
HAL Id: hal-00641323
https://hal.science/hal-00641323v1

Submitted on 16 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Bayesian Model for Plan Recognition in RTS Games
applied to StarCraft

Gabriel Synnaeve, Pierre Bessière

To cite this version:
Gabriel Synnaeve, Pierre Bessière. A Bayesian Model for Plan Recognition in RTS Games applied
to StarCraft. Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE 2011),
Oct 2011, Palo Alto, United States. pp.79–84. �hal-00641323�

https://hal.science/hal-00641323v1
https://hal.archives-ouvertes.fr


A Bayesian Model for Plan Recognition in RTS Games applied to StarCraft

Gabriel Synnaeve and Pierre Bessière
LPPA, Collège de France, UMR7152 CNRS

11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
gabriel.synnaeve@gmail.com pierre.bessiere@imag.fr

Abstract

The task of keyhole (unobtrusive) plan recognition is
central to adaptive game AI. “Tech trees” or “build
trees” are the core of real-time strategy (RTS) game
strategic (long term) planning. This paper presents a
generic and simple Bayesian model for RTS build tree
prediction from noisy observations, which parameters
are learned from replays (game logs). This unsupervised
machine learning approach involves minimal work for
the game developers as it leverage players’ data (com-
mon in RTS). We applied it to StarCraft1 and showed
that it yields high quality and robust predictions, that
can feed an adaptive AI.

Introduction
In a RTS, players need to gather resources to build struc-
tures and military units and defeat their opponents. To
that end, they often have worker units than can gather re-
sources needed to build workers, buildings, military units
and research upgrades. Resources may have different uses,
for instance in StarCraft: minerals are used for everything,
whereas gas is only required for advanced buildings or mil-
itary units, and technology upgrades. The military units can
be of different types, any combinations of ranged, casters,
contact attack, zone attacks, big, small, slow, fast, invisi-
ble, flying... Units can have attacks and defenses that counter
each others as in rock-paper-scissors. Buildings and research
upgrades define technology trees (precisely: directed acyclic
graphs). Tech trees are tied to strategic planning, because
they put constraints on which units types can be produced,
when and in which numbers, which spells are available and
how the player spends her resources.

Most real-time strategy (RTS) games AI are either not
challenging or not fun to play against. They are not challeng-
ing because they do not adapt well dynamically to different
strategies (long term goals and army composition) and tac-
tics (army moves) that a human can perform. They are not
fun to play against because they cheat economically, gather-
ing resources faster, and/or in the intelligence war, bypassing
the fog of war. We believe that creating AI that adapt to the

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1StarCraft and its expansion StarCraft: Brood War are trade-
marks of Blizzard EntertainmentTM

strategies of the human player would make RTS games AI
much more interesting to play against.

We worked on StarCraft: Brood War, which is a canonical
RTS game, as Chess is to board games. It had been around
since 1998, it has sold 10 millions licenses and was the best
competitive RTS for more than a decade. There are 3 fac-
tions (Protoss, Terran and Zerg) that are totally different in
terms of units, tech trees and thus gameplay styles. StarCraft
and most RTS games provide a tool to record game logs
into replays that can be re-simulated by the game engine
and watched to improve strategies and tactics. All high level
players use this feature heavily either to improve their play
or study opponents style. Observing replays allows players
to see what happened under the fog of war, so that they
can understand timing of technologies and attacks and find
clues/evidences leading to infer the strategy as well as weak
points (either strategic or tactical). We used this replay fea-
ture to extract players actions and learn the probabilities of
tech trees to happen at a given time.

In our model, we used the buildings part of tech trees be-
cause buildings can be more easily viewed than units when
fog of war is enforced, and our main focus was our StarCraft
bot implementation (see Figure 1), but nothing hinders us to
use units and upgrades as well in a setting without fog of
war (commentary assistant or game AI that cheat).

Incomplete 
Data

Enemy Units 
filtered map

Infer BuildTrees 
(or TechTrees)

Enemy Tactics

Our Tactics
Units production

Units Group

BayesianUnit

BayesianUnit

BayesianUnit

BayesianUnit

Production Manager
/ Planner / Optim.

