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Abstract This paper investigates new families of displaced, highly non-Keplerian orbits in the 
two-body problem and artificial equilibria in the circular restricted three-body problem. The 
families of orbits presented extend prior work by using periodic impulses to generate displaced 
orbits rather than continuous thrust. The new displaced orbits comprise a sequence of individual 
Keplerian arcs whose intersection is continuous in position, with discontinuities in velocity 
removed using impulses. For frequent impulses the new families of orbits approximate continuous 
thrust non-Keplerian orbits found in previous studies. To generate approximations to artificial 
equilibria in the circular restricted three-body problem, periodic impulses are used to generate a 
sequence of connected three-body arcs which begin and terminate at a fixed position in the rotating 
frame of reference. Again, these families of orbits reduce to the families of artificial equilibria 
found using continuous thrust. 
 

Keywords Non-Keplerian orbits, circular restricted three-body problem, artificial equilibria, 
artificial satellites. 
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1. Introduction 
The use of continuous low thrust propulsion to generate artificial equilibria was 

apparently first proposed by Dusek (1966) who pointed out that a spacecraft could 

be held at an artificial equilibrium point some distance from a natural three-body 

equilibrium point. Later, others such as Austin et. al. (1977), Nock (1984) and 

Yashko and Hastings (1996) noted that propulsive thrust can in principle be used 

to displace a two-body orbit using continuous thrust normal to the orbit plane. 

Forward (1984), Baig and McInnes (2008) and Heiligers (2010) have considered 

displaced geostationary orbits using continuous thrust due to solar radiation 

pressure. Such displaced two-body orbits will be termed non-Keplerian orbits 

since the orbit plane does not contain the central mass. 

  Large families of displaced non-Keplerian two-body orbits have been 

identified for spacecraft utilising both solar sail (McInnes, 1992a, 1992b) and 

generic low thrust propulsion (Dankowicz, 1994, McInnes, 1997). More recently 

displaced orbits have been investigated for a range of applications and propulsion 

technologies (Mengali and Quarta, 2009, Gong et al, 2009). Studies have 

determined the conditions for such orbits to exist, their stability properties and 

their controllability (McInnes, 1997, 1998, Xu and Xu, 2009). Recently, a large 

catalogue of such orbits was provided by McKay et al (2009) for motion around 

planetary bodies.  

Non-Keplerian two-body orbits are generated using low thrust propulsion 

by finding conditions for artificial equilibria in a rotating frame of reference. 

These equilibria then appear as displaced circular orbits when viewed from an 

inertial frame (McInnes, 1997). Scheeres (1999) considered such hover orbits in a 

frame of reference rotating with an asteroid. Later, work by Sawai et al (2002) 

investigated conditions for stability and controllability of such orbits at irregular 

shaped asteroids. 

Conditions for artificial equilibria in the circular restricted three-body 

problem can be found using solar sails (McInnes et al, 1994), generic low thrust 

propulsion (Morimoto et al, 2007) and hybrid solar sail propulsion (Baig and 

McInnes, 2008), while periodic orbits can be found about such artificial equilibria 

were investigated by Baoyin and McInnes (2006), Waters and McInnes (2007), 

Baig and McInnes (2009) and Farres and Jorba (2010). Of particular interest is the 
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case of low thrust propulsion where regions of stable artificial equilibria were 

found by Morimoto et al (2007) which do not exist for the solar sail problem. 

Further investigation of the stability of such artificial equilibria has recently been 

provided by Bombardelli and Pelaez (2010).  

In this paper, new families of displaced non-Keplerian orbits are generated 

using impulsive, rather than continuous thrust. The use of impulse thrust was 

considered by Nock (1984), Yashko and Hastings (1996), McInnes (1998), Hope 

and Trask (2003) and Spilker (2003) to generate small displacements away from a 

circular Keplerian orbit at linear order in the two-body problem. In this paper, the 

more general problem is considered with arbitrarily large displacements. The 

displaced non-Keplerian orbits are approximated by a sequence of individual 

Keplerian arcs connected by impulses. The sequence of arcs is therefore 

continuous in position, with discontinuities in velocity which are removed using 

the impulses. For frequent impulses the families of orbits approximate the 

continuous thrust non-Keplerian orbits found in previous studies. The conditions 

for displaced non-Keplerian orbits using impulse thrust can be found by 

linearising the dynamics of the two and three-body problems in the vicinity of an 

arbitrary reference point in a rotating frame of reference. While the motion of the 

spacecraft relative to the reference point is considered at linear order, the 

reference point can be selected arbitrarily so that, when viewed from an inertial 

frame, the resulting orbit has arbitrarily large displacements away from a 

Keplerian orbit. Finally, some applications are considered for displaced 

geostationary orbits. 

