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Boys-and-girls birthdays and Hadamard products

Olivier Bodini∗ Danièle Gardy† Olivier Roussel‡

Abstract

Boltzmann models from statistical physics, combined with methods from analytic com-
binatorics, give rise to efficient and easy-to-write algorithms for the random generation of
combinatorial objects. This paper proposes to extend Boltzmann generators to a new field
of applications by uniformly sampling a Hadamard product.

Under an abstract real-arithmetic computation model, our algorithm achieves approximate-
size sampling in expected time O(n

√
n) or O(nσ) depending on the objects considered, with

σ the standard deviation of smallest order for the component object sizes. This makes it
possible to generate random objects of large size on a standard computer. The analysis
heavily relies on a variant of the so-called birthday paradox, which can be modelled as an
occupancy urn problem.

Contents

1 Presentation 2

2 Boltzmann samplers and combinatorial structures 3
2.1 Combinatorial classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Boltzmann samplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 The Hadamard product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 An approximate-size sampler for the Hadamard product 4

4 Example: A very drunk man vs. the classical drunkard 6

5 A birthday problem, and complexity of Hadamard sampling 7
5.1 Urns models and the birthday paradox . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2 Some extremal cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.3 Boltzmann distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.4 Selivanov’s theorem applied to Boltzmann distributions . . . . . . . . . . . . . . 10
5.5 Evaluation of v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.6 Complexity of the Hadamard sampler . . . . . . . . . . . . . . . . . . . . . . . . 13
5.7 Space complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Conclusion and extensions 14

∗LIPN, Paris-XIII and UMR 7030 (France), and ANR project MAGNUM
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1 Presentation

Consider the classical birthday paradox: people arrive one by one; what is the expected time
we have to wait until two people have a common birthday? The answer is surprisingly low: 25.
Now assume that we only consider a birthday if it involves a boy and a girl: what is the expected
time? The answer is 34. The classical birthday paradigm has appeared at various times in the
modelling and analysis of algorithms, but such a (rather natural) extension has not, until now,
received much attention. We present in this paper an algorithm for the random generation of
Hadamard products, whose analysis relies on a boys-and-girls birthday model.

In 2004, Duchon, Flajolet, Louchard and Schaeffer [4] proposed a new model, the so-called
Boltzmann model, which leads to the systematic construction of samplers for random objects in
combinatorial classes described by specification systems. This framework has two main features:
uniformity — i.e. two objects of the same size have equal chances of being drawn — and quasi-
linear complexity1, which makes possible the efficient generation of huge objects, to address
problems of testing and benchmarking.

Boltzmann samplers depend on a real parameter, and generate an object with a probability
that depends only on its size. Actually the size of the sampler output follows a Boltzmann
probability distribution: the probability that a random object has size n is proportional to xn

for some parameter x, which can be tuned to achieve a chosen average size. Moreover, us-
ing rejection, one can obtain efficient exact size or approximate size samplers. This approach
differs from the ”recursive method” introduced by Nijenhuis and Wilf [12, 7], in that it gives
the possibility of relaxing the constraint of exact-size output. Since no preprocessing phase is
needed, this implies a significant gain in complexity and approximate-size sampling can be done
in expected linear time in a variety of cases. Boltzmann samplers have been developed for a
whole set of combinatorial classes: labelled, unlabelled, and colored [4, 6, 3]. Such classes are
defined from basic elements by means of fundamental constructions, well known in combina-
torics [9]. The present paper is part of this joint effort to obtain Boltzmann generators for all
usual classes and constructors, and focuses on the construction of an approximate-size sampler
for the Hadamard product of two combinatorial classes.

In many cases, it is useful to have two objects of the same size, in order to visualize some
bias on the properties, e.g., to evaluate the typical height of a tree, or the number of components
in a composed structure. Hadamard products also appear naturally when building standard
combinatorial objects such as a drunkard’s walk or a partition of graphs into cycles; see also [2]
for a recent application to automata.

In other words, we study sampling for combinatorial objects defined as pairs of equal-size
components, and extend the basic random sampling model to generate efficiently such objects.
The main idea is to use a (suitably tuned) rejection method, whose efficiency can be proved by
an argument extending the classical birthday problem for the waiting time of the first collision,
to an urn models with colored balls.

The plan of the paper is as follows. We recall the notion of Boltzmann sampler in the next
section, then describe in Section 3 an approximate-size sampler for the Hadamard product of
two classes, assuming we already know an approximate-size sampler (for instance a Boltzmann
sampler) for each of those classes. Section 4 is devoted to an example of Boltzmann sampling
for the Hadamard product: we apply our method to generate huge constrained random walks in
the plane. We turn back to the detailed analysis of the complexity in Section 5, where we prove
that the limit distribution of the first collision in a generalized urn model follows a Rayleigh
distribution, which in turn gives the expected complexity of the algorithm. As a consequence,

1We know linear-time Boltzmann generators for most usual objects, such as context-free languages, surjections,
partitions, and various classes of trees – this may require a proper choice for the tree description.
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the time complexity of our approximate-size sampler is O(n
√
n) under reasonable assumptions.

