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Abstract This paper investigates new families of displadgdhly non-Keplerian orbits in the
two-body problem and artificial equilibria in theraular restricted three-body problem. The
families of orbits presented extend prior work ksing periodic impulses to generate displaced
orbits rather than continuous thrust. The new disgdl orbits comprise a sequence of individual
Keplerian arcs whose intersection is continuouspasition, with discontinuities in velocity
removed using impulses. For frequent impulses #we fiamilies of orbits approximate continuous
thrust non-Keplerian orbits found in previous sasdiTo generate approximations to artificial
equilibria in the circular restricted three-bodylplem, periodic impulses are used to generate a
sequence of connected three-body arcs which begiteaminate at a fixed position in the rotating
frame of reference. Again, these families of orlé#duce to the families of artificial equilibria
found using continuous thrust.

Keywords Non-Keplerian orbits, circular restricted threedipgroblem, artificial equilibria,
artificial satellites.



1. Introduction

The use of continuous low thrust propulsion to gateeartificial equilibria was

apparently first proposed by Dusek (1966) who pamrdut that a spacecraft could
be held at an artificial equilibrium point sometdisce from a natural three-body
equilibrium point. Later, others such as Austinat.(1977), Nock (1984) and
Yashko and Hastings (1996) noted that propulsivesthcan in principle be used
to displace a two-body orbit using continuous thmsrmal to the orbit plane.

Forward (1984), Baig and Mclnnes (2008) and Heiig010) have considered
displaced geostationary orbits using continuousisthdue to solar radiation
pressure. Such displaced two-body orbits will bengsdl non-Keplerian orbits

since the orbit plane does not contain the centeas.

Large families of displaced non-Keplerian two-podrbits have been
identified for spacecraft utilising both solar séilicinnes, 1992a, 1992b) and
generic low thrust propulsion (Dankowicz, 1994, Nuts, 1997). More recently
displaced orbits have been investigated for a rafiggplications and propulsion
technologies (Mengali and Quarta, 2009, Gong et28I09). Studies have
determined the conditions for such orbits to exisgir stability properties and
their controllability (Mclnnes, 1997, 1998, Xu aXadi, 2009). Recently, a large
catalogue of such orbits was provided by McKaylg2809) for motion around
planetary bodies.

Non-Keplerian two-body orbits are generated usow thrust propulsion
by finding conditions for artificial equilibria ira rotating frame of reference.
These equilibria then appear as displaced ciraalbits when viewed from an
inertial frame (Mclnnes, 1997). Scheeres (1999kmwered such hover orbits in a
frame of reference rotating with an asteroid. Lateork by Sawai et al (2002)
investigated conditions for stability and contrbllay of such orbits at irregular
shaped asteroids.

Conditions for artificial equilibria in the circularestricted three-body
problem can be found using solar sails (McInneal,e1994), generic low thrust
propulsion (Morimoto et al, 2007) and hybrid sofail propulsion (Baig and
Mclnnes, 2008), while periodic orbits can be foatmbut such artificial equilibria
were investigated by Baoyin and Mclnnes (2006), aatnd Mclinnes (2007),
Baig and Mclnnes (2009) and Farres and Jorba (2@fQ)articular interest is the



case of low thrust propulsion where regions of Istatificial equilibria were
found by Morimoto et al (2007) which do not exist the solar sail problem.
Further investigation of the stability of such fictal equilibria has recently been
provided by Bombardelli and Pelaez (2010).

In this paper, new families of displaced non-Kejplerorbits are generated
using impulsive, rather than continuous thrust. Tise of impulse thrust was
considered by Nock (1984), Yashko and Hastings §L99icinnes (1998), Hope
and Trask (2003) and Spilker (2003) to generatdlghisplacements away from a
circular Keplerian orbit at linear order in the tlvody problem. In this paper, the
more general problem is considered with arbitratdyge displacements. The
displaced non-Keplerian orbits are approximatedabgequence of individual
Keplerian arcs connected by impulses. The sequericarcs is therefore
continuous in position, with discontinuities in @eity which are removed using
the impulses. For frequent impulses the families odbits approximate the
continuous thrust non-Keplerian orbits found invioes studies. The conditions
for displaced non-Keplerian orbits using impulseust can be found by
linearising the dynamics of the two and three-bpryblems in the vicinity of an
arbitrary reference point in a rotating frame dérence. While the motion of the
spacecraft relative to the reference point is aereid at linear order, the
reference point can be selected arbitrarily so, twaen viewed from an inertial
frame, the resulting orbit has arbitrarily largesplacements away from a
Keplerian orbit. Finally, some applications are sdered for displaced

geostationary orbits.

