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Abstract

Let (E, d) be a compact metric space, X = (X1, . . . , Xn, . . . ) and Y =
(Y1, . . . , Yn, . . . ) two independent sequences of independent E-valued ran-
dom variables and (LXn )n≥1 and (LYn )n≥1 the associated sequences of em-
pirical measures. We establish a large deviation principle for (W∞(LXn , LYn ))n≥1

where W∞ is the ∞-Wasserstein distance,

W∞(LXn , LYn ) = min
σ∈Sn

max
1≤i≤n

d(Xi, Yσ(i))

where Sn stands for the set of permutations of {1, . . . , n}.

1 Introduction

We say that a sequence of Borel probability measures (Pn)n≥1 on a topological
space Y obeys a Large Deviation Principle (hereafter abbreviated LDP) with
rate function I if I is a non-negative, lower semi-continuous function defined on
Y such that

− inf
y∈Ao

I(y) ≤ lim inf
n→∞

1

n
logPn(A) ≤ lim sup

n→∞

1

n
logPn(A) ≤ − inf

y∈Ā
I(y)

for any measurable set A ⊂ Y, whose interior is denoted by Ao and closure by
Ā. If the level sets {y : I(y) ≤ α} are compact for every α < ∞, I is called
a good rate function. With a slight abuse of language we say that a sequence
of random variables obeys an LDP when the sequence of measures induced by
these random variables obeys an LDP. For a background on the theory of large
deviations see Dembo and Zeitouni [4] and references therein.

Let (E, d) be a metric space. There has been a lot of interest for years in
considering the space M1(E) of Borel probability measures on E endowed with
the so-called p-Wasserstein distances

Wp(ν, γ) = inf
Q∈C(ν,γ)

{(∫
E×E

d(x, y)pQ(dx, dy)

)1/p
}
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where p ∈ [1,∞) and C(ν, γ) stands for the set of Borel probability measures
on E2 with first marginal Q1 = ν and second marginal Q2 = γ, see Chapter 6
in [20] for a broad review. However, the ∞-Wasserstein distance equivalently
defined by either

W∞(ν, γ) = lim
p→∞

Wp(ν, γ)

or
W∞(ν, γ) = inf

Q∈C(ν,γ)
sup

{
u, u ∈ S(Q ◦ d−1)

}
(1)

where S(Q◦d−1) ⊂ E2 stands for the support of the probability measure Q◦d−1

has attracted much less attention so far.1

Our framework is the following : We are given a compact metric space
(E, d). Without loss of generality we can assume that supx,y∈E d(x, y) = 1. Let
(Xn)n≥1 and (Yn)n≥1 be two independent sequences of E-valued independent
random variables defined on the same probability space (Ω,A,P). We assume
that all the Xi’s (resp. Yi’s) have the same distribution µ1 (resp. µ2). For every
n ≥ 1 we consider the empirical measures

LXn =
1

n

n∑
i=1

δXi and LYn =
1

n

n∑
i=1

δYi .

In [7] Ganesh and O’Connell conjecture that (W∞(LXn , L
Y
n ))n≥1 obeys an LDP

with rate function

I∞(x) = inf
ν1,ν2∈M1(E)
W∞(ν1,ν2)=x

{
H(ν1|µ1) +H(ν2|µ2)

}
where for any two ν, µ ∈M1(E)

H(ν|µ) =

{ ∫
E

log dν
dµdν if ν � µ

∞ otherwise.

If instead of I∞ one considers its lower semi-continuous regularization J∞ which
is defined by

J∞(x) = sup
δ>0

inf
y∈B(x,δ)

I∞(y),

see e.g. Chapter 1 in [15], then

Theorem 1.1 The sequence (W∞(LXn , L
Y
n ))n≥1 satisfies an LDP on [0, 1] with

good rate function J∞(x).

In Section 3.1 we show that if e.g. E = [0, 1] is endowed with the usual Euclidean
distance and µ1 = µ2 = µ admits f(x) = 3

21[0, 13 ](x) + 3
21[ 2

3 ,1](x) as a density
w.r.t. the Lebesgue measure then, due to the disconnectedness of the support
of µ, I∞ fails to be lower semi-continuous. Hence, I∞ and J∞ do not always
coincide. This example illustrates a general feature of the problem considered

1Let us recall that the support S(P ) of a Borel probability measure P on a metric space
(E, d) is defined by x ∈ S(P ) if and only if for every ε > 0, P (B(x, ε)) > 0 where B(x, ε)
stands for the open ball centered at x with radius ε. If E is separable, in particular if E is
compact, S(P ) is closed, see e.g. Theorem 2.1 in [14].
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here : the connectedness properties of the support of the reference measures
are the key ingredient in the behavior of (W∞(LXn , L

Y
n ))n≥1. We will say more

about that below, in Proposition 1.3 below.
Since for every n ≥ 1 every Q ∈ C(LXn , LYn ) can be represented as a bi-

stochastic matrix and since, according to the Birkhoff-Von Neumann Theorem,
every bi-stochastic matrix is a convex combination of permutation matrices (see
e.g. Theorem 5.5.1 in [17]) we have

W∞(LXn , L
Y
n ) = min

σ∈Sn
max

1≤i≤n
d(Xi, Yσ(i)) (2)

where Sn stands for the set of permutations of {1, . . . , n}. Hence, computing
W∞(LXn , L

Y
n ) is nothing but solving a minimax matching problem which is a

fundamental combinatorial question. Equality (2) can be rephrased as

W∞(LXn , L
Y
n ) = dH(S(LXn ),S(LYn )) (3)

where S(LXn ) = {X1, . . . , Xn}, S(LYn ) = {Y1, . . . , Yn} and dH is the so-called
Hausdorff distance. Lets us recall that the Hausdorff distance is defined on the
set of non-empty closed subsets of E by

dH(A,B) = max

{
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)

}
see e.g. Section 6.2.2 in [3]. It is the essential tool in many applications like
image processing [8], object matching [18], face detection [10] and evolutionary
optimization [16] to name just a few.

Now that we have stated our main result, let us briefly review some facts
about W∞. The reference paper on the subject is [1] by Champion, De Pascale
and Juutinen. They consider measures with support on compact subsets of Rd

(d ≥ 1). Some of their results have been generalized from Rd to the setting of
Polish spaces and general cost functions by Jylhä in [9]. We recall them for
latter use.

Lemma 1.1 (Proposition 2.1 in [1] and Theorem 2.6 in [9]) For any two ν, γ ∈
M1(E) there exists at least one Q ∈ C(ν, γ) such that

W∞(ν, γ) = sup
{
u, u ∈ S(Q ◦ d−1)

}
.

They further establish the existence of nice solutions to the problem (1) which
they call infinitely cyclically monotone couplings.

Definition 1.1 A probability measure P ∈M1(E2) is called infinitely cyclically
monotone if and only if for every integer n ≥ 2, every (x1, y1), . . . , (xn, yn) ∈
S(P ) and every σ ∈ Sn we have

max
1≤i≤n

d(xi, yi) ≤ max
1≤i≤n

d(xi, yσ(i)). (4)

Lemma 1.2 (Theorem 3.2 and Theorem 3.4 in [1] and Theorem 2.16 in [9])
For any two γ, ν ∈M1(E) there exists at least one infinitely cyclically monotone
P ∈ C(γ, ν) such that

W∞(γ, ν) = sup
{
u, u ∈ S(P ◦ d−1)

}
.
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In order to check that P ∈ M1(E2) is infinitely cyclically monotone we only
need to know its support. The way mass is spread over S(P ) does not matter :
this property is concerned with subsets of E2 rather than with fully specified
probability measures. This is the reason why we will also call infinitely cyclically
monotone subsets of E2 that satisfy (4). Infinitely cyclically monotone couplings
are nice solutions to the problem (1) in the sense that

Lemma 1.3 (Theorem 3.4 in [1] and Theorem 2.17 in [9]) Any infinitely cycli-
cally monotone P ∈M1(E2) satisfies

W∞(P1, P2) = sup
{
u, u ∈ S(P ◦ d−1)

}
.

Indeed, once an infinitely cyclically monotone A ⊂ E2 is given, no matter how
one spreads mass over A provided the couple that maximizes (x, y) 7→ d(x, y)
over A is covered, the marginals of the resulting probability measure over E2 will
always be at the same W∞ distance. This will show useful when constructing
approximations. For any two γ, ν ∈M1(E) we shall denote by C∞(ν, γ) the set
of infinitely cyclically monotone couplings of ν and γ.

Let us give an elementary example in order to illustrate the difference be-
tween the Wp’s and W∞. Let E = [0, 1] and consider the sequence (νn =
(1 − 1

n )δ0 + 1
nδ1)n≥1. The νn’s are perturbations of δ0 in the sense that for

every p ∈ [1,∞) we have limn→∞Wp(ν
n, δ0) = 0. Nevertheless for every n ≥ 1

we have W∞(νn, δ0) = 1 since S(νn) = {0, 1} while S(δ0) = {0}. This shows
that perturbations so small that they do not impact the Wp distances in the
limit can have dramatic consequences when using the W∞ distance instead.
Again, an illustration of how this singularity affects (W∞(LXn , L

Y
n ))n≥1 is given

in Proposition 1.3 below.

Next we briefly review the literature on results involving matching problems
and the Wp’s and W∞ distances. The first results on (W∞(LXn , L

Y
n ))n≥1 have

been focused on concentration inequalities for independent [0, 1]2-valued Xi’s
and Yi’s with common distribution µ1 = µ2 = λ where λ stands for the uniform
distribution over [0, 1]2 . In [13] Leighton and Shor establish that there exists a
K > 0 such that

1

K
n−1/2(log n)3/4 ≤W∞(LXn , L

Y
n ) ≤ Kn−1/2(log n)3/4

with probability 1 − o(1). Using majorizing measures, Talagrand showed in
[19] that the latter result is a particular case of a general property of empirical
discrepancies.

Concerning Large Deviations, in [7] the authors prove that if E = [0, 1]2 and
µ1 = λ is the uniform distribution over E then (W∞(LXn , λ))n≥1 obeys an LDP
with good rate function

T∞(x) = inf
ν∈M1(E)
W∞(ν,λ)=x

{H(ν|λ)} .

To obtain this result they prove that in this particular case the map ν 7→
W∞(ν, λ) is continuous with respect to the weak convergence topology, and
then apply the contraction principle, see Theorem 4.2.1 in [4]. They further
show in the same framework as here, i.e. E-valued Xi’s and Yi’s where (E, d)
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is any compact metric space, that (W1(LXn , L
Y
n ))n≥1 obeys an LDP with good

rate function

I1(x) = inf
ν1,ν2∈M1(E)
W1(ν1,ν2)=x

{
H(ν1|µ1) +H(ν2|µ2)

}
.

Their proof relies on the fact that, according to the Kantorovitch-Rubinstein
Theorem (see e.g. Theorem 11.8.2 in [5]), when E is compact W1 generates the
weak convergence topology. As a consequence (LXn )n≥1 and (LYn )n≥1 satisfy an
LDP on M1(E) endowed with W1 and again the contraction principle leads to an
LDP for (W1(LXn , L

Y
n ))n≥1. Following the same approach, one can deduce from

Theorem 1.1 in [21] that for every p ∈ [1,∞) the sequence (Wp(L
X
n , L

Y
n ))n≥1

obeys an LDP with good rate function

Ip(x) = inf
ν1,ν2∈M1(E)
Wp(ν1,ν2)=x

{
H(ν1|µ1) +H(ν2|µ2)

}
.

One might wonder why this idea is not applicable to the analysis of the LD
properties of (W∞(LXn , L

Y
n ))n≥1. Actually an LDP for (LXn )n≥1 can not hold

when M1(E) is endowed with W∞, at least at this level of generality. Indeed,
consider the probability measure µ1 on E = [0, 1] which density with respect to
the Lebesgue measure is g(x) = 2(1[0, 14 ](x)+1[ 3

4 ,1](x)) and assume that (LXn )n≥1

satisfies an LDP on (M1(E),W∞) with some rate function R. Clearly for every
odd integer n we have P(W∞(LXn , µ

1) < 3/8) = 0 hence for every ν ∈ B(µ1, 3/8)
we should necessarily have R(ν) =∞. So we would get

lim sup
n→∞

1

n
log P(W∞(LXn , µ

1) ≤ 1

4
) = −∞ (5)

but for every even n we have P(W∞(LXn , µ
1) ≤ 1

4 ) ≥
(
n
n/2

)
2−n which contradicts

(5). Again this is due to the lack of connectedness of the support of µ1 and, in
a sense, Theorem 1.1 is the only possible “Sanov-like” statement involving W∞
without any additional assumption.

