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Abstract

In the framework of analytic combinatorics, Boltzmann models give rise to efficient
algorithms for the random generation of combinatorial objects. This paper proposes
an efficient Boltzmann sampler for ordered structures defined by first-order differential
specifications. Under an abstract real-arithmetic computation model, our algorithm is
of linear complexity for free generation; in addition, for many classical structures, the
complexity is also linear when a small tolerance is allowed on the size of the generated
object. The resulting implementation makes it possible to generate very large random
objects, such as increasing trees, in a few seconds on a standard machine.

Introduction

A random sampler for combinatorial objects is a generation algorithm that produces objects,
such as words, tilings, trees, graphs or permutations, according to a given probabilistic distri-
bution. Efficient generation of extremely large such combinatorial objects is needed in many
situations: for instance in statistical physics for observing limit behaviors, in biology for un-
derstanding and analyzing genome properties, and in computer science for testing programs,
and simulating or modeling networks such as the Internet.

In 2004, Duchon, Flajolet, Louchard and Schaeffer [9] proposed a new framework, called
the Boltzmann model, which allows to systematically construct samplers for random gen-
eration of combinatorial objects belonging to specifiable classes. Moreover, this framework
ensures that objects of the same size have equal chances of being drawn, an uniformity prop-
erty that is central in many fields.

Boltzmann samplers depend on a real parameter x and generate an object α in a given
combinatorial class A with a probability proportional to x|α|, where |α| is the size of α. Hence
the generation is uniform in each subclass An of the objects of size n in A. Although the
size of the output object is a random variable, the parameter x can be tuned for a targeted
mean value of the size. Moreover using rejection, one can obtain exact size samplers and
approximate size samplers.

This new approach differs from the “recursive method” introduced by Nijenhuis and
Wilf [18] as it brings the possibility of relaxing the constraint of an exact size for the output.
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This implies a significant gain in complexity: no preprocessing phase is needed (except for
the computation of some constants) and expected time complexity becomes linear in the size
of the output.

Boltzmann samplers have already been designed for a whole set of combinatorial classes,
whether labelled or unlabelled [9, 11]. These are classes defined from basic elements by means
of fundamental constructions that form Cartesian products, disjoint unions, sequences, sets
and cycles. In this paper, we focus on first-order differential specifications, which allow to
construct labelled combinatorial objects satisfying internal order constraints, such as increas-
ing trees and alternating permutations. We extend the Boltzmann model in this context and
design efficient samplers in order to uniformly generate such objects at random. The main
idea is to stochastically change the value of the x parameter along the execution of the al-
gorithm, according to some probability density functions. We already used with success this
idea to introduce the box operator within the range of admissible operators [20]. Here we
generalize the model so as to deal with general combinatorial classes defined by first-order
differential equations. The central idea is that, by biasing the x parameter, we obtain a Boltz-
mann sampler for a given combinatorial class from a Boltzmann sampler for its derivative.
The effective implementation of the sampler requires the numerical evaluation of generat-
ing functions at different values. Whereas in the classical Boltzmann model, this evaluation,
called oracle evaluation, is needed on the only parameter x, and can be numerically computed
from the combinatorial specification [19], in the case of differential equations, the number of
oracle evaluations linearly depends on the size of the generated object. The implementation
thus performs less rapidly than in the classical Boltzmann model, but still allows to generate
very large objects in a very reasonable amount of time, typically objects of size up to 107 in
less than 10 seconds on a standard PC. As an application, we focus on varieties of increasing
trees [1], families that can be specified via first-order differential specifications.

This paper is organized as follows. We first recall in section 1 the basis of random sampling
using the Boltzmann model, and introduce some notations. In section 2, we define combina-
torial specifications using first-order differential equations and describe a Boltzmann sampler
related to this differential operator. The generation is proved to be of linear complexity in the
size of the output, provided that the effective evaluation of generating functions and the ran-
dom drawing according to a given density can be achieved in constant time. In section 3, we
address some issues regarding an actual implementation of our algorithm which includes the
evaluation of generating functions and the random drawing according to a probability density
function. As an illustration of the algorithm, we present in section 4 Boltzmann samplers for
the class of alternating permutations and increasing ternary trees, with experimental results.
The conclusion emphasizes the main contribution and remaining issues of the paper.

