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Abstract

Rousseau et al. [8] recently studied the asymptotic behavior of Bayesian esti-
mators in the FEXP-model for spectral densities of Gaussian time-series. For
the Lo-norm on the log-spectral densities, they proved that the convergence
rate is at least n_%(log n)ggiﬁ, > 3 being the Sobolev-regularity of the
true spectral density f,. We will improve upon the logarithmic factor, and
prove that given a prior only depending on 3, > %, we have adaptivity to
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any (3 > [s.

Keywords: Bayesian non-parametric, rates of convergence, adaptive
estimation, long-memory time-series, FEXP-model

1. Introduction

Let X;, t € Z, be a stationary zero mean Gaussian time series with
spectral density f,(A\), A € [—m, 7] in the form

fo(A) = |1 — e 72 exp {i 0, Cos(j/\)} , 6,€0(8,L,) (1.1)

J=0

where d, € (—%,1), ©(3,L,) = {0 € I5(N) : > =007 (1 + )% < L} is a
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Sobolev ball. The parameter d, is called the long-memory parameter; we
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will refer to exp{D_7=, 0, ; cos(jA)} as the short-memory part of the spectral
density. The parameter 3 controls the regularity of the short-memory part.
It is then natural to use the fractionally exponential or FEXP-model (see
Beran [2] and Moulines and Soulier [6] and references therein) F = Ug>oFr,
where

k
' 11
Fi = {fd,k,e()\) =1]1- ez/\rzdexp {ZGJ- cos(j)\)} . d e (_ > §>79 c Rk“} |
j=0

We study Bayesian estimation of f, within this FEXP-model. Let 7 (d, k, 0)
denote the prior on (d,k,#); this induces a prior on F which we also de-

note m. Let T,(f) denote the covariance matrix of the observations X =
(X1,...,Xn), and let [, be the associated log-likelihood

1
L(d, e 0) = —FF

log(2m) — S log|T(f)| - s X'T(HX (12)

Bayesian estimates of the spectral density f, are based on the posterior

ln(d,kﬁ)d
7(f € A|X) = ﬁ Zln(d’kﬁ)dﬂg, AcCF. (1.3)

For example the posterior mean or median could be taken as 'point’-estimators
of f,. In this work however we focus on the posterior itself, and study the
rate of convergence at which the posterior concentrates at f,. More precisely,
we lower-bound the posterior mass on the sets

Blen) ={f € F:U[.fo) < n},

where €, is a sequence tending to zero and

s

15,5 = 5= [ o8 0 —log F)Par

—T

Whether 7(B(e,)|X) tends to one for a certain sequence ¢, critically depends
on the smoothness of f, as well as the smoothness induced by the prior. In
Theorem 4.2 of Rousseau et al. [8] (RCL hereafter) it is shown that when
0, € O(8, L,) and the prior on 6 has support contained in a Sobolev ball
©(0, L) with L large enough, then the rate is EO(L)H_%(log)%, for fixed
6> % and ¢y(L) large enough depending on L. In the present work we prove
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that such priors in fact lead to an adaptive concentration rate (in ) and we
improve upon the constant €,(L) and the logarithmic factor. Adaptivity is
of great interest since it is difficult to know the smoothness of the function
f a priori. Improving on the constant ¢, is crucial in Kruijer and Rousseau
[4] but has also interest in its own. Indeed in Theorem 2.1 we prove that
€p depends only on L, the radius of the Sobolev ball containing 6,. In RCL
however ¢y depends on L, with the risk that would L be very large ¢y might
also be very large. Here we prove that this is not the case and that we can
choose L as large as the application requires. This suggests that the result
might actually hold without the constraint L in the prior on 6, but we have
not been able to prove that.