2. Two-Body Non-Keplerian Orbits

2.1 Continuous thrust

Consider the dynamics of a spacecraft at positiona frame of referendg(x,y,2)
rotating with constant angular velociyrelative to an inertial framgX,Y,2), as
shown in Fig. 1 (Mclnnes, 1997, 1998). The spadtesgperiences thrust induced
accelerationa and a two-body gravitational potentiel The dynamics of the
spacecrafsS at positionr =(x, Y, z) can be defined by an equation of motion in

the rotating framé such that



2
%+2m><%+co><(mxr)=a—ﬂv(r) o

The gravitational potentiaV of the central body and the thrust-induced

acceleratiora are defined as

V:—ﬂ , a:|:1j|n
i %l o

wheremis the mass of the spacecraftis the direction of the thrust vector and
is the two-body gravitational parameter. The caaditfor equilibrium in the

rotating frame of referendris therefore given by
a=0V(r)+ox(oxr) @)

The required thrust magnitude and direction for tteem be obtained as

T(r,0)=moVv(r)+ox(oxr) (4a)

DV(r)+m><(m><r)
IEV(r) + e x(oxr)|

n(r,®)=
(4b)

Using the thrust magnitude and direction definedlyg. (4), surfaces of artificial

equilibria are generated in the rotating frameederence, parameterised by the
angular velocity of the rotating frame), =|w|. When viewed from an inertial
frame of reference an artificial equilibrium poinéces a displaced circular orbit
of period 277w, . Contours of constant thrust induced acceleragiemerated by

Eq. (4a) are shown in Fig. 2. The units are nonetisionalised withi=1 so that

the unit of acceleration is the gravitational aecation at unit distance from the



origin. The angular velocity of the rotating franoé reference is selected as
a, =1 so that a circular Keplerian orbit is found attudistance in th&-Y plane,

as can be seen in tieZ section shown in Fig. 2. Each point on a contaufig.

2 corresponds to a unique displaced circular oobiperiod 2t In addition,
radially displaced orbits are generated at thesetgion of the contours with the
plane. These orbits exist for orbit radii both geeaor less than the circular
Keplerian orbit a unit distance from the origin,aag with period 2t If the
spacecraftS is located along the- axis then it is in static equilibrium with the
thrust induced acceleration balancing the localeisg square gravitational
acceleration.

Previous studies have investigated families of terbwith different
functional forms of the free parametes,, their stability properties and their

controllability (Mclnnes, 1997, 1998, Xu and Xu,(). It will now be shown

that the families of continuous thrust non-Kepler@bits can be approximated
using impulsive thrust by creating a sequence ohected Keplerian arcs, with
impulses used to remove discontinuities in veloatythe junction between

neighbouring arcs.

2.2 Impulse thrust

The analysis of Section 2.1 provides the requiredst magnitude and direction
for generic families of continuous thrust non-Kejfala orbits. In this section, the
analysis is extended to investigate the use ofog&riimpulses to generate a
sequence of connected Keplerian arcs, which apmte continuous thrust non-
Keplerian orbits. Thé spacecraft will be considered at some arbitrasitimm r

in the rotating frame of referend® which can be decomposed into a position
p= (f,/],(), relative to an arbitrary poirR at positionr =(x0,yo,zo), as shown
in Fig. 1. Viewed from an inertial frame of refecerl, the pointP will trace a
displaced circular path. The goal is now to finchditions for a sequence of
Keplerian arcsp, each of which begins and terminates Patwith impulses
connecting the arcs, as shown in Fig. 3. The pBinwill therefore trace a
displaced non-Keplerian orbit, while the trajectony the spacecrafS will
approximate this displaced orbit by following aseaqce of Keplerian arcs.