Now let us give some facts about the zeros of J∞. First notice that since

0 ≤ I∞(W∞(µ1, µ2)) ≤ H(µ1|µ1) +H(µ2|µ2) = 0

we necessarily have J∞(W∞(µ1, µ2)) = 0. Actually, due to the highly discon-
tinuous nature of W∞ the zeros of J∞ need not be reduced to W∞(µ1, µ2). We
shall first prove the following

Lemma 1.4 Let x ∈ [0, 1] be such that J∞(x) = 0. Necessarily x ≥W∞(µ1, µ2).

The zeros of J∞ are related to some particular elements of E2 as defined next

Definition 1.2 We shall say that (a, b) ∈ E2 is a couple of directly connected
points and write a↔ b if and only if a ∈ S(µ1), b ∈ S(µ2) and there exists Q ∈
C∞(µ1, µ2) such that for every integer N ≥ 2, every (α2, β2), . . . , (αN , βN ) ∈
S(Q) and every σ ∈ SN we have d(a, b) ≤ maxi=1,...,N

{
d(αi, βσ(i))

}
where

(α1, β1) = (a, b).
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Notice that in this definition (a, b) need not be an element of S(Q). In words,
a↔ b if and only if there exists Q ∈ C∞(µ1, µ2) such that {(a, b)}∪S(Q) is still
an infinitely cyclically monotone subset of E2. Consider the set

Zµ1,µ2 = {x ∈ [0, 1] : ∃(a, b) ∈ E2 such that a↔ b and x = d(a, b)}

Proposition 1.1 J∞(x) = 0 if and only if x ∈ Zµ1,µ2 .

The notion of directly connected points takes a simpler form when µ1 = µ2.

Proposition 1.2 If µ1 = µ2 = µ then a, b ∈ E are directly connected if and
only if a, b ∈ S(µ) and for every integer N ≥ 3 and every sequence α1, . . . , αN
of elements of S(µ) such that α1 = a and αN = b there is at least one integer
L such that 1 ≤ L ≤ N − 1, and d(a, b) ≤ d(αL, αL+1).

In words, if µ1 = µ2 = µ then a ↔ b if and only if one can not decompose a
journey from a to b into several stages between elements of S(µ) such that each
of these stages has length strictly smaller than d(a, b). As an example consider
again E = [0, 1] and µ1 = µ2 = µ with density f(x) = 3

21[0, 13 ](x) + 3
21[ 2

3 ,1](x)

w.r.t. the Lebesgue measure. Then 1
3 ↔

2
3 hence J∞( 1

3 ) = 0 as it is established
through a direct computation in Section 3.1.

Finally we investigate the almost sure behavior of (W∞(LXn , L
Y
n ))n≥1 as

n→∞ when µ1 = µ2 = µ. The elements of Zµ, hence the asymptotic behavior
of (W∞(LXn , L

Y
n ))n≥1, are directly related to the connectedness properties of

S(µ). So let us write S(µ) = ∪Di=1Ai where the Ai are the connected components
of S(µ). Here D = 1 means that S(µ) is connected and we do not exclude the
possibility that D =∞. We have

Lemma 1.5 Zµ = {0} if and only if S(µ) is connected.

For every x ∈ S(µ) let us denote by Ai(x) the connected component of S(µ)
that contains x and for any two closed B,C ⊂ E we set

d(B,C) = inf
(x,y)∈B×C

d(x, y).

Lemma 1.6 For every a, b ∈ S(µ), if a↔ b then d(a, b) = d(Ai(a), Ai(b)).

For any two connected components Ai, Aj of S(µ) we shall write Ai ↔ Aj if
and only if there exists a ∈ Ai and b ∈ Aj such that a ↔ b. It directly follows
from Lemma 1.6 that

Zµ =
{
d(Ai, Aj), (i, j) ∈ {1, . . . , D}2 such that Ai ↔ Aj

}
.

In order to formulate our result we need the following

Lemma 1.7 If S(µ) is not connected every x ∈ Zµ such that x 6= 0 is an
isolated point.

Hence, if S(µ) is not connected, we can order the elements of Zµ

β1 > β2 > · · · > βn > · · ·

where β1 = maxZµ, and for every integer i ≥ 2

βi =

{
maxZµ \ {β1, . . . , βi−1} if βi−1 6= 0

0 if βi−1 = 0.

6



Proposition 1.3 1. If S(µ) is connected then W∞(LXn , L
Y
n ) → 0 almost

surely.

2. If S(µ) is not connected and

(a) there exists only two connected components Ai, Aj of S(µ) such that
Ai ↔ Aj and d(Ai, Aj) = β1 then

lim inf W∞(LXn , L
Y
n ) = β2 and lim supW∞(LXn , L

Y
n ) = β1 (6)

almost surely.

(b) there are more than two connected components Ai, Aj of S(µ) such
that Ai ↔ Aj and d(Ai, Aj) = β1 then W∞(LXn , L

Y
n ) → β1 almost

surely.

Hence, if E = [0, 1] and µ admits f(x) = 3
21[0, 13 ](x) + 3

21[ 2
3 ,1](x) as a density

w.r.t. the Lebesgue measure then lim supW∞(LXn , L
Y
n ) = 1

3 almost surely and
lim inf W∞(LXn , L

Y
n ) = 0 almost surely.

The paper is structured as follows : Section 2 is devoted to the proof of
Theorem 1.1. In Section 3 we discuss the properties of I∞ and J∞. Section
4 is concerned with the almost sure asymptotic behavior of (W∞(LXn , L

Y
n ))n≥1

while Section 5 deals with the proof of some complementary results.

2 Proof of Theorem 1.1

The basic idea in the proof of Theorem 1.1 is to partition E in such a way that
we are essentially led to consider finite set valued Xi’s and Yi’s. Indeed, on
the one hand we will see that W∞ is well-behaved with respect to partitioning
(see Lemma 2.1 below) and on the other hand proceeding this way reduces
the computation of probabilities to simple classical combinatorial estimates. In
order to go from the particular case, i.e. E finite, to the general one we shall
need some results on the weak convergence of nets of probability measures. In
Section 2.1 we give an account on partitions, nets and the weak convergence
topology. The proof of all the statements there is postponed to Section 5. The
LD lower bound is established in Section 2.2 while the LD upper bound is
derived in Section 2.3.

2.1 Some facts about partitions of E, nets and the weak
convergence topology

Let P be the set of finite measurable partitions of E into non-empty sets. To
every Π = (A1, . . . , AL) ∈ P we associate once for all through Section 2 a family
(s1, . . . , sL) ∈ EL such that for every 1 ≤ i ≤ L we have si ∈ Ai. We further
associate to every Π = (A1, . . . , AL) ∈ P a map π as follows

π : M1(E) → M1({s1, . . . , sL})
ν 7→

∑L
i=1 ν(Ai)δsi .

Finally for every Π = (A1, . . . , AL) ∈ P we define its maximal diameter as

∆(Π) = max
1≤i≤L

sup
x,y∈Ai

d(x, y).
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The following result links the W∞ distance between elements of M1(E) to the
analogue W∞ distance between their contractions through π.

Lemma 2.1 For every ν1, ν2 ∈M1(E) and every Π ∈ P we have

|W∞(ν1, ν2)−W∞(π(ν1), π(ν2))| ≤ 2∆(Π).

Let Π = (A1, . . . , AL) and K = (B1, . . . , BR) be two elements of P. We say
that K is a refinement of Π if and only if for every 1 ≤ i ≤ L, there exists
Ji ⊂ {1, . . . , R} such that Ai = ∪j∈JiBj , and we denote it by Π � K. This
makes (P,�) a directed set. Let us recall that (J,E) is a directed set if and
only if J is a non-empty set and E is a reflexive and transitive relation on J
such that for every i, j ∈ J there exists a k ∈ J such that iE k and j E k. We
introduce a general directed set (J,E) since we will use both (P,�) and (N,≤)
as directed sets and we do not want to be too specific in the results below. We
call net any map (P j)j∈J defined on a directed set (J,E). A topological space
(T, T )-valued net (P j)j∈J is said to converge to some P ∈ T if and only if for
every neighborhood U of P there exists a j(U) ∈ J such that for every k ∈ J
satisfying j(U) E k we have P k ∈ U . We shall denote this limj∈J P

j = P . We
call subnet of (P j)j∈J any sub-family (P l)l∈L parametrized by a cofinal L, i.e.
a subset L ⊂ J such that for every j ∈ J there exists l ∈ L satisfying j E l.
(While this is not the most general definition of a subnet it will be sufficient for
the problem considered here). Let us recall that a topological space (T, T ) is
compact if and only if every net in T admits a subnet that converges to some
point in T . Finally, for every real-valued net (P j)j∈J we shall consider as usual

lim sup
j∈J

P j = inf
j∈J

sup
i:jEi

P i and lim inf
j∈J

P j = sup
j∈J

inf
i:jEi

P i.

For this and other questions related to nets we refer to e.g. [12]. The following
lemmas are a consequence of a kind of Portmanteau result for nets of probability
measures that will be derived in Section 5.

Lemma 2.2 Every net (P j)j∈J of probability measures supported on R that
converges weakly to some probability measure P satisfies

lim sup
j∈J

supS(P j) ≥ supS(P ). (7)

Lemma 2.3 Let (P j)j∈J be a net of Borel probability measures on a compact
metric space (Y, δ) that converges weakly to some probability measure P . For
every x ∈ S(P ) and every j ∈ J there exists an xj ∈ S(P j) such that the net
(xj)j∈J converges to x.

Lemma 2.4 Every P ∈ M1(E2) which is the limit in the weak convergence
topology of a net (P j)j∈J of infinitely cyclically monotone elements of M1(E2)
is infinitely cyclically monotone.

2.2 LD lower bound

For every integer n ≥ 1 we consider

M1,n(E)=

{
ν∈M1(E) : there exists (x1, . . . , xn) ∈ Ensuch that ν=

1

n

n∑
i=1

δxi

}
.

The following lemma is the key point in the proof of the LD lower bound
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Lemma 2.5 For every ε > 0, every Π = (A1, . . . , AL) ∈ P with ∆(Π) ≤ ε/2
and every ν1, ν2 ∈ M1(E) there exists two sequences (ν1,n)n≥1 and (ν2,n)n≥1

such that

1. For every n ≥ 1 we have ν1,n, ν2,n ∈M1,n(E).

2. For every 1 ≤ i ≤ L we have ν1,n(Ai)→ ν1(Ai) and ν2,n(Ai)→ ν2(Ai).

3. There exists an N0 such that for every n ≥ N0 we have

|W∞(ν1, ν2)−W∞(ν1,n, ν2,n)| ≤ ε.

Proving Lemma 2.5 actually requires one more lemma

Lemma 2.6 For every Q ∈ M1(E2) and every Π = (A1, . . . , AL) ∈ P there
exists a sequence (Qn = 1

n

∑n
i=1 δ(xni ,yni ))n≥1 of elements of M1(E2) such that

1. For every 1 ≤ u, v ≤ L we have Qn(Au ×Av)→ Q(Au ×Av).

2. The sequence (Qn)n≥1 converges weakly to Q.

3. If Q(Au ×Av) = 0 then for every n ≥ 1 we have Qn(Au ×Av) = 0.

Proof of Lemma 2.6 Let Q be an element of M1(E2) and Π = (A1, . . . , AL) ∈
P. Let (Xi, Yi)i≥1 be a sequence of independent and Q−identically distributed
random couples. According to the strong Law of Large Numbers there exists
an event B of probability 1 such that for every 1 ≤ u, v ≤ L

1

n

n∑
i=1

1Au×Av (Xi, Yi)→ Q(Au ×Av)

on B. Moreover, since E2 is separable (it is compact), according to Varadara-
jan’s Lemma, see e.g. Theorem 11.4.1 in [5], there exists an event C of proba-
bility 1 such that

1

n

n∑
i=1

δ(Xi,Yi)
w→ Q

on C where
w→ stands for the weak convergence of probability measures. Hence

almost every realization of
(

1
n

∑n
i=1 δ(Xi,Yi)

)
n≥1

can play the role of (Qn)n≥1

and the conclusions of Lemma 2.6 follow. �

Proof of Lemma 2.5 Let ν1 and ν2 be two elements of M1(E), ε > 0 and
Π ∈ P with ∆(Π) ≤ ε/2. According to Lemma 1.2 there is a Q ∈ C(ν1, ν2) such
that

W∞(ν1, ν2) = supS(Q ◦ d−1).

