d2nlαǫ2n(β). (3.17)

Using (3.17) we obtain the following bound on the term
∑ln

l=l0
Eo

(

φ̄l

)

in
(3.13):

ln
∑

l=l0

Eo

(

φ̄l

)

≤
ln
∑

l=l0

Cn,le
−d1nlαǫ2n(β) ≤ e2kB1,n log n

ln
∑

l=l0

e−d1nlαǫ2n(β) → 0,

as soon as l0 ≥
(

2B1

d1u0

)2

, choosing α = 1/2. Using (3.17) the last term in

(3.13) is

ln
∑

l=l0

Eo

[

Nn,l(1 − φ̄l)
]

=
ln
∑

l=l0

∫

Wn,l

En
f (1 − φ̄l)dπ(f) ≤ e−d2nl

1/2
0 ǫ2n(β) ≤ e−2nǫ2n(β)

as soon as d2l
1/2
0 ≥ 2, i.e. l0 ≥ 4d−2

2 . Note that the two lower bounds on l0 de-

pends on Lo and on ‖θl,i‖1. Finally choosing, l0 = max

(

4d−2
2 ,
(

2B1

d1u0

)2

, 2, u0

)

we obtain
P π
[

hn(f, fo) ≤ l0ǫ
2
n(β)|Xn

]

= o(n−1).

From that we deduce a concentration rate in terms of the l norm, following
RCL’s argument in Appendix C. Let l0 be an arbitrary constant and assume
that hn(f, fo) ≤ l0ǫ

2
n(β) and f = fd,k,θ. Then inequality (C.3) of Lemma 6 of

RCL implies that

1

n
tr
[

Tn(f−1
o )Tn(fo − f)Tn(f−1)Tn(fo − f)

]

≤ C1l0ǫn,

where C1 depends only on ‖θ‖1 and on ‖θo‖1. This implies that

1

n
tr
[

Tn(f−1
o (fo − f))Tn(f−1(fo − f))

]

≤ 2C1l0ǫ
2
n(β)

since the difference between the two terms is of order O(n−1+2a) ∀a > 0,
which also implies that h(fo, f) ≤ 3C1l0ǫ

2
n(β), for the same reason. Since

l(fo, f) ≤ h(fo, f), we finally obtain that

P π
[

l(f, fo) ≤ 3C1l0ǫ
2
n(β)|Xn

]

= o(n−1).
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To terminate the proof of Theorem 2.1, it only remains to prove that l0
depends only on Lo, βs. This is done using a simple re-insertion argument.
Recall also that k ≤ kB1,n = B1nǫ2

n(β), where B1 is independent of the radius
L of the sobolev-ball Θ(βs, L) defining the support of the prior. We start with
the following observation. From Kruijer and Rousseau [4] (equation (3.5)) it
follows that for fixed d and k, the minimizer of l(fo, fd,k,θ) over R

k+1 is

θ̄d,k := argminθ∈Rk+1l(fo, fd,k,θ) = θo[k] + (do − d)η[k],

where η is defined by ηj = −2/j (j ≥ 1) and η0 = 0. Assuming that
l(fo, fd,k,θ) ≤ 3C1l0ǫ

2
n(β) and k ≤ kB1,n leads to l(fo, fd,k,θ̄d,k

) ≤ 3C1l0ǫ
2
n and

‖θ − θ̄d,k‖2 = l(fd,k,θ, fd,k,θ̄d,k
) ≤ 12C1l0ǫ

2
n. Therefore

k
∑

j=0

|θj| ≤
kB1,n
∑

j=0

|θj − (θ̄d,kn)j| +
kB1,n
∑

j=0

|(θ̄d,kn)j|

≤
√

12C
√

l0ǫnk
1/2
B1,n + 2|d − do| log n +

kB1,n
∑

j=0

jρ|θo,j| ≤ 2(2βs − 1)−1/2
√

Lo

when n is large enough, where the second inequality comes from Lemma 3.1
of Kruijer and Rousseau [4]. This achieves the proof of Theorem 2.1.
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