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Introduction

Let X t , t ∈ Z, be a stationary zero mean Gaussian time series with spectral density f o (λ), λ ∈ [-π, π] in the form

f o (λ) = |1 -e iλ | -2do exp ∞ j=0 θ o,j cos(jλ) , θ o ∈ Θ(β, L o ) (1.1)
where

d o ∈ (-1 2 , 1 2 ), Θ(β, L o ) = {θ ∈ l 2 (N) : j≥0 θ 2 j (1 + j) 2β ≤ L o } is a Sobolev ball.
The parameter d o is called the long-memory parameter; we will refer to exp{ ∞ j=0 θ o,j cos(jλ)} as the short-memory part of the spectral density. The parameter β controls the regularity of the short-memory part. It is then natural to use the fractionally exponential or FEXP-model (see Beran [START_REF] Beran | Fitting long-memory models by generalized linear regression[END_REF] and Moulines and Soulier [START_REF] Moulines | Semiparametric spectral estimation for fractional processes[END_REF] and references therein) F = ∪ k≥0 F k , where

F k = f d,k,θ (λ) = |1 -e iλ | -2d exp k j=0 θ j cos(jλ) , d ∈ - 1 2 , 1 2 , θ ∈ R k+1 .
We study Bayesian estimation of f o within this FEXP-model. Let π(d, k, θ) denote the prior on (d, k, θ); this induces a prior on F which we also denote π. Let T n (f ) denote the covariance matrix of the observations X = (X 1 , . . . , X n ), and let l n be the associated log-likelihood

l n (d, k, θ) = - k + 1 2 log(2π) - 1 2 log |T n (f )| - 1 2 X ′ T -1 n (f )X (1.2)
Bayesian estimates of the spectral density f o are based on the posterior π(f ∈ A|X) = A e ln(d,k,θ) dπ(f ) F e ln(d,k,θ) dπ(f ) , A ⊂ F.

(1.3)

For example the posterior mean or median could be taken as 'point'-estimators of f o . In this work however we focus on the posterior itself, and study the rate of convergence at which the posterior concentrates at f o . More precisely, we lower-bound the posterior mass on the sets

B(ǫ n ) = {f ∈ F : l(f, f o ) ≤ ǫ 2 n },
where ǫ n is a sequence tending to zero and

l(f, f o ) = 1 2π π -π (log f o (λ) -log f (λ)) 2 dλ.
Whether π(B(ǫ n )|X) tends to one for a certain sequence ǫ n critically depends on the smoothness of f o as well as the smoothness induced by the prior. In Theorem 4.2 of Rousseau et al. [START_REF] Rousseau | Bayesian nonparametric estimation of the spectral density of a long memory gaussian process[END_REF] (RCL hereafter) it is shown that when θ o ∈ Θ(β, L o ) and the prior on θ has support contained in a Sobolev ball Θ(β, L) with L large enough, then the rate is ǫ 0 (L)n -2β 2β+1 (log) 4β+4 2β+1 , for fixed β > 1 2 and ǫ 0 (L) large enough depending on L. In the present work we prove that such priors in fact lead to an adaptive concentration rate (in β) and we improve upon the constant ǫ 0 (L) and the logarithmic factor. Adaptivity is of great interest since it is difficult to know the smoothness of the function f a priori. Improving on the constant ǫ 0 is crucial in Kruijer and Rousseau [START_REF] Kruijer | Bayesian semi-parametric estimation of the long-memory parameter under fexp-priors[END_REF] but has also interest in its own. Indeed in Theorem 2.1 we prove that ǫ 0 depends only on L o the radius of the Sobolev ball containing θ o . In RCL however ǫ 0 depends on L, with the risk that would L be very large ǫ 0 might also be very large. Here we prove that this is not the case and that we can choose L as large as the application requires. This suggests that the result might actually hold without the constraint L in the prior on θ, but we have not been able to prove that.