Goals

Figure 1: Data flow of the free software StarCraft robotic
player BROODWARBOTQ. In this paper, we only deal with
the upper left part (in a dotted line).



Background

Related Works

This work was encouraged by the reading of Weber and
Mateas (2009) Data Mining Approach to Strategy Predic-
tion and the fact that they provided their dataset. They tried
and evaluated several machine learning algorithms on re-
plays that were labeled with strategies (supervised learning).

There are related works in the domains of opponent mod-
eling (Hsieh and Sun 2008; Schadd, Bakkes, and Spronck
2007; Kabanza et al. 2010). The main methods used to these
ends are case-based reasoning (CBR) and planning or plan
recognition (Aha, Molineaux, and Ponsen 2005; Ontañón
et al. 2008; Ontañón et al. 2007; Hoang, Lee-Urban, and
Muñoz-Avila 2005; Ramı́rez and Geffner 2009). There are
precedent works of Bayesian plan recognition (Charniak and
Goldman 1993), even in games with (Albrecht, Zukerman,
and Nicholson 1998) using dynamic Bayesian networks to
recognize a user’s plan in a multi-player dungeon adventure.
Also, Chung, Buro, and Schaeffer (2005) describe a Monte-
Carlo plan selection algorithm applied to Open RTS.

Aha, Molineaux, and Ponsen (2005) used CBR to perform
dynamic plan retrieval extracted from domain knowledge in
Wargus (Warcraft II clone). Ontañón et al. (2008) base their
real-time case-based planning (CBP) system on a plan de-
pendency graph which is learned from human demonstra-
tion. In (Ontañón et al. 2007; Mishra, Ontañón, and Ram
2008), they use CBR and expert demonstrations on Wargus.
They improve the speed of CPB by using a decision tree to
select relevant features. Hsieh and Sun (2008) based their
work on CBR and Aha, Molineaux, and Ponsen (2005) and
used StarCraft replays to construct states and building se-
quences. Strategies are choices of building construction or-
der in their model.

Schadd, Bakkes, and Spronck (2007) describe opponent
modeling through hierarchically structured models of the
opponent behaviour and they applied their work to the
Spring RTS (Total Annihilation clone). Hoang, Lee-Urban,
and Muñoz-Avila (2005) use hierarchical task networks
(HTN) to model strategies in a first person shooter with the
goal to use HTN planners. Kabanza et al. (2010) improve the
probabilistic hostile agent task tracker (PHATT (Geib and
Goldman 2009), a simulated HMM for plan recognition) by
encoding strategies as HTN.

The work described in this paper can be classified as
probabilistic plan recognition. Strictly speaking, we present
model-based machine learning used for prediction of plans,
while our model is not limited to prediction. The plans are
build trees directly learned from the replays (unsupervised
learning).

Bayesian Programming

Probability is used as an alternative to classical logic and
we transform incompleteness (in the experiences, the per-
ceptions or the model) into uncertainty (Jaynes 2003). We
introduce Bayesian programs (BP), a formalism that can be
used to describe entirely any kind of Bayesian model, sub-
suming Bayesian networks and Bayesian maps, equivalent
to probabilistic factor graphs (Diard, Bessière, and Mazer

2003). There are mainly two parts in a BP, the description
of how to compute the joint distribution, and the question(s)
that it will be asked.

The description consists in explaining the relevant vari-
ables {X1, . . . , Xn} and explain their dependencies by de-
composing the joint distribution P (X1 . . . Xn|δ, π) with ex-
isting preliminary knowledge π and data δ. The forms of
each term of the product specify how to compute their dis-
tributions: either parametric forms (laws or probability ta-
bles, with free parameters that can be learned from data δ)
or recursive questions to other Bayesian programs.