1 Boltzmann model and samplers

This section recalls the combinatorial framework of decomposable classes, within which the
Boltzmann models take place.

1.1 Combinatorial classes and generating functions

The framework presented here is summarized from [13]. Hence, for a much more complete
and precise introduction to combinatorial classes and their generating functions, we refer to
the book Analytic Combinatorics by P. Flajolet and R. Sedgewick [13].
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A Description A(z) ΓA(x)

ε Empty class 1 return ε

Z Atomic class z return À

B × C Product B(z)× C(z) return (ΓB(x),ΓC(x))

B + C Union B(z) + C(z)

if Bernoulli( B(x)
B(x)+C(x)

)

then return ΓB(x)

else return ΓC(x)

Seq(B) Sequence
1

1−B(z)

k := Geometric(B(x))

return (ΓB(x), . . . ,ΓB(x))︸ ︷︷ ︸
k independent calls

Set(B) Set eB(z)
k := Poisson(B(x))

return {ΓB(x), . . . ,ΓB(x)}︸ ︷︷ ︸
k independent calls

Cyc(B) Cycle log

(
1

1−B(z)

) k := Logarithmic(B(x))

return 〈ΓB(x), . . . ,ΓB(x)〉︸ ︷︷ ︸
k independent calls

Figure 1: Some classical operators, their generating function and sampler

Definition A combinatorial class A is a countable (or finite) set, with a size function, such
that there is only finitely many objects of each size.

We will consistently use the following notations: if A is a class, then for any object
α ∈ A, |α| is its size. Furthermore An = {α ∈ A | |α| = n} and an = Card(An). In all the
following, we will only consider labelled objects, and each class A has an associated exponential
generating function A(z).

Definition Let A be a labelled combinatorial class. We define the exponential generating
function by

A(z) =
∑
α∈A

z|α|

|α|!
=
∑
n∈N

an
zn

n!

Specifiable combinatorial classes are constructed from basic objects, called atoms, by a
set of rules involving operators such as Product, Union, Sequence, Set and Cycle. Figure 1
presents the translation from operators on combinatorial classes to equations on their gener-
ating functions (columns 1, 2 and 3).

1.2 Boltzmann generation

Boltzmann model provides a simple framework for the generation of combinatorial objects
uniformly at random. The generation algorithms have arithmetic complexity linear in the
size of the output. These samplers were first introduced in [9] for labelled structures, and
then extended to unlabelled structures in [11].

Definition A Boltzmann sampler ΓC(x) for a labelled combinatorial class C is a random
generator such that the probability of drawing a given object γ ∈ C of size n is

Px(γ) =
1

C(x)

x|γ|

|γ|!
=

1

C(x)

xn

n!
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where C(z) is the exponential generating function of C, and 0 < x < ρ, where ρ is the radius
of convergence of C(z).

From this definition, it is obvious that the probability for any object γ only depends on its
size and not on its shape: the probability induced on the objects of the same size is uniform.

However the distribution spreads over all possible sizes: the size of the output of a Boltz-
mann sampler is a random variable N . The real parameter x of a Boltzmann sampler can be

tuned to aim at a given expected size, according to the following equation Ex(N) = xC
′(x)
C(x) .

The Boltzmann model is a very efficient tool to generate combinatorial structures [9, 11, 5].
In particular, it is possible to automatically build a sampler according to the specification of
a given combinatorial class, by recursively following the algorithms in Figure 1 (column 4),
which describe how to construct a sampler for a decomposable class from samplers of its
component classes. The most important feature in Boltzmann sampling is that the generation
of a product reduces to independently call samplers for its factors. This property is also
applied to the generation of Seq,Set, Cyc, after a proper probabilistic choice of the number
of components. In this paper, we extend the class of Boltzmann admissible specifications, to
deal with first-order differential specifications.