Let (Qn)n≥1 be the sequence of elements of M1(E2) associated to Q and Π by
Lemma 2.6. We shall prove that (ν1,n = Qn1 )n≥1 an (ν2,n = Qn2 )n≥1 meet the
conditions of Lemma 2.5. First, (1) and (2) in Lemma 2.5 are clearly satisfied
with these (ν1,n)n≥1 and (ν2,n)n≥1. Now, due to the definition of W∞, for every
n ≥ 1 we have

W∞(ν1,n, ν2,n) ≤ supS(Qn ◦ d−1)

9



and due to (1) and (3) in Lemma 2.6 there exists N1 such that for every n ≥ N1

we have
supS(Qn ◦ d−1) ≤ supS(Q ◦ d−1) + ε

hence W∞(ν1,n, ν2,n) ≤W∞(ν1, ν2)+ε. So we are left to prove that there exists
an N2 such that for every n ≥ N2 we have W∞(ν1, ν2) − ε ≤ W∞(ν1,n, ν2,n).
Let us assume that this is not true i.e. that there exists a sequence (nk)k≥1

such that for every k ≥ 1 we have

W∞(ν1, ν2)− ε > W∞(ν1,nk , ν2,nk). (8)

According to Lemma 1.1 for every k ≥ 1 there exists a Cnk ∈ C(ν1,nk , ν2,nk)
such that

W∞(ν1,nk , ν2,nk) = supS(Cnk ◦ d−1).

The sequence (Cnk)k≥1 admits a weakly converging subsequence since M1(E2)
is compact for the weak convergence topology, see Theorem 6.4 in [14]. By a
slight abuse of notation we still denote (Cnk)k≥1 this converging subsequence.
Let C be its limit. Due to (2) in Lemma 2.6 we necessarily have C1 = ν1 and
C2 = ν2. Moreover (Cnk ◦ d−1)k≥1 is a sequence of probability measures on R
that weakly converges to C ◦ d−1. Combining (8) with Lemma 2.2 we have

W∞(ν1, ν2)− ε ≥ lim sup
k→∞

W∞(ν1,nk , ν2,nk)

= lim sup
k→∞

supS(Cnk ◦ d−1)

≥ supS(C ◦ d−1)

≥ W∞(ν1, ν2)

which can not be. The announced result follows. �

Proof of the LD lower bound. As usual, in order to prove the LD lower
bound it is sufficient to prove that for every x ∈ [0, 1] and every ε > 0 we have

lim inf
n→∞

1

n
log P(W∞(LXn , L

Y
n ) ∈]x− ε, x+ ε[) ≥ −J∞(x). (9)

In particular we can assume that J∞(x) < ∞ for otherwise (9) trivially holds.
If J∞(x) < ∞ then for every m ≥ 1 there exists an ym such that |x − ym| <
1/m, I∞(ym) < ∞ and limm→∞ I∞(ym) = J∞(x). Now let us assume that for
every m and every ν1, ν2 ∈M1(E) such that W∞(ν1, ν2) = ym we have

lim inf
n→∞

1

n
log P(W∞(LXn , L

Y
n ) ∈]ym − ε/4, ym + ε/4[) ≥ −H(ν1|µ1)−H(ν2|µ2).

(10)
It follows that for every m large enough and every ν1, ν2 ∈ M1(E) such that
W∞(ν1, ν2) = ym

lim inf
n→∞

1

n
log P(W∞(LXn , L

Y
n ) ∈]x− ε, x+ ε[) ≥

≥ lim inf
n→∞

1

n
log P(W∞(LXn , L

Y
n ) ∈]ym − ε/4, ym + ε/4[)

≥ −H(ν1|µ1)−H(ν2|µ2)
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hence

lim inf
n→∞

1

n
log P(W∞(LXn , L

Y
n ) ∈]x− ε, x+ ε[) ≥

≥ sup
ν1,ν2∈M1(E)
W∞(ν1,ν2)=ym

−H(ν1|µ1)−H(ν2|µ2)

≥ − inf
ν1,ν2∈M1(E)
W∞(ν1,ν2)=ym

H(ν1|µ1) +H(ν2|µ2)

≥ −I∞(ym)

which leads to (9) by letting m → ∞. Hence it is sufficient to establish (10)
and this is what we do now.
Let ε > 0, ym ∈ [0, 1] be such that I∞(ym) < ∞ and ν1, ν2 ∈ M1(E) be such
that W∞(ν1, ν2) = ym. According to Lemma 2.5 to any Π = (A1, . . . , AL) ∈ P
with ∆(Π) ≤ ε/32 we can associate two sequences (ν1,n)n≥1 and (ν2,n)n≥1 and
an integer N0 such that for every n ≥ 1 we have ν1,n, ν2,n ∈ M1,n(E) and for
every n ≥ N0 one has

P(W∞(LXn , L
Y
n ) ∈]ym − ε/4, ym + ε/4[) =

= P(|W∞(LXn , L
Y
n )−W∞(ν1, ν2)| < ε/4)

≥ P(|W∞(LXn , L
Y
n )−W∞(ν1,n, ν2,n)| ≤ ε/8).

We obviously have

|W∞(LXn , L
Y
n )−W∞(ν1,n, ν2,n)| ≤ |W∞(LXn , L

Y
n )−W∞(π(LXn ), π(LYn ))|+

+|W∞(π(LXn ), π(LYn ))−W∞(π(ν1,n), π(ν2,n))|+
+|W∞(π(ν1,n), π(ν2,n))−W∞(ν1,n, ν2,n)|

so due to Lemma 2.1 we get
{π(LXn ) = π(ν1,n)} ∩ {π(LYn ) = π(ν2,n)} ⊂

⊂ {|W∞(LXn , L
Y
n )−W∞(ν1,n, ν2,n)| ≤ ε/8}

hence
P(|W∞(LXn , L

Y
n )−W∞(ν1,n, ν2,n)| ≤ ε/8) ≥

≥ P({π(LXn ) = π(ν1,n)} ∩ {π(LYn ) = π(ν2,n)})
= P({π(LXn ) = π(ν1,n)})P({π(LYn ) = π(ν2,n)})

since the sequences (Xn)n≥1 and (Yn)n≥1 are independent. It follows from
elementary combinatorics (see e.g. Lemma 2.1.9 in [4]) that

P({π(LXn ) = π(ν1,n)}) ≥ (n+ 1)−L exp−nH(π(ν1,n)|π(µ1))

and the analogue for P({π(LYn ) = π(ν2,n)}) also holds true. As a consequence

lim inf
n→∞

1

n
log P(W∞(LXn , L

Y
n ) ∈]ym − ε/4, ym + ε/4[) ≥

≥ − lim sup
n→∞

(H(π(ν1,n)|π(µ1)) +H(π(ν2,n)|π(µ2)))

= −H(π(ν1)|π(µ1))−H(π(ν2)|π(µ2)) (11)

≥ −H(ν1|µ1)−H(ν2|µ2) (12)

where (11) is due to (2) in Lemma 2.5 and (12) comes from the fact that
H(π(ν1)|π(µ1)) ≤ H(ν1|µ1) for every Π ∈ P, see e.g. Theorem 1.4.3 in [6].
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2.3 LD upper bound

We first establish the LD upper bound under the assumption that E is finite.
Then we extend this result to the general case.

2.3.1 A particular case

Here we assume that E = {a1, . . . , aN}. Since for every n ≥ 1 we have
W∞(LXn , L

Y
n ) ∈ Γ = {d(ai, aj), 1 ≤ i, j ≤ N} which is a finite set it is suffi-

cient in order to establish the LD upper bound to show that for every δ ∈ Γ we
have

lim sup
n→∞

1

n
log P(W∞(LXn , L

Y
n ) = δ) ≤ − inf

ν1,ν2∈M1(E)
W∞(ν1,ν2)=δ

{
H(ν1|µ1) +H(ν2|µ2)

}
.

(13)
For every n ≥ 1 we get

P(W∞(LXn , L
Y
n ) = δ) (14)

=
∑

ν1,n,ν2,n∈M1,n(E)
W∞(ν1,n,ν2,n)=δ

P(LXn = ν1,n, LYn = ν2,n)

≤
∑

ν1,n,ν2,n∈M1,n(E)
W∞(ν1,n,ν2,n)=δ

exp
(
−nH(ν1,n|µ1)− nH(ν2,n|µ2)

)
(15)

≤ (n+ 1)2N exp

−n inf
ν1,ν2∈M1(E)
W∞(ν1,ν2)=δ

{
H(ν1|µ1) +H(ν2|µ2)

}
see e.g. Lemma 2.1.9 in [4] for the elementary combinatorial estimate (15). The
announced (13) follows.

2.3.2 The general case

Let us introduce some more notations. For every Π ∈ P we consider

IΠ
∞(x) = inf

ν1,ν2∈M1(E)
W∞(ν1,ν2)=x

{
H(π(ν1)|π(µ1)) +H(π(ν2)|π(µ2))

}
and we shall denote by JΠ

∞ the lower semi-continuous regularization of IΠ
∞.

Since [0, 1] is compact the sequence (W∞(LXn , L
Y
n ))n≥1 is naturally exponentially

tight so it is sufficient in order to establish the LD upper bound to consider
events of the form {W∞(LXn , L

Y
n ) ∈ [a, b]}, see Lemma 1.2.18 in [4]. According

to Lemma 2.1 for every a, b ∈ [0, 1], a ≤ b, and every Π ∈ P we have for every
n ≥ 1 that

P(W∞(LXn , L
Y
n ) ∈ [a, b]) ≤ P(W∞(π(LXn ), π(LYn )) ∈ [a− 2∆(Π), b+ 2∆(Π)]).

Hence, due to the computation carried out assuming that E is finite we get for
every Π ∈ P

12



lim sup
n→∞

1

n
log P(W∞(LXn , L

Y
n ) ∈ [a, b]) ≤

≤ − inf
ν1,ν2∈M1({s1,...,sL})

W∞(ν1,ν2)∈[a−2∆(Π),b+2∆(Π)]

{
H(ν1|π(µ1)) +H(ν2|π(µ2))

}
≤ − inf

ν1,ν2∈M1(E)
W∞(ν1,ν2)∈[a−2∆(Π),b+2∆(Π)]

{
H(π(ν1)|π(µ1)) +H(π(ν2)|π(µ2))

}
≤ − inf

x∈[a−2∆(Π),b+2∆(Π)]
IΠ
∞(x)

≤ − inf
x∈[a−2∆(Π),b+2∆(Π)]

JΠ
∞(x).

Hence, to conclude the proof of the LD upper bound we are left to prove that

sup
Π∈P

inf
x∈[a−2∆(Π),b+2∆(Π)]

JΠ
∞(x) ≥ inf

x∈[a,b]
J∞(x). (16)

Assume for a while the following

Lemma 2.7 For every x ∈ [0, 1] we have supΠ J
Π
∞(x) = J∞(x).

Assume also that (16) does not hold : There exists a δ > 0 such that for every
Π ∈ P

inf
x∈[a−2∆(Π),b+2∆(Π)]

JΠ
∞(x) < inf

x∈[a,b]
J∞(x)− δ.

Since for every Π ∈ P the map x 7→ JΠ
∞(x) is lower semi-continuous there exists

a net (xΠ)Π∈P such that xΠ ∈ [a− 2∆(Π), b+ 2∆(Π)] and

JΠ
∞(xΠ)− δ/2 < inf

x∈[a,b]
J∞(x)− δ.

Due to the log sum inequality, see e.g. Theorem 2.7.1 in [2], for every K,K ′ ∈ P
such that K � K ′ and every x ∈ [0, 1] we have IK∞(x) ≤ IK′∞ (x) hence JK∞(x) ≤
JK

′

∞ (x) so for every Π′ ∈ P such that Π′ � Π we have

JΠ′

∞ (xΠ)− δ/2 < inf
x∈[a,b]

J∞(x)− δ.

Since (xΠ)Π∈P is a [0, 1]-valued net it admits a converging subnet which limit
we denote x∗ ∈ [a, b]. Due to the fact that JΠ′

∞ is lower semi-continuous we get

lim inf
Π∈P

JΠ′

∞ (xΠ) ≥ JΠ′

∞ (x∗)

hence
JΠ′

∞ (x∗) < inf
x∈[a,b]

J∞(x)− δ/2

which, according to Lemma 2.7, implies J∞(x∗) < infx∈[a,b] J∞(x)− δ/2. Since
the latter can not be (16) holds and the LD upper bound follows.