Notation:

The m-dimensional identity matrix is denoted I,,,. For matrices A we write
|A| for the Frobenius or Hilbert-Schmidt norm |A| = VtrAA!, where A’
denotes the transpose of A. The operator or spectral norm is denoted ||A|]* =
SUp|jy =1 ' Az. We also use || - || for the Euclidean norm of finite dimensional
vectors or sequences in [*(N), and for the Ly-norm of functions. If u € [*(N)
we denote [ull; = >_;|u;|. Given a sequence {u;};>o and a nonnegative
integer m, we write uy,y, for the vector (u, . . ., uy,) and |[ul|s,, for the [*-norm
of the sequence U, 11, U2, . ... When we write Zj20<0j_907]’)2 or ijo |6, —
6,,;| for a finite-dimensional vector 6 and 6, € I5(N), ; is understood to be
zero when j > k. For any function h € Li([—m,7]), T,(h) is the matrix
with entries [T el""mRR(X)dX, I,m = 1,...,n. For example, T,(f) is the
covariance matrix of observations X = (X3,...,X,,) from a time series with
spectral density f. Let P, denote the law associated with the true spectral
density f, and FE, expectations with respect to P,.

2. Main results

Let 35 > % be a fixed constant. We consider the following family of priors
on (d,k,0). dis a priori independent of (k, ) with density m; with respect to
Lebesgue measure. For some positive ¢ < 1/2, the support of 7, is included
in [-1/241¢,1/2 —t] . We consider two cases for the prior on k:
Deterministic sieve m(k) = 0x, ,(k), i.e. it is the Dirac mass at ka, =
| A(n/logn)Y 28+ | for some positive A.

Random sieve the support of 7, is N and satisfies:

e—clk‘logk S ,ﬂ_k(k,) S 6—cgklogkz’
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for some positive ¢;,c; and k large enough. g, the prior on 6 given k,
has a density with respect to the Lebesgue measure on R¥. This density is
also denoted 7y, and is such that, for some constants L > 0 and g, > 1/2,
T, is positive on O (F, L) and g, [Or(Fs, L)) = 0. These priors have
been considered in particular in RCL, in Holan et al. [3] and in Kruijer and
Rousseau [4]. We now state the main result.

Theorem 2.1. Suppose we observe X = (Xi,...,X,) from a stationary,
zero mean Gaussian time-series whose spectral density f, is as in (1.1), with

d, € [—% +t,% —t], 0, € O(8,L,) and 3 > (s > % Consider a prior

T = T as described above such that there exists co > 0 for which

R el M) > 1 @)

where, for some B > 0 and kp,, = | B(n/logn)Y/@%+ | K, ={0,... kpn,}

in the case of the random sieve prior, and K, = {ka,} in the case of the
deterministic prior. Assume also that L is large enough.

e [n the case of the random sieve prior, for any Ps > (s, we have the
following uniform result:

sup Bor((d, %, 0) : U furs, fo) > BE(B)X) < n3, (2.2)

fo€Ugs<p<p,0(8,Lo)

where €,(3) = (n/log n)_%% and ly only depends on L,. In particular,
it is independent of L.

e In the case of the deterministic prior, for any B2 > (s, we have the
following uniform result:

sup Eoﬂ-((da k,@) : l(fd,k,@a fo) 2 lgei(ﬁs)‘X) S n_37
fo€Ug,<p<p,©(8,Lo)
(2.3)

where ly only depends on L, and is independent of L.

The constraint 3 > 1/2 is necessary to ensure that the short memory part
exp(D_; 05 cos(jz)) is bounded and continuous. As mentioned in the intro-
duction, the fact that [y is independent of L is interesting since it allows
us, in practice, to choose L arbitrarily high without penalizing the posterior
concentration rate. It suggests that such results could hold with L = oo,
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however we have no proof for it. The random sieve prior leads to an adap-
tive posterior concentration rate over the range 3 > (s, since for all § > 1/2,
€, (/) is the minimax (up to a logn term) rate over the class of FEXP spectral
densities given by (1.1) and associated to § € ©(f3, L,) . The deterministic
sieve prior does not lead to an adaptive procedure since the posterior concen-
tration rate is €,(0s) in this case. Obtaining adaptation by putting a prior
on the dimension of the model is a commonly used strategy in Bayesian non
parametrics, see for instance Arbel [1] or Rivoirard and Rousseau [7].