From Eq. (1), the dynamics of the spacec#fit positionr =1 +p is
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described by

I40) 1 9y ATH0) s g7+ p)) = -V (7 + )
dt dt (5)

which can be written as

2
d f+20)><%+u)><((y)><p):—DV(F+p)—m><(m><?)
dt dt @

If the displacemenp of the spacecraft relative to the arbitrary pdhat r is
small, then the gradient of the gravitational pts#ncan be expanded to first

order as

Dv(‘r“+p)=Dv(‘r“)+[a‘%} Pt ...,
™

where the Hessian matrix is evaluatedPatThe linearised dynamics of the

spacecrafSrelative toP are now described by

d’p dp _
F+2@Xa+mx(m><p)_—|:

onv

p-0V(F)-ox(oxF)
”l,

(8)

It can be noted that the last two terms of Eq.d@)ot vanish since the poiRt
does not lie on a Keplerian orbit. For the cladsiceear Clohessey-Wiltshire
equations (Clohessey and Wiltshire, 1966), the t&v{r)+ o x(wxF)=0 on
a circular Keplerian reference orbit so that Eg. f@comes homogeneous. In
addition, the Hessian matrix of the gravitationatgmtial simplifies to diagonal
form.

For the displaced non-Keplerian orbit problem cdesed in this paper,

the linear dynamics are non-homogeneous and camitben in compact form as



d’p _ . dp
——=N—=+Mp+
dt? at prQ )

where the skew symmetric gyroscopic malliis given by

0 2w O
N=|-2w, 0 O
0 0 O (10)
and the matriM and non-homogeneous p@riare given by
Vet V, V,
M=l Vv, V,+a® V,
V V V
Zx ¥ “ (11)
Q
Q=1Q,
Q3 (12)

Due to the symmetry of the 2-body problem the ctiowliy,=0 can be set to
simplify the subsequent analysis. However, thisst@mt is not used in the
analysis of the 3-body problem in Section 3 whaeedylindrical symmetry of the
problem is broken. The components of the Hessiatrixmaf the gravitational

potential are then given by

“TleezfT (¢ z) (13)

Xz x = /2
(Xf +2; ) (13b)



(13c)

2

v = M M
z (Xg + Zg )5/2 (Xs + Zg )3/2

(13d)

whereV,, =V,, =0andV,, =V, =0. The non-homogeneous terms are then given

by

Q —LO)S/Z+ x,w,’

(Xf +z; (14a)
Q,=0 (14b)
Q3 = —03/2
(Xj +z, ) (14c)

The resulting system of equations is similar tot tbansidered by Sawai et al
(2002) developed for stability and control analysisa spacecraft hovering at an
asteroid.

Defining the system state vectdt=(p,p)" for the spacecraff it can be

seen that Eqg. (9) can then be written in first ofdem as

X Ax+B
dt

(15)

where the system matrix and non-homogeneous p8&rtare given by



0 0 0 1 0 0
0 0 0 0 1 0
Azl O 0 0 0 0 1
IV, tw)” 0 V, 0 2w O
0 V,+w® 0 -2w 0 0
A o Vv, 0 0 0 16
0]
0
0
B=
Q
0
Q] 17)

In order to obtain a general solution to Eq. (1%)ill be necessary to diagonalise
the system matriXA. This can be achieved using the eigenvectpr§=1-6)
associated with the eigenvalués(i=1-6) of the matrix. The eigenvalues can be

determined from the characteristic polynomial oé thystem matrixA from

defAX - Al| =0in the usual manner. The characteristic polynontieh reduces

to a bi-cubic equation of the form
n*+Kn*+K,n+K,=0 (18)
wheren = A* and

K, =2} (19a)

o 6t 3 +3ﬂw§(><§—225)
3 2 25/2
(x2+2)

(19b)



I T e
(19¢)
ez |
be+zf? (e+ 2]

In general, the eigenvalue spectrum obtained frgm(E3) consists of two pairs
of conjugate imaginary eigenvalues and a pair dl reigenvalues. The
eigenvectorsy; corresponding to each eigenvaldecan be used to assemble a
matrix V:[vl,...vi ,...v6] from the eigenvectors which can then be used to
diagonalise the system matr& (Betounes, 2010). The diagonal form of the

system matri is then defined byd =V AV where

A (20)

Defining a new state vectot) =V ™X it can be seen that Eg. (15) can be

transformed to

Y _(vavju+vs
dt (21)
Finally, defining a matriE as
eXp(/]lt)
E=
exp(/]Bt) (22)
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it can be shown that Eq. (21) can be integrategcty and so the general solution

to the inhomogeneous linear system defined by Ex).i6 given by

X({t)=V(E-1)D™*V*B +VE*VX(0) (23)

where X (0) is a set of arbitrary initial conditions.
This general solution can then be more usefullyttemiin terms of an

effective state transition matr'm(t) =VE™V as

x(t)= ()X (0)+T 22)

whereI’ =V(E—I)D‘1V‘lB. Decomposing the state transition matrix and non-

homogeneous part as

(25a)

|: l:|
I=
e (25b)

0oty aolio)r ]

which provides the general solution to Eq. (8). Titagectory ofS relative toP is

therefore given by

P(t) = (I)ll(t)p(o) + (I)lz(t)p(o) +I (27)

11



In order to generate a displaced non-Kepleriantdh® condition is set

thatp(z) =p(0), wherer is the duration of the Keplerian arc describedehy (27).

