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Boys-and-girls birthdays and Hadamard products

Boltzmann models from statistical physics, combined with methods from analytic combinatorics, give rise to efficient and easy-to-write algorithms for the random generation of combinatorial objects. This paper proposes to extend Boltzmann generators to a new field of applications by uniformly sampling a Hadamard product.

Under an abstract real-arithmetic computation model, our algorithm achieves approximatesize sampling in expected time O(n √ n) or O(n σ) depending on the objects considered, with σ the standard deviation of smallest order for the component object sizes. This makes it possible to generate random objects of large size on a standard computer. The analysis heavily relies on a variant of the so-called birthday paradox, which can be modelled as an occupancy urn problem.

Presentation

Consider the classical birthday paradox: people arrive one by one; what is the expected time we have to wait until two people have a common birthday? The answer is surprisingly low: 25. Now assume that we only consider a birthday if it involves a boy and a girl: what is the expected time? The answer is 34. The classical birthday paradigm has appeared at various times in the modelling and analysis of algorithms, but such a (rather natural) extension has not, until now, received much attention. We present in this paper an algorithm for the random generation of Hadamard products, whose analysis relies on a boys-and-girls birthday model.

In 2004, Duchon, Flajolet, Louchard and Schaeffer [START_REF] Duchon | Boltzmann samplers for the random generation of combinatorial structures[END_REF] proposed a new model, the so-called Boltzmann model, which leads to the systematic construction of samplers for random objects in combinatorial classes described by specification systems. This framework has two main features: uniformity -i.e. two objects of the same size have equal chances of being drawn -and quasilinear complexity 1 , which makes possible the efficient generation of huge objects, to address problems of testing and benchmarking.

Boltzmann samplers depend on a real parameter, and generate an object with a probability that depends only on its size. Actually the size of the sampler output follows a Boltzmann probability distribution: the probability that a random object has size n is proportional to x n for some parameter x, which can be tuned to achieve a chosen average size. Moreover, using rejection, one can obtain efficient exact size or approximate size samplers. This approach differs from the "recursive method" introduced by Nijenhuis and Wilf [START_REF] Nijenhuis | Combinatorial algorithms[END_REF][START_REF] Flajolet | A calculus for the random generation of labelled combinatorial structures[END_REF], in that it gives the possibility of relaxing the constraint of exact-size output. Since no preprocessing phase is needed, this implies a significant gain in complexity and approximate-size sampling can be done in expected linear time in a variety of cases. Boltzmann samplers have been developed for a whole set of combinatorial classes: labelled, unlabelled, and colored [START_REF] Duchon | Boltzmann samplers for the random generation of combinatorial structures[END_REF][START_REF] Flajolet | Boltzmann sampling of unlabelled structures[END_REF][START_REF] Bodini | Boltzmann samplers for colored combinatorial objects[END_REF]. Such classes are defined from basic elements by means of fundamental constructions, well known in combinatorics [START_REF] Ph | Analytic combinatorics[END_REF]. The present paper is part of this joint effort to obtain Boltzmann generators for all usual classes and constructors, and focuses on the construction of an approximate-size sampler for the Hadamard product of two combinatorial classes.

In many cases, it is useful to have two objects of the same size, in order to visualize some bias on the properties, e.g., to evaluate the typical height of a tree, or the number of components in a composed structure. Hadamard products also appear naturally when building standard combinatorial objects such as a drunkard's walk or a partition of graphs into cycles; see also [START_REF] Bassino | Random generation of finitely generated subgroups of a free group[END_REF] for a recent application to automata.

In other words, we study sampling for combinatorial objects defined as pairs of equal-size components, and extend the basic random sampling model to generate efficiently such objects. The main idea is to use a (suitably tuned) rejection method, whose efficiency can be proved by an argument extending the classical birthday problem for the waiting time of the first collision, to an urn models with colored balls.

The plan of the paper is as follows. We recall the notion of Boltzmann sampler in the next section, then describe in Section 3 an approximate-size sampler for the Hadamard product of two classes, assuming we already know an approximate-size sampler (for instance a Boltzmann sampler) for each of those classes. Section 4 is devoted to an example of Boltzmann sampling for the Hadamard product: we apply our method to generate huge constrained random walks in the plane. We turn back to the detailed analysis of the complexity in Section 5, where we prove that the limit distribution of the first collision in a generalized urn model follows a Rayleigh distribution, which in turn gives the expected complexity of the algorithm. As a consequence, the time complexity of our approximate-size sampler is O(n √ n) under reasonable assumptions. Finally, we consider the limits and possible extensions of our approach in Section 6.

2 Boltzmann samplers and combinatorial structures Each class has an ordinary generating function defined by

C(z) = γ∈C z |γ| = n∈N c n z n .
We use the following notations: let C be a class, and γ be any object in C; then its size is |γ|.