Proof of Lemma 2.7 According to Theorem 1.4.3 in [6] for every x ∈ [0, 1]
and every Π ∈ P IΠ

∞(x) ≤ I∞(x) hence JΠ
∞(x) ≤ J∞(x) whence supΠ J

Π
∞(x) ≤

J∞(x). Conversely let x be a fixed element of [0, 1]. We shall assume that
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supΠ J
Π
∞(x) < ∞ for otherwise the claimed equality trivially holds. Hence

for every Π ∈ P and every δ > 0 there exists yδ,Π such that |x − yδ,Π| < δ,
limδ→0 I

Π
∞(yδ,Π) = JΠ

∞(x) and

IΠ
∞(yδ,Π)− δ/2 < inf

y∈B(x,δ)
IΠ
∞(y). (17)

In particular we can assume that IΠ
∞(yδ,Π) < ∞ thus there exists νΠ,δ

1 , νΠ,δ
2 ∈

M1(E) such that W∞(νΠ,δ
1 , νΠ,δ

2 ) = yδ,Π and

H(π(νΠ,δ
1 )|π(µ1)) +H(π(νΠ,δ

2 )|π(µ2))− δ ≤ IΠ
∞(yδ,Π)− δ/2. (18)

Next we define ρΠ,δ
1 , ρΠ,δ

2 ∈M1(E) by

ρΠ,δ
1 (F ) =

∑
Ai∈Π

π(νΠ,δ
1 )(Ai)

µ1(Ai)
µ1(F ∩Ai)

and accordingly

ρΠ,δ
2 (F ) =

∑
Ai∈Π

π(νΠ,δ
2 )(Ai)

µ2(Ai)
µ2(F ∩Ai)

for every borelian F ⊂ E. Clearly π(νΠ,δ
1 ) = π(ρΠ,δ

1 ) and π(νΠ,δ
2 ) = π(ρΠ,δ

2 )
hence

|W∞(ρΠ,δ
1 , ρΠ,δ

2 )−W∞(νΠ,δ
1 , νΠ,δ

2 )|
≤ |W∞(ρΠ,δ

1 , ρΠ,δ
2 )−W∞(π(ρΠ,δ

1 ), π(ρΠ,δ
2 ))|+

+|W∞(π(ρΠ,δ
1 ), π(ρΠ,δ

2 ))−W∞(π(νΠ,δ
1 ), π(νΠ,δ

2 ))|+
+|W∞(π(νΠ,δ

1 ), π(νΠ,δ
2 ))−W∞(νΠ,δ

1 , νΠ,δ
2 )|

≤ 4∆(Π).

According to Theorem 1.4.3 in [6] and Theorem 2.7.1 in [2] we have

H(ρΠ,δ
1 |µ1) = sup

K∈P

∑
Bj∈K

ρΠ,δ
1 (Bj) log

ρΠ,δ
1 (Bj)

µ1(Bj)

= sup
K∈P
K�Π

∑
Ai∈Π

∑
Bj∈K
Bj⊂Ai

ρΠ,δ
1 (Bj) log

ρΠ,δ
1 (Bj)

µ1(Bj)

= sup
K∈P
K�Π

∑
Ai∈Π

∑
Bj∈K
Bj⊂Ai

π(νΠ,δ
1 )(Ai)

µ1(Ai)
µ1(Bj) log

π(νΠ,δ
1 )(Ai)

µ1(Ai)

= sup
K∈P
K�Π

∑
Ai∈Π

π(νΠ,δ
1 )(Ai) log

π(νΠ,δ
1 )(Ai)

µ1(Ai)

= H(π(νΠ,δ
1 )|π(µ1))

and H(ρΠ,δ
2 |µ2) = H(π(νΠ,δ

2 )|π(µ2)) as well, hence

H(ρΠ,δ
1 |µ1) +H(ρΠ,δ

2 |µ2) = H(π(νΠ,δ
1 )|π(µ1)) +H(π(νΠ,δ

2 )|π(µ2)).
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Thus it follows from the preceding, (17) and (18) that for every δ > 0 and every
Π ∈ P we have

inf
u∈B(yδ,Π,4∆(Π))

I∞(u)− δ ≤ inf
y∈B(x,δ)

IΠ
∞(y)

hence
inf

y∈B(x,δ+4∆(Π))
I∞(y)− δ ≤ inf

y∈B(x,δ)
IΠ
∞(y)

whence

inf
y∈B(x,δ+4∆(Π))

I∞(y)− δ ≤ sup
Π∈P

sup
δ>0

inf
y∈B(x,δ)

IΠ
∞(y)

= sup
Π
JΠ
∞(x).

But for every δ > 0 we have

sup
Π∈P

inf
y∈B(x,δ+4∆(Π))

I∞(y) = sup
Π∈P

∆(Π)<δ

inf
y∈B(x,δ+4∆(Π))

I∞(y)

hence
inf

y∈B(x,6δ)
I∞(y) ≤ sup

Π∈P
JΠ
∞(x)

whence supΠ J
Π
∞(x) ≥ J∞(x). �

3 On some properties of I∞ and J∞.

3.1 I∞ can fail to be lower semi-continuous

All through Section 3.1 we consider that E = [0, 1] is endowed with the usual
Euclidean distance and that µ1 = µ2 = µ admits f(x) = 3

21[0, 13 ](x) + 3
21[ 2

3 ,1](x)
as a density w.r.t. the Lebesgue measure. That in this setting I∞ is not lower
semi-continuous is an immediate consequence of the following two lemmas.

Lemma 3.1 Let ν1 and ν2 be two elements of M1(E) such that W∞(ν1, ν2) =
1
3 , S(ν1) ⊂ S(µ) and S(ν2) ⊂ S(µ). Necessarily at least one of ν1 or ν2 has an
atom.

Lemma 3.2 The sequence (ρn)n≥4 of elements of M1(E) defined by the densi-
ties

gn(x) =
3

2
1[0, 13−

1
n ](x) +

(
3

2
− 1

n

)
1[ 1

3−
1
n ,

1
3 ](x)+

+

(
3

2
+

1

n

)
1[ 2

3 ,
2
3 + 1

n ](x) +
3

2
1[ 2

3 + 1
n ,1](x)

is such that for every n ≥ 4 we have

1

3
< W∞(ρn, µ) ≤ 1

3
+

2

n

and

H(ρn|µ) =
3

2n

(
1− 2

3n

)
log

(
1− 2

3n

)
+

3

2n

(
1 +

2

3n

)
log

(
1 +

2

3n

)
.
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Indeed, let ν1, ν2 ∈ M1(E) be such that W∞(ν1, ν2) = 1
3 . We have two possi-

bilities :

i) S(ν1) or S(ν2) is not included in S(µ) which implies that H(ν1|µ) +
H(ν2|µ) =∞;

ii) both S(ν1) and S(ν2) are included in S(µ) which, according to Lemma
3.1, implies that at least one of ν1 or ν2 has an atom, hence H(ν1|µ) +
H(ν2|µ) =∞.

Thus I∞( 1
3 ) = ∞. Meanwhile, it follows from Lemma 3.2 that the sequence

(xn)n≥4 defined by xn = W∞(ρn, µ) is such that xn → 1
3 and 0 ≤ I∞(xn) ≤

H(ρn|µ) + H(µ|µ) → 0 as n → ∞, whence I∞ is not lower semi-continuous.
From the preceding we deduce that J∞( 1

3 ) = 0.

3.1.1 Proof of Lemma 3.1

Lemma 3.1 is an immediate consequence of the following three lemmas

Lemma 3.3 Let ν1 and ν2 be two elements of M1(E) such that S(ν1) ⊂ S(µ)
and S(ν2) ⊂ S(µ). If W∞(ν1, ν2) ≤ 1

3 then necessarily at least one of these two
statements is true

i) ν1([0, 1
3 ]) = ν2([0, 1

3 ]);

ii) at least one of ν1 or ν2 has an atom.

Lemma 3.4 Let ν1 and ν2 be two elements of M1(E) such that S(ν1) ⊂ S(µ),
S(ν2) ⊂ S(µ), W∞(ν1, ν2) ≤ 1

3 and ν1([0, 1
3 ]) = ν2([0, 1

3 ]) = α with α ∈]0, 1[.
Then at least one of these two statements is true

i) we have
W∞(ν1, ν2) = max

{
W∞(γ1, γ2),W∞(θ1, θ2)

}
where γ1, γ2 ∈M1([0, 1

3 ]) and θ1, θ2 ∈M1([ 2
3 , 1]) are defined by

γ1(A) =
ν1(A)

ν1([0, 1
3 ])

, θ1(B) =
ν1(B)

ν1([ 2
3 , 1])

for every measurable A ⊂ [0, 1
3 ] and B ⊂ [ 2

3 , 1], γ2 and θ2 being defined
on the ground of ν2 accordingly;

ii) at least one of ν1 or ν2 has an atom.

Lemma 3.5 Let ζ1 and ζ2 be two elements of M1([0, 1
3 ]) (resp. M1([ 2

3 , 1]))
such that W∞(ζ1, ζ2) = 1

3 . Then at least one of ζ1 or ζ2 has an atom.

Proof of Lemma 3.3. Let ν1 and ν2 be two elements of M1(E) such that
S(ν1) ⊂ S(µ) and S(ν2) ⊂ S(µ). We shall prove the following, which is equiv-
alent to the announced statement : If ν1([0, 1

3 ]) 6= ν2([0, 1
3 ]) and neither ν1 nor

ν2 have an atom then W∞(ν1, ν2) > 1
3 . To this end assume that ν1([0, 1

3 ]) >
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ν2([0, 1
3 ]). Let Q ∈ C(ν1, ν2) be such that W∞(ν1, ν2) = supS(Q ◦ d−1). We

have

ν1([0,
1

3
]) = Q([0,

1

3
]× E)

= Q([0,
1

3
]× [0,

1

3
]) +Q([0,

1

3
]×]

1

3
,

2

3
[) +Q([0,

1

3
]× [

2

3
, 1])

= Q([0,
1

3
]× [0,

1

3
]) +Q([0,

1

3
]× [

2

3
, 1])

since Q([0, 1
3 ]×] 1

3 ,
2
3 [) ≤ ν2(] 1

3 ,
2
3 [) = 0 because S(ν2) ⊂ S(µ) = [0, 1

3 ] ∪ [ 2
3 , 1].

But Q([0, 1
3 ]× [0, 1

3 ]) ≤ Q(E × [0, 1
3 ]) = ν2([0, 1

3 ]) hence

Q([0,
1

3
]× [

2

3
, 1]) = ν1([0,

1

3
])−Q([0,

1

3
]× [0,

1

3
])

≥ ν1([0,
1

3
])− ν2([0,

1

3
])

> 0.

We have ν2({ 2
3}) = 0 since ν2 has no atom, hence Q([0, 1

3 ] × {2
3}) ≤ Q(E ×

{ 2
3}) = 0 whence Q([0, 1

3 ]×] 2
3 , 1]) > 0. Since [0, 1

3 ]×] 2
3 , 1] =

⋃
m>1[0, 1

3 ] ×
[ 2
3 + 1

m , 1] there exists an m0 > 0 such that Q([0, 1
3 ] × [ 2

3 + 1
m0
, 1]) > 0 hence

W∞(ν1, ν2) = supS(Q ◦ d−1) ≥ 1
3 + 1

m0
> 1

3 . �
Proof of Lemma 3.4. Let ν1 and ν2 be two elements of M1(E) such that
S(ν1) ⊂ S(µ), S(ν2) ⊂ S(µ), W∞(ν1, ν2) ≤ 1 and ν1([0, 1

3 ]) = ν2([0, 1
3 ]) = α

with α ∈]0, 1[. We shall prove that if ii) is false then i) is necessarily true.
According to Lemma 1.2 there exists a Q ∈ C∞(ν1, ν2) such that W∞(ν1, ν2) =
supS(Q ◦ d−1). Since S(ν1) ⊂ S(µ) and S(ν2) ⊂ S(µ) we have Q(E×] 1

3 ,
2
3 [) =

Q(] 1
3 ,

2
3 [×E) = 0. Since supS(Q ◦ d−1) ≤ 1

3 we further have Q([0, 1
3 ] × [ 2

3 , 1] \
{( 1

3 ,
2
3 )}) = Q([ 2

3 , 1]× [0, 1
3 ] \ {( 2

3 ,
1
3 )}) = 0. But Q({( 1

3 ,
2
3 )}) +Q({( 2

3 ,
1
3 )}) = 0

for otherwise either ν1 or ν2 would have at least an atom. Hence Q(E × E) =
1 = Q([0, 1

3 ]× [0, 1
3 ]) +Q([ 2

3 , 1]× [ 2
3 , 1]) whence Q([0, 1

3 ]× [0, 1
3 ]) = ν1([0, 1

3 ]) =
ν2([0, 1

3 ]) = α > 0 and Q([ 2
3 , 1] × [ 2

3 , 1]) = ν1([ 2
3 , 1]) = ν2([ 2

3 , 1]) = 1 − α > 0.
Since S(Q) is infinitely cyclically monotone , the probability measures on E2

defined by

Qsw(A) =
Q(A ∩ [0, 1

3 ]× [0, 1
3 ])

Q([0, 1
3 ]× [0, 1

3 ])
, Qne(B) =

Q(B ∩ [ 2
3 , 1]× [ 2

3 , 1])

Q([ 2
3 , 1]× [ 2

3 , 1])

for every measurable A,B ⊂ E2 are elements of C∞(γ1, γ2) and C∞(θ1, θ2)
respectively and S(Q) = S(Qsw) ∪ S(Qne). Indeed, for every measurable A ⊂
[0, 1

3 ] we have

Qsw1 (A) = Qsw(A× E)

=
Q(A× E ∩ [0, 1

3 ]× [0, 1
3 ])

Q([0, 1
3 ]× [0, 1

3 ])
(19)

=
Q(A× E)

ν1([0, 1
3 ])

(20)

=
ν1(A)

ν1([0, 1
3 ])
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where (20) follows from (19) due to the fact that Q([0, 1
3 ]×] 1

3 , 1]) = 0. One
proves that Qsw2 = γ2, Qne1 = θ1 and Qne2 = θ2 the same way. Thus we have
W∞(γ1, γ2) = supS(Qsw ◦ d−1) and W∞(θ1, θ2) = supS(Qne ◦ d−1) hence

W∞(ν1, ν2) = supS(Q ◦ d−1)

= max
{

supS(Qsw ◦ d−1), supS(Qne ◦ d−1)
}

= max
{
W∞(γ1, γ2),W∞(θ1, θ2)

}
.