Notation:

The m-dimensional identity matrix is denoted I m . For matrices A we write |A| for the Frobenius or Hilbert-Schmidt norm |A| = √ trAA t , where A t denotes the transpose of A. The operator or spectral norm is denoted A 2 = sup x =1 x ′ Ax. We also use • for the Euclidean norm of finite dimensional vectors or sequences in l 2 (N), and for the L 2 -norm of functions. If u ∈ l 1 (N) we denote u 1 = j |u j |. Given a sequence {u j } j≥0 and a nonnegative integer m, we write u [m] for the vector (u 0 , . . . , u m ) and u >m for the l 2 -norm of the sequence u m+1 , u m+2 , . . .. When we write j≥0 (θ j -θ o,j ) 2 or j≥0 |θ jθ o,j | for a finite-dimensional vector θ and θ o ∈ l 2 (N), θ j is understood to be zero when j > k. For any function h ∈ L 1 ([-π, π]), T n (h) is the matrix with entries π -π e i|l-m|λ h(λ)dλ, l, m = 1, . . . , n. For example, T n (f ) is the covariance matrix of observations X = (X 1 , . . . , X n ) from a time series with spectral density f . Let P o denote the law associated with the true spectral density f o and E o expectations with respect to P o .

Main results

Let β s > 1 2 be a fixed constant. We consider the following family of priors on (d, k, θ). d is a priori independent of (k, θ) with density π d with respect to Lebesgue measure. For some positive t < 1/2, the support of π d is included in [-1/2 + t, 1/2 -t] . We consider two cases for the prior on k: Deterministic sieve π k (k) = δ k A,n (k), i.e. it is the Dirac mass at k A,n = ⌊A(n/ log n) 1/(2βs+1) ⌋, for some positive A. Random sieve the support of π k is N and satisfies:

e -c 1 k log k ≤ π k (k) ≤ e -c 2 k log k ,
for some positive c 1 , c 2 and k large enough. π θ|k , the prior on θ given k, has a density with respect to the Lebesgue measure on R k . This density is also denoted π θ|k , and is such that, for some constants L > 0 and β s > 1/2, π θ|k is positive on Θ k (β, L) and π θ|k [Θ k (β s , L) c ] = 0. These priors have been considered in particular in RCL, in Holan et al. [START_REF] Holan | A Bayesian approach to estimating the long memory parameter[END_REF] and in Kruijer and Rousseau [START_REF] Kruijer | Bayesian semi-parametric estimation of the long-memory parameter under fexp-priors[END_REF]. We now state the main result.

Theorem 2.1. Suppose we observe X = (X 1 , . . . , X n ) from a stationary, zero mean Gaussian time-series whose spectral density f o is as in (1.1), with

d o ∈ [-1 2 + t, 1 2 -t], θ o ∈ Θ(β, L o ) and β ≥ β s > 1 2
. Consider a prior π = π d π k π θ|k as described above such that there exists c 0 > 0 for which

lim inf n→∞ min k∈Kn inf θ∈Θ k (β,Lo) e c 0 k log k π θ|k (θ) > 1. (2.1)
where, for some

B > 0 and k B,n = ⌊B(n/ log n) 1/(2βs+1) ⌋, K n = {0, . . . , k B,n }
in the case of the random sieve prior, and K n = {k A,n } in the case of the deterministic prior. Assume also that L is large enough.

• In the case of the random sieve prior, for any β 2 > β s , we have the following uniform result:

sup fo∈∪ βs≤β≤β 2 Θ(β,Lo) E o π((d, k, θ) : l(f d,k,θ , f o ) ≥ l 2 0 ǫ 2 n (β)|X) ≤ n -3 , (2.2)
where ǫ n (β) = (n/ log n) -β 2β+1 and l 0 only depends on L o . In particular, it is independent of L.

• In the case of the deterministic prior, for any β 2 > β s , we have the following uniform result:

sup fo∈∪ βs≤β≤β 2 Θ(β,Lo) E o π((d, k, θ) : l(f d,k,θ , f o ) ≥ l 2 0 ǫ 2 n (β s )|X) ≤ n -3 , (2.3 
) where l 0 only depends on L o and is independent of L.