Furthermore C n = {γ ∈ C | |γ| = n} and c n = Card(C n ).
Decomposable classes can be constructed from basic objects, called atoms, and from a set of operators -such as cartesian product, sequence, set or cycle -allowing us to build large objects out of smaller ones. In order to construct composed objects from the basic ones, we need a set of rules that allow us to build an object from simpler ones. A few of these operators are presented on Figure 1; see also [START_REF] Flajolet | Boltzmann sampling of unlabelled structures[END_REF][START_REF] Duchon | Boltzmann samplers for the random generation of combinatorial structures[END_REF][START_REF] Ph | Analytic combinatorics[END_REF] for a more extensive list.

A Description A(z) ΓA(x) ε Empty class 1 return ε Z Atomic class z return Z B × C Cartesian product B(z) × C(z) return (ΓB(x), ΓC(x)) B + C Disjoint union B(z) + C(z) if Bernoulli B(x) B(x)+C(x)
then return ΓB(x) else return ΓC(x) Seq(B) Sequence 

Boltzmann samplers

The Boltzmann model is a simple and generic framework to sample efficiently combinatorial objects. It ensures that each object of a given size has the same probability to be drawn. A Boltzmann sampler ΓC(x) for an (unlabelled) combinatorial class C is a random generator that produces objects of C, in such a way that the probability of drawing a given object γ ∈ C of size n is exactly

P x (γ) = 1 C(x) x |γ| = 1 C(x)
x n .

Since the probability for any object γ depends only on its size, not on its shape, the probability density induced on the objects of a fixed size is uniform. Such a sampler comes in two flavors: the free Boltzmann sampler depends on a parameter x, and generates an object of expected size E x (size of the output) = xC (x)/C(x); the approximate-size Boltzmann sampler starts from a free sampler, followed by a rejection step to ensure that the output has size in [(1 -)n, (1 + )n]. Moreover, one can build automatically a sampler according to the specification of a combinatorial class, by following recursively the rules described in [START_REF] Duchon | Boltzmann samplers for the random generation of combinatorial structures[END_REF].

We can classify combinatorial classes according to the generic shape of the probability distribution of the size of a random object: it is either flat, bumpy, or pointed [START_REF] Duchon | Boltzmann samplers for the random generation of combinatorial structures[END_REF]. As the peaked case can be transformed into a flat distribution by pointing, we shall not consider it.

The precise definitions of these distributions are given in the section 5.3; here we shall use the following results (see again [START_REF] Duchon | Boltzmann samplers for the random generation of combinatorial structures[END_REF] for the proof).

Fact 2 Let C be a combinatorial class with Boltzmann variance σ 2 C ; the time for Boltzmann generation of a random sample in C in approximate size is O(n). In exact size, it is O(n σ C ) if the distribution of C is bumpy and O(n 2 ) if it is flat.

The Hadamard product

We next introduce the central object of this paper: the Hadamard product, for which we extend the Boltzmann formalism. The notion of the Hadamard product is a fairly old one; it appeared in J. S. Hadamard's 1899 paper Théorème sur les séries entières [START_REF] Hadamard | Théorème sur les séries entières[END_REF]. 

A(z) = ∞ n=0 a n z n = ∞ n=0 b n c n z n = 1 2iπ B(ξ) ξ C z ξ dξ.
where is contour is a circle around the origin taken inside the domain of analyticity of both B and C. It is the entrywise product of the two generating functions B(z) and C(z).

3 An approximate-size sampler for the Hadamard product

Boltzmann samplers have been built for a variety of combinatorial operators (union, cartesian product, cycle, ...); our aim in this paper is to present and analyze such a sampler for the Hadamard product A = B C. There is a significant difference with Boltzmann samplers for the (classical) Cartesian product [START_REF] Duchon | Boltzmann samplers for the random generation of combinatorial structures[END_REF][START_REF] Ph | Analytic combinatorics[END_REF][START_REF] Flajolet | Boltzmann sampling of unlabelled structures[END_REF]: there, only one drawing is involved for each component of the pair under construction; here we almost always need to draw more than one object for each component. From now on, and for the sake of simplicity, we will say that "a class A is flat" rather the more rigorous and verbose "the probability distribution of the size of a random object for the Boltzmann generator of the class A is flat", and analogously for bumpy.