�
Proof of Lemma 3.5. Let ζ1 and ζ2 be two elements of M1([0, 1

3 ]) such
that W∞(ζ1, ζ2) = 1

3 . (The proof when ζ1 and ζ2 are elements of M1([ 2
3 , 1]) is

obviously the same.) There exists a Q ∈ C∞(ζ1, ζ2) such that supS(Q◦d−1) = 1
3

and, to fix notations, we assume that (0, 1
3 ) ∈ S(Q). We shall prove that if ζ2

has no atoms on [0, 1
3 ] then 0 is an atom for ζ1. To this end it is sufficient to

prove that for every u, v ∈]0, 1
3 [ we have ζ1([0, u]) ≥ ζ2([0, v]) since this leads

to ζ1([0, u]) = 1 for every u ∈]0, 1
3 [ hence ζ1({0}) = 1. So, let us assume

there exists u∗, v∗ ∈]0, 1
3 [ such that ζ1([0, u∗]) < ζ2([0, v∗]). Since (0, 1

3 ) ∈ S(Q)
we have 0 < ζ1([0, u∗]) < ζ2([0, v∗]). Since ζ2 has no atoms on [0, 1

3 ] there
exists a v∗∗ ∈]0, 1[ such that ζ1([0, u∗]) = ζ2([0, v∗∗]). We can assume that
ζ1([0, u∗]) < 1 for otherwise we would have ζ1([0, u∗]) = ζ2([0, v∗∗]) = 1 hence
W∞(ζ1, ζ2) = max{u∗, v∗∗} < 1

3 . We define four probability measures on [0, 1
3 ]

by setting for every measurable A

ζ1,l(A) =
ζ1(A ∩ [0, u∗])

ζ1([0, u∗])
, ζ2,l(A) =

ζ2(A ∩ [0, v∗∗])

ζ2([0, v∗∗])

and

ζ1,r(A) =
ζ1(A∩]u∗, 1

3 ])

ζ1(]u∗, 1
3 ])

, ζ2,r(A) =
ζ2(A∩]v∗∗, 1

3 ])

ζ2(]v∗∗, 1
3 ])

.

There exist two infinitely cyclically monotone Ql ∈ C(ζ1,l, ζ2,l) and Qr ∈
C(ζ1,r, ζ2,r) and we observe that the probability measure K defined on E2 by

K = ζ1([0, u∗])Ql + ζ1(]u∗,
1

3
])Qr

= ζ2([0, v∗∗])Ql + ζ2(]v∗∗,
1

3
])Qr

is such that K ∈ C(ζ1, ζ2). Moreover

W∞(ζ1, ζ2) ≤ supS(K ◦ d−1)

= max{W∞(ζ1,l, ζ2,l),W∞(ζ1,r, ζ2,r)}
≤ max{max(u∗, v∗∗),max(1− u∗, 1− v∗∗)}

<
1

3

which contradicts W∞(ζ1, ζ2) = 1
3 and concludes the proof.

3.1.2 Proof of Lemma 3.2

First of all notice that for every n ≥ 3 we have ρn([0, 1
3 ]) 6= µ([0, 1

3 ]) hence
W∞(ρn, µ) > 1

3 according to Lemma 3.4. Next, it is not difficult to check that
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for every n ≥ 4 the probability measure on E2 denoted Qn which density w.r.t.
the Lebesgue measure on E2 is given by

hn(x) =
3

2
(

1
3 −

1
n

)1[0, 13−
1
n ]2(x) + n

(
3

2
− 1

n

)
1[ 1

3−
1
n ,

1
3 ]2(x)+

+1[ 1
3−

1
n ,

1
3 ]×[ 2

3 ,
2
3 + 1

n ](x) +
9

2
1[ 2

3 ,1]2(x)

is such that Qn1 = µ and Qn2 = ρn hence W∞(µ, ρn) ≤ supS(Qn ◦d−1) ≤ 1
3 + 2

n .
Finally, that H(ρn|µ) is as given is the result of a straightforward computation.

3.2 On the zeros of J∞.

First we prove Lemma 1.4. In Section 3.2.2 we establish that if J∞(x) = 0 then
x ∈ Zµ1,µ2 while the converse is proven in Section 3.2.3. Finally in Section 3.2.4
we prove Proposition 1.2

3.2.1 Proof of Lemma 1.4.

Let x ∈ [0, 1] be such that J∞(x) = 0 : There exists a sequence (xn)n≥1 of
elements of [0, 1] such that xn → x and limn→∞ I∞(xn) = 0. Thus, by taking
subsequences if needed, we can say that there exists a sequence (Pn)n≥1 of
infinitely cyclically monotone elements of M1(E×E) such that for every n ≥ 1
we have xn = supS(Pn ◦ d−1), H(Pn1 |µ1) + H(Pn2 |µ2) → 0 as n → ∞ and
(Pn)n≥1 is convergent w.r.t. the weak convergence topology on M1(E2) since
E2 is compact. Lets denote P the limit of (Pn)n≥1. We necessarily have that

Pn1
w→ P1 = µ1 and Pn2

w→ P2 = µ2 since

0 ≤ H(P1|µ1) +H(P2|µ2) ≤ lim inf
(
H(Pn1 |µ1) +H(Pn2 |µ2)

)
= 0

for ν 7→ H(ν|µ) is lower semi-continuous w.r.t. the weak convergence topology,
see e.g. Theorem 1.4.3 in [6]. According to Lemma 2.4 P ∈ C∞(µ1, µ2) whence

supS(P ◦ d−1) = W∞(µ1, µ2). Finally, since Pn
w→ P Lemma 2.2 implies

x = lim supn→∞ supS(Pn ◦ d−1) ≥ supS(P ◦ d−1) = W∞(µ1, µ2). �

3.2.2 If J∞(x) = 0 then x ∈ Zµ1,µ2 .

Let x ∈ [0, 1] be such that J∞(x) = 0. We know from Lemma 1.4 that x ≥
W∞(µ1, µ2). Moreover there exists a sequence (xn)n≥1 of elements of [0, 1]
such that xn → x and limn→∞ I∞(xn) = 0. Again, by taking subsequences if
needed, we can say that there exists a sequence (Pn)n≥1 of infinitely cyclically
monotone elements of M1(E × E) such that for every n ≥ 1 we have xn =
supS(Pn ◦ d−1) = d(an, bn), (an, bn) ∈ S(Pn)

H(Pn1 |µ1) +H(Pn2 |µ2)→ 0 (21)

n → ∞ and (Pn)n≥1 is convergent w.r.t. the weak convergence topology on
M1(E × E). We can also assume that (an)n≥1 and (bn)n≥1 are converging
sequences of elements of S(µ1) and S(µ2) respectively. Lets denote P (resp.
a, b) the limit of (Pn)n≥1 (resp. (an)n≥1, (b

n)n≥1). We obviously have that
x = d(a, b) and we prove that a ↔ b. Again, due to Lemma 2.4, Lemma 2.2
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and (21) we necessarily have that Pn1
w→ P1 = µ1 and Pn2

w→ P2 = µ2, hence
P ∈ C∞(µ1, µ2). We have that a ∈ S(µ1) and b ∈ S(µ2) since both S(µ1) and
S(µ2) are closed so we are left to prove that for every integer N ≥ 2, every
(α2, β2), . . . , (αN , βN ) ∈ S(P ) and every σ ∈ SN we have

d(a, b) ≤ max
i=1,...,N

{
d(αi, βσ(i))

}
where α1 = a and β1 = b. Indeed, it follows from Lemma 2.3 that for every
integer i, 2 ≤ i ≤ N , and every n ≥ 1 there exists (αni , β

n
i ) ∈ S(Pn) such that

(αni , β
n
i )→ (αi, βi) as n→∞. Moreover, (an, bn)→ (a, b) and (an, bn) ∈ S(Pn)

for every n ≥ 1. Since Pn is infinitely cyclically monotone and supS(Pn◦d−1) =
d(an, bn) we have that for every σ ∈ SN d(an, bn) ≤ maxi=1,...,N{d(αni , β

n
σ(i))}

where αn1 = an and βn1 = bn. This proves the announced inequality by taking
the limit n→∞ and x ∈ Zµ1,µ2 since x = d(a, b) and a↔ b.

3.2.3 If x ∈ Zµ1,µ2 then J∞(x) = 0.

First we prove that W∞(µ1, µ2) ∈ Zµ1,µ2 . Indeed, according to Lemma 1.2 there
exists P ∈ C∞(µ1, µ2) such that W∞(µ1, µ2) = supS(P ◦ d−1) = d(a, b) with
(a, b) ∈ S(P ). Clearly a↔ b hence W∞(µ1, µ2) ∈ Zµ1,µ2 . So now let x ∈ Zµ1,µ2

be such that x > W∞(µ1, µ2) since we already know that J∞(W∞(µ1, µ2)) = 0.
Since x ∈ Zµ1,µ2 there exists (a, b) ∈ S(µ1) × S(µ2) such that x = d(a, b)
and a ↔ b which means that there exists Q ∈ C∞(µ1, µ2) such that for every
integer N ≥ 2, every (α2, β2), . . . , (αN , βN ) ∈ S(Q) and every σ ∈ SN we have
d(a, b) ≤ maxi=1,...,N

{
d(αi, βσ(i))

}
where (α1, β1) = (a, b). Since d(a, b) = x >

W∞(µ1, µ2) = supS(Q ◦ d−1) ≥ 0 there exists an ε0 small enough to ensure
that for every 0 < ε < ε0 we can find an open neighborhood Uε × Vε of (a, b)
such that

1. Uε ∩ Vε = ∅;

2. Uε × Vε ∩ S(Q) = ∅;

3. µ1(Uε) > 0 and µ2(Vε) > 0;

4. supx,y∈Uε d(x, y) ≤ ε/2 and supx,y∈Vε d(x, y) ≤ ε/2.

Starting from those (Uε)0<ε<ε0 and (Vε)0<ε<ε0 , for every 0 < ε < ε0 one can
choose a finite partition Πε = (Bε1, . . . , B

ε
L(ε)) of E into non-empty measurable

sets such that

1. for every 1 ≤ i ≤ L(ε) we have supx,y∈Bεi d(x, y) ≤ ε/2;

2. there exists two distinct integers i(a) and i(b) such that 1 ≤ i(a), i(b) ≤
L(ε), Bεi(a) = Uε and Bεi(b) = Vε.

To every Πε we associate (sε1, . . . , s
ε
L(ε)) ∈ E

L(ε) such that for every 1 ≤ i ≤ L(ε)
we have sεi ∈ Bεi with sεi(a) = a, sεi(b) = b and we set

πε : M1(E) → M1({sε1, . . . , sεL(ε)})
ν 7→

∑L(ε)
i=1 ν(Bεi )δsεi .
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For every 0 < ε < ε0 we define two elements κ1,ε and κ2,ε of M1(E) by

κ1,ε(A) =
µ1(A ∩Bεi(a))

µ1(Bεi(a))
and κ2,ε(A) =

µ2(A ∩Bεi(b))
µ2(Bεi(b))

.