 

2. Two-Body Non-Keplerian Orbits 

 

2.1 Continuous thrust 

Consider the dynamics of a spacecraft at position r in a frame of reference R(x,y,z) 

rotating with constant angular velocity ωωωω relative to an inertial frame I(X,Y,Z), as 

shown in Fig. 1 (McInnes, 1997, 1998). The spacecraft experiences thrust induced 

acceleration a and a two-body gravitational potential V. The dynamics of the 

spacecraft S at position ( )zyx ,,=r  can be defined by an equation of motion in 

the rotating frame R such that 
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The gravitational potential V of the central body and the thrust-induced 

acceleration a are defined as 
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where m is the mass of the spacecraft, n is the direction of the thrust vector and µ 

is the two-body gravitational parameter. The condition for equilibrium in the 

rotating frame of reference R is therefore given by 

 

 ( ) ( )rωωra ××+∇= V       (3) 

 

The required thrust magnitude and direction for can then be obtained as 

 

 
( ) ( ) ( )rωωrωr ××+∇= VmT ,

     (4a) 
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Using the thrust magnitude and direction defined by Eqs. (4), surfaces of artificial 

equilibria are generated in the rotating frame of reference, parameterised by the 

angular velocity of the rotating frame ω=oω . When viewed from an inertial 

frame of reference an artificial equilibrium point traces a displaced circular orbit 

of period oωπ2 . Contours of constant thrust induced acceleration generated by 

Eq. (4a) are shown in Fig. 2. The units are non-dimensionalised with µ=1 so that 

the unit of acceleration is the gravitational acceleration at unit distance from the 
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origin. The angular velocity of the rotating frame of reference is selected as 

1=oω  so that a circular Keplerian orbit is found at unit distance in the X-Y plane, 

as can be seen in the X-Z section shown in Fig. 2. Each point on a contour in Fig. 

2 corresponds to a unique displaced circular orbit of period 2π. In addition, 

radially displaced orbits are generated at the intersection of the contours with the 

plane. These orbits exist for orbit radii both greater or less than the circular 

Keplerian orbit a unit distance from the origin, again with period 2π. If the 

spacecraft S is located along the z- axis then it is in static equilibrium with the 

thrust induced acceleration balancing the local inverse square gravitational 

acceleration. 

Previous studies have investigated families of orbits with different 

functional forms of the free parameter oω , their stability properties and their 

controllability (McInnes, 1997, 1998, Xu and Xu, 2009). It will now be shown 

that the families of continuous thrust non-Keplerian orbits can be approximated 

using impulsive thrust by creating a sequence of connected Keplerian arcs, with 

impulses used to remove discontinuities in velocity at the junction between 

neighbouring arcs.  

 

2.2 Impulse thrust 

The analysis of Section 2.1 provides the required thrust magnitude and direction 

for generic families of continuous thrust non-Keplerian orbits. In this section, the 

analysis is extended to investigate the use of periodic impulses to generate a 

sequence of connected Keplerian arcs, which approximate continuous thrust non-

Keplerian orbits. The S spacecraft will be considered at some arbitrary position r 

in the rotating frame of reference R, which can be decomposed into a position 

( )ζηξ ,,=ρ , relative to an arbitrary point P at position ( )ooo zyx ,,~ =r , as shown 

in Fig. 1. Viewed from an inertial frame of reference I, the point P will trace a 

displaced circular path. The goal is now to find conditions for a sequence of 

Keplerian arcs ρρρρ, each of which begins and terminates at P with impulses 

connecting the arcs, as shown in Fig. 3. The point P will therefore trace a 

displaced non-Keplerian orbit, while the trajectory of the spacecraft S will 

approximate this displaced orbit by following a sequence of Keplerian arcs. 