We consider now how we can obtain an approximate-size sampler for the Hadamard product A = B C. We present two algorithms: the first one samples first B in approximate size, then C in exact size; the second one draws at each step samples of both B and C, and requires that we keep the sets of objects obtained until this point. A variant of this algorithm decides randomly at each step to draw an instance either of B or of C. We give below the first algorithm, whose principle is obvious. Using the Fact 2, we obtain at once the behaviour of this algorithm:

Theorem 4 The expected time required to generate in approximate size a Hadamard product of size n from Algorithm 1 is asymptotically

• O(n 2
) when B and C both follow a flat distribution,

• O(n 2 ) when B is bumpy and C is flat,

• O(nσ C ) when B is flat and C is bumpy with variance σ 2 C ,
• O(nσ) when both distributions are bumpy and σ = min(σ B , σ C ). The idea underlying the second algorithms is as follows. As the Hadamard product builds pairs from independent components, we keep a set of potential candidates for each of the components, until we find in these sets an element of A and an element of B of the same size. This is basically a tuned rejection sampler: we draw objects from B and C, until we have an object of B and an object of C (usually not drawn at the same time) with the same size. Note that this algorithm is an uniform sampler for B C, but it is not a Boltzmann sampler. Our algorithm generates sets of objects for both ΓA(x) and ΓB(x). Its execution time will be closely related to the cardinalities of those sets, i.e. to the number of elements drawn. As we build sets from A and B, the space complexity might also be in question. The key to analyze these complexities is a modelization as a generalized birthday problem, which we present in Section 5, where we prove the following result.

Theorem 5 The expected time required to generate in approximate size a Hadamard product of size n from Algorithm 2 is asymptotically

• O(n √ n) if both B and C follow a flat distribution;
• O(n σ B ) if B follows a bumpy distribution and C a flat one;

• O(n σ) with σ = min(σ B , σ C ) when both B and C are bumpy.

The expected space is of the same order as the expected time.

Note that we can omit the case B flat and C bumpy, as it is -mutatis mutandis -similar to the second case B bumpy and C flat. Indeed, Algorithm 2 is similar for B C and C B up to the order of the output pair. Theorems 4 and 5 together show that Algorithm 2 outperforms Algorithm 1.

The actual choice of the probabilities q 1 and q 2 = 1 -q 1 does not change the results of this paper (as long as they are both positive); for example we can assume q 1 = 1 2 = q 2 . However, we do not have a precise view about how to choose them wisely, and did not devised a way to choose them depending on the classes B and C. Nonetheless, it is easy to see that the choice q 1 = q 2 is not always optimal. For example, if B is bumpy and C flat, it is a good choice to have q 2 > 1 2 > q 1 : as sizes of objects drawn from ΓC will spread more that those from ΓB, we have to draw more of them until a collision occurs.

Example: A very drunk man vs. the classical drunkard

We give in this section an example where our approximate size Hadamard sampler is used to build a random object of large size. The problem we propose to examine is the following one, derived from the classical drunkard walk.

The drunkard's walk starts from the origin, does a zigzag walk without memory -this is a Markov process -and goes back to the origin. More precisely, consider here a walk on the first quadrant of the plane where each move corresponds to a translation following the vector N E = (1, 1), SE = (1, -1), N W = (-1, 1) or SW = (-1, -1). The projection of a walk of n steps on the axis (Ox) (resp. (Oy)) is a Dyck path of length n. Conversely, choose two Dyck paths of the same length on {x, x} and {y, ȳ}: the drunkard's walk is obtained by choosing, at step i, N E for xy, SE for xȳ, N W for xy or SW for xȳ. As is well known [START_REF] Arnold | Random generation of balanced parenthesis strings[END_REF][START_REF] Rémy | Un procédé itératif de dénombrement d'arbres binaires et son application à leur génération aléatoire[END_REF], it is possible to draw a Dyck path of exact length n in linear time: for this simple example, our algorithm is not needed and the time for drawing a drunkard's walk is linear. Now assume that the man is more than usually drunk, and that he does not make three consecutive moves in any direction. In other words, the projection of his walk on the axis (Ox) (resp. the axis (Oy)) is a Dyck path without three consecutive identical steps, and the walk is the Hadamard product of two constrained paths. Such a path admits the following simple context-free specification : D = 1 + xyD + xxyyD + xxyDxyyD, for which, to the best of our knowledge, no linear-time algorithm exists. The generating function for such constrained paths (counted by their number of steps, e.g.

xy) is d(z) = (1 -z -z 2 - √ 1 -2z -z 2 -2z 3 + z 4 )/2z 3
with dominant singularity ρ = (3 -√ 5)/2 0.381966012. The constrained Dyck paths are of peaked type [START_REF] Duchon | Boltzmann samplers for the random generation of combinatorial structures[END_REF], and we generate a random path in linear time by pointing.

Should we want to compare this walk to the classical drunkard's walk, our sampler can generate very large such walks. The Figure 2 shows two random walks. The constrained Dyck paths were generated first, with a parameter x = 1 -ρ 0.61803398, which gives an expected size n = 14376. We obtained a constrained walk of length n = 14561, then generated two random (classical) Dyck paths of the same length. On this random sample, we can observe that the very drunk man explores a smaller and more compact part of the quarter plane. Possible parameters for the comparison might be the extremal positions of the walk, or the "area" of the walk, as measured for example by the smallest including rectangle, or by the convex hull.