The constraint β > 1/2 is necessary to ensure that the short memory part exp( j θ oj cos(jx)) is bounded and continuous. As mentioned in the introduction, the fact that l 0 is independent of L is interesting since it allows us, in practice, to choose L arbitrarily high without penalizing the posterior concentration rate. It suggests that such results could hold with L = ∞, however we have no proof for it. The random sieve prior leads to an adaptive posterior concentration rate over the range β ≥ β s , since for all β > 1/2, ǫ n (β) is the minimax (up to a log n term) rate over the class of FEXP spectral densities given by (1.1) and associated to θ ∈ Θ(β, L o ) . The deterministic sieve prior does not lead to an adaptive procedure since the posterior concentration rate is ǫ n (β s ) in this case. Obtaining adaptation by putting a prior on the dimension of the model is a commonly used strategy in Bayesian non parametrics, see for instance Arbel [START_REF] Arbel | Bayesian optimal adaptive estimation using a sieve prior[END_REF] or Rivoirard and Rousseau [START_REF] Rivoirard | Bernstein-von mises theorem for linear functionals of the density[END_REF].

Proof of Theorem 2.1

We first introduce some notions that are useful throughout the proof.

Notation and preliminary results

We first introduce various (pseudo)-distances. We denote the Kullback -Leibler divergence between the Gaussian distributions associated with spectral densities f o and f by

KL n (f o ; f ) = 1 2n tr T n (f o )T -1 n (f ) -I n -log det(T n (f o )T -1 n (f )) , a symmetrized version of it by h n (f o , f ) = KL n (f o ; f ) + KL n (f ; f o )
and the variance of the log-likelihood ratio by

b n (f o , f ) = 1 n tr T -1 n (f )(T n (f o -f )T -1 n (f )T n (f o -f ) . The limiting values of b n (f o , f ) and h n (f o , f ) are denoted h(f o , f ) = 1 4π π -π f o (λ) f (λ) + f (λ) f o (λ) -2 dλ, b(f o , f ) = (2π) -1 π -π f o f (λ) -1 2 dλ. Then h(f o , f ) ≥ l(f o , f ) (RCL, p.6). Using Lemma 2 in RCL we find that for all k ∈ N, b n (f o , f d,k,θ ) ≤ ||T n (f o ) 1/2 T n (f ) -1/2 || 2 h n (f o , f d,k,θ ) ≤ C( θ o 1 + θ 1 )n 2(do-d) + h n (f o , f ), (3.1)
where C is a universal constant. Similarly,

h n (f o , f ) ≤ T
In line with the notation of (1.2), let φ(x; d, k, θ) denote the density of X, which is the Gaussian density with mean zero and covariance matrix T n (f d,k,θ ) and let φ(x; d o , θ o ) denote the Gaussian density associated with T n (f o ). We write R n (f d,k,θ ) = φ(X; d, k, θ)/φ(X; d o , θ o ) for the likelihood-ratio. The proof of Theorem 2.1 contains two parts. First, it needs to be shown that the rate is l 2 0 ǫ 2 n , for a constant l 0 that may depend on L and β s . Then by re-insertion of the rate obtained in the first part, we improve upon the constant l 0 . In particular, it is shown to be independent of L for L large enough.