Finally, we consider the limits and possible extensions of our approach in Section 6.

2 Boltzmann samplers and combinatorial structures

2.1 Combinatorial classes

Definition 1 A combinatorial class C is a countable (or finite) set, with a size function | · | :
C 7→ N and such that there are only finitely many objects of each size.

Each class has an ordinary generating function defined by

C(z) =
∑
γ∈C

z|γ| =
∑
n∈N

cnz
n.

We use the following notations: let C be a class, and γ be any object in C; then its size is |γ|.
Furthermore Cn = {γ ∈ C | |γ| = n} and cn = Card(Cn).

Decomposable classes can be constructed from basic objects, called atoms, and from a set
of operators — such as cartesian product, sequence, set or cycle — allowing us to build large
objects out of smaller ones. In order to construct composed objects from the basic ones, we
need a set of rules that allow us to build an object from simpler ones. A few of these operators
are presented on Figure 1; see also [6, 4, 9] for a more extensive list.

A Description A(z) ΓA(x)

ε Empty class 1 return ε
Z Atomic class z return Z
B × C Cartesian product B(z)× C(z) return (ΓB(x),ΓC(x))

B + C Disjoint union B(z) + C(z) if Bernoulli
(

B(x)
B(x)+C(x)

)
then return ΓB(x)
else return ΓC(x)

Seq(B) Sequence 1
1−B(z) l := Geometric(B(x))

return (ΓB(x), . . . ,ΓB(x))︸ ︷︷ ︸
l times

Figure 1: Some classical constructors, with their generating function and Bolzmann sampler

2.2 Boltzmann samplers

The Boltzmann model is a simple and generic framework to sample efficiently combinatorial
objects. It ensures that each object of a given size has the same probability to be drawn. A
Boltzmann sampler ΓC(x) for an (unlabelled) combinatorial class C is a random generator that
produces objects of C, in such a way that the probability of drawing a given object γ ∈ C of
size n is exactly

Px(γ) =
1

C(x)
x|γ| =

1

C(x)
xn.

Since the probability for any object γ depends only on its size, not on its shape, the probability
density induced on the objects of a fixed size is uniform.

Such a sampler comes in two flavors: the free Boltzmann sampler depends on a param-
eter x, and generates an object of expected size Ex(size of the output) = xC ′(x)/C(x); the
approximate-size Boltzmann sampler starts from a free sampler, followed by a rejection step to
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ensure that the output has size in [(1 − ε)n, (1 + ε)n]. Moreover, one can build automatically
a sampler according to the specification of a combinatorial class, by following recursively the
rules described in [4].

We can classify combinatorial classes according to the generic shape of the probability dis-
tribution of the size of a random object: it is either flat, bumpy, or pointed [4]. As the peaked
case can be transformed into a flat distribution by pointing, we shall not consider it.

The precise definitions of these distributions are given in the section 5.3; here we shall use
the following results (see again [4] for the proof).

Fact 2 Let C be a combinatorial class with Boltzmann variance σ2C ; the time for Boltzmann
generation of a random sample in C in approximate size is O(n). In exact size, it is O(nσC) if
the distribution of C is bumpy and O(n2) if it is flat.

2.3 The Hadamard product

We next introduce the central object of this paper: the Hadamard product, for which we extend
the Boltzmann formalism. The notion of the Hadamard product is a fairly old one; it appeared
in J. S. Hadamard’s 1899 paper Théorème sur les séries entières [10].

Definition 3 The Hadamard product of two classes B and C, denoted by B � C, is the subset
of B × C such that the two objects in a pair have exactly the same size. Furthermore, if α =
(β, γ) ∈ A, we define the size of α as

|α| = |β| = |γ|

The generating function of A = B � C is

A(z) =

∞∑
n=0

anz
n =

∞∑
n=0

bncnz
n =

1

2iπ

∮
B(ξ)

ξ
C

(
z

ξ

)
dξ.

where is contour is a circle around the origin taken inside the domain of analyticity of both B
and C. It is the entrywise product of the two generating functions B(z) and C(z).

3 An approximate-size sampler for the Hadamard product

Boltzmann samplers have been built for a variety of combinatorial operators (union, cartesian
product, cycle, ...); our aim in this paper is to present and analyze such a sampler for the
Hadamard product A = B � C. There is a significant difference with Boltzmann samplers for
the (classical) Cartesian product [4, 9, 6]: there, only one drawing is involved for each component
of the pair under construction; here we almost always need to draw more than one object for
each component.