Answering a question is computing the distribution
P (Searched|Known), with Searched and Known two
disjoint subsets of the variables. P (Searched|Known)

=

∑
Free P (Searched, Free, Known)

P (Known)

=
1

Z
×

∑

Free

P (Searched, Free, Known)

General Bayesian inference is practically intractable, but
conditional independence hypotheses and constraints (stated
in the description) often simplify the model. Also, there are
different well-known approximation techniques, for instance
Monte Carlo methods and variational Bayes (Beal 2003). In
this paper, we will use only simple enough models that allow
complete inference to be computed in real-time.

BP



























Desc.



















Spec.(π)











V ariables

Decomposition

Forms (Parametric or Program)

Identification (based on δ)

Question

For the use of Bayesian programming in sensory-motor sys-
tems, see (Bessière, Laugier, and Siegwart 2008). For its
use in cognitive modeling, see (Colas, Diard, and Bessière
2010). For its first use in video games (first person shooter
gameplay, Unreal Tournament), see (Le Hy et al. 2004).

Methodology

Build/Tech Tree Prediction Model

The outline of the model is that it infers the distribution on
(probabilities for each of) our opponent’s build tree from ob-
servations, which tend to be very partial due to the fog of
war. From what is common (conditionally of observations)
and the hierarchical structure of a build tree, it diminishes or
raises their probabilities. Our predictive model is a Bayesian
program, it can be seen as the “Bayesian network” repre-
sented in Figure 2. It is a generative model and this is of
great help to deal with the parts of the observations’ space
where we do not have too much data (RTS games tend to
diverge from one another as the number of possible actions
grow exponentially). Indeed, we can model our uncertainty
by putting a large standard deviation on too rare observations
and generative models tend to converge with fewer observa-
tions than discriminative ones (Ng and Jordan 2001). Here
is the description of our Bayesian program:



Building

s

Building

s

Building

s

Building

s
Observations

λ Time

BuildTree

Figure 2: Graphical representation of the build tree predic-
tion Bayesian model

Variables

• BuildTree ∈ {∅, {building1}, {building2}, {building1∧
building2}, . . . }: all the possible building trees
for the given race. For instance {pylon, gate} and
{pylon, gate, core} are two different BuildTrees.

• Observations: Oi∈J1...NK ∈ {0, 1}, Ok is 1/true if we
have seen (observed) the kth building (it can have been
destroyed, it will stay “seen”).

• λ ∈ {0, 1}: coherence variable (restraining BuildTree to
possible values with regard to O1:N )

• T ime: T ∈ J1 . . . P K, time in the game (1 second resolu-
tion).

At first, we generated all the possible (according to the
game rules) BuildTree values (in StarCraft, between ≈ 500
and 1600 depending on the race without the same building
twice). We observed that a lot of possible BuildTree val-
ues are too absurd to be performed in a competitive match
and were never seen during the learning. So, we restricted
BuildTree to have its value in all the build trees encoun-
tered in our replays dataset and we added multiple instances
of the basic unit producing buildings (gateway, barracks),
expansions and supply buildings (depot, pylon, “overlord”
as a building). This way, there are 810 build trees for Ter-
ran, 346 for Protoss and 261 for Zerg (learned from ≈ 3000
replays for each race).

Decomposition The joint distribution of our model is the
following:

P (T,BuildTree,O1 . . . ON , λ) =

P (T |BuildTree).P (BuildTree)

P (λ|BuildTree,O1:N ).P (O1:N )

This can also be see as Figure 2.

Forms

• P (BuildTree) is the prior distribution on the build trees.
It can either be learned from the labeled replays (his-
tograms) or set to the uniform distribution, as we did.

• P (O1:N ) is unspecified, we put the uniform distribution
(we could use a prior over the most frequent observa-
tions).

• P (λ|BuildTree,O1:N ) is a functional Dirac that restricts
BuildTree values to the ones than can co-exist with the

observations.

P (λ = 1|buildTree, o1:N )

= 1 if buildTree can exist with o1:N

= 0 else

A BuildTree value (buildTree) is compatible with
the observations if it covers them fully. For instance,
BuildTree = {pylon, gate, core} is compatible with
o#core = 1 but it is not compatible with o#forge = 1.
In other words, buildTree is incompatible with o1:N iff
{o1:N\{o1:N ∧ buildTree}} 6= ∅.