Proof of Theorem 2.1

Throughout the proof C denotes a universal constant. Let 0 < t < 1/2 and

G k (t, β s , L) = f d,k,θ : d ∈ [- 1 2 + t, 1 2 -t], θ ∈ Θ k (β s , L) , G = ∪ ∞ k=0 G k (t, β s , L).
By the results of RCL (Theorem 3.1, and Corollary 1 in the supplement) we have consistency for

h(f o , f d,k,θ ) and |d -d o |, i.e. for all δ, ǫ > 0, π (f d,k,θ : h(f d,k,θ , f o ) < ǫ 2 , |d -d o | < δ|X) tends to one in probability. Hence it suffices to show that π [W n |X] = Wn R n (f )dπ(f ) R n (f )dπ(f ) := N n D n Po → 0, (3.3) 
where in the case of the random sieve prior,

W n = f d,k,θ ∈ G : l(f o , f d,k,θ ) ≥ l 0 ǫ 2 n (β), h(f o , f d,k,θ ) ≤ ǫ 2 , |d -d o | ≤ δ ,
for a constant l 0 > 0 depending only on L o , β s and the prior on k. In the case of the deterministic sieve prior, we replace ǫ 2 n (β) in this definition by ǫ 2 n (β s ). We present the proof of (3.3) for the case of the random sieve prior; the proof for the case of the deterministic sieve prior can be deduced by replacing β by β s . The proof consists of two parts: first we show that for some c > 0,

P o D n < e -2nu 0 ǫ 2 n (β) /2 ≤ e -cnǫ 2 n (β) , (3.4) 
for which we will establish a lower bound the prior mass on a Kullback-Leibler neighborhood of f o . In the second part we show that under the event

D n ≥ 1 2 e -nu 0 ǫ 2 n (β)
we can control N n /D n . This will be done by giving a bound on the upper-bracketing entropy of the model.

For the proof of (3.4), note that RCL already found that if β ≥ β s > 1/2, there exists u 0 ≥ 0 depending only on L o such that

P o D n < e -nu 0 ǫ 2 n (β)(log n) 1/(2β+1) /2 = o(n -1
).

To prove (3.4), we thus need to improve on the log n term in the preceding equation. Set

Bn = {(d, k, θ); KL n (f o , f d,k,θ ) ≤ ǫ 2 n (β) 4 , b n (f o , f d,k,θ ) ≤ ǫ 2 n (β), d o ≤ d ≤ d o +δ},
for some positive δ. Recall that

D n = k π k (k) e ln(d,k,θ)-ln(fo) dπ θ|k (θ)dπ d (d), P n o D n < e -2nu 0 ǫ 2 n (β) ≤ P n o Bn e ln(f )-ln(fo) dπ(f ) < e -2nu 0 ǫ 2 n (β) .
From the proof of Theorem 4.1 in RCL (section 5.2.1), it follows that

P n 0 D n ≤ e -nu 0 ǫ 2 n (β) π( Bn )/2 ≤ e -Cnǫ 2 n (β)
for some constant C > 0 (independent of L). We now show that

π( Bn ) ≥ e -nu 0 ǫ 2 n (β)/4 . (3.5) Define Bn = {(d, k B,n , θ); d o ≤ d ≤ d o +ǫ 2 n (β)n -a , |θ j -θ o,j | ≤ (1+j) -β ǫ n (β)n -a , j = 0, . . . , k B,n }.
We first prove that π( Bn ) ≥ e -nu 0 ǫ 2 n (β)/4 and then that Bn ⊂ Bn . As in RCL (see the paragraph following equation (29) on p. 26), we find that

∞ j=1 (1 + j) 2β θ 2 j ≤ 2L o + ǫ 2 n (β)n -2a ≤ 3L o , ∀θ ∈ Bn
for n large enough. Combined with condition (2.1) on π θ|k , this implies

π( Bn ) ≥ cǫ n (β)k -β B,n n -a k+3 e -c 0 k B,n log k B,n ≥ e -c(βs)k 0 nǫ 2 n (β) , ∀β ≥ β s .
This achieves the proof of (3.4) with u 0 = c(β s )k 0 .