From now on, and for the sake of simplicity, we will say that ”a class A is flat” rather the
more rigorous and verbose ”the probability distribution of the size of a random object for the
Boltzmann generator of the class A is flat”, and analogously for bumpy.

We consider now how we can obtain an approximate-size sampler for the Hadamard product
A = B�C. We present two algorithms: the first one samples first B in approximate size, then C
in exact size; the second one draws at each step samples of both B and C, and requires that we
keep the sets of objects obtained until this point. A variant of this algorithm decides randomly
at each step to draw an instance either of B or of C. We give below the first algorithm, whose
principle is obvious.
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Algorithm 1: Näıve approximate-size sampler ΓA for A = B � C
Input: The expected range R = [(1− ε)n, (1 + ε)n] for the output
Output: An object of A with size in R
Draw a instance of B in approximate size.;1

Draw an instance of C with exact size, the size of the instance of B obtained in the first2

step.

Using the Fact 2, we obtain at once the behaviour of this algorithm:

Theorem 4 The expected time required to generate in approximate size a Hadamard product
of size n from Algorithm 1 is asymptotically

• O(n2) when B and C both follow a flat distribution,

• O(n2) when B is bumpy and C is flat,

• O(nσC) when B is flat and C is bumpy with variance σ2C ,

• O(nσ) when both distributions are bumpy and σ = min(σB, σC).

Proof: When C is flat, we draw an approximate-size sample for B in time O(n) when B is flat
or bumpy, then an exact-size sample for C in time O(n2). When B follows a flat distribution
and C a bumpy one, we draw an approximate-size sample for B in time O(n), then an exact-
size sample for C in time O(nσC). If B and C both follow a bumpy distribution, assume that
σC = O(σB); again we draw an object of B in approximate-size in time O(n) and an exact-size
object of C in time O(nσC).

The idea underlying the second algorithms is as follows. As the Hadamard product builds
pairs from independent components, we keep a set of potential candidates for each of the com-
ponents, until we find in these sets an element of A and an element of B of the same size.
This is basically a tuned rejection sampler: we draw objects from B and C, until we have
an object of B and an object of C (usually not drawn at the same time) with the same size.
Note that this algorithm is an uniform sampler for B � C, but it is not a Boltzmann sampler.

Algorithm 2: Approximate-size sampler ΓA for A = B � C
Input: The expected range R = [(1− ε)n, (1 + ε)n] for the output; the positive

probabilities q1 and q2
Output: An object of A with size in R
B← ∅ ; C← ∅ ;1

Choose x1 such that the expected size of the output of ΓB(x1) is n ;2

Choose x2 such that the expected size of the output of ΓC(x2) is n ;3

repeat4

Decide to draw a sample of B with probability q1, or of C with probability q2 ;5

if B is chosen then6

Randomly draw an object b from the class B using ΓB(x1) of size in R ;7

if size of object is new then B← B ∪ {b}8

else9

Randomly draw an object c from the class C using ΓC(x2) of size in R ;10

if size of object is new then C← C ∪ {c}11

until ∃(b, c) ∈ B× C, |b| = |c| ;12

return a = (b, c);13
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Our algorithm generates sets of objects for both ΓA(x) and ΓB(x). Its execution time will
be closely related to the cardinalities of those sets, i.e. to the number of elements drawn. As we
build sets from A and B, the space complexity might also be in question. The key to analyze
these complexities is a modelization as a generalized birthday problem, which we present in
Section 5, where we prove the following result.

Theorem 5 The expected time required to generate in approximate size a Hadamard product
of size n from Algorithm 2 is asymptotically

• O(n
√
n) if both B and C follow a flat distribution;

• O(nσB) if B follows a bumpy distribution and C a flat one;

• O(nσ) with σ = min(σB, σC) when both B and C are bumpy.

The expected space is of the same order as the expected time.

Note that we can omit the case B flat and C bumpy, as it is — mutatis mutandis — similar to
the second case B bumpy and C flat. Indeed, Algorithm 2 is similar for B � C and C � B up to
the order of the output pair.

Theorems 4 and 5 together show that Algorithm 2 outperforms Algorithm 1.
The actual choice of the probabilities q1 and q2 = 1− q1 does not change the results of this

paper (as long as they are both positive); for example we can assume q1 = 1
2 = q2. However,

we do not have a precise view about how to choose them wisely, and did not devised a way to
choose them depending on the classes B and C. Nonetheless, it is easy to see that the choice
q1 = q2 is not always optimal. For example, if B is bumpy and C flat, it is a good choice to have
q2 >

1
2 > q1: as sizes of objects drawn from ΓC will spread more that those from ΓB, we have

to draw more of them until a collision occurs.