3. Proof of Theorem 2.1

We first introduce some notions that are useful throughout the proof.

3.1. Notation and preliminary results

We first introduce various (pseudo)-distances. We denote the Kullback -
Leibler divergence between the Gaussian distributions associated with spec-
tral densities f, and f by

KL(f f) = o ([T T () = ]~ log det(T, ()T (1)}

a symmetrized version of it by h,(fo, f) = KL, (fo; f) + KL,(f; fo) and the
variance of the log-likelihood ratio by

bl £) = e (T )Tl o = DT (Tl — 1))

The limiting values of b,(f,, f) and h,(f,, f) are denoted

-/ {J;f&)) ’ J]:o%\)) “2far =0 [ (%“) - 1)26“‘

Then h(f,, f) > U(fo, f) (RCL, p.6). Using Lemma 2 in RCL we find that
for all kK € N,

bu(for Far) < Tl ) 2T )" 220 oy firn)

h(fo, f)

’ (3.1)
< C([16o]lr + 1611)n* =D i (fo, ),
where C' is a universal constant. Similarly,
ho(for [) < N Tn 2 ()T (fo)|IPbn(for ) (3.2)
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In line with the notation of (1.2), let ¢(x;d, k,0) denote the density of X,
which is the Gaussian density with mean zero and covariance matrix 7}, ( fax.0)
and let ¢(z;d,,0,) denote the Gaussian density associated with T,,(f,). We
write R, (faro) = ¢(X;d, k,0)/6(X;d,, 0,) for the likelihood-ratio.

The proof of Theorem 2.1 contains two parts. First, it needs to be shown
that the rate is [2¢2, for a constant [y that may depend on L and ;. Then
by re-insertion of the rate obtained in the first part, we improve upon the
constant ly. In particular, it is shown to be independent of L for L large
enough.

3.2. Proof of Theorem 2.1

Throughout the proof C' denotes a universal constant. Let 0 < ¢ < 1/2
and

1 1
gk(tﬁ& L) = {fd,k,@ o d S [_5 + ta 5 - t]79 € @k(ﬂva>} ) g - Uziogk(t7687 L)

By the results of RCL (Theorem 3.1, and Corollary 1 in the supplement) we
have consistency for h(f,, fare) and |d — d,|, i.e. for all d,¢ > 0,

T (fare : h(fare, fo) < €2, ]d — d,| < 6|X) tends to one in probability. Hence
it suffices to show that

R, (f)dm P
W |X] = foVan(J(th(g) - g_z 7, (3.3)

where in the case of the random sieve prior,

Wi = {fapo €G : U [os faro) = loes(B), h(fo, fapo) < €, |d—do| <6},

for a constant [y > 0 depending only on L,, s and the prior on k. In the case
of the deterministic sieve prior, we replace €2(/3) in this definition by € (0;).
We present the proof of (3.3) for the case of the random sieve prior; the proof
for the case of the deterministic sieve prior can be deduced by replacing 3
by (5. The proof consists of two parts: first we show that for some ¢ > 0,

P, [Dn < 6—2nuoei(ﬁ)/2] < e—oneh(9), (3.4)

for which we will establish a lower bound the prior mass on a Kullback-
Leibler neighborhood of f,. In the second part we show that under the event



D, > %e*"““%(ﬁ) we can control N,,/D,,. This will be done by giving a bound
on the upper-bracketing entropy of the model.

For the proof of (3.4), note that RCL already found that if 5 > 55 > 1/2,
there exists ug > 0 depending only on L, such that

Pa Dn < e—nuoe%(ﬁ)(logn)l/@ﬁ-kl)/2 _ o(n_l).