This condition ensures that a sequence of conné&pterian arcs are generated

which are continuous in position, but discontinuauselocity. As will be seen
later 7 can be selected as a simple fraction of the pdgiiod of pointP. Since the
point P is arbitrary, the initial conditions @& can be selected such thz(0)=0.

From Eq. (26) the required initial velocity to errsmhatp(r):p(o) is then given

by

p(0)=-@,;(r)r, (28)

The velocity ofSon return tdP after timeris then

P(T) = (I)zz(r)p(o) +I, (29)

and so the impulse required to connect neighboleygerian arcs is given by

Av = |.(I)22(Z')(I)I; (T) - q)l_; (T)Jrl -TI, (30)

as shown schematically in Fig. 3.

In order to illustrate the use of impulses to gateefamilies of displaced
non-Keplerian orbits, the family of continuous tsirorbits shown in Fig. 2 will
be considered. Again, the angular velocity of towting frame of reference is
selected asi, =1, so that a circular Keplerian orbit will found @it distance in
the plane. The reference poift in the rotating frame will be selected as
F:( 0.5,0,0.5). The non-Keplerian orbit will therefore have a tediand
displacement distance of 0.5 in non-dimensionatsyras shown in Fig. 4. In

order to generate a sequence of Keplerian arcshwbannect to form the

displaced orbit, the duration of each arc is seltets a simple fraction of the orbit

period 7 =277/¢cyN. HereN=10 is selected for illustration. Using the cortiti

p(T)=p(0) a sequence of 10 arcs are generatdtere each arc returns to the

12



point P in the rotating frame, as can be seen in Fig. 4 dits are generated
using Eq. (27), the linear solution to Eq. (8), witie impulses connecting the
Keplerian arcs defined by Eq. (30).

In order to evaluate the accuracy of the linearraxdmation, the two-
point boundary value problem defined p{r)=p(0) can be solved numerically
using a shooting method for the full non-linear alynics defined by Eqg. (6). Fig.
5 shows the components of the displacemmeqqi(f,iy,Z) of the spacecrafs from
the pointP. It can be seen that the linear solution proviaemod approximation
to the full non-linear dynamics of the problem imst case. Cleary for large
displacements about a planetary body, the requirgrdilse magnitude will be
extremely large. However, Section 4 provides anngpta of a displaced

geostationary orbit where the impulse magnitudaaslest.

2.3 Reduction to Clohessy-Wiltshire equations

As the number of Keplerian arcs increases it issetqrl that non-Keplerian orbits
using continuous and impulse thrust will match agtptically. To demonstrate
this, the linearised dynamics at an arbitrary pdihtcan be reduced to the

Clohessy-Wiltshire equations (Clohessey and WiksH966). Fory, =z, =0

the system matriA and non-homogeneous pBrtrom Egs. (16-17) reduce to

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0o 0 o0 1
24
sl
aclietd O 0 0 2m O
0o £+ 0 -20 0 0
XO
0 o -2 0o o0 o0
Xo

- - (1)

and

13



- - (32)

However, if P is then defined on a circular Keplerian orbit afius x, then

w? = u/x3 and so Eq. (8) reduces to

& =20, 1 -3ufé = a;

(33a)
fj+2w,¢=a, (33b)
Crupd=a (33¢)

where (a{1a771a() correspond to the components of continuous thindiced
acceleratiora in the local frame attached B The continuous thrust acceleration
is re-introduced to allow a comparison of continsiand impulse thrust non-

Keplerian orbits. For continuous thrust, the regdincceleration components for

an equilibrium solution at some poir]t:(fO ,O,ZO) in the rotating frame of

reference can be obtained from Eqgs. (33) as

8, = -3¢, (34a)
3 =0 (34b)
& =, (34¢)