4 Example: A very drunk man vs. the classical drunkard

We give in this section an example where our approximate size Hadamard sampler is used to
build a random object of large size. The problem we propose to examine is the following one,
derived from the classical drunkard walk.

The drunkard’s walk starts from the origin, does a zigzag walk without memory — this is
a Markov process — and goes back to the origin. More precisely, consider here a walk on the
first quadrant of the plane where each move corresponds to a translation following the vector
NE = (1, 1), SE = (1,−1), NW = (−1, 1) or SW = (−1,−1). The projection of a walk of n
steps on the axis (Ox) (resp. (Oy)) is a Dyck path of length n. Conversely, choose two Dyck
paths of the same length on {x, x̄} and {y, ȳ}: the drunkard’s walk is obtained by choosing, at
step i, NE for xy, SE for xȳ, NW for x̄y or SW for x̄ȳ. As is well known [1, 15], it is possible
to draw a Dyck path of exact length n in linear time: for this simple example, our algorithm is
not needed and the time for drawing a drunkard’s walk is linear.

Now assume that the man is more than usually drunk, and that he does not make three
consecutive moves in any direction. In other words, the projection of his walk on the axis (Ox)
(resp. the axis (Oy)) is a Dyck path without three consecutive identical steps, and the walk
is the Hadamard product of two constrained paths. Such a path admits the following simple
context-free specification : D = 1 + xyD + xxyyD + xxyDxyyD, for which, to the best of our
knowledge, no linear-time algorithm exists. The generating function for such constrained paths
(counted by their number of steps, e.g. xy) is d(z) = (1−z−z2−

√
1− 2z − z2 − 2z3 + z4)/2z3
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with dominant singularity ρ = (3 −
√

5)/2 ' 0.381966012. The constrained Dyck paths are of
peaked type [4], and we generate a random path in linear time by pointing.

Should we want to compare this walk to the classical drunkard’s walk, our sampler can
generate very large such walks. The Figure 2 shows two random walks. The constrained Dyck
paths were generated first, with a parameter x = 1− ρ ' 0.61803398, which gives an expected
size n = 14376. We obtained a constrained walk of length n = 14561, then generated two
random (classical) Dyck paths of the same length.

Figure 2: Left a classical drunkard walk; right a very drunk man walk with the same size

On this random sample, we can observe that the very drunk man explores a smaller and
more compact part of the quarter plane. Possible parameters for the comparison might be
the extremal positions of the walk, or the ”area” of the walk, as measured for example by the
smallest including rectangle, or by the convex hull.

5 A birthday problem, and complexity of Hadamard sampling

In this section we first present a modelisation of our algorithm as a birthday problem, then
outline the proof of its complexity. A result of Selivanov [16] is central to our analysis. We next
examine some special cases, before turning to distributions obtained from Boltzmann generators.

5.1 Urns models and the birthday paradox

The parameter that determines the performance of our algorithm is the time to obtain for the
first time an object of B and an object of C of the same size. As we keep sets of all the objects of
B and C we have drawn, the time of our algorithm will be the waiting time for the first collision,
i.e. the first time we obtain an object of B and an object of C of the same size.

This can be interpreted as a variant of the classical birthday problem, as follows. Let n be
the expected size of the objects drawn, and ε the tolerance parameter: we keep those objects
of B or C which have size in the intervall [n(1 − ε), n(1 + ε)]. The number of sizes for which
we keep an object, or equivalently the number of urns (each urn being labelled by a size) is
N = 2nε− 1. Each object (ball) can have two colors (one for B and the other for C). With this
framework, Hadamard sampling amounts to the following random allocation problem:

• We choose a color k = 1, 2 for a ball with a constant probability qk: q1 + q2 = 1.

7



• Knowing that the ball we draw has color k, we put it in the urn i with probability pk,i:
pk,i is the conditional probability of drawing urn i, assuming that the ball has color k,

and
∑N

i=1 pk,i = 1.

• The probability that a random ball goes to urn i is thus pi = p1,iq1 + p2,iq2.

We define a collision, or a birthday, as two balls of different colors in the same urn. Now let τN
be the random variable equal to the number of balls we have to draw until the first collision:
τN gives precisely the number of trials before we obtain our Hadamard product.

