
HAL Id: hal-00641108
https://hal.science/hal-00641108v1

Preprint submitted on 14 Nov 2011 (v1), last revised 19 Apr 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast kriging-based stepwise uncertainty reduction with
application to the identification of an excursion set

Clément Chevalier, Julien Bect, David Ginsbourger, Emmanuel Vazquez,
Victor Picheny, Yann Richet

To cite this version:
Clément Chevalier, Julien Bect, David Ginsbourger, Emmanuel Vazquez, Victor Picheny, et al.. Fast
kriging-based stepwise uncertainty reduction with application to the identification of an excursion set.
2011. �hal-00641108v1�

https://hal.science/hal-00641108v1
https://hal.archives-ouvertes.fr

Fast kriging-based stepwise uncertainty reduction

with application to the identification of an excursion set

Clément Chevalier⋆ · Julien Bect ·

David Ginsbourger · Victor Picheny ·

Yann Richet · Emmanuel Vazquez

November 14, 2011

Abstract A Stepwise Uncertainty Reduction (SUR) strategy aims at constructing a

sequence X1(f), X2(f), . . . of evaluation points of a function f : Rd → R in such a way

that the residual uncertainty about a quantity of interest S(f) given the information

provided by the evaluation results is small. In Bect, Ginsbourger, Li, Picheny and

Vazquez, Statistics and Computing, 2011, several SUR approaches have been shown to

be particularly efficient for the problem of estimating the volume of an excursion set

of a function f above a threshold. Here, we build upon these results and we present

fast implementations of some SUR strategies, which are based on two ideas. The first

idea is to take advantage of update formulas for kriging. The second idea is to derive

closed-form expressions for some integrals that appear in the SUR criteria. We are

able to demonstrate significant speed-ups and we illustrate our algorithms on a nuclear

safety application.

Keywords Computer experiments · Gaussian processes · Sequential design ·
Probability of failure estimation · Active learning · Metamodel-based inversion

⋆ corresponding author

C. Chevalier · D. Ginsbourger

Institute of Mathematical Statistics and Actuarial Science

University of Bern, Switzerland.

E-mail: {firstname}.{lastname}@stat.unibe.ch

J. Bect and E. Vazquez

Supelec, Gif-sur-Yvette, France.

E-mail: {firstname}.{lastname}@supelec.fr

V. Picheny

CERFACS, Toulouse, France.

E-mail: picheny@cerfacs.fr

Y. Richet

Institut de Radioprotection et de Sûreté Nuclaire (IRSN),

Fontenay-aux-Roses, France.

E-mail: yann.richet@irsn.fr

2

1 Introduction

Whether in natural sciences, engineering, or economics, the study of complex phenom-

ena is increasingly relying on numerical simulations. From an end user’s perspective,

a numerical simulator can often be considered as a black box taking a number of real-

valued parameters as inputs and returning one or several quantities of interest after

a post-processing stage—typically, the response is a cost or a performance. Formally,

the space of inputs is a set X ⊂ R
d and the simulator can be viewed as a function

f : X → R that maps the inputs to a cost or a performance indicator. In many

practical applications, the objective is to obtain information about the simulator from

a number of runs or in other words, to infer a quantity of interest S(f) from a number

of evaluations of f . For instance, in presence of uncertain input parameters, a problem

that is often at stake is the estimation of the probability that a cost exceeds a given

threshold. This problem corresponds to the estimation of the volume α(f) of the ex-

cursion set Γ = {x ∈ X : f(x) ≥ T}, with T a given threshold, under a probability

measure PX on X that models the uncertainty about the input parameters.

In this paper we consider the problem of estimating S(f) using Stepwise Uncer-

tainty Strategies (Vazquez and Piera-Martinez, 2007; Vazquez and Bect, 2009; Bect

et al., 2011), and our objective is to propose efficient algorithms for their implemen-

tation. A Stepwise Uncertainty Reduction (SUR) strategy aims at constructing a se-

quence X1(f), X2(f), . . . of evaluation points of f in such a way that the residual un-

certainty about S(f) given the information provided by the evaluation results is small.

More precisely, SUR strategies are based on three main ideas. The first (Bayesian) idea

is to consider f as a sample path of a random process, which is assumed Gaussian for

the sake of tractability. Doing so entails that any quantity depending on f is formally a

random variable (in the following, we choose not to make a formal distinction between

the function f and its random process model). The second idea is to introduce a mea-

sure of the uncertainty about the quantity of interest conditioned on the σ-algebra An

generated by {(Xi(f), f(Xi(f))), 1 ≤ i ≤ n}. We will denote by Hn(f) such a measure

of uncertainty, which is an An-measurable random variable. The third idea is to choose

evaluation points sequentially in order to minimize at each step n the expected value

of the future uncertainty Hn+1(f) with respect to the random outcome of the new

evaluation of f :

Xn+1(f) = argmin
xn+1∈X

Jn(xn+1) := En

(
Hn+1(f)

∣∣ Xn+1(f) = xn+1

)
, (1)

where En (·) stands for the conditional expectation E (· | An).

For example, the conditional variance Varn
(
α(f)

)
of α(f) given An is a natural

choice for Hn to quantify the (residual) uncertainty about α(f). Then, a SUR strategy

to estimate α(f) would consist, at step n, in choosing the next evaluation point by

looking at how much sampling at xn+1 ∈ X will affect, in expectation, the variance of

the volume of excursion.

As stated above the main objective of this paper is to present numerically effi-

cient implementations of some SUR strategies. For example, in Bect et al. (2011) the

3

numerical computation of Jn in (1) was based on quadrature formulas written as

Jn(xn+1) ≈
Q∑

q=1

M∑

m=1

wqvn+1(x
(m);xn+1, yq), (2)

where Q is the number of points used to approximate the conditional expectation with

respect to the random outcome of the evaluation at xn+1 using a standard Gauss-

Hermite quadrature, and M is the number of points used to obtain a Monte-Carlo

approximation of Hn+1(f). (The x(m)s are i.i.d. according to PX; (y1, . . . , yq) and

(w1, . . . , wq) stand for the quadrature points and quadrature weights of the Gauss-

Hermite quadrature.) As will be detailed in the following sections, the computation

of vn+1(x
(m);xn+1, yq) in (2) involves the determination of the kriging mean and the

kriging variance at x(m) from the evaluations of f at X1(f), . . . , Xn(f) and xn+1. It

follows that the computation of the computation of Jn at one point has a complexity

of O(n3 + M.n2 + M.Q) operations. Since we need to evaluate Jn several times to

carry out the minimization in (1), the computational cost of a SUR sampling strategy

implemented using (2) can be very large.