From Eq. (1), the dynamics of the spacecraft S at position ρrr += ~  is 
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described by 
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which can be written as  
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If the displacement ρρρρ of the spacecraft relative to the arbitrary point P at r~ is 

small, then the gradient of the gravitational potential can be expanded to first 

order as  
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where the Hessian matrix is evaluated at P. The linearised dynamics of the 

spacecraft S relative to P are now described by 
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It can be noted that the last two terms of Eq. (8) do not vanish since the point P 

does not lie on a Keplerian orbit. For the classical linear Clohessey-Wiltshire 

equations (Clohessey and Wiltshire, 1966), the term ( ) ( ) 0~~ =××+∇ rωωrV   on 

a circular Keplerian reference orbit so that Eq. (8) becomes homogeneous. In 

addition, the Hessian matrix of the gravitational potential simplifies to diagonal 

form.  

For the displaced non-Keplerian orbit problem considered in this paper, 

the linear dynamics are non-homogeneous and can be written in compact form as 
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where the skew symmetric gyroscopic matrix N is given by 
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and the matrix M and non-homogeneous part Q are  given by 
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Due to the symmetry of the 2-body problem the condition yo=0 can be set to 

simplify the subsequent analysis. However, this constraint is not used in the 

analysis of the 3-body problem in Section 3 where the cylindrical symmetry of the 

problem is broken. The components of the Hessian matrix of the gravitational 

potential are then given by 
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where 0== yxxy VV and 0== zyyz VV . The non-homogeneous terms are then given 

by 
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The resulting system of equations is similar to that considered by Sawai et al 

(2002) developed for stability and control analysis of a spacecraft hovering at an 

asteroid.  

Defining the system state vector ( )T
ρρX ɺ,= for the spacecraft S it can be 

seen that Eq. (9) can then be written in first order form as 

 

BAX
X +=

dt

d

         (15) 

 

where the system matrix A and non-homogeneous part B are given by 
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In order to obtain a general solution to Eq. (15) it will be necessary to diagonalise 

the system matrix A. This can be achieved using the eigenvectors vi (i=1-6) 

associated with the eigenvalues λi (i=1-6) of the matrix. The eigenvalues can be 

determined from the characteristic polynomial of the system matrix A from 

0det =− IAX λ in the usual manner. The characteristic polynomial then reduces 

to a bi-cubic equation of the form 
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In general, the eigenvalue spectrum obtained from Eq. (18) consists of two pairs 

of conjugate imaginary eigenvalues and a pair of real eigenvalues. The 

eigenvectors vi corresponding to each eigenvalue λi can be used to assemble a 

matrix [ ]  . . . , . . . , 61 vvvV i=  from the eigenvectors which can then be used to 

diagonalise the system matrix A (Betounes, 2010). The diagonal form of the 

system matrix A is then defined by AVVD 1−= where 
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Defining a new state vector XVU 1−=  it can be seen that Eq. (15) can be 

transformed to 
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Finally, defining a matrix E as 
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it can be shown that Eq. (21) can be integrated directly and so the general solution 

to the inhomogeneous linear system defined by Eq. (15) is given by 

      

( ) ( ) ( )0VXVEBVDIEVX 111 −−− +−=t      (23) 

 

where ( )0X  is a set of arbitrary initial conditions.  

This general solution can then be more usefully written in terms of an 

effective state transition matrix ( ) VVEΦ
1−=t  as 

 

( ) ( ) ( ) ΓXΦX += 0tt         (24) 

 

where ( ) BVDIEVΓ
11 −−−= . Decomposing the state transition matrix and non-

homogeneous part as  
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the dynamics of the spacecraft S relative to the point P are defined by   
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which provides the general solution to Eq. (8). The trajectory of S relative to P is 

therefore given by  

 

( ) ( ) ( ) ( ) ( ) 11211 00 ΓρΦρΦρ ++= ɺttt       (27) 
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In order to generate a displaced non-Keplerian orbit the condition is set 

that ( ) ( )0ρρ =τ , where τ is the duration of the Keplerian arc described by Eq. (27). 