The birthday problem, or paradox, is a well-known problem of discrete probability; we
refer the reader to classical treatises on this subject, e.g., Feller [5], for the standard approach,
and to [8] for its presentation in a combinatorial framework and generalization. The colored-
balls problem is not a classical variation; to the best of our knowledge its first appearance
was in 1968, when Popova [14] considered balls of two colors and non-uniform urns, and gave
the joint limiting distribution for the numbers of urns of a single color and of the two colors.
It then appeared in a paper by Nishimura and Subaya in the mid-eighties [13], where they
considered uniform urns. The most significant result, for our point of view, came ten years
later with Selivanov [16], who considered the general case of k colors, and gave first a Poisson
approximation for the probability that there is no collision after n balls, under some conditions
on the probability distributions for the colors and the urns, then proved a limiting theorem for
the waiting time until the first collision, reframed here for two colors:

Theorem 6 (Selivanov [16]) Assume that N → ∞ and that q1 and q2 are constant, with
w2 = q21 + q22 = 1− 2q1q2. Assume furthermore that

• (C1) v2 :=
∑

i p
2
i is o(1) when N → +∞;

• (C2) pmax := maxi{pi} is such that pmax/
√
v2 < C where C is a constant (independent

of N).

Define a normalization factor α =
√
v2(1− w2) =

√
2v2q1q2. Then the normalized variables

ατN are asymptotically distributed with Rayleigh distribution of density te−t
2/21t≥0, and

E[τN ] =

√
pmax

2v2(1− w2)
(1 + o(1)) =

√
pmax

4v2q1q2
(1 + o(1)).

5.2 Some extremal cases

Selivanov’s result applies for example when both probability distributions (p1,i) and (p2,i) on
the urns are uniform: it is easy to check that v2 = 1/n, which leads to E[τN ] =

√
pmaxn/4q1q2.

When the probability distributions are “not far from the uniform”, in the sense that all pk,i
(k = 1, 2) belong to some interval [ak/N, bk/N ] for constant ak and bk, again v2 = α/n for some
constant α which can be computed, and E[τN ] =

√
pmaxn/4αq1q2.

We assume next that the N urns have the same probability distribution: this appears
e.g. when B = C, a case which is in some sense extremal for the analysis.

Lemma 7 Assume that the probability distributions (p1,i) and (p2,i), 1 ≤ i ≤ N , are identical.
Then the expected value of τN is maximal when p1,n and p2,n are uniformly distributed, and is
equal to

√
pmaxn/4q1q2.

Proof: Write pi for the common value pk,i, k = 1...2. If the distribution is not uniform, there
exists some i, such that pi 6= pi+1. Define a probability distribution (p′.) from (p.): p

′
j equal to pj

for j 6= i, i+ 1, p′i = λ pi + (1− λ)pi+1, and p′i+1 = (1− λ)pi + λ pi+1. We compare the expected
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values of the first collision when the distributions are (pi) and (p′i). Let T ′ be the random
variable for the collision time with the new distribution. A standard computation shows that
∂
∂λE(T ′) = 0 when λ = 1

2 , and that this is a maximum. For this new distribution, p′i = p′i+1.
By compacity, it follows that the worst case is obtained when the common distribution pi is
uniform.

Another extremal case appears when one of the objects, say B, is uniformly distributed, and
the other object, C, follows a Dirac distribution. Then the waiting time for the first collision is
the waiting time until a specified value is obtained under the uniform distribution, and follows
a geometric distribution of parameter 1/N ; as a consequence the expected waiting time is linear
in this situation.

Fact 8 Assume that the distribution (p1,i) is uniform. Then the worst case is obtained when
the distribution (p2,i) is a Dirac distribution, i.e. when some p2,k is equal to 1.

5.3 Boltzmann distributions

Following [4], we consider combinatorial classes for which the probability distribution for the
size of a random object is either flat or bumpy, – the peaked case being transformed, by pointing,
into a flat distribution. Of course, the size of C can follow a similar behavior. We recall below
the characterization of flat or bumpy distributions and give some general results on coefficients
or values of the functions at the Boltzmann parameter, before turning to the analysis of our
algorithm in subsequent sections.

Definition 9 Let N be the size of a random object drawn with parameter x; its first moments
are µ1(x) = Ex(N) and µ2(x) = Ex(N2); its variance is σ2(x) = µ2(x) − µ1(x)2. Let ρ be the
dominant singularity of the generating function enumerating the objects.

• The Boltzmann distribution of a combinatorial class C is flat if its generating function
C(z) is analytic at 0 with a finite radius of analyticity ρ > 0 and satisfies the following
two ∆-singular conditions:
(i) The function C(z) admits ρ as its only singularity on the circle |z| = ρ and it is
continuable in a domain ∆(r, θ) = {z|z = ρ, |z| < r, arg(z − ρ) ∈ (−θ, θ)}, for some r > ρ
and some θ satisfying 0 < θ < π/2;
(ii) For z tending to ρ in the ∆-domain, C(z) satisfies a singular expansion of the form

C(z) ∼z→ρ− c0(1− z/ρ)−α + o((1− z/ρ)−α), α ∈ R+.

The quantity −α is called the singular exponent of C(z).