Outline of the paper. In order to decrease the numerical complexity of SUR strate-

gies, we propose two ideas. The first idea is to take advantage of update formulas

for kriging to avoid unnecessary computations of the kriging weights when computing

criteria such as (2) at p different locations. After having recalled classical numerical

considerations about kriging in Section 2, we will show how to obtain a first improve-

ment toward efficient SUR algorithms in Section 3. The second idea is to revisit the

numerical approximation of Hn. In some cases, it appears that parts of the numerical

approximation of Hn can be carried out with the help of closed-form expressions, which

makes it possible to obtain, again, a substantial gain with respect to what was done

in previous studies. In particular, Section 4 derives closed form expressions for some

criteria in Bect et al. (2011) and Gramacy and Lee (2010). Finally, in Section 5, we

illustrate our algorithms on a nuclear safety application, where we are able to show

considerable speed-ups with respect to implementations proposed in Bect et al. (2011).

Simplified notations. In the rest of the paper, we shall drop the dependence on f

for random variables that are a function of f . For instance, α(f) will be denoted by α.

Evaluation points X1(f), X2(f), . . . will be denoted by X1, X2, . . .

2 Kriging update formulas

2.1 Kriging mean and variance

In this section, we shall recall how to obtain the kriging mean and variance without

using update formulas. Let f ∼ GP(m, k) be a Gaussian random process with mean

function m(·) = E(f(·)) and covariance function k(·, ·) = cov(f(·), f(·)). We assume

that the mean can be written as a linear combination

m(·) =

l∑

i=1

βi pi(·) (3)

4

of basis functions p1, . . . , pl (very often, these are monomials), where β1, . . . , βl are

unknown parameters. The covariance k is assumed to be a given symmetric strictly

positive function.

The kriging predictor of f at a point x ∈ X from n observations f(x1), . . . , f(xn)

is the best linear unbiased predictor (BLUP) of f(x) from the observations, that we

shall denote by

mn(x) = λ(x;xn)
T



f(x1)

...

f(xn)


 . (4)

The vector of kriging weights λ(x;xn) ∈ R
n can be obtained by solving the linear

system (
K(xn) p(xn)

T

p(xn) 0

)

︸ ︷︷ ︸
:=K̃(x

n
)

·
(
λ(x;xn)

µ(x;xn)

)

︸ ︷︷ ︸
:=λ̃(x;x

n
)

=

(
k(x, xn)

p(x)

)

︸ ︷︷ ︸
:=k̃(x,x

n
)

(5)

where K(xn) is the n×n covariance matrix of the random vector (f(x1), . . . , f(xn))
T,

p(xn) is the l× n matrix with general term pi(xj), k(x, xn) is the column vector with

general term k(x, xi) and µ(x;xn) is a vector of l Lagrange multipliers associated to

the unbiasedness constraint.

The covariance function of the prediction error

kn(x, y) := En ((f(x)−mn(x)) (f(y)−mn(y))) , (6)

also called kriging covariance, can be written using the notations of equation (5) as

kn(x, y) = k(x, y)− k̃(x, xn)
T λ̃(y;xn). (7)

The conditional variance of the prediction error at a point x ∈ X, also called kriging

variance, will be denoted by s2n(x) := kn(x, x).

Remark 1 To ensure that the conditional process f |An is still Gaussian when the mean

function is of the form (3), with an unknown vector of parameters β, it is necessary to

adopt a Bayesian approach and to use an (improper) uniform distribution over Rl as

a prior distribution for β (see Bect et al. (2011), Section 2.3, Proposition 2, and the

references therein for more details).

2.2 Update formulas

Consider the complexity of computing the kriging mean mn+1(x) and the kriging

variance s2n+1(x) at M different values of x ∈ X. A system of the form (5) has to be

solved M times with the same left-hand side K̃(xn+1), which is typically performed

with a cost of O(n3 + Mn2) operations: the matrix inverse K̃−1
n+1 (alternatively, a

QR or LU factorization) is first computed in O(n3) operations, and a matrix-vector

multiplication is then performed for each x in O(n2) operations (see, e.g., Golub and

Van Loan, 1996, for more information about the complexity of standard algorithms in

5

linear algebra). It turns out that this complexity can be improved upon, in the case

where the inverse (or factorization) of K̃(xn) is already available, together with the

kriging means and variances from n observations. Indeed, consider the following kriging

update formulas (Barnes and Watson, 1992):

mn+1(x) = mn(x) +
kn(x, xn+1)

s2n(xn+1)
·
[
f(xn+1)−mn(xn+1)

]
, (8)

s2n+1(x) = s2n(x) − k2n(x, xn+1)

s2n(xn+1)
, (9)

where kn(x, xn+1) is the kriging covariance between f(x) and f(xn+1), which can be

computed using (7), i.e.,

kn(x, xn+1) = k(x, xn+1) − λ̃(xn+1;xn)
T k̃(x, xn). (10)

The kriging means and variances from n + 1 observations can thus be obtained in

O(n2+Mn) operations : λ̃(xn+1;xn) is first obtained using K̃(xn)
−1 (or a factorization

of K̃(xn)) in O(n2) operations and, for each x, kn(x, xn+1) is computed from (10)

in O(n) operations.

Remark 2 The variance update formula (9) has been used to obtain computational

savings in various kriging-based algorithms (see, e.g., Barnes and Watson, 1992; Gao

et al., 1996; Emery, 2009; Gramacy and Lee, 2010).

Remark 3 The coefficient kn(x, xn+1)/s
2
n(xn+1) appearing in (8) can be seen as the

last component of the vector of weights λ(x;xn+1), as observed by Emery (2009).

3 Improving the numerical complexity of SUR strategies using update

formulas for kriging

3.1 A general family of kriging-based sampling criteria

The kriging update formulas given in Section 2.2 makes it possible to produce efficient

algorithms for a large family a kriging-based sampling criteria. More precisely, we will

consider the computation of expressions of the form

Cn(xn+1) = En

(
H(mn+1, s

2
n+1) | Xn+1 = xn+1

)
, xn+1 ∈ X, (11)

where mn+1(·) and s2n+1(·) are the updated kriging mean and kriging variance func-

tions assuming that xn+1 has been added to the design of experiment, and H(·) is

a functional depending on a finite number M of values of the updated kriging mean

and variance. Note that, given An, mn+1(·) is a random field while s2n+1(·) is a de-

terministic function. The randomness of mn+1(·) comes from the unknown response

f(xn+1) and we know that, conditionally on An, f(xn+1) ∼ N (mn(xn+1), s
2
n(xn+1)).