This condition ensures that a sequence of connected Keplerian arcs are generated 

which are continuous in position, but discontinuous in velocity. As will be seen 

later τ can be selected as a simple fraction of the orbit period of point P. Since the 

point P is arbitrary, the initial conditions of S can be selected such that ( ) 00 =ρ . 

From Eq. (26) the required initial velocity to ensure that ( ) ( )0ρρ =τ  is then given 

by 

 

 ( ) ( ) 1
1

120 ΓΦρ τ−−=ɺ        (28) 

 

The velocity of S on return to P after time τ is then 

 

 ( ) ( ) ( ) 222 0 ΓρΦρ += ɺɺ ττ       (29) 

 

and so the impulse required to connect neighbouring Keplerian arcs is given by 

 

 ( ) ( ) ( )[ ] 21
1

12
1

1222 ΓΓΦΦΦv −−=∆ −− τττ     (30) 

 

as shown schematically in Fig. 3. 

 In order to illustrate the use of impulses to generate families of displaced 

non-Keplerian orbits, the family of continuous thrust orbits shown in Fig. 2 will 

be considered. Again, the angular velocity of the rotating frame of reference is 

selected as 1=oω , so that a circular Keplerian orbit will found at unit distance in 

the plane. The reference point P in the rotating frame will be selected as 

( )5.0,0,5.0~ =r . The non-Keplerian orbit will therefore have a radius and 

displacement distance of 0.5 in non-dimensional units, as shown in Fig. 4. In 

order to generate a sequence of Keplerian arcs which connect to form the 

displaced orbit, the duration of each arc is selected as a simple fraction of the orbit 

period Noωπτ 2= . Here N=10 is selected for illustration. Using the condition 

( ) ( )0ρρ =τ  a sequence of 10 arcs are generated, where each arc returns to the 
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point P in the rotating frame, as can be seen in Fig. 4. The arcs are generated 

using Eq. (27), the linear solution to Eq. (8), with the impulses connecting the 

Keplerian arcs defined by Eq. (30).  

In order to evaluate the accuracy of the linear approximation, the two-

point boundary value problem defined by ( ) ( )0ρρ =τ  can be solved numerically 

using a shooting method for the full non-linear dynamics defined by Eq. (6). Fig. 

5 shows the components of the displacement ( )ζηξ ,,=ρ  of the spacecraft S from 

the point P. It can be seen that the linear solution provides a good approximation 

to the full non-linear dynamics of the problem in this case. Cleary for large 

displacements about a planetary body, the required impulse magnitude will be 

extremely large. However, Section 4 provides an example of a displaced 

geostationary orbit where the impulse magnitude is modest. 

 

2.3 Reduction to Clohessy-Wiltshire equations 

As the number of Keplerian arcs increases it is expected that non-Keplerian orbits 

using continuous and impulse thrust will match asymptotically. To demonstrate 

this, the linearised dynamics at an arbitrary point P can be reduced to the 

Clohessy-Wiltshire  equations (Clohessey and Wiltshire, 1966).  For 0== oo zy  

the system matrix A and non-homogeneous part B from Eqs. (16-17) reduce to   

 

































−

−+−

+
=

00000

00200

02000
2

100000

010000

001000

3

2
3

2
3

o

oo
o

oo
o

x

x

x

µ

ωωµ

ωωµ
A

   (31) 

 

and 

 



14 



























+−=

0

0

0

0

0

2
2 o
ox

ωµB

        (32) 

 

However, if P is then defined on a circular Keplerian orbit of radius xo then 
32
oo xµω =  and so Eq. (8) reduces to  

 

 ξξωηωξ aoo =−− 23 2 ɺɺɺ

      (33a) 

  

 ηξωη ao =+ ɺɺɺ  2
       (33b) 

 

 ζζωζ ao =+ 2ɺɺ

        (33c) 

 

where ( )ζηξ aaa ,,  correspond to the components of continuous thrust induced 

acceleration a in the local frame attached to P. The continuous thrust acceleration 

is re-introduced to allow a comparison of continuous and impulse thrust non-

Keplerian orbits. For continuous thrust, the required acceleration components for 

an equilibrium solution at some point ( )oo ζξ ,0,=ρ  in the rotating frame of 

reference can be obtained from Eqs. (33) as 

 

 aξ = −3ωo
2ξo         (34a) 

 

 
0=ηa

         (34b) 

 

 ooa ζωζ
2=

        (34c) 
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which can also be obtained from Eq. (3) for small displacements from a circular 

Keplerian orbit in the plane. 