A birthday problem, and complexity of Hadamard sampling

In this section we first present a modelisation of our algorithm as a birthday problem, then outline the proof of its complexity. A result of Selivanov [START_REF] Selivanov | On the waiting time in a scheme for the random allocation of colored particles[END_REF] is central to our analysis. We next examine some special cases, before turning to distributions obtained from Boltzmann generators.

Urns models and the birthday paradox

The parameter that determines the performance of our algorithm is the time to obtain for the first time an object of B and an object of C of the same size. As we keep sets of all the objects of B and C we have drawn, the time of our algorithm will be the waiting time for the first collision, i.e. the first time we obtain an object of B and an object of C of the same size.

This can be interpreted as a variant of the classical birthday problem, as follows. Let n be the expected size of the objects drawn, and the tolerance parameter: we keep those objects of B or C which have size in the intervall [n(1 -), n(1 + )]. The number of sizes for which we keep an object, or equivalently the number of urns (each urn being labelled by a size) is N = 2n -1. Each object (ball) can have two colors (one for B and the other for C). With this framework, Hadamard sampling amounts to the following random allocation problem:

• We choose a color k = 1, 2 for a ball with a constant probability q k : q 1 + q 2 = 1.

• Knowing that the ball we draw has color k, we put it in the urn i with probability p k,i : p k,i is the conditional probability of drawing urn i, assuming that the ball has color k, and N i=1 p k,i = 1.

• The probability that a random ball goes to urn i is thus

p i = p 1,i q 1 + p 2,i q 2 .
We define a collision, or a birthday, as two balls of different colors in the same urn. Now let τ N be the random variable equal to the number of balls we have to draw until the first collision: τ N gives precisely the number of trials before we obtain our Hadamard product.

The birthday problem, or paradox, is a well-known problem of discrete probability; we refer the reader to classical treatises on this subject, e.g., Feller [START_REF] Feller | An introduction to probability theory and its applications[END_REF], for the standard approach, and to [START_REF] Ph | Birthday Paradox, Coupon Collectors, Caching Algorithms and Self-Organizing Search[END_REF] for its presentation in a combinatorial framework and generalization. The coloredballs problem is not a classical variation; to the best of our knowledge its first appearance was in 1968, when Popova [START_REF] Yu | Limit theorems in a model of distribution of particles of two types[END_REF] considered balls of two colors and non-uniform urns, and gave the joint limiting distribution for the numbers of urns of a single color and of the two colors. It then appeared in a paper by Nishimura and Subaya in the mid-eighties [START_REF] Nishimura | Occupancy with two types of balls[END_REF], where they considered uniform urns. The most significant result, for our point of view, came ten years later with Selivanov [START_REF] Selivanov | On the waiting time in a scheme for the random allocation of colored particles[END_REF], who considered the general case of k colors, and gave first a Poisson approximation for the probability that there is no collision after n balls, under some conditions on the probability distributions for the colors and the urns, then proved a limiting theorem for the waiting time until the first collision, reframed here for two colors: Theorem 6 (Selivanov [START_REF] Selivanov | On the waiting time in a scheme for the random allocation of colored particles[END_REF]) Assume that N → ∞ and that q 1 and q 2 are constant, with

w 2 = q 2 1 + q 2 2 = 1 -2q 1 q 2 . Assume furthermore that • (C1) v 2 := i p 2 i is o(1) when N → +∞; • (C2) p max := max i {p i } is such that p max / √ v 2 < C where C is a constant (independent of N ).
Define a normalization factor α = v 2 (1 -w 2 ) = √ 2v 2 q 1 q 2 . Then the normalized variables ατ N are asymptotically distributed with Rayleigh distribution of density te -t 2 /2 1 t≥0 , and

E[τ N ] = p max 2v 2 (1 -w 2 ) (1 + o(1)) = p max 4v 2 q 1 q 2 (1 + o(1)).

Some extremal cases

Selivanov's result applies for example when both probability distributions (p 1,i ) and (p 2,i ) on the urns are uniform: it is easy to check that v 2 = 1/n, which leads to E[τ N ] = p max n/4q 1 q 2 . When the probability distributions are "not far from the uniform", in the sense that all p k,i (k = 1, 2) belong to some interval [a k /N, b k /N ] for constant a k and b k , again v 2 = α/n for some constant α which can be computed, and

E[τ N ] = p max n/4αq 1 q 2 .
We assume next that the N urns have the same probability distribution: this appears e.g. when B = C, a case which is in some sense extremal for the analysis.