6

Example 1. Consider the problem of estimating the volume α of an excursion set of

a function f above a threshold T introduced in Section 1. Then, a SUR strategy to

estimate α would consist in choosing the next evaluation point, at each step n, by

minimizing the expectation of the variance of the volume of excursion:

J
(α)
n (xn+1) = En

(
Varn+1(α)

∣∣ Xn+1 = xn+1

)
. (12)

This sampling criterion is considered in Bect et al. (2011) but has not been implemented

because the numerical complexity of the approximation of Varn+1(α) was deemed too

high. In fact, Jn may be rewritten under the form

J
(α)
n (xn+1) = rn − En

(∫

X×X

pn+1(x) pn+1(y)PX(dx)PX(dy)
∣∣ Xn+1 = xn+1

)
,

where rn is a term that does not depend on xn+1 and for n ≥ 1

pn : X → [0, 1]

x 7→ En({f(x)>T})
(13)

({f(x)>T} equals one if f(x) > T and zero otherwise), which can be easily computed

from the kriging mean and variance (see Section 4). The second term is the only one

that matters as far as choosing xn+1 is concerned, and gives rise to a criterion of the

form (11) after discretization of the double integral over X×X.

Example 2. Consider a threshold T ∈ R and the problem of estimating the excursion

set Γ = {x ∈ X : f(x) ≥ T}, which can be characterized by the random variable

{f(x)>T}. Since {f(x)>T} has variance pn(x)(1−pn(x)) given An,
∫
X
pn(1−pn)dPX,

where PX is a probability measure on X, can serve as a criterion to quantify the

uncertainty about Γ . This leads us to define a SUR sampling criterion written as

J
(Γ)
n (xn+1) = En

(∫

X

pn+1(1− pn+1)dPX

∣∣ Xn+1 = xn+1

)
, (14)

which is again of the form (11) when the integral with respect to PX is approximated

by Monte-Carlo:

J
(Γ)
n (xn+1) ≈ En

(
M∑

m=1

pn+1(x
(m))

(
1− pn+1(x

(m))
) ∣∣ Xn+1 = xn+1

)
,

x(1), . . . , x(M) iid∼ PX, (15)

since pn+1(x
(m)) is a function of mn+1(x

(m)) and s2n+1(x
(m)). Note that J

(Γ)
n is

considered in Bect et al. (2011).

7

Example 3. Consider the problem of estimating the global maximum of f over a

bounded domain X. Denote by Mn = max (f(X1), . . . , f(Xn)) the maximum of eval-

uation results at step n, and

J
(EI)
n (xn+1) = En

(
Mn+1 −Mn

∣∣ Xn+1 = xn+1

)

the classical expected improvement (EI) criterion (see, e.g., Jones et al., 1998). Then,

the two-step EI criterion (Osborne et al., 2009; Ginsbourger and Le Riche, 2010) is

defined as

J
(EI, 2)
n (xn+1) =

En

(
max

xn+2∈X

En+1 (Mn+2 −Mn | Xn+2 = xn+2)
∣∣ Xn+1 = xn+1

)
,

and can be rewritten as

J
(EI, 2)
n (xn+1) = J

(EI)
n (xn+1) +En

(
max

xn+2∈X

J
(EI)
n+1(xn+2) | Xn+1 = xn+1

)
. (16)

The second term of (16) is of the form (11) when the search for xn+2 is restricted

to a finite set of candidate points, since J
(EI)
n+1(xn+2) is a function of mn+1(xn+2)

and s2n+1(xn+2).

Example 4. In a recent paper, Gramacy and Lee introduced the Integrated Expected

Conditional Improvement criterion (see Gramacy and Lee (2010)). This criterion corre-

sponds to a SUR strategy for carrying out constrained or non-constrained optimization.

The expression of the IECI criterion for a maximization problem is as follows:

J
(IECI)
n (xn+1) = En

{∫

X

[
(mn+1(x)− f̂max)Φ(γn+1(x))

+ sn+1(x)ϕ(γn+1(x))
]
PX(dx)

∣∣∣ Xn+1 = xn+1

}
(17)

where

f̂max = max
x∈X

(mn(x)) and γn+1(x) :=
mn+1(x)− f̂max

sn+1(x)
.

The integrand of J
(IECI)
n (xn+1) is called the expected conditional improvement. This

sampling criterion is again of the form (11) after discretization of the integral over X.

3.2 Algorithms for the approximation of Cn, with or without update formulas

In this section we define and compare two algorithms for the approximate computation

of Cn

(
xln+1

)
, 1 ≤ l ≤ p, for a certain number p of candidate points, x1n+1, . . . , x

p
n+1.

The integration of the random variable f(xln+1) is carried out in both algorithms using

a Gauss-Hermite quadrature formula. More precisely, if we denote by (zk, wk), 1 ≤ k ≤

8

Q the quadrature points and weights of the Q-points Gauss-Hermite quadrature, then

both algorithms are actually computing

Ĉn

(
xln+1

)
:=

Q∑

k=1

wk H
(
mn+1,l,k, s

2
n+1,l

)
, 1 ≤ l ≤ p , (18)

where mn+1,l,k and s2n+1,l are the updated kriging mean and variances, assuming that

xln+1 is added to the design and that f(xln+1) = ylk := mn(x
l
n+1) + zk sn(x

l
n+1).

The first algorithm (see Algorithm 1) is a straightforward generalization of the

existing algorithm for SUR criterions (Vazquez and Bect, 2009; Bect et al., 2011),

which does not make use of the update formulas. The complexity for the evaluation

of Ĉn at p candidate points using this algorithm is O
(
p
(
n3 +Mn2 +MQ+ κMQ

))
,

where κM denotes the complexity of the algorithm that computes H. Note that the

computations of the kriging weights and variances can be done outside the inner loop

(i.e., the loop on quadrature points) thanks to the fact that neither the weights nor

the variances depend on f(xln+1).

The second algorithm (see Algorithm 2) is a new algorithm, which brings the com-

plexity down to O
(
(n3+Mn2 + p(n2+Mn+MQ+κMQ)

)
using the update formulas

presented in Section 2.2. Note that Algorithm 2 has the same complexity as Algo-

rithm 1 when used for a single candidate point (i.e., with p = 1). The superiority of

Algorithm 2 becomes apparent only when p is large. Indeed, a significant part of the

linear algebraic computations—with a complexity of O
(
n3+Mn2

)
—is now performed

outside the outer loop, i.e., outside the loop on candidate points. As a result, each

additional candidate point comes with a cost of O
(
n2 +Mn+MQ+ κMQ

)
using Al-

gorithm 1, a significant improvement with respect to the O
(
n3 +Mn2 +MQ+ κMQ

)

of Algorithm 1.

Remark 4 The complexity κM grows at least linearly with M in all the examples of

this paper. In this case, the complexity Algorithm 1 can be simplified to O
(
p(n3+Mn2

+κMQ)
)
and that of Algorithm 2 to O

(
(n3 +Mn2 + p(n2 +Mn+ κMQ)

)
.

4 Additional simplifications and speed-ups for the SUR strategies

In this section, we provide additional analytical formulas allowing to speed-up the

calculation time of several criteria of the form (11).