• P (T |BuildTree) are “bell shape” distributions (dis-
cretized normal distributions). There is one bell shape
over T ime per buildTree. The parameters of these dis-
crete Gaussian distributions are learned from the replays.

Identification (learning) The learning of the
P (T |BuildTree) bell shapes parameters takes into
account the uncertainty of the buildTrees for which we
have few observations. Indeed, the normal distribution
P (T |buildTree) begins with a high σ2, and not a “Dirac”
with µ on the seen T value and sigma = 0. This accounts
for the fact that the first(s) observation(s) may be outlier(s).
This learning process is independent on the order of the
stream of examples, seeing point A and then B or B and
then A in the learning phase produces the same result.

Questions The question that we will ask in all the bench-
marks is:

P (BuildTree|T = t, O1:N = o1:N , λ = 1)

∝ P (t|BuildTree).P (BuildTree)

P (λ|BuildTree, o1:N ).P (o1:N )

Note that if we see P (BuildTree, T ime) as a plan, ask-
ing P (BuildTree|T ime) for ourselves boils down to use
our “plan recognition” mode as a planning algorithm, which
could provide good approximations of the optimal goal set
(Ramı́rez and Geffner 2009), or build orders.

Figure 3: Evolution of P (BuildTree|Observations...)
in Time (seen/observed buildings on the x-axis). Only
BuildTrees with a probability > 0.01 are shown.



Results

All the results presented in this section represents the nine
match-ups (races combinations) in 1 versus 1 (duel) of Star-
Craft. We worked with a data-set of 8806 replays (≈ 1000
per match-up) of highly skilled human players and we per-
formed cross-validation with 9/10th of the dataset used for
learning and the remaining 1/10th of the dataset used for
evaluation. Performance wise, the learning part (with ≈
1000 replays) takes around 0.1 second on a 2.8 Ghz Core
2 Duo CPU (and it is serializable). Each inference (ques-
tion) step takes around 0.01 second. The memory footprint
is around 3 Mb on a 64 bits machine.

Predictive Power

The predictive power of our model is measured by the k > 0
next buildings for which we have “good enough” prediction
of future build trees in:

P (BuildTreet+k|T = t, O1:N = o1:N , λ = 1)

“Good enough” is measured by a distance d to the ac-
tual build tree of the opponent that we tolerate. We
used a set distance: d(bt1, bt2) = card(bt1∆bt2) =
card((bt1

⋃
bt2)\(bt1

⋂
bt2)). One less or more building in

the prediction is at a distance of 1 from the actual build
tree, the same buildings except for one difference is at a dis-
tance of 2 (that would be 1 is we used tree edit distance
with substitution). We call d(best, real) =“best” the dis-
tance between the most probable build tree and the one that
actually happened. We call d(bt, real) ∗ P (bt)=“mean” the
marginalized distance between what was inferred balanced
(variable bt) by the probability of inferences (P (bt)). Note
that this distance is always over all the build tree (and not
only the next inference). This distance was taken into ac-
count only after the fourth (4th) building so that the first
buildings would not penalize the prediction metric (the first
building can not be predicted 4 buildings in advance).

We used d = 1, 2, 3, with d = 1 we have a very strong
sense of what the opponent is doing or will be doing, with
d = 3, we may miss one key building or have switched a
tech path. We can see in Table 1 that with d = 1 and without
noise, our model predict in average more than one building
in advance what the opponent will build next if we use only
its best prediction, and almost four buildings in advance if
we marginalize over all the predictions. Of course, if we ac-
cept more error, the predictive power (number of buildings
ahead that our model is capable to predict) increases, up to
6.12 for d = 3 without noise.