Lemma 7 Assume that the probability distributions (p 1,i ) and (p 2,i ), 1 ≤ i ≤ N , are identical. Then the expected value of τ N is maximal when p 1,n and p 2,n are uniformly distributed, and is equal to p max n/4q 1 q 2 . Proof: Write p i for the common value p k,i , k = 1...2. If the distribution is not uniform, there exists some i, such that p i = p i+1 . Define a probability distribution (p . ) from (p . ): p j equal to p j for j = i, i + 1, p i = λ p i + (1 -λ)p i+1 , and p i+1 = (1 -λ)p i + λ p i+1 . We compare the expected values of the first collision when the distributions are (p i ) and (p i ). Let T be the random variable for the collision time with the new distribution. A standard computation shows that ∂ ∂λ E(T ) = 0 when λ = 1 2 , and that this is a maximum. For this new distribution, p i = p i+1 . By compacity, it follows that the worst case is obtained when the common distribution p i is uniform.

Another extremal case appears when one of the objects, say B, is uniformly distributed, and the other object, C, follows a Dirac distribution. Then the waiting time for the first collision is the waiting time until a specified value is obtained under the uniform distribution, and follows a geometric distribution of parameter 1/N ; as a consequence the expected waiting time is linear in this situation.

Fact 8 Assume that the distribution (p 1,i ) is uniform. Then the worst case is obtained when the distribution (p 2,i ) is a Dirac distribution, i.e. when some p 2,k is equal to 1.

Boltzmann distributions

Following [START_REF] Duchon | Boltzmann samplers for the random generation of combinatorial structures[END_REF], we consider combinatorial classes for which the probability distribution for the size of a random object is either flat or bumpy, -the peaked case being transformed, by pointing, into a flat distribution. Of course, the size of C can follow a similar behavior. We recall below the characterization of flat or bumpy distributions and give some general results on coefficients or values of the functions at the Boltzmann parameter, before turning to the analysis of our algorithm in subsequent sections.

Definition 9 Let N be the size of a random object drawn with parameter x; its first moments are 2 . Let ρ be the dominant singularity of the generating function enumerating the objects.

µ 1 (x) = E x (N ) and µ 2 (x) = E x (N 2 ); its variance is σ 2 (x) = µ 2 (x) -µ 1 (x)
• The Boltzmann distribution of a combinatorial class C is flat if its generating function C(z) is analytic at 0 with a finite radius of analyticity ρ > 0 and satisfies the following two ∆-singular conditions: (i) The function C(z) admits ρ as its only singularity on the circle |z| = ρ and it is continuable in a domain ∆(r, θ) = {z|z = ρ, |z| < r, arg(z -ρ) ∈ (-θ, θ)}, for some r > ρ and some θ satisfying 0 < θ < π/2;

(ii) For z tending to ρ in the ∆-domain, C(z) satisfies a singular expansion of the form

C(z) ∼ z→ρ -c 0 (1 -z/ρ) -α + o((1 -z/ρ) -α ), α ∈ R + .
The quantity -α is called the singular exponent of C(z).

• The Boltzmann distribution of a combinatorial class C is bumpy

2 if σ(x)/µ 1 (x) → 0 for x → ρ -, which amounts to µ 2 (x)/µ 1 (x) 2 → 1, σ(x) → +∞ and C(z) is H-admissible:
there exists a function δ(x) defined for x < ρ with 0 < δ(x) < π, such that for |θ| < δ(x)

as x → ρ -, C(xe iθ ) ∼ C(x)e iµ 1 (x)θ-1/2σ 2 (x)θ 2 . Uniformly as x → ρ -, for δ(x) ≤ |θ| ≤ π, one gets C(xe iθ ) = o C(x) σ(x) .
We next give some approximation results on the coefficients, that we shall need later on.

Lemma 10 Let C be a combinatorial class with generating function C(z), and x n be the solution of the equation

x n C (x n )/C(x n ) = n.
• If C follows a flat distribution, then xn = ρ(1-α/n) is an approximation of the Boltzmann parameter x n and

c m ∼ c 0 Γ(α) ρ -m m α-1 C(x n ) ∼ c 0 n α α c m x m n C(x n ) ∼ α α e -α Γ(α) • m n α • 1 m = Θ 1 m (1) 
when m ∈ [an, bn] for some constants a and b.

• If C follows a bumpy distribution, then x n → ρ -where ρ is the (finite or infinite) singularity of C(z) and

c m ∼ C(x n ) x n n σ C (x n ) √ 2π c m x m n C(x n ) = 1 σ C (x n ) √ 2π exp - (m -n) 2 2 σ C (x n ) 2 + o(1)
uniformly for all m as n → +∞.