14



which can also be obtained from Eqg. (3) for smaptiicements from a circular
Keplerian orbit in the plane.
If there is no thrust induced acceleration, thea @lohessy-Wiltshire

equations Eq. (33) have a general solution (Clghasd Wiltshire, 1966) of the

form

s(r){%}m(wot)—[sa+%}cos(wot){%+4a}

(o]

0 0 (35a)
_| 41, - 24,
n(t)= { o + 6{o}sm(wot) { ” }cos(a)ot)
- [370 + 66()050]'[ + |:€o - 250 :|
@ (35b)
()= ¢, codet) + £sinfey)
@, (35¢)

A displaced non-Keplerian orbit can then be obtinsing periodic impulses, as

discussed in Section 2.2. To maintain an out-ofldisplacement, repeated

vertical impulses are required such tfé(tT)ZZO where 7 is again the period

between impulses (Mclnnes, 1998). Then, using Esc)(3he required out-of-

plane velocity at the start of the Keplerian argiien by

¢ =awd, ta{w"r}
2 (36)

15



Due to the symmetry of the problem it can be sban cf(T):—Z(O) and so the
effective out-of-plane acceleratiofy provided by the repeated impulses is then

25(0)/ T such that

a; = 2048 tar{w"r
T 2

}

(37)
If the time 7 between impulses is small, Eq. (37) can then baredgd to yield

A A
12 (38)

Comparing Eqg. (38) and Eqg. (34c) it can be seentthéitst order the required
accelerations are equal, with the higher order $enepresenting the difference in
required mean acceleration between the contindousttand impulse cases.

For a radial displacement, the conditi0(0)=0 will be used along with

the requirementsl(f) =0 and 5(T) =¢,. Again using Egs. (35) it can be seen that

the required initial velocity components are givsn

) sl
3wrcodwr/2)-8sin(wr/2) (39a)

N a7 coda,1/2) - 2sin(a,7/2)

1(0)=-6a, 3w codwy/2)-8sin(wr/2) (39b)

However, it is found thad'?(T)=l7(0) and 5(T) = -5(0) so that only repeated radial
impulses are required (Mclnnes, 1998). The effecti@dial acceleratiorf,
provided by the repeated impulses is tI'%ﬂO)/T. Expanding Eqg. (39a) for

small periodsrit is found that

16



55:—3w§£0+gw;‘£0r2+... 0
40

Again, comparing Eq. (40) and Eq. (34a) it can bensthat to first order the
required accelerations are equal, again with tigadri order terms representing
the difference in mean acceleration between thdirmoous thrust and impulse
cases. These approximations provide a simple mehm@ssessing the required
acceleration and accumulated effecttwefor small displacements in the vicinity
of a Keplerian orbit, along with the difference @ost of the continuous and

impulse thrust modes of operation.

3. Three-Body Non-Keplerian Orbits

3.1 Continuous thrust

The analysis provided in Section 2 can be extendednsider artificial equilibria
in the circular restricted three-body problem. Agaartificial equilibria can be
generated using continuous low thrust or perioaiiptlses to connect a sequence
of 3-body ballistic arcs. The analysis for the I¥p@roblem is similar to that

provided in Section 2. Here, the 3-body gravitagigmotential is defined as

(-7)_ A

Il (1)

where the position of the spacecr&ftelative to the two primary masses and
my is defined byr, = (x+ 4, y,2) andr, =(1-Z+Xx,Y,2), as shown in Fig. 6. The

mass ratio of the problem is defined py= mz/(ml + rr12) where the gravitational
constant and the sum of the primary masses aren takde unity. Unlike the
families of 2-body orbits, the angular velocitytbé rotating frame of reference is
defined uniquely by the orbital angular velocitytbgé primary masses and so is
taken to be unity.

17



Using this new potential, Eq. (4) can then provile tequired thrust
magnitude and direction for equilibria in the rotgtframe of reference, as used

by Morimoto et al (2007). Contours of equal thrustluced acceleration are
shown in Fig. 7 for a mass ratio ¢f = 304x10° (Earth-Sun system). The
condition DV(r)+m><(m><r)=O can be seen at the And L, natural equilibrium

points wherea=0. For a modest thrust induced acceleration, neste@ces of

artificial equilibria are generated in the viciniythe natural equilibrium points.