For every 0 < ε < ε0 and every η ∈]0, 1[ we further introduce

Qε,η = η
(
κ1,ε ⊗ κ2,ε

)
+ (1− η)Q

which is an element of M1(E × E) such that Qε,η1 = ηκ1,ε + (1 − η)µ1 and
Qε,η2 = ηκ2,ε + (1− η)µ2. Finally, we also consider

Cε,η = ηδ(a,b) + (1− η)
∑

(i,j)∈{1,...,L(ε)}2
Q(Bεi ×Bεj )δ(sεi ,sεj).

We have Cε,η1 = πε(Qε,η1 ) and Cε,η2 = πε(Qε,η2 ). Since Cε,η need not be infinitely
cyclically monotone we have to consider

C̃ε,η = ηδ(a,b) + (1− η)
∑

(i,j)∈{1,...,L(ε)}2
Q(Bεi ×Bεj )δ(s̃ε1(i,j),s̃ε2(i,j))

where for every (i, j) ∈ {1, . . . , L(ε)}2 such that Q(Bεi × Bεj ) > 0 we have

(s̃ε1(i, j), s̃ε2(i, j)) ∈ Bεi × Bεj ∩ S(Q) and (s̃ε1(i(a), i(b)), s̃ε2(i(a), i(b))) = (a, b).

That a ↔ b implies that C̃ε,η is infinitely cyclically monotone thus, according

to Lemma 1.3, W∞(C̃ε,η1 , C̃ε,η2 ) = d(a, b) = x. Clearly W∞(Cε,η1 , C̃ε,η1 ) ≤ ε

and W∞(Cε,η2 , C̃ε,η2 ) ≤ ε so |W∞(Cε,η1 , Cε,η2 ) − x| ≤ 2ε which implies that
|W∞(Qε,η1 , Qε,η2 ) − x| ≤ 4ε according to Lemma 2.1. For every 0 < ε < ε0

and every η ∈]0, 1[ we have

I∞(W∞(Qε,η1 , Qε,η2 )) ≤ H(Qε,η1 |µ1) +H(Qε,η2 |µ2)

= H(ηκ1,ε + (1− η)µ1|µ1) +H(ηκ2,ε + (1− η)µ2|µ2)

≤ ηH(κ1,ε|µ1) + (1− η)H(µ1|µ1) +

+ηH(κ2,ε|µ2) + (1− η)H(µ2|µ2)

= ηH(κ1,ε|µ1) + ηH(κ2,ε|µ2).

Since for every 0 < ε < ε0 we have H(κ1,ε|µ1) < ∞ and H(κ2,ε|µ2) < ∞ one
can find an ηε ∈]0, 1[ such that

lim
ε→0

(
ηεH(κ1,ε|µ1) + ηεH(κ2,ε|µ2)

)
= 0.

Now, for every 0 < ε < ε0 we set xε = W∞(Qε,ηε1 , Qε,ηε2 ). By construction we
have limε→0 x

ε = x and limε→0 I∞(xε) = 0 hence J∞(x) = 0.

3.2.4 Proof of Proposition 1.2

The key here is that when µ1 = µ2 = µ the set C∞(µ1, µ2) is reduced to the
diagonal coupling of µ with itself, which we denote Qµ.

Let a, b ∈ E such that a ↔ b. Let N be any integer larger than 3 and
α1, . . . , αN be any sequence of elements of S(µ) of size N , with α1 = a and

αN = b. We introduce (α̃i, β̃i)1≤i≤N+1 by setting (α̃1, β̃1) = (a, b) and (α̃i, β̃i) =
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(αi−1, αi−1) ∈ S(Qµ) for every integer i, 2 ≤ i ≤ N + 1. Since a↔ b, for every

σ ∈ SN+1 we have d(a, b) ≤ maxi=1,...,N+1 d(α̃i, β̃σ(i)). Taking σ such that
σ(i) = i+1 for every 1 ≤ i ≤ N and σ(N+1) = 1 leads to d(a, b) ≤ d(αL, αL+1)

for some L such that 1 ≤ L ≤ N − 1 since d(α̃1, β̃σ(1)) = d(a, a) = 0 and

d(α̃N+1, β̃σ(N+1)) = d(b, b) = 0.
Conversely let a, b ∈ S(µ) such that for every integer N ≥ 3 and every

sequence α1, . . . , αN of elements of S(µ) such that α1 = a and αN = b there
is at least one integer L such that 1 ≤ L ≤ N − 1 and d(a, b) ≤ d(αL, αL+1).
To prove that a ↔ b we prove that for every integer N larger than 2, every

family (α̃2, β̃2) = (α̃2, α̃2), . . . , (α̃N , β̃N ) = (α̃N , α̃N ) of elements of S(Qµ) and

every σ ∈ SN we have d(a, b) ≤ maxi=1,...,N d(α̃i, β̃σ(i)) where (α̃1, β̃1) = (a, b).

If 1 is a fixed point of σ then obviously d(a, b) ≤ maxi=1,...,N

{
d(α̃i, α̃σ(i))

}
. If

σ(1) 6= 1 we denote C(σ, 1) the cycle of σ which contains 1

C(σ, 1) = (1, σ(1), . . . , σk−1(1))

where k is the length of C(σ, 1). By setting α1 = α̃1 = a, α2 = α̃σ(1), α3 =
α̃σ2(1), . . . , αk = α̃σk−1(1), αk+1 = b we clearly obtain a journey from a to b
through elements of S(µ) divided into k stages hence

d(a, b) ≤ max
L=1,...,k

d(αL, αL+1)

= max
i∈C(σ,1)∪{σk(1)}

d(α̃i, β̃σ(i))

≤ max
i=1,...,N

d(α̃i, β̃σ(i))

which achieves the proof that a↔ b.

4 On the almost sure asymptotic behavior of
(W∞(LXn , L

Y
n ))n≥1

In this section we will successively prove Lemma 1.5, 1.6, 1.7 and Proposition
1.3. To this end we need some more notations and results. For every x, y ∈ S(µ)
and every integer n ≥ 2 we set

Rn(x, y) = {ᾱ = (α1, . . . , αn) ∈ S(µ)n such that α1 = x and αn = y},

C (x, y) = ∪n≥2Rn(x, y) and δµ(x, y) = inf
ᾱ∈C (x,y)

max
i∈{1,...,n−1}

d(αi, αi+1).

For every a, b, c ∈ S(µ), every ᾱ = (α1, . . . , αn) ∈ C (a, b) and every γ̄ =
(γ1, . . . , γm) ∈ C (b, c) we shall write

ᾱ ∨ γ̄ = (α1, . . . , αn, γ2, . . . , γm) ∈ C (a, c).

We will use δµ mainly to define appropriate partitions of S(µ). It has the
following properties

Lemma 4.1 1. For every a, b ∈ S(µ) we have δµ(a, b) ≤ d(a, b).

2. For every a, b, c ∈ S(µ) we have δµ(a, b) ≤ max{δµ(a, c), δµ(c, b)}.
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3. For every a, b ∈ S(µ) we have a↔ b if and only if δµ(a, b) = d(a, b).

Proof of Lemma 4.1 1. For every a, b ∈ S(µ), by considering ᾱ = (a, b) we
immediately get δµ(a, b) ≤ d(a, b). 2. For every a, b, c ∈ S(µ) and every ε > 0
there exists ᾱ1 = (α1

1 = a, . . . , α1
n = c) ∈ C (a, c) such that

max
i=1,...,n−1

d(α1
i , α

1
i+1) < δµ(a, c) + ε/2

and there exists ᾱ2 = (α2
1 = c, . . . , α2

m = b) ∈ C (c, b) such that

max
i=1,...,m−1

d(α2
i , α

2
i+1) < δµ(c, b) + ε/2.

Since ᾱ = ᾱ1 ∨ ᾱ2 = (α1
1 = a, . . . , α1

n = c, α2
2, . . . , α

2
m = b) ∈ C (a, b) we have

δµ(a, b) ≤ max{ max
i=1,...,n−1

d(α1
i , α

1
i+1), max

i=1,...,m−1
d(α2

i , α
2
i+1)}

≤ max{δµ(a, c), δµ(c, b)}+ ε

which leads to the announced inequality by taking ε → 0. 3. Let a, b ∈ S(µ)
be such that a↔ b. By definition of ↔ for every n ≥ 2 and every ᾱ ∈ Rn(a, b)
we have d(a, b) ≤ maxi∈{1,...,n−1} d(αi, αi+1) hence d(a, b) ≤ δµ(a, b). It follows
that if a ↔ b we have δµ(a, b) = d(a, b) since δµ(a, b) ≤ d(a, b) is always true.
Conversely assume that a, b ∈ S(µ) are such that we have δµ(a, b) = d(a, b) thus
d(a, b) ≤ δµ(a, b). It follows from the definition of δµ that for every integer n ≥ 2
and every ᾱ ∈ Rn(a, b) we have d(a, b) ≤ maxi∈{1,...,n−1} d(αi, αi+1) which by
definition means a↔ b. �

Proof of Lemma 1.5 First we assume that S(µ) is connected. Then it is
well-chained i.e. for every a, b ∈ S(µ) such that a 6= b and every ε > 0 there
exist an integer n ≥ 2 and ᾱ ∈ Rn(a, b) such that for every 1 ≤ i ≤ n − 1 we
have d(αi, αi+1) ≤ ε, see e.g. 8.2 of Chapter I in [22]. Thus δµ(a, b) = 0 for
every a, b ∈ S(µ) hence, according to the third point of Lemma 4.1, a↔ b if and
only if d(a, b) = 0 whence Zµ = {0}. Now we prove that if Zµ = {0} then S(µ)
is connected. It is sufficient to prove that S(µ) is well-chained since, according
to e.g. 9.21 of Chapter I in [22] any metric, compact, well-chained space is
connected. Actually we shall prove that if Zµ = {0} then necessarily for every
a, b ∈ S(µ) we have δµ(a, b) = 0 since this is obviously equivalent to the well-
chained condition. To this end we proceed by contradiction and assume that
we have Zµ = {0} and that there exists some a, b ∈ S(µ) such that δµ(a, b) > 0.
We shall construct (u, v) ∈ S(µ)2 such that δµ(u, v) = d(u, v) = δµ(a, b) > 0 in
contradiction with Zµ = {0}.

According to the definition of δµ for every integer n ≥ 1 there exists ᾱn =
(αn1 , . . . , α

n
L(n)) ∈ C (a, b) such that

δµ(a, b) ≤ max
i=1,...,L(n)−1

d(αni , α
n
i+1) < δµ(a, b) +

1

n
.

Since ᾱn ∈ C (a, b) it follows from the second point in Lemma 4.1 that

δµ(a, b) ≤ max
i=1,...,L(n)−1

δµ(αni , α
n
i+1). (22)
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Due to the first point in Lemma 4.1 we have

max
i=1,...,L(n)−1

δµ(αni , α
n
i+1) ≤ max

i=1,...,L(n)−1
d(αni , α

n
i+1) < δµ(a, b) +

1

n
. (23)

For every n ≥ 1 we consider G(n) ⊂ {1, . . . , L(n) − 1} defined by j ∈ G(n)
if and only if δµ(αnj , α

n
j+1) = maxi=1,...,L(n)−1 δ

µ(αni , α
n
i+1). We further define

i0(n) ∈ G(n) to be such that d(αni0(n), α
n
i0(n)+1) = maxi∈G(n) d(αni , α

n
i+1). In

particular

d(αni0(n), α
n
i0(n)+1) ≤ max

i=1,...,L(n)−1
d(αni , α

n
i+1) < δµ(a, b) +

1

n
. (24)

According to the definition of i0(n), every j ∈ {1, . . . , L(n) − 1} such that
d(αnj , α

n
j+1) > d(αni0(n), α

n
i0(n)+1) is necessarily such that

δµ(αnj , α
n
j+1) < δµ(αni0(n), α

n
i0(n)+1).