Robustness to Noise

The robustness of our algorithm is measured by the quality
of the predictions of the build trees for k = 0 (reconstruc-
tion) or k > 0 (prediction) with missing observations in:

P (BuildTreet+k|T = t, O1:N = partial(o1:N ), λ = 1)

The “reconstructive” power (infer what has not been seen)
ensues from the learning of our parameters from real data:
even in the set of build trees that are possible, with regard to
the game rules, only a few will be probable at a given time

and/or with some key structures. Abiding by probability the-
ory gives us consistency with regard to concurrent build tree.
This “reconstructive” power of our model is shown in Ta-
ble 1 with d (distance to actual building tree) for increasing
noise at fixed k = 0.

Figure 4 displays first (on top) the evolution of the er-
ror rate (distance to actual building) with increasing ran-
dom noise (from 0% to 80%, no missing observations to
8 missing observations over 10). We consider that having
an average distance to the actual build tree a little over 1 for
80% missing observations is a success. We think that this ro-
bustness is due to P (T |BuildTree) being precise with the
amount of data that we used. Secondly, Figure 4 displays (at
the bottom) the evolution of the predictive power (number of
buildings ahead from the build tree that it can predict) with
the same increase of noise.

Figure 4: Evolution of our metrics with increasing noise,
from 0 to 80%. The top graphic shows the increase in dis-
tance between the predicted build tree, both most probable
(“best”) and marginal (“mean”) and the actual one. The bot-
tom graphic shows the decrease in predictive power: num-
bers of buildings ahead (k) for which our model predict a
build tree closer than a fixed distance/error (d).



Table 1: Summarization of the main results/metrics, one full results set for 10% noise

measure d for k = 0 k for d = 1 k for d = 2 k for d = 3
noise d(best, real) d(bt, real) ∗ P (bt) best “mean” best “mean” best “mean”

0
%

average 0.535 0.870 1.193 3.991 2.760 5.249 3.642 6.122
min 0.313 0.574 0.861 2.8 2.239 3.97 3.13 4.88
max 1.051 1.296 2.176 5.334 3.681 6.683 4.496 7.334

1
0

% PvP 0.397 0.646 1.061 2.795 2.204 3.877 2.897 4.693
PvT 0.341 0.654 0.991 2.911 2.017 4.053 2.929 5.079
PvZ 0.516 0.910 0.882 3.361 2.276 4.489 3.053 5.308
TvP 0.608 0.978 0.797 4.202 2.212 5.171 3.060 5.959
TvT 1.043 1.310 0.983 4.75 3.45 5.85 3.833 6.45
TvZ 0.890 1.250 1.882 4.815 3.327 5.873 4.134 6.546
ZvP 0.521 0.933 0.89 3.82 2.48 4.93 3.16 5.54
ZvT 0.486 0.834 0.765 3.156 2.260 4.373 3.139 5.173
ZvZ 0.399 0.694 0.9 2.52 2.12 3.53 2.71 4.38

average 0.578 0.912 1.017 3.592 2.483 4.683 3.213 5.459
min 0.341 0.646 0.765 2.52 2.017 3.53 2.71 4.38
max 1.043 1.310 1.882 4.815 3.45 5.873 4.134 6.546

2
0

% average 0.610 0.949 0.900 3.263 2.256 4.213 2.866 4.873
min 0.381 0.683 0.686 2.3 1.858 3.25 2.44 3.91
max 1.062 1.330 1.697 4.394 3.133 5.336 3.697 5.899

3
0

% average 0.670 1.003 0.747 2.902 2.055 3.801 2.534 4.375
min 0.431 0.749 0.555 2.03 1.7 3 2.22 3.58
max 1.131 1.392 1.394 3.933 2.638 4.722 3.176 5.268

4
0

% aerage 0.740 1.068 0.611 2.529 1.883 3.357 2.20 3.827
min 0.488 0.820 0.44 1.65 1.535 2.61 1.94 3.09
max 1.257 1.497 1.201 3.5 2.516 4.226 2.773 4.672

5
0

% average 0.816 1.145 0.493 2.078 1.696 2.860 1.972 3.242
min 0.534 0.864 0.363 1.33 1.444 2.24 1.653 2.61
max 1.354 1.581 1 2.890 2.4 3.613 2.516 3.941