4.1 General idea to simplify a criterion of the form (11)

Any criterion of the form (11) consist of the expectation at step n of a random variable

H(mn+1, s
2
n+1) depending on the unknown f(xn+1). In the kriging framework, condi-

tionally on An, we know that f(xn+1) ∼ N (mn(xn+1), s
2
n(xn+1)), or equivalently

f(xn+1) = mn(xn+1) + U sn(xn+1) (19)

9

Algorithm 1 Computation of Ĉn at p candidate points (without the update formulas).

The complexity of each step is indicated in bold.

Require: n observations of the simulator: An

Require: M integration points x(1), ..., x(M)

Require: p candidate points x1
n+1, ..., x

p
n+1

Require: quadrature points and weights: (z1, ..., zQ), (w1, ..., wQ)

for l = 1 → p do

Compute the inverse (or factorize) the matrix K̃(xn+1) defined by (5) assuming that the

point xl
n+1 has been added to the design of experiments. O(n3)

for j = 1 → M do

compute the vector λ̃(x(j);xn+1) using equation (5). O(n2)

compute the kriging variance s2n+1(x
(j)) using equation (7). O(n)

precompute the sum
∑n

i=1 λi(x
(j)).f(xi), where λi(x

(j)) is the kriging weight of ob-

servation i for the kriging prediction at point x(j). O(n)

for k = 1 → Q do

compute the kriging mean: mn+1(x(j)) assuming that f(xn+1) = ylk. The precom-

putation is useful as: mn+1(x(j)) =
∑n+1

i=1 λi(x
(j)).f(xi). O(1)

end for

end for

for k = 1 → Q do

compute the functional H(mn+1,k, s
2
n+1). O(κM)

end for

compute the criterion Ĉn(xl
n+1). O(Q)

end for

Total cost: O(p(n3 +M.n2 +M.Q+ κM.Q))

in distribution, with U a N (0, 1) random variable that is independent of An. Also, one

can see using (8) that the updated kriging mean mn+1 is a random field having a very

simple dependency with respect to the random variable f(xn+1). Indeed, combining

equations (8) and (19) results in the functional equality

mn+1 = mn + U νn+1, (20)

with νn+1(x) := kn(x, xn+1)/sn(xn+1). Pluging (20) into (11) yields

En

(
H(mn+1, s

2
n+1) | Xn+1 = xn+1

)
=

1√
2π

∫

R

H
(
mn + u νn+1, s

2
n+1

)
e−

u
2

2 du.

(21)

For specific functionals H, integrals of the form (21) can be calculated analytically.

Three examples of such functionals will be given in the forthcoming Section 4.2.

10

Algorithm 2 Computation of Ĉn at p candidate points (using the update formulas).

The complexity of each step is indicated in bold.

Require: n observations of the simulator: An

Require: M integration points x(1), ..., x(M)

Require: p candidate points x1
n+1, ..., x

p
n+1

Require: quadrature points and weights: (z1, ..., zQ), (w1, ..., wQ)

evaluate the matrix K̃(xn)
−1 given in equation (5). O(n3)

evaluate the current kriging variances and means s2n(x
(j)),mn(x(j)) at the M integration

points. O(M.n2)

for l = 1 → p do

compute the vector λ̃(xl
n+1, xn) using equation (5): O(n2)

compute the kriging variance s2n(x
l
n+1). O(n)

for j = 1 → M do

compute kn(x(j), xl
n+1) using precomputations and equation (7). O(n)

compute the updated kriging variance s2n+1(x
(j)) using update formula (9). O(1)

for k = 1 → Q do

assume that f(xl
n+1) = ylk and compute the updated kriging mean mn+1(x(j)) using

update formula (8). O(1)

end for

end for

for k = 1 → Q do

compute the functional H(mn+1,k, s
2
n+1). O(κM)

end for

compute the criterion Ĉn(xl
n+1). O(Q)

end for

Total cost: O(n3 +M.n2 + p(n2 +M.n+M.Q+ κM.Q))

We first give some analytical formulas that will help to get simplified expressions

using equation (21). The proofs of these results are given in Appendix A.

Ka,b :=

∫

R

ϕ (a+ bu) e−
u
2

2 du =
1√

1 + b2
exp

(
−1

2
a2
(
1− b̃2

))
, (22)

La,b :=

∫

R

Φ (a+ bu) e−
u
2

2 du =
√
2π Φ (ã) , (23)

Ma,b :=

∫

R

uΦ (a+ bu) e−
u
2

2 du = bKa,b, (24)

Na,b,c,d :=

∫

R

Φ (a+ bu)Φ (c+ du) e−
u
2

2 du =
√
2π Φ2

(
ã, c̃, b̃ d̃

)
, (25)

where Φ and ϕ are respectively the c.d.f. and the p.d.f. of the standard univariate

Gaussian distribution, Φ2(u1, u2, ρ) is the c.d.f. of the standard bivariate Gaussian

distribution with correlation ρ, and ã := a√
1+b2

, b̃ := b√
1+b2

, c̃ := c√
1+d2

, d̃ := d√
1+d2

.

Very efficient numerical procedures are available to compute the multivariate Gaus-

sian c.d.f. : Genz (1992) wrote routines in Fortran77 which have been wrapped in many

R Packages (mnormt, pbivnorm, mvtnorm available on CRAN). In our code, we use

the pbivnorm package which is dedicated to the bivariate case and is slightly faster

when many calls of the bivariate c.d.f. are done at a time.

11

4.2 Closed-form expressions for several SUR strategies

In this section, we give a simplified expression of three sampling criteria of the form (11)

using the ideas presented in the previous section. These expressions are useful because

they allow us to by-pass the numerical computation of an integral over R, with Q

quadrature points and weights. The integrals are rewritten in terms of Gaussian c.d.f.

and its multivariate version, which can be implemented efficiently. The proofs are based

on the numerical results given in Appendix B.

Criterion J
(α)
n . A first idea to compute the conditional variance in J

(α)
n is to rely

on the simulation of sample paths of f . Simulating N (unconditioned) sample path

of a Gaussian Process at M points requires the Cholesky factorization of a matrix

of size M × M and N matrix-vector products. The complexity of this task alone is

O(M3 +M2.N). In fact, the numerical computation of J
(α)
n can be greatly simplified

by re-writing J
(α)
n as

J
(α)
n (xn+1) = cn −

∫

X×X

Φ2

(
ã(x), ã(y), b̃(x)̃b(y)

)
PX(dx)PX(dy) (26)

where cn is a quantity not depending of xn+1, ã(x) :=
a(x)√
1+b2(x)

, and b̃(x) :=
b(x)√
1+b2(x)

.

Expression (26) can also be approximated by Monte-Carlo. If a sample of size M2 is

used to carry out the Monte Carlo integration on X×X, the cost for computing J
(α)
n

is O(n2 +M.n+M2), which makes the criterion affordable for reasonable values of M

(see Section 5.3.1).