Proof: When the distribution of C is flat, standard singularity analysis gives

c m ∼ c 0 Γ(α c ) ρ -m c m αc-1 .
The approximation xn of x n comes from the definition of a flat distribution; see [START_REF] Duchon | Boltzmann samplers for the random generation of combinatorial structures[END_REF], and

C(x n ) ∼ c 0 n α c αc .
Putting all this together, we obtain

c m x m n C(x n ) ∼ c 0 Γ(α c ) ρ -m c m αc-1 • (ρ c (1 -α c /n)) m • 1 c 0 n α c -αc = α αc c Γ(α c ) • 1 m • m n αc • (1 -α c /n) m .
Assuming that m/n ∈ [a, b] gives the result. The case of a bumpy distribution comes from Hayman [START_REF] Hayman | A generalisation of Stirling's formula[END_REF]; see also [4, p. 25].

Selivanov's theorem applied to Boltzmann distributions

Define I = [(1 -)n, ( 1 
+ )n] and 3 B (z) = i∈I b i z i , C (z) = i∈I c i z i . The probability that we draw an object of B of size i, with i ∈ I , is p 1,i = b i x i /B (x)
, where b i is the number of objects of B with size i and x := x n is defined by the equation xB (x)/B(x) = n. A similar result holds for C, with a parameter y := y n . What are the conditions on B and C that allow us to use Selivanov's theorem? The (unconditional) probability for a ball to fall into urn i is

p i = q 1 p 1,i + q 2 p 2,i = q 1 b i x i B (x) + q 2 c i y i C (y) ,
and Selivanov's parameter v 2 = i p 2 i is here

v 2 = q 2 1 i∈I b 2 i x 2i B (x) 2 + 2q 1 q 2 i∈I b i c i x i y i B (x)C (y) + q 2 2 i∈I c 2 i y 2i C (y) 2 = q 2 1 B B (x 2 ) B (x) 2 + 2q 1 q 2 B C (xy) B (x)C (y) + q 2 2 C C (y 2 ) C (y) 2 .
(

Condition (C1), which states that v 2 is o(1), breaks down into three parts (recall that x := x n and y := y n are defined respectively by xB (x)/B(x) = n = yC (y)/C(y), and vary when n → +∞):

B B (x 2 ) = o B (x) 2 ; (3) 
B C (xy) = o (B (x)C (y)) ; (4) 
C C (y 2 ) = o C (y) 2 . (5) 
We now check that conditions (3) to ( 5) hold in the different, standard cases that may appear when generating a combinatorial object by Boltzmann sampling. By taking B = C, it suffices to consider condition (4). Proof: Note that, either for a bumpy or flat distribution [START_REF] Duchon | Boltzmann samplers for the random generation of combinatorial structures[END_REF] B (x) = Θ(B(x))

Of course, a similar relation holds for the class C. Thus the ratio we consider simplifies into B C (xy)/B(x) C(y). As we consider either flat or bumpy distributions, we have three cases to consider.

• If B and C both follow a flat distribution. Intuitively, a flat distribution converges to a uniform distribution when x → ρ -, and we expect the assumptions of Selivanov's theorem to hold. We now make precise this intuition.

Equation (1) of Lemma 10, applied to both classes, gives

b m x m B(x) . c m y m C(y) ∼ α α b b α αc c e -(α b +αc)m/n Γ(α b ) Γ(α c ) • m n α b +αc • 1 m 2 . Hence B C (xy) B(x)C(y) ∼ I b m c m (xy) m B(x)C(y) ∼ α α b b α αc c e -(α b +αc) Γ(α b ) Γ(α c ) • m∈I m n α b +αc • 1 m 2 .
As the last sum has exact order 1/n, the result is proved.

• If B follows a bumpy distribution and C a flat one. We apply again Lemma 10 to obtain [START_REF] Arnold | Random generation of balanced parenthesis strings[END_REF] . Now m = Θ(n) in I and we have to approximate m∈I e -(m-n) 2 /2σ 2 B (x) . By taking

B C (xy) B(x)C(y) = m∈I b m x m B(x) • c m y m C(y) ∼ α αc c e -αc √ 2π Γ(α c ) σ B (x) m∈I m n αc 1 m • e -(m-n) 2 /2σ 2 B (x)+o
u = m -n σ B (x) , f (u) = e -u 2 2 and A = n σ B
we have that, with du = 1 σ B (x) being the increase in u between two consecutive terms of the sum,

m∈I e -(m-n) 2 /2σ 2 B (x) = m∈I f (u) = σ B (x) m∈I f (u) du ∼ σ B (x) +A -A f (u) du ∼ σ B (x) +∞ -∞ f (u)du = Θ(σ b )
the last equivalence coming from n/σ B → +∞, which comes from the bumpy condition.

Putting together all the terms, we obtain that B C (xy)/B(x)C(y) = Θ(1/n).

• If B and C both follow a bumpy distribution. Again the approximations provided by Lemma 10 give • If B is bumpy and C is flat, v 2 = Θ(1/σ B ).