6
0

% average 0.925 1.232 0.400 1.738 1.531 2.449 1.724 2.732
min 0.586 0.918 0.22 1.08 1.262 1.98 1.448 2.22
max 1.414 1.707 0.840 2.483 2 3.100 2.083 3.327

7
0

% verage 1.038 1.314 0.277 1.291 1.342 2.039 1.470 2.270
min 0.633 0.994 0.16 0.79 1.101 1.653 1.244 1.83
max 1.683 1.871 0.537 1.85 1.7 2.512 1.85 2.714

8
0

% average 1.134 1.367 0.156 0.890 1.144 1.689 1.283 1.831
min 0.665 1.027 0.06 0.56 0.929 1.408 1.106 1.66
max 1.876 1.999 0.333 1.216 1.4 2.033 1.5 2.176

Conclusions

Discussion and Perspectives

Developing beforehand a RTS game AI that specifically
deals with whatever strategies the players will come up
is very hard. And even if game developers were will-
ing to patch their AI afterwards, it would require a re-
ally modular design and a lot of work to treat each
strategy. With our model, the AI can adapt to the evo-
lutions in play by learning its parameters from the re-
play, it can dynamically adapt during the games by ask-
ing P (BuilTree|Observations, T ime, λ = 1) and even
P (TechTree|Observations, T ime, λ = 1) if we add units
and technology upgrades to buildings. This would allow
for the bot to dynamically choose/change build orders and
strategies.

This work can be extended by have a model for the two
players (the bot/AI and the opponent):

P (BuildTreebot, BuildTreeop, Obsop,1:N , T ime, λ)

So that we could ask this (new) model:

P (BuildTreebot|obsop,1:N , time, λ = 1)

This would allow for simple and dynamic build tree adapta-
tion to the opponent strategy (dynamic re-planning), by the
inference path:

P (BuildTreebot|obsop,1:N , time, λ = 1)

∝
∑

BuildTreeop
P (BuildTreebot|BuildTreeop) (learned)

×P (BuildTreeop).P (oop,1:N ) (priors)

×P (λ|BuildTreeop, oop,1:N ) (consistency)

×P (time|BuildTreeop) (learned)

That way, one can ask “what build/tech tree should I go
for against what I see from my opponent”, which tac-
itly seeks the distribution on BuildTreeop to break the
complexity of the possible combinations of Obs1:N . It is
possible to not marginalize over BuildTreeop, but con-
sider only the most probable(s) BuildTreeop, for com-
puting efficiency. A filter on BuildTreebot (as simple as



P (BuildTreetbot|BuildTreet−1
bot ) can and should be added

to prevent switching build orders or strategies too often.
The Bayesian model presented in this paper for opponent

build tree prediction can be used in two main ways:

• as the corner stone of adaptive (to the opponent’s dynamic
strategies) RTS game AI:

– without noise in the case of built-in game AI (cheat).

– with noise in the case of RTS AI tournaments (as AI-
IDE’s) of matches against human players.

• as a commentary assistant (null noise, prediction of tech
trees), showing the probabilities of possible strategies as
Poker commentary software do.

Finally, a hard problem is detecting the “fake” builds of
very highly skilled players. Indeed, some pro-gamers have
build orders which purposes are to fool the opponent into
thinking that they are performing opening A while they are
doing B. For instance they could “take early gas” leading the
opponent to think they are going to do tech units, not gather
gas and perform an early rush instead.

Conclusion

We presented a probabilistic model computing the distribu-
tion over build (or tech) trees of the opponent in a RTS game.
The main contributions (with regard to Weber and Mateas)
are the ability to deal with partial observations and unsu-
pervised learning. This model yields high quality prediction
results (up to 4 buildings ahead with a total build tree dis-
tance less than 1, see Table 1) and shows a strong robustness
to noise with a predictive power of 3 buildings ahead with
a build tree distance less than 1 under 30% random noise (a
quality that we need for real setup/competitive games). It can
be used in production thanks to its low computational (CPU)
and memory footprint. Our implementation is free software
and can be found online2. We will use this model (or an up-
graded version of it) in our StarCraft AI competition entry
bot as it enables it to deal with the incomplete knowledge
gathered from scouting.