To prove (3.4), we thus need to improve on the logn term in the preceding
equation. Set

cn(8)

Bn - {(d7 k,@), KLn(fo; fd,k,@) S n4 ;bn(fmfd,k:,@) S 6%(6)7610 S d S do+5};

for some positive . Recall that

D, = Y m(k) / el (kD =nTo) dry 1 (0)dma(d),

k

pr |:Dn < 6—2nu06%(3)i| < P" |:/ eln(f)—ln(fo)d,n.<f) < e~ 2nuoen(B)

Bn

From the proof of Theorem 4.1 in RCL (section 5.2.1), it follows that
pr (Dn < e—moei(ﬁ)ﬂ@ﬂ)/g) < ¢~ Cnei(®)
for some constant C' > 0 (independent of L). We now show that
m(B,) > e "oa(/4 (3.5)
Define
B, = {(d, kpn,0);d, < d < dy+€2(8)n"% 0;—0,,] < (145) Pen(B)n2,5 =0,

We first prove that W(Bn) > e~ (B)/4 and then that B, C B,. As in RCL
(see the paragraph following equation (29) on p. 26), we find that

S (1 +5)%6% < 2L, + (B> < 3L,,V0 € B,

Jj=1

for n large enough. Combined with condition (2.1) on 7y, this implies
2 B ks kp,nlogk kome
w(Bo) > (cen(Bhgm) ek toskion > (~eBInED, > g,

7
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This achieves the proof of (3.4) with uy = ¢(5s)ko.

To show that B, is included in B,, first note that equation (3.1) im-
plies that it is enough to bound h,(f,, f) on B,. To this end, we use the
decomposition f, = fo’kB’neAdo,kB,nj where forp .. = fdokp.,.0, and

Adykp,(A) = Z 6, cos(jx), Ve [-m 7).

j:kB,n+1
Then we have the expansion

fo= fornn(L+ Dagp, + A0,k /24 ODG, 1y )5 1Bdgin | = 0(1)

and
hn(fm f) S Q[hn(foa fo,kB,n) + hn(fo,kBma f)] (36)

We first deal with the first term above. Let b,,, = eRdoksn 1 and without

loss of generality we can assume that b,, is positive in the expression of
hn(fo, foks.,) so that for all > 1/2,

ol fots) = o tr [T (o) T (o) Tl o)

C _ _
ﬁtr |:Tn 1(90>Tn(gobo,n)Tn l(go)Tn(gobo,n)}

= tr{T2b0)] +en + e (37)

IA

where g,(A) = [A|7** and ¢ depends only on 377 |0, ;| < Le?(28 — 1)71/2,
and

1(
"= tr

T2 = <tT [(Tn_l(go)Tn(gobo,n))Q} —tr

3|

(Tl Tl ) ] —tr[Tﬁ(bo,nn)

(T”(ﬁm@obom)ﬂ) |

We first bound the first term of the right hand side of (3.7). Note that
bon(A) = Ado,kBm,Kn + Ry, where

Ado,kB,n,Kn(/\): Z 0,5 cos(5N), K, = e, (B8)"P(logn)/?



and || Ryl|* < €2(8)(logn)~2 so that
tr [T (bom)] = tr [Tﬁ(Ado,kB,n,Kn)} +O(logn[K, % + K, Pk;])
5 (3.8)
= tr [Tf(ﬁdo,k&mi{n)} +0(e(8)),

where the term O(logn|[K %% + K, ﬁk];ﬁn}) comes from the fact that

tr [T2(bon)] = tr [T2(Rab00,) || < 0 [T2(R0)] + 1T (Ro)I T (B

and from the use of inequality (20) in Lemma 6 of RCL, with f; = fo = 1,
0 = 0 and b either equal to Ado,k};,mKn or Ry. Note that the constant in the
term O(€2(3)) in (3.8) does not depend on L. Lemma 2.1 in Kruijer and
Rousseau [5] together with the fact that