B C (xy) B(x)C(y) ∼ 1 σ B σ C m∈I e -(m-n) 2 (1/σ 2 B +1/σ 2 C )/2+o(1) . Define s by 1/s 2 = 1/σ 2 B + 1/σ 2 C ; then B C (xy) B(x)C(y) ∼ 1 σ B σ C m∈I e -(m-n) 2 /2s
• If B and C are both bumpy, v 2 = Θ(1/σ) with σ = min(σ B , σ C ).

Proof: Obvious: apply the approximations provided by Lemma 11 to the expression of v 2 given by ( 2) and recall, in the case bumpy/flat, that σ B = o(n). Proof: Lemmas 11 and 12 show that the conditions of Selivanov's theorem are satisfied with q 1 = q 2 . Then the normalized waiting time for the first collision ατ N follows a Rayleigh distribution with α = √ 2v 2 q 1 q 2 = v 2 2 and E[τ n ] ∼ p max /4v 2 q 1 q 2 = p max /v 2 . As approximate-size Boltzmann sampling runs in linear expected time, it suffices to compute v 2 in the different cases to obtain the expected number of samples that need to be drawn, thus the expected time of the algorithm.

Complexity of the Hadamard sampler

Space complexity

For standard Boltzmann sampling, the space complexity required by the generation algorithm is proportional to the size of the object. This no longer holds for the Hadamard product: the space complexity of our algorithm depends on the expected time for the first collision; under the assumptions of Theorem 5 it is of order O(n √ n). Assume that we want to achieve an average size n: we draw objects of B and C whose size follows a Boltzmann distribution, and keep those objects whose size belongs to [(1-ε)n, (1+ε)n], with ε a fixed parameter. A reasonable value for ε is 0.1 = 10%. Of course, we keep only one object of each size for B and for C. Hence, an upper bound on the number of objects in each class comes from the expected time E A for the first two-colors collision. We can also obtain a lower bound, by considering same-color collisions: assume that there are respectively E B and E C collisions in the classes B and C before time E A ; then the number of objects in both classes is 2E A -E B -E C . The precise value of the space needed to store those objects depends on their size, i.e. on the locations of the urns with at least one ball in a coupon-collector problem.

Conclusion and extensions

We have presented in this paper a general purpose approximate-size sampler for the Hadamard product. Our sampler works for the classical combinatorial classes, for which it allows us to generate a random Hadamard product in time O(nσ), where σ 2 is the smallest of the variances for the two combinatorial classes involved in the product.

We might consider the multivariate Hadamard product, which builds a k-uple of objects sharing the same size. The analysis of the algorithm complexity again requires that of the expected time, which is an extension of the birthday problem to the waiting time until all the k colors appear in a single urn, and require an extension of Selivanov's results (which deal with the first appearance of two colors in the same urn). Preliminary studies seem to indicate a larger expected time, which however remains o(n 2 ).

The Hadamard product as intermediate constructor. A restriction of the sampler we have presented in this paper is that the Hadamard product appears as the final constructor. It would be desirable to extend our sampler so that it allows for the Hadamard product to appear as an intermediate constructor when building complex objects. This requires that the probability distribution for the objects obtained from the Hadamard product follows a Boltzmann distribution, which would require in turn some "unbiaising" of the random object we obtain.

The rational case. We should mention alternative, possibly more efficient, ways to obtain a Hadamard sampler in special cases. E.g., a classical result of Borel states that the Hadamard product of two rational languages is also a rational language. We consider here how a constructive proof of this result leads to the construction of a sampler for the Hadamard product.

For i ∈ {1, 2}, let A i be a deterministic automaton that recognizes the language L i . Classically, we denote by E i its states, A i its alphabet, e i its initial state, T i its terminal states and ∆ i its transitions. We define the Hadamard product A 1 A 2 of A 1 and A 2 as the automaton with states in E 1 × E 2 on the alphabet A 1 × A 2 , such that there is a transition labelled (a, b) between (e, f ) and (e , f ) if and only if (e, a, e ) and (f, b, f ) are both transitions respectively in A 1 and A 2 . The initial state is (e 1 , e 2 ) and the set of terminal states is T 1 × T 2 . Clearly, the generating function of the language recognized by A 1 A 2 is the Hadamard product of the generating functions of the languages L 1 and L 2 .

Should we wish to build a Boltzmann generator for the Hadamard product of two rational languages, rather than using our sampler we would build the Hadamard product of the associated deterministic automaton, then to obtain a Boltzmann sampler from its combinatorial specification in the standard way. In particular, using approximate size Boltzmann sampling, the expected time complexity becomes linear in this case. Indeed, a classical approximate size Boltzmann generation on a flat type distribution class is linear (and the Boltzmann distributions associated with rational languages are always flat).

Analysis of the space complexity. Finally, let us mention that the precise analysis of the space complexity relies on the analysis of the location of the urns in a coupon collector problem, when the probability of an urn follows a Boltzmann distribution. Such a problem is of interest in itself, and may deserve a detailed study.