• The Boltzmann distribution of a combinatorial class C is bumpy 2 if σ(x)/µ1(x)→ 0 for
x → ρ−, which amounts to µ2(x)/µ1(x)2 → 1, σ(x) → +∞ and C(z) is H-admissible:
there exists a function δ(x) defined for x < ρ with 0 < δ(x) < π, such that for |θ| < δ(x)
as x → ρ−, C(xeiθ) ∼ C(x)eiµ1(x)θ−1/2σ

2(x)θ2. Uniformly as x → ρ−, for δ(x) ≤ |θ| ≤ π,

one gets C(xeiθ) = o
(
C(x)
σ(x)

)
.

We next give some approximation results on the coefficients, that we shall need later on.

Lemma 10 Let C be a combinatorial class with generating function C(z), and xn be the solution
of the equation xnC

′
(xn)/C(xn) = n.

2The definition of a bumpy distribution given in [4] is restricted to the first condition; however the conditions
we add are very natural; they hold for the bumpy distributions met in practice.
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• If C follows a flat distribution, then x̃n = ρ(1−α/n) is an approximation of the Boltzmann
parameter xn and

cm ∼ c0
Γ(α)

ρ−mmα−1

C(xn) ∼ c0

(n
α

)α
cm x

m
n

C(xn)
∼ ααe−α

Γ(α)
·
(m
n

)α
· 1

m
= Θ

(
1

m

)
(1)

when m ∈ [an, bn] for some constants a and b.

• If C follows a bumpy distribution, then xn → ρ− where ρ is the (finite or infinite) singu-
larity of C(z) and

cm ∼ C(xn)

xnnσC(xn)
√

2π

cm x
m
n

C(xn)
=

1

σC(xn)
√

2π
exp

(
− (m− n)2

2σC(xn)2
+ o(1)

)
uniformly for all m as n→ +∞.

Proof: When the distribution of C is flat, standard singularity analysis gives

cm ∼
c0

Γ(αc)
ρ−mc mαc−1.

The approximation x̃n of xn comes from the definition of a flat distribution; see [4], and

C(xn) ∼ c0
(
n

αc

)αc
.

Putting all this together, we obtain

cm x
m
n

C(xn)
∼ c0

Γ(αc)
ρ−mc mαc−1 · (ρc (1− αc/n))m · 1

c0

(
n

αc

)−αc
=

ααcc
Γ(αc)

· 1

m
·
(m
n

)αc
· (1− αc/n)m.

Assuming that m/n ∈ [a, b] gives the result.
The case of a bumpy distribution comes from Hayman [11]; see also [4, p. 25].

5.4 Selivanov’s theorem applied to Boltzmann distributions

Define Iε = [(1 − ε)n, (1 + ε)n] and3 Bε(z) =
∑

i∈Iε biz
i, Cε(z) =

∑
i∈Iε ciz

i. The probability
that we draw an object of B of size i, with i ∈ Iε, is p1,i = bix

i/Bε(x), where bi is the number
of objects of B with size i and x := xn is defined by the equation xB

′
(x)/B(x) = n. A similar

result holds for C, with a parameter y := yn. What are the conditions on B and C that allow
us to use Selivanov’s theorem?
The (unconditional) probability for a ball to fall into urn i is

pi = q1p1,i + q2p2,i = q1
bix

i

Bε(x)
+ q2

ciy
i

Cε(y)
,

3The functions Bε and Cε actually depend on n through the parameter ε; we omit this parameter in our
notation for simplicity’s sake.
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and Selivanov’s parameter v2 =
∑

i p
2
i is here

v2 = q21

∑
i∈Iε b

2
ix

2i

Bε(x)2
+ 2q1q2

∑
i∈Iε bicix

iyi

Bε(x)Cε(y)
+ q22

∑
i∈Iε c

2
i y

2i

Cε(y)2

= q21
Bε �Bε(x2)
Bε(x)2

+ 2q1q2
Bε � Cε(xy)

Bε(x)Cε(y)
+ q22

Cε � Cε(y2)
Cε(y)2

. (2)

Condition (C1), which states that v2 is o(1), breaks down into three parts (recall that x := xn
and y := yn are defined respectively by xB

′
(x)/B(x) = n = yC

′
(y)/C(y), and vary when

n→ +∞):

Bε �Bε(x2) = o
(
Bε(x)2

)
; (3)

Bε � Cε(xy) = o (Bε(x)Cε(y)) ; (4)

Cε � Cε(y2) = o
(
Cε(y)2

)
. (5)

We now check that conditions (3) to (5) hold in the different, standard cases that may appear
when generating a combinatorial object by Boltzmann sampling. By taking B = C, it suffices
to consider condition (4).