Criterion J
(Γ)
n . Using the same ideas, J

(Γ)
n can be rewritten as

J
(Γ)
n (xn+1) =

∫

X

Φ2

(
a(x)√

1 + b2(x)
,

−a(x)√
1 + b2(x)

,
−b2(x)

1 + b2(x)

)
PX(dx) (27)

where a(x) := (mn(x)− T) /sn+1(x) and b(x) := νn+1(x)/sn+1(x). The integral

over X in (27) can be approximated by Monte-Carlo sampling. Using M integration

points x(1), ..., x(M), J
(Γ)
n (xn+1) can be computed in O(n2 +M.n) operations instead

of O(n2 +M.n+M.Q) operations (using Algorithm 2), because the approximation of

an integral over R relying on Q quadrature points and weights has been removed.

Criterion J
(IECI)
n . The Integrated Expected Conditional Improvement criterion given

by (17) can be rewritten as

J
(IECI)
n (xn+1) =

1√
2π

∫

X

(
v1(x)Lv3(x),v4(x)

+
(

v22(x)

sn+1(x)
+ sn+1(x)

)
Kv3(x),v4(x)

)
PX(dx) (28)

12

where





v1(x) := mn(x)− f̂max,

v2(x) := νn+1(x),

v3(x) := v1(x)/sn+1(x),

v4(x) := v2(x)/sn+1(x).

(29)

and K.,., L.,., M.,. are given by (22), (23) and (24). The gain in complexity for this

criterion is the same than for J
(Γ)
n : from O(n2 +M.n+M.Q) to O(n2 +M.n).

5 Application : nuclear safety test case

In this section, we illustrate our algorithms on a nuclear safety application. The aim of

this section is twofold. First, we show the improvements provided by Algorithm 2 and

the techniques presented Section 4 in terms of computation time. Second, we test and

compare two SUR strategies (using J
(α)
n and J

(Γ)
n) to estimate the excursion set of a

quantity related to the safety of a system involving fissile material.

5.1 Presentation of the test case

Any system involving fissile materials may produce a chain reaction based on neutrons,

which are both a product and an initiator of fission reactions. Besides a possible over-

production of neutrons, a high quantity of energy is also generated and therefore needs

to be controlled. Nuclear criticality safety assessment aims at avoiding such “criticality

accident” within the range of operational conditions of a given system, described by

several physical and chemical parameters affecting the chain reaction efficiency.

In order to check subcriticality of the studied system, the neutrons multiplication

factor (also known as k-effective, denoted keff) — a parameter describing the neutrons

production ratio — is estimated using a simulator. While a keff of 1.0 — meaning

that the neutron population is constant — is the target of a nuclear power plant, all

fuel management applications (transport, storage) aim at a keff strictly lower than this

critical value.

In the present application, the French Institute for Radiological Protection and

Nuclear Safety (IRSN) uses a Markov Chain Monte Carlo (MCMC) code to calculate

the keff of a system depending on many parameters (quantity and density of fissile

material, geometry of the system, quantity of water in the system, temperature,...).

The key task is to locate the set of parameters Γ ⋆ where the keff is higher than 0.95.

The threshold T = 0.95 corresponds to the critical value of 1.0 minus a regulation

margin. The MCMC code calculating the keff, called MORET, may be considered

expensive as the calculation of keff for one set of parameters takes approximately 5

to 30 minutes on a 2.5GHz processor, depending on the numerical conditioning of

the model. An exhaustive evaluation strategy (a full factorial design for example) is

consequently out of reach when the number of parameters is high (up to ten here).

In the present application case, the system is a storage facility of plutonium powder,

whose criticality is controlled by two real valued input parameters:

– the mass of plutonium (MassePu) in the system

13

– the logarithm of the concentration of plutonium (logConcPu).

The input domain X is:

(MassePu,logConcPu) ∈ X = [0.1, 2] × [2, 9.6] and mathematically our goal is locate

the excursion set Γ ⋆ having a cautious evaluation strategy of our simulator f , where

f(x) = keff(MassePu,logConcPu).

In this particular example in dimension two we were able to run a high number of

evaluations in order to identify accurately the excursion set and its volume. Figure 1

shows the set Γ ⋆ obtained after 300 evaluations of the code on a space filling design

of experiment. The volume of the excursion set is equal to 22.68% of the volume of

X. Note that in Section 5.3.2, our aim is to determine whether the SUR strategy

can identify accurately the excursion set with a small fraction of this budget of 300

evaluations.

Fig. 1 Excursion set (in white) of the function keff = f(Masse Pu, logConcPu) for a threshold

T = 0.95.

5.2 Gaussian Process modeling

Prométhée is a workbench for parametric computing developed by the IRSN allowing

to run any code like MORET. The results presented in the next two subsections are

obtained using our algorithms written in R language and wrapped by Promethee. All

our algorithms rely on the objects and functions of the DiceKriging package (Roustant

et al. (2011)).

Among the possible covariance kernels available in DiceKriging, we choose to work with

a separable Matérn covariance with parameters estimated by maximum likelihood from

14

the observations and re-estimated after each iteration. Recall that Matérn covariance

kernels depend of a parameter ν that we here choose to be equal to 3/2. In this

particular case the separable Matérn covariance has the following expression:

kθ(x, y) = σ2
d∏

i=1

(
1 +

√
3hi
θi

)
exp

(
−
√
3hi
θi

)
, (30)

where θ = (θ1, ..., θd) are scale parameters, σ2 is the variance of the non-conditioned

Gaussian process and hi := x[i]− y[i] where x[i] denotes the ith coordinate of x. In our

test case we have d = 2 and the estimated parameters are denoted σ̂, θ̂MassePu, θ̂logConcPu.

We also estimate the trend which is considered as an unknown constant β̂1.

5.3 Results

5.3.1 Performance tests: computation time of the criteria J
(Γ)
n and J

(α)
n

We present here some pure performance tests done with our R code, on the nuclear

safety test function keff(MassePu,logConcPu). The objective is to quantify the com-

putation time improvement given by Algorithm 2 and by the formulae in Section 4 for

computing the J
(Γ)
n criterion. We run only one iteration of the J

(Γ)
n or J

(α)
n criterion

starting with an initial design of experiment of n points, and look at the computation

time, which is simply the time of p evaluations of the criterion. Such tests are done

using M integration points. We choose p = 2500 (corresponding to a 50× 50 grid) and

let n and M vary. We test only one value for p as the complexity in p is simply an affine

function of p. A value of 2500 for p corresponds to a realistic budget for optimizing

the criteria on the whole input set provided that its dimension d is not too large. Also,

note that when p, n and M are fixed, the computation time of one iteration do not

depend of d.

For the J
(Γ)
n criterion, two implementations of the criterion are tested:

– one implementation with Algorithm 1 (using q = 10 quadrature points and weights),

– one implementation with Algorithm 2 and with the formulae of Section 4.