2 Boltzmann model for first-order differential specifications

In this section, we introduce the central object of this paper, namely combinatorial classes
described by a first-order differential combinatorial specification, and we propose Boltzmann
samplers for random generation with linear complexity. The main difference between the
classical Boltzmann model and the Boltzmann model for first-order differential specifications
is the fact that the control parameter x stochastically varies. In classical Boltzmann samplers,
the value of x is fixed at the beginning and stays constant during the whole execution of the
algorithm; here, on the contrary, the value of x changes at recursive call, according to a given
probability density function.

2.1 First-order combinatorial differential specification

Before introducing labelled objects defined by first-order differential specifications, we briefly
recall some definitions about combinatorial derivative. The derivative of a class is a well-
known operation in combinatorics, which can be applied to labelled structures (we refer, for
example, to Greene’s thesis [16], and an introduction the theory of species [2, 1], and to the
frame of admissible classes [13]). The derivative of a combinatorial class is the set of all the
derivative of the objects in this class: A′ = {α′|α ∈ A}.

Given a labelled object α of size n, a derivative α′ is constructed from α by substituting
one of the atoms of α with a hole thereby obtaining an object of size n − 1 (and containing
a hole, of size 0). In the case of ordered structures, the location of the hole is uniquely
determined on the atom of greatest label in α, so that there is only one derivative for each
object.

Definition A combinatorial class T is defined by a first-order differential specification if it
satisfies the following relation

T ′ = F(Z, T ) (1)
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where F(·, ·) is any bivariate combinatorial construction built upon the classical constructors
(Seq,Set, Cyc,×,+, ε).

Proposition 2.1. Let T be a combinatorial class defined by specification (1), and let f
be the operator on generating functions associated with the combinatorial operator F . The
exponential generating function for T satisfies the first-order differential equation

d

dz
T (z) = f(z, T (z))

with respect to the initial condition on T (0), or equivalently

T (z) =

∫ z

0
f(u, T (u))du+ T (0).

Proof. By definition, we have T (z) =
∑∞

n=0 tn
zn

n! , and T ′(z) =
∑∞

n=0 t
′
n
zn

n! . We know that
t′n = tn+1 as an object of size n in T ′ is uniquely obtained from an object of size n+1 in T by
making a hole on its largest label. Hence T ′(z) = d

dzT (z). The equation defining T ′ ensures
that T ′(z) = f(z, T (z)) using the composition of the combinatorial structures, hence of their
generating functions. This last remark leads to the claimed formula.

From now on, we will use the usual notation T ′(z) = d
dzT (z) as it is consistent.

2.2 Boltzmann sampler

As mentioned before, we want to stochastically change the value of the parameter x in order to
construct a Boltzmann sampler for a class T from a Boltzmann sampler for its derivative T ′.
The probability density function which is central in this process is

δTx (u) =
xT ′(ux)

T (x)− T (0)
=
xf(ux, T (ux))

T (x)− T (0)
.

We first show that δTx is a probability density function, and then propose a generation algo-
rithm of objects of T defined by (1), relying on this density function.

Lemma 2.2. For any x ∈ (0, ρT )1, the function δTx is a non-decreasing probability density
function over [0, 1].

Proof. By definition of δTx , we can write that ∀u ∈ [0, 1], 0 ≤ δTx (t), and:∫ 1

0
δTx (u)du =

∫ 1

0

xT ′(ux)

T (x)− T (0)
dt

=
x

T (x)− T (0)

∫ x

0
T ′(z)

dz

x
= 1

Therefore, δTx define a proper probability density function over [0, 1]. Moreover, since T ′ is a
power series with non-negative coefficients, and x > 0, it follows that u 7→ δTx (u) (and all its
successive derivatives) is non-decreasing.