Kn

By tpmttnN) = Byt ien @) <Y Gl60s] < CB) LK, PH32 v k72

j:kB,n

implies that for large enough n,

n—l

tr [ T2 A g )] = 270 [Tu(A3 4, )|
< KC(B)Lon 2172 (8) = o(€2(3)), Ve >0,

uniformly over 5, < § < 5 and 6, € O(f, L,). Consequently,
I ~
(T2 (b)) < 0 | T2 Buyinic)| + Lo )EB), (39)

for a constant C'(L,, ) independent of L. Next we apply Lemma 2.4 in
Kruijer and Rousseau [5] with f = g, and by = by = b, ,,; it then follows that

1= o(e(B)), Ve>D0. (3.10)

N < [bonlZn’'n ;

Finally Lemma 2.3 in Kruijer and Rousseau [5] implies that for all € > 0,
72 < [lbonlloen ™" = o(en (8)). (3.11)

Combining (3.9), (3.10) and (3.11), it follows that
oo Jo) = 070 [ T(B2 1y )| + C(Los B)EE(B) < 2" (Lo, Ben(8),
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where also C'(L,, ) is independent of L. The last inequality follows from

- 1 [™ .
n”'tr |:Tn<A?lo kg K )} = 2_/ DG tep it (M)A
3 nyfin T _7-(- 05 nyfin

Z 02 < C'(Lo, B)ea(B).

] kB ntl

We now bound the last term in (3.6), which we write as

hn(fO,kB,na f) = %tr [Tn(fO,kB,n)71Tn(fb)Tn(f>ilTn<fb)} , b= (f_fO,kB,n)/f~

Since d > d,, |b|oc < 400 and applying Lemma 6 inequality (20) of RCL, we
obtain if d, 0 € B,, with a > 0,

ha(fopes, J) < Clogn ([bf +|d — do|[b]3,)
kB,n

< Clogn Z(Hj —0o5)* + 0% () | = olen(8)),

j=1

which finally implies that 7(B,) > «(B,) and that (3.4) is proved. We
now find an upper bound on N,,. First write W,, = W,, N F,, where F, =
{firo:k < kp,n} and kp,,, = Bi(n/logn)/@#+D Then, since the prior on
k is Poisson,

ﬂ_(f;cl) S e—CQkBLnlongbn S 6—2nuoe%(ﬁ)

if By is large enough (depending on L,, co, O, 32) and W,, can be replaced
by W, in the definition of N,. Following the proof of RCL, we decompose
W, = Upry Way, where lg > 2, 1, = [¢2/e2(8)] — 1 and
Whi = {fd,k,@ €G :k <kpn h(fare fo) <€, |d—d,| <3,
Eil S hn(fm fd,k,@) S un(l + 1)} .

In addition let N,; = [}, ZRn(f 7(f); then N, Zl lo Vn,i, and we have

ln
Nn,l
D, {Dnze"mu0ck(8) /2}
n

I=lp
(3.12)

E, {%1 < Py (Dy < emi@)2) 4 E,

10



We construct tests ¢; (I =1y, ...,[,) and write

b i )
E, Dn’l L{p,>e—nun 2y (01 + 1 — )
=l "

< Z E, (¢1) + 2e™n Z Ey [Noy(1— )] -

I=lo I=lg

(3.13)

The tests are based on a collection of spectral densities H,,; = U:ilo‘"HnM C
W, defined as follows. Let D; be a grid over {d : |d —d,| < ¢} with spacing

le2(8)/(logn). Let T;; denote the centers of hypercubes of radius k%#,
covering O (s, L). We define H,, ;. as the collection of spectral densities
fri = (2e)l6%(ﬁ)fdl’i’k7gl,i, with d;; € D; and ghi ¢ Ti,. With every f;; we

assoclate a test

Pri = 1{X’(Tn’1(fo)an*l(fz,i))thr{In—Tn(fo)T,:l(fl,i)%hn(fo,fl,i)}}7 (3.14)

and set ¢; = max; O1i-

The set H,,; can be seen as a collection of upper-bracket spectral densities,
since for each fqr9 € W, there exists a f;;, € H,;; such that fi; > fire,
0<d,;—d<le(3)/(logn) and