5.5 Evaluation of v2

Lemma 11 Let B and C follow a Boltzmann distribution, either flat or bumpy, and let x and
y be the approximate values of the Boltzmann parameters (xB

′
(x)/B(x) = n = yC

′
(y)/C(y)).

Then

• If B and C are both flat, Bε � Cε(xy)/Bε(x)Cε(y) = Θ(1/n).

• If B is bumpy and C is flat, Bε � Cε(xy)/Bε(x)Cε(y) = Θ(1/n).

• If B and C are both bumpy, Bε � Cε(xy)/Bε(x)Cε(y) = Θ(1/σ) with σ = min(σB, σC).

Proof: Note that, either for a bumpy or flat distribution [4]

Bε(x) = Θ(B(x))

Of course, a similar relation holds for the class C. Thus the ratio we consider simplifies into
Bε � Cε(xy)/B(x)C(y). As we consider either flat or bumpy distributions, we have three cases
to consider.

• If B and C both follow a flat distribution. Intuitively, a flat distribution converges
to a uniform distribution when x → ρ−, and we expect the assumptions of Selivanov’s
theorem to hold. We now make precise this intuition.

Equation (1) of Lemma 10, applied to both classes, gives

bmx
m

B(x)
.
cmy

m

C(y)
∼
ααbb ααcc e−(αb+αc)m/n

Γ(αb) Γ(αc)
·
(m
n

)αb+αc
· 1

m2
.

Hence

Bε � Cε(xy)

B(x)C(y)
∼

∑
Iε

bmcm(xy)m

B(x)C(y)

∼
ααbb ααcc e−(αb+αc)

Γ(αb) Γ(αc)
·
∑
m∈Iε

(m
n

)αb+αc
· 1

m2
.

As the last sum has exact order 1/n, the result is proved.
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• If B follows a bumpy distribution and C a flat one. We apply again Lemma 10 to
obtain

Bε � Cε(xy)

B(x)C(y)
=

∑
m∈Iε

bmx
m

B(x)
· cmy

m

C(y)

∼ ααcc e
−αc

√
2π Γ(αc)σB(x)

∑
m∈Iε

(m
n

)αc 1

m
· e−(m−n)2/2σ2

B(x)+o(1).

Now m = Θ(n) in Iε and we have to approximate
∑

m∈Iε e
−(m−n)2/2σ2

B(x). By taking

u =
m− n
σB(x)

, f(u) = e−
u2

2 and A =
nε

σB

we have that, with du = 1
σB(x) being the increase in u between two consecutive terms of

the sum, ∑
m∈Iε

e−(m−n)
2/2σ2

B(x) =
∑
m∈Iε

f(u)

= σB(x)
∑
m∈Iε

f(u) du

∼ σB(x)

∫ +A

−A
f(u) du

∼ σB(x)

∫ +∞

−∞
f(u)du = Θ(σb)

the last equivalence coming from n/σB → +∞, which comes from the bumpy condition.
Putting together all the terms, we obtain that Bε � Cε(xy)/B(x)C(y) = Θ(1/n).

• If B and C both follow a bumpy distribution. Again the approximations provided
by Lemma 10 give

Bε � Cε(xy)

B(x)C(y)
∼ 1

σB σC

∑
m∈Iε

e−(m−n)
2(1/σ2

B+1/σ2
C)/2+o(1).

Define s by 1/s2 = 1/σ2B + 1/σ2C ; then

Bε � Cε(xy)

B(x)C(y)
∼ 1

σB σC

∑
m∈Iε

e−(m−n)
2/2s2

and we are back to the integral we computed in the bumpy/flat case, which gives∑
m∈Iε

e−(m−n)
2/2s2 = Θ(s)

and Bε � Cε(xy)/B(x)C(y) = Θ(s/σBσC). The result follows from the fact that, if σB
and σC have the same order, s also has this order; otherwise s has the same order as the
smallest of σB and σC .
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Lemma 12 Let B and C follow a Boltzmann distribution, either flat or bumpy, with x and y
the approximate values of the Boltzmann parameters (xB

′
(x)/B(x) = n = yC

′
(y)/C(y)); and

let v2 = p21 + p22. Then

• If B and C are both flat, v2 = Θ(1/n).

• If B is bumpy and C is flat, v2 = Θ(1/σB).

• If B and C are both bumpy, v2 = Θ(1/σ) with σ = min(σB, σC).

Proof: Obvious: apply the approximations provided by Lemma 11 to the expression of v2 given
by (2) and recall, in the case bumpy/flat, that σB = o(n).

5.6 Complexity of the Hadamard sampler

Theorem 13 Let B and C two combinatorial classes, and define τN as the waiting time to draw
an object in B � C.

• If both classes B and C follow a flat distribution, then expected time for Algorithm 2 is
E[τN ] = O(n

√
n); and the variance is O(n2).