1We can easily check via simple calculations that, point-wise, lim
x→0

δTx (u) = 1 and lim
x→ρT

δTx (u) = Dirac(u−ρT )

for any class T .
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Now we present our (recursive) algorithm for generating an object from T according to
the specification T ′ = F(Z, T ). Notice in line (5), the call to the Boltzmann generator
Γ [F(Z, T )] (Ux) of class F(Z, T ), with a stochastically modified parameter:

Algorithm 1 Boltzmann sampler ΓT for T ′ = F(Z, T )

Input: A real number x
Output: An object of T
Require: 0 < x < ρT

1: if Bernoulli
(
T (0)
T (x)

)
then

2: return an object drawn uniformly from T0
3: else
4: Draw U in [0, 1] according to the probability density function δTx
5: Randomly draw an object γ from the class F(Z, T ) using Γ [F(Z, T )] (Ux)
6: return the (labelled) object (Z, γ), where the atom Z has the greatest label
7: end if

Theorem 2.3. Algorithm 1 provides a correct Boltzmann sampler for the combinatorial class
T defined by T ′ = F(Z, T ).

Proof. We have to check that we can get all objects in T with this algorithm, and only them;
and, more importantly, that we get each object with the right probability.

The first point is easy to check, as any object τ ∈ T is either of size 0 or of size n + 1
with n ≥ 0. In the latter case, it has a (uniquely defined) derivative τ ′ ∈ T ′ of size n, which
satisfies the differential equation.

For the second point, we have to check that each object τ ∈ T is generated with probability

PTx (τ) = x|τ |

T (x)
1
|τ |! .

First, suppose that |τ | = 0, which means that τ ∈ T0. Then, we get this specific object
with the correct probability

PTx (τ) =
T (0)

T (x)

1

T (0)
=

x0

T (x)

1

0!
.

Next, let |τ | = n + 1 and γ = τ ′ be the derivative object from τ (hence |γ| = n); we can
compute

PTx (τ) =

(
1− T (0)

T (x)

)∫ 1

0
PF(Z,T )ux (γ) · δTx (u) du

=
T (x)− T (0)

T (x)

∫ 1

0

unxn

f(ux, T (ux))

1

n!
· xf(ux, T (ux))

T (x)− T (0)
du

=
xn+1

T (x)

1

(n+ 1)!

which is the expected result.

The simple case T ′ = F(T ). If F does not depend on Z, meaning that T ′ only depends
on T , then Algorithm 1 can be improved in the sense that the drawing according to an
arbitrary density δTx can be replaced by a drawing according to an uniform density on [0, 1].
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Indeed, in that case only the successive values of T (x) are needed, and not the value of x
itself. In addition, if u is drawn according to δTx , then the following relation holds true:
T (ux) = (1 − U)T (0) + UT (x), where U is uniform on [0, 1]; we thus have a direct and
effective relation between T (ux) and T (x): see section 3.2 for more details, and section 4 for
an illustration with the generation of increasing ternary trees.

2.3 Theoretical complexity

We determine the complexity of Algorithm 1 in function of the size of the generated object,
and show analogous results as in the case of classical Boltzmann samplers. We will assume
here that the effective (numerical) evaluation of T (x) for any given x can be done in time O(1)
— meaning it does not depend on the size of the output — and that the complexity for drawing
a random variable according to a given δx is also in time O(1). We will see in the next section
that these assumptions are indeed correct, even though the hidden constants can be quite
large.

Proposition 2.4. Algorithm 1 has a linear complexity in the size of the generated output, as-
suming that the effective evaluation of generating functions and the random drawing according
to δx can be achieved in constant time.

Proof. The algorithm works the following way: first, make a choice according to a Bernoulli
trial. If the result is true, return immediately any object of size 0. If not, draw a random
number according to δx; then generate recursively a sub-object. Finally return this object,
increased by an atom.

According to this sketch, to get an object of size n = 0, we just have to randomly choose an
object in a finite given set of objects T0, leading to a constant-time execution. For generating
an object of positive size n, we have to get a sub-object of size n − 1, recursively using a
Boltzmann sampler for F . As F is a classical constructor, as defined in [9], we know that the
time necessary to generate an object of size n− 1 will be linear. Thus the complexity of our
algorithm is in time O(n).