3.2 Impulse thrust

Again, the procedure detailed in Section 2.2 canfdiwed to define the
requirements for periodic motion near artificiauéipria using impulsive thrust.
Periodic impulses are now used to generate a sequeinconnected ballistic
three-body arcs, which approximate continuous theusficial equilibria. The

spacecrafS will again be considered at some positiom the rotating frame of
reference, which can be decomposed into a pos'pien{{,n,(), relative to an
arbitrary pointP at positiont :(xo,yo,zo), as shown in Fig. 6. If conditions can
be found for the spacecrétto return toP then an approximation can be found to
the families of artificial equilibria using continus thrust. The goal is therefore to
find conditions for a sequence of ballistic threehp arcsp, each of which begins
and terminates aP with impulses connecting the arcs. The space@aitill
therefore remain in the vicinity of P.

Using Eqg. (41), the components of the Hessian maifithe 3-body
gravitational potential defined by Eq. (11) are fdua be

v o BHEELrEEx) f
“ e menf ey o2t (Far e ey 2]
_ 3 p)Ee ) ~1+71
~ 5/2 ~ 2
(+x, )2 +yz+22f" (@ex ) +y2+22f (42a)
o LBy, ALeENEry,
(Crrmexfeyzez2f® (@ec+viezf” o
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-1 Erx)e, AL ENER ),

Vv, =
(Cremex S eyz+z2f* (@+x ) +y2+zf* (420)
oo B, A ENErR,
¥ _ 2 . )2 — 2, 2, 22
(Cremex ) +yz+22f* (@+x)+y2+2) (42d)
v - 32 ] A
Yo (remex Pyt (Fremex P+ yz + 22
-1+, Ay
((/:7+ X, +y2+ 25)5/2 ((fl %)+ Y2+ 2 )yz (42e)
V. = 3lzzyozo — 3(—1"',[1))/020
yz ~ 2 52 ~ 2 72
((—1+,u+xo) +y§+2§) ((/U+Xo) +Y§+Z§) (42f)
v - -1+ +x,)z, _ 31+ a)E+ %)z,
x - 2 5/2 ~ 2 52
((—1+y+xo) +y§+2§) ((ﬂ+><o) +y§+Z§) (429)
V. = 3[[yozo _ 3(_1+/'7)on0
B e R R D R -
v 3122 ) A
“ ((—1+,l'1+x0)2+y§+Z§)5/2 ((‘1+A7+XO)Z+Y§+Z§)M
drefld ,  -1ep
((,Z2+x0)2+y§+zg)52 ((ﬁ+xo)2+y§+zg)a/2 (42i)

while the non-homogeneous terms are given by
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ety S I =) L2

Q= X
' ((—1+ H+X%) +Y2+2 )5/2 ((ﬁ X, +y2+2 )5/2 (43a)
_ iy (-1+A)y
Q = 2 + 2 Y,
’ ((—1+ A+x ) +y.+27 )5/2 ((ﬁ %) Y+ Z )5/2 (43b)
0. = /2, L (1+f)e,
’ ((—1+ A+x ) +y.+27 )5/2 (([1 +%, )ty + 2 )5/2 (43c)

Then, the conditions for the spaceciafo return to the poir® are again defined
by Eq. (30) using the matrix entries defined by B&) @nd (43).

In order to illustrate the use of impulses to gateefamilies of artificial 3-
body equilibria, the family of continuous thrustudipria shown in Fig. 7 will be
considered. Eight reference poimgs in the rotating frame will be selected at
r =(099+0.005+0.005 and F =(101+0.005+0.005 in the vicinity of the
natural L3 and L, points. In order to generate a sequence of hallBsbody arcs
which return to the poir®, the duration of each arc is again selected as\ples
fractionN of the orbit period of the two primary masses.dé+5 is selected for
illustration to generate large arcs (whkel0 was used in Section 2.2). Using the

condition p(r) = p(0) a sequence of arcs are generatetere each arc returns to

each pointP in the rotating frame, as can be seen in Fig. & ditts are again
generated using Eq. (26), the linear solution to (Bywith the potential defined
in Eq. (41) and the impulses connecting the arcsnee@fby Eq. (30). For the
example provided in Fig. 8 the impulse magnitudd(82.2 ms for the Earth-
Sun system. Clearly this is large, but is more msbder points closer to the
natural equilibria.