The J
(α)
n criterion is implemented with Algorithm 2 and with the formulae of Sec-

tion 4. We do not propose a “slow” implementation of J
(α)
n (using Gaussian Process

simulations) and thus have only the “fast” algorithm for this criterion. Recall that, for

each evaluation of J
(α)
n we do M2 calls to the function Φ2 instead of M , which affects

the computation time when M is large. In order to keep a reasonable computation time

for J
(α)
n , we did not test the speed of this criterion for values of M higher than 1000.

For the J
(Γ)
n criterion we took a maximum value of 10000 for M .

The theoretical complexities of our algorithms are indicated in Table 1. We denote

the computation times as follows: J
(Γ)
n,M,slow, J

(Γ)
n,M,fast and J

(α)
n,M,fast for respectively

the slow implementation of J
(Γ)
n , the fast one and the implementation of J

(α)
n . A

computation time comparison is given in Figure 2 for different values of n and M . The

tested values for M are going from 100 to 10000.

15

We can see that the improvement provided by Algorithm (2) with respect to Al-

gorithm (1) for the implementation of J
(Γ)
n is important, especially when n is large.

This is mainly due to the O(M.n) complexity versus O(M.n2) to compute the updated

kriging variances. Also the J
(α)
n criterion, which was previously considered computa-

tionally unaffordable, has a rather quick computation when M is not large, i.e. not

higher than 600. When M is large the M2 calls to the Φ2 function make the J
(α)
n crite-

rion expensive to evaluate. This is a major drawback when a large value is required for

M (e.g., when d is large). However a “naive” implementation of J
(α)
n using Gaussian

process simulations also prevents using high values for M because of the M ×M ma-

trix inversion (with a O(M3) cost) required to simulate conditional Gaussian Processes

realisations in M points.

Table 1 Theoretical complexity for computing one iteration of a SUR strategy using the J
(α)
n

or J
(Γ)
n sampling criterion

algorithm complexity

Standard implementation of J
(Γ)
n , (Algorithm 1) O(p(n3 +M.n2 +M.q))

Improved implementation of J
(Γ)
n , (Algorithm 2) O(n3 +M.n2 + p(n2 +M.n))

Improved implementation of J
(α)
n , (Algorithm 2) O(n3 +M.n2 + p(n2 +M.n+M2))

5.3.2 Sequential inversion applied to nuclear safety

In this section, we run a stepwise inversion of the nuclear safety function shown on

Figure 1. The J
(Γ)
n sampling criterion is used with an initial design of experiment of

n = 6 points, M = 625 integration points and p = 2500 points evaluated for the

optimisation of J
(Γ)
n . As it is now possible to compute efficiently the J

(α)
n criterion in a

reasonable time we also calculate its value on the p points in order to see if a strategy

using the J
(Γ)
n criterion would provide the same sample than a strategy with the J

(α)
n

criterion. Here, the calculation of the J
(α)
n criterion is only indicative; the new sample

is chosen at each iteration at the point that minimizes J
(Γ)
n . We consider the following

outputs:

– the evolution of the maximum likelihood estimator of the covariance parameters

and of the trend (shown on Figure 4)

– the uncertainty H
(Γ)
n , which is the quantity

∫
X
pn(1− pn)dPX, given the n obser-

vations. The J
(Γ)
n criterion aims at reducing this uncertainty.

– the uncertainty H
(α)
n , which is the quantity V arn(α). The J

(α)
n criterion aims at

reducing this uncertainty.

– the volume error, denoted by ε, which is equal to the difference between the real

volume and the estimated volume
∫
X
pndPX, given the n observations. In this

example, the real volume is equal to 0.2268.

– J
(Γ)
n (x⋆) and J

(α)
n (x⋆), which are the values of the J

(Γ)
n and J

(α)
n criteria at the

point x⋆ minimizing (on a 50×50 grid) the J
(Γ)
n criterion at the considered iteration.

Note that the minimizer of the J
(α)
n criterion, can be different from x⋆.

16

2.0 2.5 3.0 3.5 4.0

0
2

4
6

8

2.0 2.5 3.0 3.5 4.0

0
2

4
6

8

2.0 2.5 3.0 3.5 4.0

0
2

4
6

8

2.0 2.5 3.0 3.5 4.0

0
2

4
6

8

log10(M)log10(M)

log10(M)log10(M)
lo
g
1
0
(t
im

e)

lo
g
1
0
(t
im

e)

lo
g
1
0
(t
im

e)

lo
g
1
0
(t
im

e)

n = 10 n = 100

n = 200 n = 400

J
(α)
n,M,fastJ

(α)
n,M,fast

J
(α)
n,M,fastJ

(α)
n,M,fast

J
(Γ)
n,M,slowJ

(Γ)
n,M,slow

J
(Γ)
n,M,slowJ

(Γ)
n,M,slow

J
(Γ)
n,M,fastJ

(Γ)
n,M,fast

J
(Γ)
n,M,fastJ

(Γ)
n,M,fast

Fig. 2 Computation times (in seconds) as a function of n and M for two implementations of

the J
(Γ)
n criterion and for a fast implementation of the J

(α)
n criterion

Figure 3 shows that at each iteration, J
(Γ)
n (x⋆) is lower than H

(Γ)
n . This is not a

surprise as J
(Γ)
n (x⋆) is the expectation of the future uncertainty H

(Γ)
n+1 if x⋆ is added

to the design of experiments. The same applies for respectively J
(α)
n (x⋆) and H

(α)
n .

Also, we can note that at some iterations (e.g. iteration two) the point x⋆ is not the

minimizer of the J
(α)
n criterion, as min(J

(α)
n) is lower than J

(α)
n (x⋆).

We can also note that H
(Γ)
n converges almost monotonically toward zero. This

could be anticipated as the goal of the J
(Γ)
n criterion is precisely to reduce H

(Γ)
n . It

is however possible to have an increasing H
(Γ)
n (e.g. iteration six and seven). This

can be due to the re-evaluation of the covariance parameters at each iteration, but

it is also possible to observe such phenomenon even with no covariance parameters

re-estimation. Regarding the volume error, we can note that H
(α)
n is closely related

to the square of the volume error. Indeed, if we denote α⋆ the real volume and α the

17

random volume of the excursion set (recall that En(α) =
∫
X
pndPX) we have:

ε2 =(α⋆ −En(α))
2

H
(α)
n =En

(
(α−En(α))

2
)

5 10 15 20

−
25

−
20

−
15

−
10

−
5

iteration

log(H
(Γ)
n)

log(J
(Γ)
n (x⋆))

log(H
(α)
n)

log(J
(α)
n (x⋆))

log(min(J
(α)
n))

log(ε2)

evolution of uncertainties H
(α)
n and H

(Γ)
n

Fig. 3 Evolution of H
(Γ)
n and H

(α)
n during the inversion. The optimum J

(Γ)
n (x⋆) of the J

(Γ)
n

criterion is usually lower than H
(Γ)
n and corresponds to the expectation of H

(Γ)
n at the next

iteration. Regarding the J
(α)
n criterion, the curves min(J

(α)
n) and J

(α)
n (x⋆) coincide only when

x⋆ is also the minimizer of J
(α)
n .