2. 1

 1 Combinatorial classesDefinition 1 A combinatorial class C is a countable (or finite) set, with a size function | • | : C → N and such that there are only finitely many objects of each size.

1 1 -Figure 1 :

 11 Figure 1: Some classical constructors, with their generating function and Bolzmann sampler

Definition 3

 3 The Hadamard product of two classes B and C, denoted by B C, is the subset of B × C such that the two objects in a pair have exactly the same size. Furthermore, if α = (β, γ) ∈ A, we define the size of α as |α| = |β| = |γ| The generating function of A = B C is

Algorithm 1 : 1

 11 Naïve approximate-size sampler ΓA for A = B C Input: The expected range R = [(1 -ε)n, (1 + ε)n] for the output Output: An object of A with size in R Draw a instance of B in approximate size.; Draw an instance of C with exact size, the size of the instance of B obtained in the first 2 step.

Proof:

  When C is flat, we draw an approximate-size sample for B in time O(n) when B is flat or bumpy, then an exact-size sample for C in time O(n 2 ). When B follows a flat distribution and C a bumpy one, we draw an approximate-size sample for B in time O(n), then an exactsize sample for C in time O(n σ C ). If B and C both follow a bumpy distribution, assume that σ C = O(σ B ); again we draw an object of B in approximate-size in time O(n) and an exact-size object of C in time O(n σ C ).

Algorithm 2 : 1 Choose x 1 2 Choose x 2

 21122 Approximate-size sampler ΓA for A = B C Input: The expected range R = [(1 -ε)n, (1 + ε)n] for the output; the positive probabilities q 1 and q 2 Output: An object of A with size in R B ← ∅ ; C ← ∅ ; such that the expected size of the output of ΓB(x 1 ) is n ; such that the expected size of the output of ΓC(x 2 ) is n ;

3 repeat 4 5 if B is chosen then 6 7 if 9

 345679 Decide to draw a sample of B with probability q 1 , or of C with probability q 2 ; Randomly draw an object b from the class B using ΓB(x 1 ) of size in R ; size of object is new then B ← B ∪ {b} 8 else Randomly draw an object c from the class C using ΓC(x 2 ) of size in R ; 10 if size of object is new then C ← C ∪ {c} 11 until ∃(b, c) ∈ B × C, |b| = |c| ; 12 return a = (b, c);13

Figure 2 :

 2 Figure 2: Left a classical drunkard walk; right a very drunk man walk with the same size

5. 5 Evaluation of v 2 Lemma 11

 5211 Let B and C follow a Boltzmann distribution, either flat or bumpy, and let x and y be the approximate values of the Boltzmann parameters (xB (x)/B(x) = n = yC (y)/C(y)). Then • If B and C are both flat, B C (xy)/B (x) C (y) = Θ(1/n). • If B is bumpy and C is flat, B C (xy)/B (x) C (y) = Θ(1/n). • If B and C are both bumpy, B C (xy)/B (x) C (y) = Θ(1/σ) with σ = min(σ B , σ C ).

2

 2 

  and we are back to the integral we computed in the bumpy/flat case, which gives m∈I e -(m-n) 2 /2s 2 = Θ(s) and B C (xy)/B(x)C(y) = Θ(s/σ B σ C ). The result follows from the fact that, if σ B and σ C have the same order, s also has this order; otherwise s has the same order as the smallest of σ B and σ C . Lemma 12 Let B and C follow a Boltzmann distribution, either flat or bumpy, with x and y the approximate values of the Boltzmann parameters (xB (x)/B(x) = n = yC (y)/C(y)); and let v 2 = p 2 1 + p 2 2 . Then • If B and C are both flat, v 2 = Θ(1/n).

Theorem 13 •

 13 Let B and C two combinatorial classes, and define τ N as the waiting time to draw an object in B C. • If both classes B and C follow a flat distribution, then expected time for Algorithm 2 is E[τ N ] = O(n √ n); and the variance is O(n 2 ). • If B follows a bumpy distribution and C a flat one, then the expected time for Algorithm 2 is E[τ N ] = O (nσ B ). If both classes B and C follow a bumpy distribution, then the expected time for Algorithm 2 is E[τ N ] = O (n min (σ B , σ C )).

We know linear-time Boltzmann generators for most usual objects, such as context-free languages, surjections, partitions, and various classes of trees -this may require a proper choice for the tree description.

The definition of a bumpy distribution given in[START_REF] Duchon | Boltzmann samplers for the random generation of combinatorial structures[END_REF] is restricted to the first condition; however the conditions we add are very natural; they hold for the bumpy distributions met in practice.

The functions B and C actually depend on n through the parameter ; we omit this parameter in our notation for simplicity's sake.
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