By definition of δµ for every such j ∈ {1, . . . , L(n) − 1} there exists α̂j =
(α̂j1, . . . , α̂

j
M(j)) ∈ C (αnj , α

n
j+1) such that

max
l=1,...,M(j)−1

d(α̂jl , α̂
j
l+1) < δµ(αni0(n), α

n
i0(n)+1)

≤ d(αni0(n), α
n
i0(n)+1). (25)

By replacing every such (αnj , α
n
j+1) ring in the ᾱn chain by the corresponding α̂j

chain we get γ̄ ∈ C (a, b) such that max d(γi, γi+1) = d(αni0(n), α
n
i0(n)+1). Since

γ̄ ∈ C (a, b), according to the second point of Lemma 4.1 and (25) we have

δµ(a, b) ≤ d(αni0(n), α
n
i0(n)+1). (26)

So we have a sequence ((un, vn) = (αni0(n), α
n
i0(n)+1))n≥1 of elements of S(µ)2

such that for every n ≥ 1

δµ(a, b) ≤ δµ(un, vn) < δµ(a, b) +
1

n

according to (22) and (23) and

δµ(a, b) < d(un, vn) ≤ δµ(a, b) +
1

n
.

according to (24) and (26). Since S(µ)2 is compact, from this sequence we
can extract a sub-sequence ((unk , vnk)k≥1 that converges towards some (u, v) ∈
S(µ)2. Obviously d(u, v) = δµ(a, b) and if we show that δµ(u, v) = δµ(a, b) too
the proof of Lemma 1.5 is done. It follows from the definition of (unk , vnk)k≥1

that for every k ≥ 1 we have

δµ(a, b) ≤ δµ(unk , vnk)

≤ max {δµ(unk , u), δµ(u, v), δµ(v, vnk)}
≤ max {d(unk , u), δµ(u, v), d(v, vnk)}
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hence by taking k large enough we get δµ(a, b) ≤ δµ(u, v) since δµ(a, b) > 0. On
the other hand

δµ(u, v) ≤ max {δµ(unk , u), δµ(unk , vnk), δµ(v, vnk)}

≤
{
d(unk , u), δµ(a, b) +

1

nk
, d(v, vnk)

}
hence δµ(u, v) ≤ δµ(a, b) + 1

nk
for k large enough hence δµ(a, b) = δµ(u, v). �

Proof of Lemma 1.6 Let a, b ∈ S(µ) be such that a ↔ b : According to
Lemma 4.1 we have δµ(a, b) = d(a, b). If a = b then Ai(a) = Ai(b) and the
equality d(a, b) = d(Ai(a), Ai(b)) is satisfied. If a 6= b necessarily Ai(a) 6= Ai(b)
for if a and b were elements of the same connected component of S(µ) we would
have δµ(a, b) = 0 6= d(a, b) since every connected space is well-chained. By
definition we have d(a, b) ≥ d(Ai(a), Ai(b)) and it can not be that d(a, b) >
d(Ai(a), Ai(b)) since this would be in contradiction with a ↔ b. Indeed, since
Ai(a) and Ai(b) are both closed there exists (x(a), x(b)) ∈ Ai(a)×Ai(b) such that
d(x(a), x(b)) = d(Ai(a), Ai(b)) and according to the second point in Lemma 4.1

δµ(a, b) ≤ max{δµ(a, x(a)), d(x(a), x(b)), δµ(b, x(b))} = d(x(a), x(b)) < d(a, b)

since δµ(a, x(a)) = δµ(b, x(b)) = 0 because Ai(a) and Ai(b) are connected hence
well-chained, and this contradicts a↔ b. �

Proof of Lemma 1.7 We start showing that β1 = supZµ is not the limit
of an increasing sequence (xn)n≥1 of elements of Zµ. We can assume that
β1 > 0 since otherwise the claim is clearly true. We proceed by contradiction
and assume there exists an increasing sequence (xn)n≥1 of elements of Zµ such
that xn → β1. Then there exists a sequence (an, bn)n≥1 of elements of S(µ)2

such that for every n ≥ 1, an ↔ bn and δµ(an, bn) = d(an, bn) = xn. Since
E is compact, by taking sub-sequences if needed, we can assume that there
exists a, b ∈ S(µ) such that an → a, bn → b and d(a, b) = β1. So, we can
choose ε > 0 small enough to ensure that there exists an N0 such that for every
n ≥ N0, δ

µ(an, an+1) ≤ d(an, an+1) < ε, δµ(bn, bn+1) ≤ d(bn, bn+1) < ε and

ε < β1 − ε < δµ(aN0
, bN0

) = d(aN0
, bN0

) < d(an, bn)

hence

δµ(an, bn)

≤ max
k=0,...,n−N0−1

{δµ(aN0+k, aN0+k+1), δµ(aN0 , bN0), δµ(bN0+k, bN0+k+1)}

= δµ(aN0
, bN0

)

< d(an, bn)

in contradiction with an ↔ bn. Thus β1 = maxZµ is an isolated point of
Zµ. One can repeat this to prove that every βi = supZµ \ {β1, . . . , βi−1} is an
isolated point as long as βi 6= 0. �

With Lemma 1.7 in hands we can start the proper proof of Proposition 1.3. We
first prove that

P(lim supW∞(LXn , L
Y
n ) ∈ Zµ) = P(lim inf W∞(LXn , L

Y
n ) ∈ Zµ) = 1. (27)
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Indeed, since J∞ is a good rate function, it follows from Theorem 1.1 that for
every ε > 0 there exists C(ε) > 0 such that

lim sup
n→∞

1

n
log P(W∞(LXn , L

Y
n ) ∈ V cε ) < −C(ε)

where Vε = [0, ε[∪
(
∪β∈Zµ ]β − ε, β + ε[

)
. Thus∑

n≥1

P(W∞(LXn , L
Y
n ) ∈ V cε ) <∞

hence P(lim sup{W∞(LXn , L
Y
n ) ∈ V cε }) = 0 according to the Borel-Cantelli

Lemma. It follows that for every ε > 0

P(lim supW∞(LXn , L
Y
n ) ∈ V̄ε) = 1 and P(lim inf W∞(LXn , L

Y
n ) ∈ V̄ε) = 1

which, because of Lemma 1.7, implies (27) by taking ε ↓ 0. The first point in
Proposition 1.3 follows immediately thanks to Lemma 1.5.

From now on we assume that S(µ) has at least two connected components.
We shall prove in Section 4.1 that we always have

P(lim supW∞(LXn , L
Y
n ) = β1) = 1. (28)

Next we will prove in Section 4.2 that if there exists only two connected com-
ponents Ai, Aj of S(µ) such that Ai ↔ Aj and d(Ai, Aj) = β1 then

P(lim inf W∞(LXn , L
Y
n ) = β2) = 1 (29)

and in Section 4.3 we will prove that in all other situations where S(µ) is not
connected

P(lim inf W∞(LXn , L
Y
n ) = β1) = 1. (30)

All these results rely on the following “bins and balls” lemma which proof is
postponed until the end of the section.

Lemma 4.2 Let U = (U1, . . . , Un, . . . ) and V = (V1, . . . , Vn, . . . ) be two in-
dependent sequences of independent random variables with the same law on
{1, . . . , L} defined by P(U1 = i) = γi, 0 < γi < 1 for every i ∈ {1, . . . , L}.
The counters

Un =

(
n∑
i=1

1{1}(Ui), . . . ,
n∑
i=1

1{L}(Ui)

)
and

V n =

(
n∑
i=1

1{1}(Vi), . . . ,
n∑
i=1

1{L}(Vi)

)
are such that

1. If L = 2 then P(lim sup{Un 6= V n}) = 1;

2. If L = 2 then P(lim sup{Un = V n}) = 1;

3. If L = 3 then P(lim sup{Un = V n}) = 0.
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4.1 Proof of (28)

According to Lemma 1.6 and Lemma 1.7 there exists (at least) two a, b ∈ S(µ)
such that a ↔ b and d(a, b) = d(Ai(a), Ai(b)) = β1. We define a partition of
S(µ) into two non-empty sets by taking

C1 = {y ∈ S(µ) such that δµ(a, y) < β1}

and
C2 = {y ∈ S(µ) such that δµ(a, y) ≥ β1}.

Notice that if x ∈ C1 and y ∈ C2 then necessarily d(x, y) ≥ β1. Indeed if
we had d(x, y) < β1 then, according to Lemma 4.1, we would have δµ(a, y) ≤
max{δµ(a, x), δµ(x, y)} < β1 in contradiction with y ∈ C2. It follows that if
LXn (C1) 6= LYn (C1) then for every σ ∈ Sn there exists at least one 1 ≤ i ≤ n
such that Xi ∈ C1 and Yσ(i) ∈ C2 hence W∞(LXn , L

Y
n ) ≥ β1. Thus

lim sup{LXn (C1) 6= LYn (C1)} ⊂ {lim supW∞(LXn , L
Y
n ) ≥ β1}

hence

P(lim sup{LXn (C1) 6= LYn (C1)}) ≤ P(lim supW∞(LXn , L
Y
n ) ≥ β1).

By defining for every integer i ≥ 1

Ui =

{
1 if Xi ∈ C1

2 if Xi ∈ C2

and Vi accordingly on the ground of Yi we see that

P(lim sup{Un 6= V n}) = P(lim sup{LXn (C1) 6= LYn (C1)})

whence P(lim supW∞(LXn , L
Y
n ) ≥ β1) = 1 according to Lemma 4.2, which com-

bined to (27) proves (28).

4.2 Proof of (29)

Here we assume that there is a unique pair {Ai, Aj} of connected components
of S(µ) such that Ai ↔ Aj and d(Ai, Aj) = β1. Let a ∈ Ai and b ∈ Aj
be such that a ↔ b and d(a, b) = β1. Since Zµ has no accumulation point
there exists (at least) two Ak, Al such that Ak ↔ Al, d(Ak, Al) = β2 < β1

and (a′, b′) ∈ Ak × Al with a′ ↔ b′ and d(a′, b′) = β2. With C1 and C2

as defined in the previous section we necessarily have either a′, b′ ∈ C1 or
a′, b′ ∈ C2. Indeed if we had e.g. a′ ∈ C1 and b′ ∈ C2 then we would have
δµ(a, b′) ≤ max{δµ(a, a′), δµ(a′, b′)} < β1 in contradiction with the definition
of C2. So we assume that a′, b′ ∈ C1, the other case works the same way by
switching a and b if needed. We define a partition of C1 into two non-empty
sets by setting

C1,1 = {y ∈ C1 such that δµ(a′, y) < β2}

and
C1,2 = {y ∈ C1 such that δµ(a′, y) ≥ β2}.

27



Again, if x ∈ C1,1 and y ∈ C1,2 then necessarily d(x, y) ≥ β2. It follows that
if W∞(LXn , L

Y
n ) < β2 then necessarily LXn (C1,1) = LYn (C1,1) and LXn (C1,2) =

LYn (C1,2) simultaneously hence

{lim inf W∞(LXn , L
Y
n ) < β2}

⊂ lim sup{W∞(LXn , L
Y
n ) < β2}

⊂ lim sup
{
{LXn (C1,1) = LYn (C1,1)} ∩ {LXn (C1,2) = LYn (C1,2)}

}
.

By defining for every integer i ≥ 1

Ui =

 1 if Xi ∈ C1,1

2 if Xi ∈ C1,2

3 if Xi ∈ C2

and Vi accordingly on the ground of Yi we see that

P(lim sup{Un = V n})
= P(lim sup

{
{LXn (C1,1) = LYn (C1,1)} ∩ {LXn (C1,2) = LYn (C1,2)}

}
)

hence P(lim inf W∞(LXn , L
Y
n ) < β2) = 0 according to Lemma 4.2. Thus, from

(27) we deduce that

P(lim inf W∞(LXn , L
Y
n ) ∈ {β1, β2}) = 1. (31)

Next we show that necessarily P(lim inf W∞(LXn , L
Y
n ) ≤ β2) = 1. Indeed, it

follows from Lemma 4.2 that P(lim sup{LXn (C1) = LXn (C1)}) = 1 so we can
define an increasing sequence (Ti)i≥1 of diverging random times such that for
every integer i ≥ 1, LXTi(C

1) = LYTi(C
1). We further define four processes by

means of

TX,11 = inf{n ≥ 1, Xn ∈ C1}, TX,1i+1 = inf{n > TX,1i , Xn ∈ C1},

TX,21 = inf{n ≥ 1, Xn ∈ C2}, TX,1i+1 = inf{n > TX,1i , Xn ∈ C2},

TY,11 = inf{n ≥ 1, Yn ∈ C1}, TY,1i+1 = inf{n > TY,1i , Yn ∈ C1},

TY,21 = inf{n ≥ 1, Yn ∈ C2}, TY,1i+1 = inf{n > TY,1i , Yn ∈ C2},

and

X̃ = (XTX,11
, XTX,12

, . . . , XTX,1n
, . . . ) Ỹ = (YTY,11

, YTY,12
, . . . , YTY,1n

, . . . )

X̂ = (XTX,21
, XTX,22

, . . . , XTX,2n
, . . . ) Ŷ = (YTY,21

, YTY,22
, . . . , YTY,2n

, . . . ).