Lastly, in order to evaluate the accuracy of thedinapproximation, the
two-point boundary value problem defined bp(r)=p(0) can be solved
numerically using a shooting method for the fullndmear dynamics. Fig. 9

shows the components of the displacernent({,n,() of the spacecrafs from

the point P. It can be seen that the linear solution provideseasonable
approximation to the full non-linear dynamics ofetiproblem. However, the
match is poorer than the 2-body problem due to ldrge trajectory loops

generated by using a smaller number of arcs W4#th, rather thamN=10. A larger
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number of arcs will generate a smaller displacenwér§ from P and so better

accuracy for the linear solution.

4. Applications

Highly non-Keplerian orbits have a range of potndipplication, as discussed in
Section 1. Here, an example is provided for a disgdl geostationary orbit.
Geostationary spacecratft typically use a staticepk®y box sized at 0.05 deg of
orbit arc. This corresponds to a physical size dep85x35 km. Figure 10 shows
a displaced orbit with a displacement distance kB using both continuous
thrust and periodic impulseBl£10). Applications of such displaced orbits include
stacking geostationary satellite at crowded lordggiin a similar manner to the
solar sail displaced orbits considered by Forwak€84) and later Baig and
Mcinnes (2010) and Heiligers (2010). The requiregulse magnitude for the
displaced orbit shown in Fig. 10 can be determifteth Eq. (30) as 1.654 riis
so that theAv per orbit is 16.54 nis The required continuous thrust induced
acceleration can be determined from Eq. (4a) a51kxB)* ms? so that the
effective Av per orbit for the continuous thrust case is 15t89". There is
therefore a modest penalty of order 0.5 fmr using the impulse mode rather
than the continuous thrust mode. In addition, cardus low thrust allows the use
of high specific impulse propulsion, such as arctelle thruster with a specific
impulse of 3000 s, compared to a bi-propellantsteuwith a specific impulse of
320 s used for the impulse mode (Heiligers, 20Q)r a large 4000 kg
geostationary platform, the propellant mass peit éobthe continuous thrust case
is 2.15 kg, which rises to 21.02 kg for the impuisede.

5. Conclusions

Families of displaced 2-body non-Keplerian orbitsl 8-body artificial equilibria
have been extended by considering impulse ratrer ttontinuous thrust. The
displaced non-Keplerian orbits comprise a sequendedividual Keplerian arcs
connected by impulses. The sequence of arcs amfdhercontinuous in position,
with discontinuities in velocity which are removeging the impulses. For

frequent impulses it has been shown that the newliés of orbits approximate
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continuous thrust non-Keplerian orbits. The condgiofor displaced non-
Keplerian orbits using impulse thrust were foundlipgarising the dynamics of
the two and three-body problems in the vicinityaafarbitrary reference point in a
rotating frame. While the motion of the spacecrafative to the reference point
was considered at linear order, the reference poa® be selected arbitrarily so
that when viewed from an inertial frame of refereitice non-Keplerian orbit has

arbitrarily large displacements.
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Figure Captions

Figure 1. FrameR rotating with angular velocitgo relative to inertial framé.
Reference poirn® at positionr and spacecraf at positionp relativeP.

Figure 2. Contours of non-dimensional thrust induced acediten for artificial
equilibria in rotating fram® (2-body problem).

Figure 3. Sequence of Keplerian arcs which begin and teataiatP connected
by impulses (2-body problem).

Figure 4. Displaced orbits constructed from sequence ofié¢em arcs; Orbit |
r =( 050005), Orbit Il F =(075,00075), Orbit Il T =( 1.00.01.0). Dashed
lined indicates equivalent constant acceleratispldced orbit.

Figure 5. Comparison of linear and non-linear solutions@obit I. Solid line
linear solution, dashed line non-linear solution.

Figure 6. FrameR rotating with angular velocitjw| =1 relative to inertial frame
|. Reference poirf at positionr and spacecraff at positionp relativeP.

Figure 7. Contours of non-dimensional thrust induced acegiten for artificial
equilibria in rotating fram® (3-body problem) forZ = 304x10°°,

Figure 8. Artificial 3-body equilibria constructed from ss@ences of 3-body arcs;
P, T =(0.991,0,009, P, =(0.991,0,-005, P; F =(0.991,0.086,0.0,

P, T =(0.991,-0.05,0.0, Pst =(1.011,0,05), Ps T =(1.011,0,-003,

P,F =(1.011,0.08,0.0, Ps T =(1.011,-0.05,0.9.

Figure 9. Comparison of linear and non-linear solutionsAarSolid line linear
solution, dashed line non-linear solution.

Figure 10. Displaced two-body geostationary orbit (35 knptisement).
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Figure 10.
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