To show that Bn is included in Bn , first note that equation (3.1) implies that it is enough to bound h n (f o , f ) on Bn . To this end, we use the decomposition

f o = f o,k B,n e ∆ do,k B,n , where f o,k B,n = f do,k B,n ,θo and ∆ do,k B,n (λ) = ∞ j=k B,n +1 θ o,j cos(jx), ∀λ ∈ [-π, π].
Then we have the expansion

f o = f o,k B,n (1 + ∆ do,k B,n + ∆ 2 do,k B,n /2 + O(∆ 3 do,k B,n )), |∆ do,k B,n | ∞ = o(1)
and

h n (f o , f ) ≤ 2[h n (f o , f o,k B,n ) + h n (f o,k B,n , f )]. (3.6)
We first deal with the first term above. Let b o,n = e ∆ do,k B,n -1 and without loss of generality we can assume that b o,n is positive in the expression of

h n (f o , f o,k B,n ) so that for all β > 1/2, h n (f o , f o,k B,n ) := 1 2n tr T -1 n (f o )T n (f o b o,n )T -1 n (f o )T n (f o b o,n ) ≤ c n tr T -1 n (g o )T n (g o b o,n )T -1 n (g o )T n (g o b o,n ) = c n tr[T 2 n (b o,n )] + cγ 1 + cγ 2 (3.7)
where g o (λ) = |λ| -2do and c depends only on

∞ j=0 |θ o,j | ≤ L 1/2 o (2β -1) -1/2
, and

γ 1 = 1 n tr T n ( 1 4π 2 g o )T n (g o b o,n ) 2 -tr[T 2 n (b o,n )] γ 2 = 1 n tr (T -1 n (g o )T n (g o b o,n )) 2 -tr T n ( 1 4π 2 g o )T n (g o b o,n ) 2 .
We first bound the first term of the right hand side of (3.7). Note that b o,n (λ) = ∆do,k B,n ,Kn + R 0 , where

∆do,k B,n ,Kn (λ) = Kn j=k B,n +1 θ o,j cos(jλ), K n = ǫ n (β) -1/β (log n) 1/β
where also C ′ (L o , β) is independent of L. The last inequality follows from

n -1 tr T n ( ∆2 do,k B,n ,Kn ) = 1 2π π -π ∆2 do,k B,n ,Kn (λ)dλ = Kn j=k B,n +1 θ 2 o,j ≤ C ′ (L o , β)ǫ 2 n (β).
We now bound the last term in (3.6), which we write as

h n (f o,k B,n , f ) = 1 2n tr T n (f o,k B,n ) -1 T n (f b)T n (f ) -1 T n (f b) , b = (f -f o,k B,n )/f. Since d ≥ d o , |b| ∞ < +∞ and applying Lemma 6 inequality (20) of RCL, we obtain if d, θ ∈ Bn with a > 0, h n (f o,k B,n , f ) ≤ C log n |b| 2 2 + |d -d o ||b| 2 ∞ ≤ C log n   k B,n j=1 (θ j -θ o,j ) 2 + n -a ǫ 2 n (β)   = o(ǫ 2 n (β)),
which finally implies that π( Bn ) ≥ π( Bn ) and that (3.4) is proved. We now find an upper bound on N n . First write Wn = W n ∩ F n where 2β+1) . Then, since the prior on

F n = {f d,k,θ ; k ≤ k B 1 ,n } and k B 1 ,n = B 1 (n/ log n) 1/(
k is Poisson, π(F c n ) ≤ e -c 2 k B 1 ,n log k B 1 ,n ≤ e -2nu 0 ǫ 2 n (β)
if B 1 is large enough (depending on L o , c 2 , β s , β 2 ) and W n can be replaced by Wn in the definition of N n . Following the proof of RCL, we decompose Wn = ∪ ln l=l 0 W n,l , where l 0 ≥ 2, l n = ⌈ǫ 2 /ǫ 2 n (β)⌉ -1 and

W n,l = f d,k,θ ∈ G : k ≤ k B 1 ,n , h(f d,k,θ , f o ) ≤ ǫ 2 , |d -d o | ≤ δ, ǫ 2 n l ≤ h n (f o , f d,k,θ ) ≤ u n (l + 1) .
In addition let N n,l = W n,l R n (f )dπ(f ); then N n = ln l=l 0 N n,l , and we have