In words, we sort the Xi’s and Yi’s according to whether they take values in C1

or C2. Clearly X̃, Ỹ , X̂ and Ŷ are four independent processes of independent
random variables. The variables X̃i and Ỹj are all distributed according to µ1

which is µ conditioned on C1 and the X̂i and Ŷj are all distributed according
to µ2 which is µ conditioned on C2. Since for every integer i ≥ 1 we have

W∞(LXTi , L
Y
Ti) ≤ max

{
W∞(LX̂Ti , L

Ŷ
Ti),W∞(LX̃Ti , L

Ỹ
Ti)
}
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we get

lim inf W∞(LXn , L
Y
n ) ≤ lim inf W∞(LXTi , L

Y
Ti)

≤ lim supW∞(LXTi , L
Y
Ti)

≤ max
{

lim supW∞(LX̂n , L
Ŷ
n ), lim supW∞(LX̃n , L

Ỹ
n )
}
.

But supZµ1 ≤ β2 and supZµ2 ≤ β2 hence

P(lim supW∞(LX̂n , L
Ŷ
n ) ≤ β2) = P(lim supW∞(LX̃n , L

Ỹ
n ) ≤ β2) = 1

according to (28) whence P(lim inf W∞(LXn , L
Y
n ) ≤ β2) = 1 which combined

with (31) concludes the proof of (29).

4.3 Proof of (30)

Finally let us assume that there are (at least) two different {Ai, Aj} and {Ak, Al}
such that Ai ↔ Aj , Ak ↔ Al and d(Ai, Aj) = d(Ak, Al) = β1. There exists
a, b, a′, b′ such that a↔ b, a′ ↔ b′, a ∈ Ai, b ∈ Aj , a′ ∈ Ak and b′ ∈ Al. Since at
least one of Ak or Al is not Ai or Aj , at least one of a′ or b′ is not a or b, let us
denote it c. We define a partition of S(µ) into three non-empty sets by setting

D1 = {y ∈ S(µ) such that δµ(a, y) < β1}

and
D2 = {y ∈ S(µ) such that δµ(a, y) ≥ β1, δ

µ(c, y) < β1}
and

D3 = {y ∈ S(µ) such that δµ(a, y) ≥ β1, δ
µ(c, y) ≥ β1}.

Again, for any two x and y in two different elements of the partition D1, D2

and D3 we necessarily have d(x, y) ≥ β1. Hence{
W∞(LXn , L

Y
n ) < β1

}
⊂ {LXn (D1) = LYn (D1)} ∩ {LXn (D2) = LYn (D2)}

whence

P(lim inf W∞(LXn , L
Y
n ) < β1) ≤ P(lim sup{W∞(LXn , L

Y
n ) < β1})

≤ P(lim sup
{
{LXn (D1) = LYn (D1)} ∩ {LXn (D2) = LYn (D2)}

}
) = 0

according to Lemma 4.2.
Proof of Lemma 4.2 We shall proceed by means of an elementary coupling.
To the sequences U and V we associate the sequences Ũ and Ṽ by setting
Ũi = (u1, . . . , uL) ∈ {0, 1}L with uk = 1 if Ui = k all other components of

Ũi being 0. The random variables Ṽi are defined accordingly on the ground
of the Vi’s, and we set Zi = Ũi − Ṽi. If L = 2 then Zi ∈ {(0, 0), e1,−e1}
with e1 = (1,−1) and P(Zi = e1) = P(Zi = −e1). If L = 3 then Zi ∈
{(0, 0, 0), e1, e2, e3,−e1,−e2,−e3} with e1 = (1,−1, 0), e2 = (1, 0,−1), e3 =
(0, 1,−1) and for every j = 1, 2, 3 we have P(Zi = ej) = P(Zi = −ej). Hence
Zn =

∑n
l=1 Zi, Z0 = (0, . . . , 0) corresponds to the position of a symmetric

random walk on Zd with d = L(L−1)
2 , and {Un = V n} = {Zn = 0}, while

{Un 6= V n} = {Zn 6= 0}. Thus the first claim corresponds to the fact that a
one-dimensional symmetric random walk is infinitely often away from zero with
probability one. The second claim corresponds to the fact that one-dimensional
symmetric random walks are recurrent. The third claim corresponds to the fact
that three-dimensional symmetric random walks are transient. �
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5 Additional proofs

Here we give the proofs of the lemmas presented in Section 2.1. They are
ordered so as to minimize the total length of the paper and not according to the
expository order. Lemmas 2.2, 2.3 and 2.4 are already established in [1] and [9]
for sequences rather than nets. We give their proofs as well as a proof of (3) for
the paper to be self-contained.

5.1 One more lemma

We shall employ the following Portmanteau-type result several times in the
present section

Lemma 5.1 Let (P j)j∈J be a net of Borel probability measures on a metric
space (Y, δ) that converges weakly to some probability measure P . For every
open U ⊂ Y we have

lim inf
j∈J

P j(U) ≥ P (U).

Proof of Lemma 5.1. We follow the proof of Theorem 11.1.1 in [5]. Let
F = U c. For every x ∈ Y we define δ(x, F ) = infy∈F δ(x, y) and for every
m ≥ 1, fm(x) = min(1,mδ(x, F )) and Fm = f−1

m ({1}). We see that fm is
an increasing sequence of bounded and continuous functions that converges to
1U . For every ε > 0 there exists an M0 such that for every m ≥ M0 we have
P (Fm) > P (U)− ε and for those m we have

lim inf
j∈J

P j(U) ≥ lim inf
j∈J

∫
Y

fm(x)P j(dx)

=

∫
Y

fm(x)P (dx)

≥ P (Fm)

> P (U)− ε

the conclusion follows by letting ε→ 0. �

5.2 Proof of Lemma 2.3.

Assume that the announced statement is not true: There exist an x ∈ S(P )
such that for every net (xj)j∈J satisfying xj ∈ S(P j) the net does not converge
to x. Consider (xj)j∈J with xj defined by d(x, xj) = infy∈S(P j) d(x, y). Then

there exist an ε > 0 and a cofinal L ⊂ J such that for every l ∈ L d(x, xl) > ε.
For every l ∈ L we have P l(B(x, ε/2)) = 0 while P (B(x, ε/2)) > 0 by definition.
This is impossible according to Lemma 5.1 and the conclusion follows. �

5.3 Proof of Lemma 2.4.

Let n ≥ 2, (x1, y1), . . . , (xn, yn) ∈ S(P ) and σ ∈ Sn. Due to Lemma 2.3 for
every 1 ≤ i ≤ n there exists (xji , y

j
i )j∈J such that for every j ∈ J (xji , y

j
i ) ∈

S(P j) and limj∈J(xji , y
j
i ) = (xi, yi). Since for every j ∈ J, P j is infinitely

cyclically monotone we have max1≤i≤n d(xji , y
j
i ) ≤ max1≤i≤n d(xji , y

j
σ(i)) and

passing to the limit we get max1≤i≤n d(xi, yi) ≤ max1≤i≤n d(xi, yσ(i)). �
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5.4 Proof of Lemma 2.2

For every j ∈ J we denote xj = supS(P j) and x = supS(P ). Let us assume that
(7) does not hold i.e. there exists an η > 0 such that lim supj∈J x

j < x− η. As

a consequence there exists a subnet (P l)l∈L of (P j)j∈J such that for every l ∈ L
we have P l(]x− η/2, x+ η/2[) = 0 while by definition P (]x− η/2, x+ η/2[) > 0.
But according to Lemma 5.1 we should have lim inf l∈L P

l(]x− η/2, x+ η/2[) ≥
P (]x− η/2, x+ η/2[). The conclusion follows. �

5.5 Proof of Lemma 2.1

Let ν1, ν2 ∈ M1(E) and Π = (A1, . . . , AL) ∈ P. According to Lemma 1.2
there exists P ∈ C∞(ν1, ν2) such that W∞(ν1, ν2) = supS(P ◦ d−1). Consider
PΠ ∈M1({s1, . . . , sL}2) defined by

PΠ =

L∑
i,j=1

P (Ai ×Aj)δ(si,sj).

Since P ∈ C∞(ν1, ν2) necessarily PΠ ∈ C(π(ν1), π(ν2)) hence

W∞(π(ν1), π(ν2)) ≤ supS(PΠ ◦ d−1)

≤ supS(P ◦ d−1) + 2∆(Π)

≤ W∞(ν1, ν2) + 2∆(Π).

We are left to prove that W∞(ν1, ν2) ≤ W∞(π(ν1), π(ν2)) + 2∆(Π). Again,
according to Lemma 1.2 there exists QΠ ∈ C∞(π(ν1), π(ν2)) such that

W∞(π(ν1), π(ν2)) = supS(QΠ ◦ d−1).

Clearly QΠ is of the form QΠ =
∑L
i,j=1Qi,jδ(si,sj). Now we consider Q ∈

M1(E2) defined by

Q(F ) =

L∑
i,j=1

Qi,j
ν1(Ai)ν2(Aj)

ν1 ⊗ ν2(F ∩ (Ai ×Aj)). (32)

Since QΠ ∈ C(π(ν1), π(ν2)) we see that Qi,j = 0 as soon as ν1(Ai) = 0 or
ν2(Aj) = 0 so Q is well defined and we can assume that the sum in (32) runs
over i, j such that ν1(Ai)ν

2(Aj) 6= 0. Let us check that e.g. Q1 = ν1. For every
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measurable U ⊂ E we have

Q(U × E) =

L∑
i,j=1

Qi,j
ν1(Ai)ν2(Aj)

ν1 ⊗ ν2((U × E) ∩ (Ai ×Aj))

=

L∑
i,j=1

Qi,j
ν1(Ai)ν2(Aj)

ν1(U ∩Ai)ν2(Aj)

=

L∑
i,j=1

Qi,j
ν1(Ai)

ν1(U ∩Ai)

=

L∑
i=1

1

ν1(Ai)

 L∑
j=1

Qi,j

 ν1(U ∩Ai)

=

L∑
i=1

ν1(U ∩Ai) (33)

= ν1(U)

where (33) is due to the fact that QΠ ∈ C(π(ν1), π(ν2)). Now

W∞(ν1, ν2) ≤ supS(Q ◦ d−1)

≤ supS(QΠ ◦ d−1) + 2∆(Π)

≤ W∞(π(ν1), π(ν2)) + 2∆(Π).

which concludes the proof. �

5.6 On W∞ and the Hausdorff distance.

Here we prove (3) i.e. for any integer n ≥ 1 and every (x1, . . . , xn), (y1, . . . , yn)
in En we have

W∞(LXn , L
Y
n ) = dH(S(LXn ),S(LYn ))

where LXn = 1
n

∑n
i=1 δxi and LYn = 1

n

∑n
i=1 δyi . Indeed, for every integer 1 ≤

i ≤ n and every σ ∈ Sn we have

d(xi, yσ(i)) ≥ inf
y∈S(LYn )

d(xi, y)

hence
max

i=1,...,n
d(xi, yσ(i)) ≥ sup

x∈S(LXn )

inf
y∈S(LYn )

d(x, y)

whence

W∞(LXn , L
Y
n ) = min

σ∈Sn
max

i=1,...,n
d(xi, yσ(i)) ≥ sup

x∈S(LXn )

inf
y∈S(LYn )

d(x, y).

The proof that W∞(LXn , L
Y
n ) ≥ supy∈S(LYn ) infx∈S(LXn ) d(x, y) is the same once

one has noticed that W∞(LXn , L
Y
n ) = minσ∈Sn maxi=1,...,n d(xσ(i), yi).

To prove the reverse inequality notice that there exists x∗ ∈ S(LXn ) and
y∗ ∈ S(LYn ) such that W∞(LXn , L

Y
n ) = d(x∗, y∗) and without loss of generality
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we can claim that for every y ∈ S(LYn ) we have d(x∗, y) ≥ d(x∗, y∗). In words,
transporting the mass at x∗ somewhere else than y∗ would have been at least
as expensive. We get infy∈S(LYn ) d(x∗, y) ≥ d(x∗, y∗) hence

sup
x∈S(LXn )

inf
y∈S(LYn )

d(x, y) ≥ d(x∗, y∗)

whence dH(S(LXn ),S(LYn )) ≥ W∞(LXn , L
Y
n ) which concludes the proof of the

announced claim.
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