If there is no thrust induced acceleration, then the Clohessy-Wiltshire  

equations Eq. (33) have a general solution (Clohessy and Wiltshire, 1966)  of the 

form 
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( ) ( ) ( )ttt o
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+=
     (35c) 

 

A displaced non-Keplerian orbit can then be obtained using periodic impulses, as 

discussed in Section 2.2.  To maintain an out-of-plane displacement, repeated 

vertical impulses are required such that ( ) oζτζ =  where τ is again the period 

between impulses (McInnes, 1998).  Then, using Eq. (35c), the required out-of-

plane velocity at the start of the Keplerian arc is given by 
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τωζωζ o

ooo
ɺ

       (36) 
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Due to the symmetry of the problem it can be seen that ( ) ( )0ζζ ɺɺ −=T  and so the 

effective out-of-plane acceleration ζa  provided by the repeated impulses is then 

( ) τζ /02 ɺ  such that 

 

 





=
2

tan
2 τω

τ
ζω

ζ
oooa

       
          (37) 

 

If the time τ between impulses is small, Eq. (37) can then be expanded to yield 

 

 
 . . . 

12

1 242 ++= τζωζωζ ooooa
      (38) 

 

Comparing Eq. (38) and Eq. (34c) it can be seen that to first order the required 

accelerations are equal, with the higher order terms representing the difference in 

required mean acceleration between the continuous thrust and impulse cases. 

 For a radial displacement, the condition ( ) 00 =η  will be used along with 

the requirements ( ) 0=τη  and ( ) oξτξ = .  Again using Eqs. (35) it can be seen that 

the required initial velocity components are given by  

 

 

( ) ( )
( ) ( )2sin82cos3

2sin3
0

2

τωτωτω
τωτξωξ

ooo

ooo

−
=ɺ

    (39a) 

 

 

( ) ( ) ( )
( ) ( )2sin82cos3

2sin22cos
60

τωτωτω
τωτωτωξωη
ooo

ooo
oo −

−−=ɺ

   (39b) 

 

However, it is found that ( ) ( )0ητη ɺɺ =  and ( ) ( )0ξτξ ɺɺ −=  so that only repeated radial 

impulses are required (McInnes, 1998).  The effective radial acceleration xa  

provided by the repeated impulses is then ( ) τξ /02 ɺ .  Expanding Eq. (39a) for 

small periods τ it is found that 
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 . . . 

4

3
3 242 ++−= τξωξωξ ooooa

      (40) 

 

Again, comparing Eq. (40) and Eq. (34a) it can be seen that to first order the 

required accelerations are equal, again with the higher order terms representing 

the difference in mean acceleration between the continuous thrust and impulse 

cases. These approximations provide a simple means of assessing the required 

acceleration and accumulated effective ∆v for small displacements in the vicinity 

of a Keplerian orbit, along with the difference in cost of the continuous and 

impulse thrust modes of operation. 
 

3. Three-Body Non-Keplerian Orbits 

 

3.1 Continuous thrust 

The analysis provided in Section 2 can be extended to consider artificial equilibria 

in the circular restricted three-body problem. Again, artificial equilibria can be 

generated using continuous low thrust or periodic impulses to connect a sequence 

of 3-body ballistic arcs. The analysis for the 3-body problem is similar to that 

provided in Section 2. Here, the 3-body gravitational potential is defined as 

 

 

( )
  

~~1

21 rr
µµ −−−=V

       (41) 