E o N n D n ≤ P n o D n ≤ e -nu 0 ǫ 2 n (β) /2 + E o ln l=l 0 N n,l D n 1 {Dn≥e -nu 0 ǫ 2 n (β) /2} .
(3.12)

We construct tests φl (l = l 0 , . . . , l n ) and write

E o ln l=l 0 N n,l D n 1 {Dn≥e -nun /2} ( φl + 1 -φl ) ≤ ln l=l 0 E o φl + 2e nun ln l=l 0 E o N n,l (1 -φl ) .
(3.13)

The tests are based on a collection of spectral densities k , covering Θ k (β s , L). We define H n,l,k as the collection of spectral densities f l,i = (2e) lǫ 2 n (β) f d l,i ,k,θ l,i , with d l,i ∈ D l and θ l,i ∈ T l,k . With every f l,i we associate a test

H n,l = ∪ k B 1 ,n k=0 H n,l,k ⊂ W n,
φ l,i = 1 {X ′ (T -1 n (fo)-T -1 n (f l,i ))X≥tr{In-Tn(fo)T -1 n (f l,i )+ n 4 hn(fo,f l,i )}} , (3.14) 
and set φl = max i φ l,i .

The set H n,l can be seen as a collection of upper-bracket spectral densities, since for each f d,k,θ ∈ W n,l there exists a f l,i ∈ H n,l,k such that f l,i ≥ f d,k,θ , 0 ≤ d l,i -d ≤ lǫ θ l,i j cos(jx) .

(3.15)

The cardinality of

∪ k B 1 ,n k=0 H n,l,k is at most l -1 k B 1 ,n ǫ n (β) -4 k B 1 ,n δ log n lǫ 2 n (β) ≤ exp{2k B 1 ,n log n} = C n,l , (3.16) 
for all l ≥ 2. To bound the right hand side of (3.13), we use (3.16) in combination with the following error bounds for each of the tests φ l,i . Let f ∈ W n,l and let f l,i ∈ H n,l be such that (3.15) holds, φ l,i being the associated test-function. Then, from equation (4.4) in RCL together with the bound (3.1) on b n (f o , f l,i )/h n (f o , f l,i ) which again depends on θ l,i 1 and L 0 , we obtain that for all 0 < α < 1, there exists constants d 1 , d 2 > 0 depending on L o and θ l,i 1 such that 

E o φ l,i ≤ e -d 1 nl α ǫ 2 n (β) , E n f (1 -φ l,i ) ≤ e -d 2 nl α ǫ 2 n (β) . ( 3 
ln l=l 0 E o φl ≤ ln l=l 0 C n,l e -d 1 nl α ǫ 2 n (β) ≤ e 2k B 1 ,n log n ln l=l 0 e -d 1 nl α ǫ 2 n (β) → 0, as soon as l 0 ≥ 2B 1 d 1 u 0 2 , choosing α = 1/2. Using (3.17) the last term in (3.13) is ln l=l 0 E o N n,l (1 -φl ) = ln l=l 0 W n,l E n f (1 -φl )dπ(f ) ≤ e -d 2 nl 1/2 0 ǫ 2 n (β) ≤ e -2nǫ 2 n (β)
as soon as d 2 l

1/2 0 ≥ 2, i.e. l 0 ≥ 4d -2 2 . Note that the two lower bounds on l 0 depends on L o and on θ l,i 1 . Finally choosing, l 0 = max 4d -2 2 , 2B 1

d 1 u 0 2 , 2, u 0 we obtain P π h n (f, f o ) ≤ l 0 ǫ 2 n (β)|X n = o(n -1
). From that we deduce a concentration rate in terms of the l norm, following RCL's argument in Appendix C. Let l 0 be an arbitrary constant and assume that h

n (f, f o ) ≤ l 0 ǫ 2 n (β) and f = f d,k,θ . Then inequality (C.3) of Lemma 6 of RCL implies that 1 n tr T n (f -1 o )T n (f o -f )T n (f -1 )T n (f o -f ) ≤ C 1 l 0 ǫ n ,
where C 1 depends only on θ 1 and on θ o 1 . This implies that