k k
0 < (2¢)'4® exp {Z 0;1 cos(jx)} — exp {Z g, cos(jx)}

j=0 Jj=0

. (3.15)
< le () (2¢)' (9 exp Z 0" cos(jz) 7 .
=32 il
The cardinality of UZi})’"HM,k is at most
51
(l_lkBl,nen(ﬁ)ﬂL)kBl,n % < exp{2kp, nlogn} = C,y, (3.16)
en

for all [ > 2. To bound the right hand side of (3.13), we use (3.16) in
combination with the following error bounds for each of the tests ¢;;. Let
f € Wy, and let fi; € H,; be such that (3.15) holds, ¢;; being the associated
test-function. Then, from equation (4.4) in RCL together with the bound
(3.1) on b,(fo, f1.i)/hu(fo, ;) which again depends on [|6%||; and Ly, we
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obtain that for all 0 < a < 1, there exists constants dy,dy; > 0 depending on
L, and ||0%||; such that

Eopri < el Bp(1— ¢y) < e, (3.17)

Using (3.17) we obtain the following bound on the term Zf”:’lo E, (¢) in
(3.13):

In In In

- _ @, 2 _ o 2
E :Eo ((bl) < § :le@ dinl®e; (B) < erBlﬂnlogn § :6 dinl®e (B) _ 07
I=lo I=lo I=lo

2
as soon as lp > <d21—]ilo> , choosing v = 1/2. Using (3.17) the last term in
(3.13) is

In I
D B [Nui(1=d)] =) / EN(1 = @)dn(f) < e~/ *30) < o2
I=ly Wn,l

l=lo

as soon as dglé/2 > 2. 1e. lyg> 4d2_2. Note that the two lower bounds on [y de-

, 2
pends on L, and on |6%]];. Finally choosing, [y = max <4d2_2, (231 ) ,2, uo)

diug

we obtain

P [ha(f, fo) < loer (B)|X"] = o(n™).
From that we deduce a concentration rate in terms of the [ norm, following
RCL’s argument in Appendix C. Let [y be an arbitrary constant and assume
that h,(f, fo) < loe2(8) and f = fare. Then inequality (C.3) of Lemma 6 of
RCL implies that

Lot [T T f = NTW( T — )] < Ciloc,

n

where C depends only on ||f||; and on ||6,||;. This implies that
Lo [Ta( o = DITu(F (o — £))] < 201002
ntr[ n(fo (fo f)) n(f (fo f))} <204 Oen(ﬁ)

since the difference between the two terms is of order O(n™'*2%) Va > 0,
which also implies that h(f,, f) < 3C1loe2(3), for the same reason. Since
U(fo, f) < h(fo, ), we finally obtain that

P™I(f, fo) < 3Ciloer(B)|X"] = o(n™").
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To terminate the proof of Theorem 2.1, it only remains to prove that [,
depends only on L,, 3s. This is done using a simple re-insertion argument.
Recall also that k < kp, ,, = Bine2(), where Bj is independent of the radius
L of the sobolev-ball ©(3,, L) defining the support of the prior. We start with
the following observation. From Kruijer and Rousseau [4] (equation (3.5)) it
follows that for fixed d and k, the minimizer of I(f,, fare) over R*1 is

éd,k = argmineeRkﬂl(fo, fd,k,@) = Go[k] + (do - d>n[k}7

where 7 is defined by n; = —2/7 (j > 1) and 1y = 0. Assuming that
U(fo, farn) < 3Ciloes(B) and k < kg, » leads to I(fo, fure,,) < 3Ciloe, and
10 = 0arl® = U fire, faro.,) < 12C11pe?. Therefore

k kBl,n kBl,n
D101 < D105 = Oara)il + D 1(Oana)sl
3=0 J=0 j=0
kBl,n
< V120V lgenky)s, +21d — do[logn+ Y 16,0 < 2(26, — 1)7*V/I,
§=0

when n is large enough, where the second inequality comes from Lemma 3.1
of Kruijer and Rousseau [4]. This achieves the proof of Theorem 2.1.
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