 

where the position of the spacecraft S relative to the two primary masses m1 and 

m2 is defined by ( )zyx ,,~
1 µ+=r  and ( )zyx ,,~11 +−= µr , as shown in Fig. 6. The 

mass ratio of the problem is defined by ( )212
~ mmm +=µ  where the gravitational 

constant and the sum of the primary masses are taken to be unity. Unlike the 

families of 2-body orbits, the angular velocity of the rotating frame of reference is 

defined uniquely by the orbital angular velocity of the primary masses and so is 

taken to be unity. 
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Using this new potential, Eq. (4) can then provide the required thrust 

magnitude and direction for equilibria in the rotating frame of reference, as used 

by Morimoto et al (2007). Contours of equal thrust induced acceleration are 

shown in Fig. 7 for a mass ratio of 61004.3~ −×=µ  (Earth-Sun system). The 

condition ( ) ( ) 0=××+∇ rωωrV  can be seen at the L1 and L2 natural equilibrium 

points where 0=a . For a modest thrust induced acceleration, nested surfaces of 

artificial equilibria are generated in the vicinity of the natural equilibrium points.  

 

3.2 Impulse thrust 

Again, the procedure detailed in Section 2.2 can be followed to define the 

requirements for periodic motion near artificial equilibria using impulsive thrust. 

Periodic impulses are now used to generate a sequence of connected ballistic 

three-body arcs, which approximate continuous thrust artificial equilibria. The 

spacecraft S will again be considered at some position r in the rotating frame of 

reference, which can be decomposed into a position ( )ζηξ ,,=ρ , relative to an 

arbitrary point P at position ( )ooo zyx ,,~ =r , as shown in Fig. 6. If conditions can 

be found for the spacecraft S to return to P then an approximation can be found to 

the families of artificial equilibria using continuous thrust. The goal is therefore to 

find conditions for a sequence of ballistic three-body arcs ρρρρ, each of which begins 

and terminates at P with impulses connecting the arcs. The spacecraft S will 

therefore remain in the vicinity of P.  

 Using Eq. (41), the components of the Hessian matrix of the 3-body 

gravitational potential defined by Eq. (11) are found to be 
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while the non-homogeneous terms are given by 
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Then, the conditions for the spacecraft S to return to the point P are again defined 

by Eq. (30) using the matrix entries defined by Eq. (42) and (43).  

In order to illustrate the use of impulses to generate families of artificial 3-

body equilibria, the family of continuous thrust equilibria shown in Fig. 7 will be 

considered. Eight reference points P1-8 in the rotating frame will be selected at 

( )005.0,005.0,99.0~ ±±=r  and ( )005.0,005.0,01.1~ ±±=r  in the vicinity of the 

natural L1 and L2 points. In order to generate a sequence of ballistic 3-body arcs 

which return to the point P, the duration of each arc is again selected as a simple 

fraction N of the orbit period of the two primary masses. Here N=5 is selected for 

illustration to generate large arcs (where N=10 was used in Section 2.2). Using the 

condition ( ) ( )0ρρ =τ  a sequence of arcs are generated, where each arc returns to 

each point P in the rotating frame, as can be seen in Fig. 8. The arcs are again 

generated using Eq. (26), the linear solution to Eq. (8) with the potential defined 

in Eq. (41) and the impulses connecting the arcs defined by Eq. (30). For the 

example provided in Fig. 8 the impulse magnitude is 1082.2 ms-1 for the Earth-

Sun system. Clearly this is large, but is more modest for points closer to the 

natural equilibria. 

Lastly, in order to evaluate the accuracy of the linear approximation, the 

two-point boundary value problem defined by ( ) ( )0ρρ =τ  can be solved 

numerically using a shooting method for the full non-linear dynamics. Fig. 9 

shows the components of the displacement ( )ζηξ ,,=ρ  of the spacecraft S from 

the point P. It can be seen that the linear solution provides a reasonable 

approximation to the full non-linear dynamics of the problem. However, the 

match is poorer than the 2-body problem due to the large trajectory loops 

generated by using a smaller number of arcs with N=5, rather than N=10. A larger 
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number of arcs will generate a smaller displacement of S from P and so better 

accuracy for the linear solution. 

 

4. Applications 
Highly non-Keplerian orbits have a range of potential application, as discussed in 

Section 1. Here, an example is provided for a displaced geostationary orbit. 