The evolutions of the inversions and of the J
(Γ)
n and J

(α)
n criteria evaluated on the

whole domain are shown on Figures 5, 6 and 7. One can see that here, the excursion

set is accurately identified in few iterations of the SUR strategy. After 15 evaluations

(i.e. 9 iterations), the function pn(x) does not depart much from the true function

x∈Γ . The plot of the J
(Γ)
n criterion shows the areas of interest which are basically the

areas with both a high kriging variance and a value near 0.5 for pn(x) (meaning that

mn(x) is near the threshold). The plot of the J
(α)
n criterion is informative only and is

provided to show that, most of the times, the J
(Γ)
n criterion a good proxy of the much

more expensive J
(α)
n criterion. Indeed, after 6, 9, 12 and 18 evaluations of MORET, the

minimizer of J
(Γ)
n is located in the same region than the minimizer of J

(α)
n . However,

18

5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

evolution of covariance parameters

iteration

β̂1

σ̂
θ̂MassePu

θ̂logConcPu

Fig. 4 Estimated covariance parameters and trend during the sequential inversion. The Max-

imum Likelihood Estimator of these parameters has little variations after 10 iterations.

the minimizer of J
(α)
n often seems to be a clear optimum whereas for J

(Γ)
n we often

have several local optimum with almost the same value (e.g. after 9 or 12 evaluations).

According to these plots, the J
(Γ)
n criterion appears to be more exploratory than J

(α)
n ,

with a larger area of interest.

19

Fig. 5 Plot of the function pn(x) = Pn(x ∈ Γ) = Φ
(

mn(x)−T
sn(x)

)
after n evaluations of the

MORET code. The triangles are the six points of the initial DOE. The squares are the points

sampled using the J
(Γ)
n criterion. Areas in black correspond to pn(x) ≈ 0 and areas in white

correspond to pn(x) ≈ 1. The dotted line indicates the true excursion set (see Figure 1). The

contour lines indicate the three level sets pn(x) = 0.05, 0.5 and 0.95.

20

Fig. 6 Plot of the value of the criterion J
(Γ)
n (x) = En

(∫
X
pn+1(1− pn+1)dPX

)
after n evalu-

ations of the MORET code. At each iteration, the point chosen for sampling is the optimum of

this function. Areas in black correspond to potentially interesting areas, where the uncertainty

H
(Γ)
n is reduced the most in expectation.

21

Fig. 7 Plot of the value of the criterion J
(α)
n (x) = En(V arn+1(α)) after n evaluations of the

MORET code. At each iteration, the point chosen for sampling is the optimum of the J
(Γ)
n

function, and not J
(α)
n . The goal is then simply to compare the J

(Γ)
n and J

(α)
n criterion. In

particular we are interested to see if they have the same optimum. Areas in black correspond to

potentially interesting areas, where the uncertainty H
(α)
n is reduced the most in expectation.

22

6 Conclusion and future work

In this paper, we presented an algorithm for the enhanced computation of a wide class

of Kriging-based infill sampling criteria, relying on state-of-the art kriging update for-

mulas. The proposed complexity analysis showed that the use of such update formulas

can indeed speed up significantly the computation of criteria of this class, including

the Stepwise Uncertainty Reduction (SUR) criteria proposed in Bect et al. (2011), but

also the IECI criterion of Gramacy and Lee (2010), the two-step EI criterion of Os-

borne et al. (2009) and Ginsbourger and Le Riche (2010), and more. In addition, we

presented further analytical results for SUR criteria, allowing significant additionnal

computational savings. Those results also enabled a fast evaluation of the Jn criterion

without conditional simulations, which was considered so far as out of reach.

As confirmed by the very good experimental results obtained on a real-world two-

dimensional nuclear safety example, the proposed algorithms and global methodology

constitute a very sensible option for the identification of excursion sets and the es-

timation of their volume, especially when dealing with highly non-linear phenomena

studied under limited time budget. However, the efficiency of the method needs to

be relativized to the dimensionality of the problem considered, and the ability of the

Kriging metamodel (including its trend and covariance kernel specifications) to cap-

ture correctly the objective function within the evaluation budget limitations. Indeed,

whatever the degree of sophistication of the proposed criteria and their efficient com-

putation, SUR strategies are essentially “model believer”, meaning that the criteria

are calculated under the hypothesis that the unknown function is one realization of the

Gaussian process underlying the Kriging model. Bayesian approaches may mitigate but

not solve this issue (the model uncertainty being then partially transferred to the prior

distribution of the covariance parameters), at the price of an additional complexity

and further computational costs. A mild option could be to perform some kind of pes-

simistic Bayesian analysis on the final model, in order to support with more confidence

conclusions regarding the probability of excursion and potential undiscovered regions

of the excursion set.

Future work includes the delivery of an updated version of the KrigInv R package, with

a full open source implementation of the presented algorithms. The latter package might

then be used to investigate the applicability and the limits of SUR strategies on test-

cases in higher dimensions. Concerning the exploitation of such algorithms in industrial

frameworks, an effort for providing parallelizable variants of SUR is needed. One of our

perspectives of future work is to extend the proposed speed-ups and simplifications

to parallel SUR criteria, currently in development. Finally, from a more theoretical

perspective, approches directly based on random set notions (considering a “variance”

of the excursion set itself, rather than the variance of the excursion volume) may

provide elegant alternative sampling criteria for inversion and related problems.

23

A Proof of numerical results

Proof of equation (22)

Ka,b :=

∫

R

ϕ(a+ b.u)e−
u
2

2 .du

=

∫

R

1√
2π

exp

(
−1

2

(
(a+ b.u)2 + u2

))
.du

= exp

(
−1

2
a2.

(
1− b2

1 + b2

))∫

R

ϕ

(
a.b√
1 + b2

+ u.
√

1 + b2
)
.du

=
1√

1 + b2
. exp

(
−1

2
a2.

(
1− b2

1 + b2

))

Proof of equation (23)

La,b :=

∫

R

Φ(a+ b.u)e−
u
2

2 .du

=
√
2π

∫

R

P (N < a+ b.u).
e−

u
2

2

√
2π

.du

=
√
2π.P (N < a+ b.U)

where N and U are two independent random variables with standard univariate Gaussian

distribution. Now, using the fact that a sum of random variable with Gaussian distribution

has still a Gaussian distribution:

P (N < a+ b.U) = P (N − b.U < a) = Φ

(
a√

1 + b2

)

Proof of equation (24) We use an integration by part to obtain:

Ma,b :=

∫

R

u.Φ(a+ b.u)e−
u
2

2 .du

= − 1.

[
Φ(a+ b.u).e−

u
2

2

]∞

−∞

+ b.