Notice that we do not take into account the cost of labeling the objects. Indeed, in most
applications of random sampling (for testing, conjecturing, etc.), the important feature is the
shape and the general structure of the generated objects. This shape strongly depends on
probabilities corresponding to the fact that the objects are labelled, but the exact position of
the labels most often does not matter.

Approximate-size sampling. Algorithm 1 provides a free generator, with no constraint
on the size of the output. It is often the case that we want to aim at a certain size n for
the generated object, allowing a certain tolerance ε: the size of the output must belong to
[(1 − ε)n, (1 + ε)n] (still maintaining uniformity for each size). Usually, this approximate-
size generation is achieved by using a simple rejection method on free-generation: draw an
object using free-generation, and reject until the size of the object is within the desired range.
It is proved [9] that, for any combinatorial structure T whose generating function satisfies

T (x) ∼
x→ρ

C(1− x)−α logβ
(

1
1−x

)
with α, β ≥ 0, with a simple rejection method, the expected

number of trials is constant for a given precision ε. It implies a linear complexity even for
approximate-size generation in this particular case.
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Many classes of ordered structures satisfy the previous hypothesis on their generating func-
tion, hence leading to linear complexity for random sampling, and in particular all varieties
of increasing trees with bounded degree [1].

3 Realization of the samplers

We still have several points to address before being able to really implement Algorithm 1:
first propose an oracle for evaluating the implicit series T (x) at any given point x, and second
draw according to the probability density function δx. We present a very simple oracle for
the numerical evaluation of the series: we compute a polynomial approximation of the series
T once, and then evaluate it for different values of x when necessary (this is for the sake of
completeness, but there exists other methods, as will be discussed in the following). As for
the random sampling according to δx, we use a simple inversion method.

Simple cases. When T (x) can be expressed by an efficient closed-form formula, we no
longer need to compute the polynomial approximation, but rather use the exact form. More-
over, if its inverse T [−1](t) is known, or if F does not depends on Z, i.e. T ′ = F(T ), we
no longer have to draw a random variable according to δx: a uniform drawing on [0, 1] is
sufficient, together with only one evaluation of the series (see section 3.2).

3.1 Efficient approximation of T

During the whole generation, we need to evaluate the generating function T (x) at several
stochastic values of x, and T is only known through an implicit differential equation. Hence we
have to rely on an oracle for computing the numerical approximation of the series. We can use
several methods, as for example Newton iteration on combinatorial species and series [19, 15].
We could also use a Runge–Kutta method, since we are dealing with differential equations.
Note that with all of these methods, the closer to the singularity is the parameter, the more
difficult it is to get a close approximation. Hence the very first evaluation is the most expensive
in our context, since δx is a density over [0, 1].

Furthermore recent improvements suggest that, even if the of Boltzmann model requires
exact values of the series, it is still possible to get an unbiased Boltzmann generator with an
approximate numerical evaluation (see forthcoming work [10]).

For the sake of self-containedness, we present in this section a very simple method for the
oracle, based on a slightly modified version of the Picard iteration. Nonetheless, this simple
method is sufficient in most of our cases, since the height of the syntactic tree describing the
structures (and thus the number of iterations required) is quite often of order O(log n), where
n is the size of the structure.

The following algorithm computes a polynomial approximation Tp of T using a simple
iteration method such that its numerical evaluation of Tp is close to that of the whole series
(see Proposition 3.1). Notice that we actually compute only once a polynomial approximation
the series T (namely Tp); and afterwards we evaluate this polynomial at different points. This
scheme is indeed quite close to the recursive method [18, 14].
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Algorithm 2 Approximate the series T

Input: p ∈ N
Output: A polynomial Tp ∈ Z[Z] approximating T by below

1: Let T0 ← T (0)
2: for i = 1 to p do
3: Compute f̃(Z)← f(Z, Ti−1(Z))
4: Ti(Z)← T (0) +

∫
f̃(Z) mod Zi+1

5: end for
6: return Tp

The two following propositions state that the numerical approximation converges at a
geometric rate, and that each iteration leads to a better approximation of the value of the
series. However, we do not know anything about how to choose the number p of iterations in
order to target a given precision.