1 n tr T n (f -1 o (f o -f ))T n (f -1 (f o -f )) ≤ 2C 1 l 0 ǫ 2 n (β)
since the difference between the two terms is of order O(n -1+2a ) ∀a > 0, which also implies that h(f o , f ) ≤ 3C 1 l 0 ǫ 2 n (β), for the same reason. Since l(f o , f ) ≤ h(f o , f ), we finally obtain that

P π l(f, f o ) ≤ 3C 1 l 0 ǫ 2 n (β)|X n = o(n -1 ).
To terminate the proof of Theorem 2.1, it only remains to prove that l 0 depends only on L o , β s . This is done using a simple re-insertion argument.

Recall also that k ≤ k B 1 ,n = B 1 nǫ 2 n (β), where B 1 is independent of the radius L of the sobolev-ball Θ(β s , L) defining the support of the prior. We start with the following observation. From Kruijer and Rousseau [START_REF] Kruijer | Bayesian semi-parametric estimation of the long-memory parameter under fexp-priors[END_REF] 

  l defined as follows. Let D l be a grid over {d : |d -d o | ≤ δ} with spacing lǫ 2 n (β)/(log n). Let T l,k denote the centers of hypercubes of radius lǫ 2 n (β)

12C l 0 ǫ n k 1 / 2 B 1

 121 (equation(3.5)) it follows that for fixed d and k, the minimizer ofl(f o , f d,k,θ ) over R k+1 is θd,k := argmin θ∈R k+1 l(f o , f d,k,θ ) = θ o[k] + (d o -d)η [k] ,where η is defined by η j = -2/j (j ≥ 1) and η 0 = 0. Assuming thatl(f o , f d,k,θ ) ≤ 3C 1 l 0 ǫ 2 n (β) and k ≤ k B 1 ,n leads to l(f o , f d,k, θd,k ) ≤ 3C 1 l 0 ǫ 2 n and θ -θd,k 2 = l(f d,k,θ , f d,k, θd,k ) ≤ 12C 1 l 0 ǫ 2 n . Therefore k j=0 |θ j | ≤ k B 1 ,n j=0 |θ j -( θd,kn ) j | + k B 1 ,n j=0 |( θd,kn ) j | ≤ √ ,n + 2|d -d o | log n + k B 1 ,n j=0 j ρ |θ o,j | ≤ 2(2β s -1) -1/2 L owhen n is large enough, where the second inequality comes from Lemma 3.1 of Kruijer and Rousseau[START_REF] Kruijer | Bayesian semi-parametric estimation of the long-memory parameter under fexp-priors[END_REF]. This achieves the proof of Theorem 2.1.

n (f )T 1 2 n (f o ) 2 b n (f o , f ). (3.2)
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and R 0 2 ≤ ǫ 2 n (β)(log n) -2 so that tr

where the term

and from the use of inequality (20) in Lemma 6 of RCL, with f 1 = f 2 = 1, δ = 0 and b either equal to ∆do,k B,n ,Kn or R 0 . Note that the constant in the term O(ǫ 2 n (β)) in (3.8) does not depend on L. Lemma 2.1 in Kruijer and Rousseau [START_REF] Kruijer | Bayesian semi-parametric estimation of the long-memory parameter under fexp-priors[END_REF] together with the fact that

for a constant C(L o , β) independent of L. Next we apply Lemma 2.4 in Kruijer and Rousseau [START_REF] Kruijer | Bayesian semi-parametric estimation of the long-memory parameter under fexp-priors[END_REF] with

Finally Lemma 2.3 in Kruijer and Rousseau [START_REF] Kruijer | Bayesian semi-parametric estimation of the long-memory parameter under fexp-priors[END_REF] implies that for all ǫ > 0,