Geostationary spacecraft typically use a station-keeping box sized at 0.05 deg of 

orbit arc. This corresponds to a physical size of order 35x35 km. Figure 10 shows 

a displaced orbit with a displacement distance of 35 km using both continuous 

thrust and periodic impulses (N=10). Applications of such displaced orbits include 

stacking geostationary satellite at crowded longitudes in a similar manner to the 

solar sail displaced orbits considered by Forward (1984) and later Baig and 

McInnes (2010) and Heiligers (2010). The required impulse magnitude for the 

displaced orbit shown in Fig. 10 can be determined from Eq. (30) as 1.654 ms-1, 

so that the ∆v per orbit is 16.54 ms-1. The required continuous thrust induced 

acceleration can be determined from Eq. (4a) as 1.851x10-4 ms-2, so that the 

effective ∆v per orbit for the continuous thrust case is 15.99 ms-1. There is 

therefore a modest penalty of order 0.5 ms-1 for using the impulse mode rather 

than the continuous thrust mode. In addition, continuous low thrust allows the use 

of high specific impulse propulsion, such as an electric thruster with a specific 

impulse of 3000 s, compared to a bi-propellant thruster with a specific impulse of 

320 s used for the impulse mode (Heiligers, 2010). For a large 4000 kg 

geostationary platform, the propellant mass per orbit for the continuous thrust case 

is 2.15 kg, which rises to 21.02 kg for the impulse mode.  

 

5. Conclusions 
Families of displaced 2-body non-Keplerian orbits and 3-body artificial equilibria 

have been extended by considering impulse rather than continuous thrust. The 

displaced non-Keplerian orbits comprise a sequence of individual Keplerian arcs 

connected by impulses. The sequence of arcs are therefore continuous in position, 

with discontinuities in velocity which are removed using the impulses. For 

frequent impulses it has been shown that the new families of orbits approximate 
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continuous thrust non-Keplerian orbits. The conditions for displaced non-

Keplerian orbits using impulse thrust were found by linearising the dynamics of 

the two and three-body problems in the vicinity of an arbitrary reference point in a 

rotating frame. While the motion of the spacecraft relative to the reference point 

was considered at linear order, the reference point was be selected arbitrarily so 

that when viewed from an inertial frame of reference the non-Keplerian orbit has 

arbitrarily large displacements. 
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Figure Captions 

 

Figure 1. Frame R rotating with angular velocity ωωωω relative to inertial frame I. 
Reference point P at position r~  and spacecraft S at position ρρρρ relative P. 

 

Figure 2. Contours of non-dimensional thrust induced acceleration for artificial 
equilibria in rotating frame R (2-body problem). 

 

Figure 3. Sequence of Keplerian arcs which begin and terminate at P connected 
by impulses (2-body problem). 

 

Figure 4. Displaced orbits constructed from sequence of Keplerian arcs; Orbit I 
( )5.0,0.0,5.0~ =r , Orbit II ( )75.0,0.0,75.0~ =r , Orbit III ( )0.1,0.0,0.1~ =r . Dashed 

lined indicates equivalent constant acceleration displaced orbit. 

 

Figure 5. Comparison of linear and non-linear solutions for Orbit I. Solid line 
linear solution, dashed line non-linear solution. 

 

Figure 6. Frame R rotating with angular velocity 1=ω  relative to inertial frame 

I. Reference point P at position r~  and spacecraft S at position ρρρρ relative P. 

 

Figure 7. Contours of non-dimensional thrust induced acceleration for artificial 

equilibria in rotating frame R (3-body problem) for 61004.3~ −×=µ . 

 

Figure 8. Artificial 3-body equilibria constructed from sequences of 3-body arcs;  

P1 ( )0050.991,0,0.~ =r , P2 ( ).0050.991,0,-0~ =r , P3 ( )5,0.00.991,0.00~ =r ,  

P4 ( )05,0.00.991,-0.0~ =r , P5 ( )0051.011,0,0.~ =r , P6 ( ).0051.011,0,-0~ =r , 

P7 ( )5,0.01.011,0.00~ =r , P8 ( )05,0.01.011,-0.0~ =r . 

 

Figure 9. Comparison of linear and non-linear solutions for P1. Solid line linear 
solution, dashed line non-linear solution. 

 

Figure 10. Displaced two-body geostationary orbit (35 km displacement). 
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Figure 1.  
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 
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Figure 10. 

 

 

 