• If B follows a bumpy distribution and C a flat one, then the expected time for Algorithm 2
is E[τN ] = O (nσB).

• If both classes B and C follow a bumpy distribution, then the expected time for Algorithm 2
is E[τN ] = O (nmin (σB, σC)).

Proof: Lemmas 11 and 12 show that the conditions of Selivanov’s theorem are satisfied with
q1 = q2. Then the normalized waiting time for the first collision ατN follows a Rayleigh distribu-
tion with α =

√
2v2q1q2 =

√
v2
2 and E[τn] ∼

√
pmax/4v2q1q2 =

√
pmax/v2. As approximate-size

Boltzmann sampling runs in linear expected time, it suffices to compute v2 in the different cases
to obtain the expected number of samples that need to be drawn, thus the expected time of the
algorithm.

5.7 Space complexity

For standard Boltzmann sampling, the space complexity required by the generation algorithm
is proportional to the size of the object. This no longer holds for the Hadamard product: the
space complexity of our algorithm depends on the expected time for the first collision; under
the assumptions of Theorem 5 it is of order O(n

√
n).

Assume that we want to achieve an average size n: we draw objects of B and C whose size
follows a Boltzmann distribution, and keep those objects whose size belongs to [(1−ε)n, (1+ε)n],
with ε a fixed parameter. A reasonable value for ε is 0.1 = 10%. Of course, we keep only one
object of each size for B and for C. Hence, an upper bound on the number of objects in each
class comes from the expected time EA for the first two-colors collision. We can also obtain a
lower bound, by considering same-color collisions: assume that there are respectively EB and
EC collisions in the classes B and C before time EA; then the number of objects in both classes
is 2EA − EB − EC . The precise value of the space needed to store those objects depends on
their size, i.e. on the locations of the urns with at least one ball in a coupon-collector problem.
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6 Conclusion and extensions

We have presented in this paper a general purpose approximate-size sampler for the Hadamard
product. Our sampler works for the classical combinatorial classes, for which it allows us to
generate a random Hadamard product in time O(nσ), where σ2 is the smallest of the variances
for the two combinatorial classes involved in the product.

We might consider the multivariate Hadamard product, which builds a k-uple of objects
sharing the same size. The analysis of the algorithm complexity again requires that of the
expected time, which is an extension of the birthday problem to the waiting time until all the
k colors appear in a single urn, and require an extension of Selivanov’s results (which deal with
the first appearance of two colors in the same urn). Preliminary studies seem to indicate a
larger expected time, which however remains o(n2).

The Hadamard product as intermediate constructor. A restriction of the sampler we
have presented in this paper is that the Hadamard product appears as the final constructor. It
would be desirable to extend our sampler so that it allows for the Hadamard product to appear
as an intermediate constructor when building complex objects. This requires that the proba-
bility distribution for the objects obtained from the Hadamard product follows a Boltzmann
distribution, which would require in turn some ”unbiaising” of the random object we obtain.

The rational case. We should mention alternative, possibly more efficient, ways to obtain a
Hadamard sampler in special cases. E.g., a classical result of Borel states that the Hadamard
product of two rational languages is also a rational language. We consider here how a construc-
tive proof of this result leads to the construction of a sampler for the Hadamard product.

For i ∈ {1, 2}, let Ai be a deterministic automaton that recognizes the language Li. Classi-
cally, we denote by Ei its states, Ai its alphabet, ei its initial state, Ti its terminal states and
∆i its transitions. We define the Hadamard product A1 � A2 of A1 and A2 as the automaton
with states in E1 × E2 on the alphabet A1 ×A2, such that there is a transition labelled (a, b)
between (e, f) and (e′, f ′) if and only if (e, a, e′) and (f, b, f ′) are both transitions respectively
in A1 and A2. The initial state is (e1, e2) and the set of terminal states is T1 × T2. Clearly,
the generating function of the language recognized by A1�A2 is the Hadamard product of the
generating functions of the languages L1 and L2.

Should we wish to build a Boltzmann generator for the Hadamard product of two rational
languages, rather than using our sampler we would build the Hadamard product of the asso-
ciated deterministic automaton, then to obtain a Boltzmann sampler from its combinatorial
specification in the standard way. In particular, using approximate size Boltzmann sampling,
the expected time complexity becomes linear in this case. Indeed, a classical approximate size
Boltzmann generation on a flat type distribution class is linear (and the Boltzmann distributions
associated with rational languages are always flat).

Analysis of the space complexity. Finally, let us mention that the precise analysis of the
space complexity relies on the analysis of the location of the urns in a coupon collector problem,
when the probability of an urn follows a Boltzmann distribution. Such a problem is of interest
in itself, and may deserve a detailed study.
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