∫

R

ϕ(a+ b.u)e−
u
2

2 .du

= b.Ka,b

Proof of equation (25)

Na,b,c,d :=

∫

R

Φ(a+ b.u)Φ(c+ d.u)e−
u
2

2 .du

=
√
2π

∫

R

P (N1 < a+ b.u,N2 < c+ d.u).
e−

u
2

2

√
2π

.du

=
√
2πP (N1 < a+ b.U,N2 < c+ d.U)

=
√
2πP (N1 − b.U < a,N2 − d.U < c)

where N1, N2 and U are three independent random variables with standard univariate Gaus-

sian distribution. The variance of N1 − b.U is equal to 1 + b2 and the covariance between

N1 − b.U and N2 − d.U is equal to b.d. Thus:

P (N1 − b.U < a,N2 − d.U < c) = P

(
N1 − b.U√

1 + b2
<

a√
1 + b2

,
N2 − d.U√

1 + d2
<

c√
1 + d2

)

= Φ2

(
a√

1 + b2
,

c√
1 + d2

,
b.d√

1 + b2
√
1 + d2

)

where Φ2(., ., ρ) is the c.d.f. of a Gaussian vector which marginals are standard Gaussian

variables with a correlation ρ.

24

B Simplified expressions for three criteria

Proof of equation (27) The proof to obtain the new expression for J
(Γ)
n uses equation (25).

J
(Γ)
n (xn+1) =

∫

X

En (pn+1(x)(1− pn+1(x))PX(dx))

=

∫

X

En

(
Φ

(
mn+1(x)− T

sn+1(x)

)
Φ

(
T −mn+1(x)

sn+1(x)

))
PX(dx)

Now we use equation (20) to write:

mn+1(x) = mn(x) + U νn+1(x),

where U ∼ N(0, 1). Thus, denoting:

a(x) := (mn(x)− T)/sn+1(x),

b(x) := νn+1(x)/sn+1(x),

we can write:

J
(Γ)
n (xn+1) =

∫

X

(∫

R

Φ(a(x) + b(x).u)Φ(−a(x)− b(x).u)
e−u2/2

√
2π

.du

)
PX(dx)

=
1√
2π

∫

X

Na(x),b(x),−a(x),−b(x)PX(dx).

We then use our expression of Na,b,c,d given in equation (25) to conclude.

Proof of equation (26) We will first work on the expression of Jn and will then use equa-

tion (25) again.

Jn(xn+1) = En(V arn+1(α))

= En

(
En+1

(∫

X

({f(x)>T} − pn+1(x))PX(dx)

)2
)

= En

(
En+1

∫∫

X×X

({f(x)>T} − pn+1(x))({f(y)>T} − pn+1(y))PX(dx)PX(dy)

)

= En

(∫∫

X×X

(
En+1({f(x)>T} {f(y)>T})− pn+1(x)pn+1(y)

)
PX(dx)PX(dy)

)

If we apply the law of total expectation, we see that for any (x, y) ∈ X2:

En(En+1({f(x)>T} {f(y)>T})) = En({f(x)>T} {f(y)>T}) = P (f(x) > T, f(y) > T |An)

Thus this quantity does not depend of xn+1 and we can write:

cn :=

∫∫

X×X

P (f(x) > T, f(y) > T |An)PX(dx)PX(dy)

Consequently we have a new expression for Jn:

Jn(xn+1) = cn −
∫∫

X×X

En(pn+1(x)pn+1(y))PX(dx)PX(dy)

Then we can proceed like in the previous paragraph by writing again the expression of pn+1

and expanding mn+1 with equation (20) and end up the proof using equation (25).

25

Proof of equation (28) This proof simply uses again the expansion of the expression of mn+1

using equation (20). We then use the numerical results (22),(23) and (24). Noting

v1(x) := mn(x)− f̂max,

v2(x) := νn+1(x),

v3(x) := v1(x)/sn+1(x),

v4(x) := v2(x)/sn+1(x),

an expansion with equation (20) leads to:

IECI(xn+1) =

∫

X

(∫

R

((v1(x) + v2(x)u)Φ(v3(x) + v4(x)u)

+ sn+1(x)ϕ(v3(x) + v4(x)u))
e−u2/2

√
2π

du

)
PX(dx)

=
1√
2π

∫

X

(
v1(x)Lv3(x),v4(x) +

(
v22(x)

sn+1(x)
+ sn+1(x)

)
Kv3(x),v4(x)

)
PX(dx)

References

Barnes, R.J., Watson, A.: Efficient updating of kriging estimates and variances. Mathematical

geology 24(1), 129–133 (1992)

Bect, J., Ginsbourger, D., Li, L., Picheny, V., Vazquez, E.: Sequential design of computer

experiments for the estimation of a probability of failure. Statistics and Computing pp.

1–21 (2011). DOI: 10.1007/s11222-011-9241-4

Emery, X.: The kriging update equations and their application to the selection of neighboring

data. Computational Geosciences 13(1), 211–219 (2009)

Gao, H., Wang, J., Zhao, P.: The updated kriging variance and optimal sample design. Math-

ematical Geology 28, 295–313 (1996)

Genz, A.: Numerical computation of multivariate normal probabilities. Journal of Computa-

tional and Graphical Statistics 1, 141–149 (1992)

Ginsbourger, D., Le Riche, R.: Towards gaussian process-based optimization with finite time

horizon. In: mODa 9 — Advances in Model-Oriented Design and Analysis, Contributions

to Statistics, pp. 89–96. Springer (2010)

Golub, G.H., Van Loan, C.F.: Matrix computations. Third Edition, vol. 3. Johns Hopkins

University Press (1996)

Gramacy, R.B., Lee, H.K.H.: Optimization under unknown constraints. In: Bayesian Statistics

9 – Proceedings of the Ninth Valencia International Meeting, pp. 229–256 (2010)

Jones, D.R., Schonlau, M., William, J.: Efficient global optimization of expensive black-box

functions. Journal of Global Optimization 13(4), 455–492 (1998)

Osborne, M.A., Garnett, R., Roberts, S.J.: Gaussian processes for global optimization. In: 3rd

International Conference on Learning and Intelligent Optimization (LION3). Trento, Italy

(2009)

Roustant, O., Ginsbourger, D., Deville, Y.: Dicekriging, diceoptim: Two r packages for the

analysis of computer experiments by kriging-based metamodelling and optimization (2011).

In revision for Journal of Statistical Software

Vazquez, E., Bect, J.: A sequential Bayesian algorithm to estimate a probability of failure. In:

Proceedings of the 15th IFAC Symposium on System Identification, SYSID 2009 15th IFAC

Symposium on System Identification, SYSID 2009. Saint-Malo France (2009)

Vazquez, E., Piera-Martinez, M.: Estimation du volume des ensembles d’excursion d’un pro-

cessus gaussien par krigeage intrinsèque. In: 39ème Journées de Statistiques Conférence

Journée de Statistiques. Angers France (2007)