References

Aha, D. W.; Molineaux, M.; and Ponsen, M. J. V. 2005.
Learning to win: Case-based plan selection in a real-time
strategy game. In ICCBR, 5–20.

Albrecht, D. W.; Zukerman, I.; and Nicholson, A. E. 1998.
Bayesian models for keyhole plan recognition in an adven-
ture game. User Modeling and User-Adapted Interaction
8:5–47.

Beal, M. J. 2003. Variational algorithms for approximate
Bayesian inference. PhD. Thesis.

Bessière, P.; Laugier, C.; and Siegwart, R. 2008. Proba-
bilistic Reasoning and Decision Making in Sensory-Motor
Systems. Springer Publishing Company, Incorporated.

Charniak, E., and Goldman, R. P. 1993. A Bayesian model
of plan recognition. Artificial Intelligence 64(1):53–79.

2https://github.com/SnippyHolloW/

OpeningTech/

Chung, M.; Buro, M.; and Schaeffer, J. 2005. Monte Carlo
Planning in RTS Games. In CIG (IEEE).

Colas, F.; Diard, J.; and Bessière, P. 2010. Common
Bayesian models for common cognitive issues. Acta Bio-
theoretica 58:191–216.

Diard, J.; Bessière, P.; and Mazer, E. 2003. A survey of prob-
abilistic models using the Bayesian programming method-
ology as a unifying framework. In Conference on Com-
putational Intelligence, Robotics and Autonomous Systems,
CIRAS.

Geib, C. W., and Goldman, R. P. 2009. A probabilistic plan
recognition algorithm based on plan tree grammars. Artifi-
cial Intelligence 173:1101–1132.

Hoang, H.; Lee-Urban, S.; and Muñoz-Avila, H. 2005. Hi-
erarchical plan representations for encoding strategic game
ai. In AIIDE, 63–68.

Hsieh, J.-L., and Sun, C.-T. 2008. Building a player strategy
model by analyzing replays of real-time strategy games. In
IJCNN, 3106–3111.

Jaynes, E. T. 2003. Probability Theory: The Logic of Sci-
ence. Cambridge University Press.

Kabanza, F.; Bellefeuille, P.; Bisson, F.; Benaskeur, A. R.;
and Irandoust, H. 2010. Opponent behaviour recognition
for real-time strategy games. In AAAI Workshops.

Le Hy, R.; Arrigoni, A.; Bessiere, P.; and Lebeltel, O. 2004.
Teaching Bayesian behaviours to video game characters.
Robotics and Autonomous Systems 47:177–185.

Mishra, K.; Ontañón, S.; and Ram, A. 2008. Situation as-
sessment for plan retrieval in real-time strategy games. In
ECCBR, 355–369.

Ng, A. Y., and Jordan, M. I. 2001. On discriminative vs.
generative classifiers: A comparison of logistic regression
and naive bayes. In NIPS, 841–848.

Ontañón, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2007.
Case-based planning and execution for real-time strategy
games. In Proceedings of the 7th International confer-
ence on Case-Based Reasoning: Case-Based Reasoning Re-
search and Development, ICCBR ’07, 164–178. Springer-
Verlag.

Ontañón, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2008.
Learning from demonstration and case-based planning for
real-time strategy games. In Prasad, B., ed., Soft Computing
Applications in Industry, volume 226 of Studies in Fuzziness
and Soft Computing. Springer Berlin / Heidelberg. 293–310.

Ramı́rez, M., and Geffner, H. 2009. Plan recognition as
planning. In Proceedings of the 21st international joint con-
ference on Artifical intelligence, 1778–1783. Morgan Kauf-
mann Publishers Inc.

Schadd, F.; Bakkes, S.; and Spronck, P. 2007. Opponent
modeling in real-time strategy games. In GAMEON, 61–70.

Weber, B. G., and Mateas, M. 2009. A data mining approach
to strategy prediction. In CIG (IEEE).