Proposition 3.1. The evaluation at x of the polynomial Tp(x) gives a good approximation
of the evaluation T (x) in the following sense:

∀z ∈]x, ρ[, |T (x)− Tp(x)| ≤ cstz ·
(x
z

)p
for p being large enough, where ρ is the radius of convergence of the series T .

Proof. Recall that T (z) =
∑∞

n=0 tnz
n, and define

[
zk
]
T = tk. Observe that for every k ≤ p,

the coefficients [zk]Tp(z) are equal to [zk]T (z). Hence

|T (x)− Tp(x)| ≤
∞∑

n=p+1

(tn − [zn]Tp)x
n ≤

∞∑
n=p+1

tnx
n

Now, by Hadamard criterion, ∀ε > 0, tn ≤ 1
(ρ−ε)n , for large enough n. So the rest of the series

can be bounded: for p being large enough

∞∑
n=p+1

[zn]T (z) ≤
(

x

ρ− ε

)p 1
ρ−ε
x − 1

.

Letting z = ρ− ε, leads to the claimed formula.

Proposition 3.2. Each step of the algorithm reduces the approximation error:

∀x < ρ,∀p ∈ N, Tp(x) ≤ Tp+1(x) ≤ T (x)

Moreover, each approximation Tp is non-decreasing over [0, ρ].

Proof. The second assertion is easy to check, since all the coefficients of the polynomial Tp
are non-negative.

For the first assertion, we will show that ∀p ∈ N,∀n ∈ N, [zn]Tp ≤ [zn]Tp+1 ≤ [zn]T .

Let us denote by T {≤p}n the set of all the objects of T of size n and whose syntactic tree
has height at most p. Then, by construction, for n ≤ p, [zn]Tp counts exactly the number
of combinatorial objects in T of size n with a syntactic tree of height at most p: [zn]Tp =∣∣∣T {≤p}n

∣∣∣ if n ≤ p, and [zn]Tp = 0 else. Similarly, [zn]Tp+1 =
∣∣∣T {≤p+1}
n

∣∣∣ if n ≤ p + 1 and

0 else, and [zn]T = |Tn|. It is then obvious that T {≤p}n ⊂ T {≤p+1}
n ⊂ Tn, which leads to

[zn]Tp ≤ [zn]Tp+1 ≤ [zn]T in all situations, hence the conclusion.
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3.2 Drawing according to δx

The second issue is to be able to draw a real variable according to an almost arbitrary
distribution over [0, 1]. We can easily verify that, if x < ρ, then δx is a C∞ function from

[0, 1] to R+. More precisely, we know that ∀k ∈ N,∀u ∈ [0, 1], ∂
k

∂tk
δx(u) ≥ 0. In particular,

the probability density function is non-decreasing on his definition domain, and

∀u ∈ [0, 1], lim
x→0

δx(u) = 1 and lim
x→ρ

δx(u) = Dirac(u− 1)

0 1
u

δx(u)

Figure 2: Shape of a typical δx density function

To draw a random variable X according to δx, we will simply use an inversion method.
Indeed, the cumulative distribution function ∆x of δx is very simple:

∆T
x (t) =

∫ t

0
δTx (u) du =

∫ t

0

xT ′(ux)

T (x)− T (0)
du =

T (tx)− T (0)

T (x)− T (0)

Hence, to use an inversion method, we have to solve in t the equation ∆T
x (t) = U , which gives

T (tx) = (1− U)T (0) + UT (x)

Since 0 ≤ U ≤ 1, and T is non-decreasing, it is easy to compute the solution t, for example
using a simple scheme as numerical dichotomy or numerical Newton’s iteration.

It is also notable that, since the densities δx are continuous, non-decreasing, supported
by [0, 1] (see Figure 2), other methods behave better than simple inversion, for example the
ziggurat method [17].

Simple cases. In several situations, we can slightly change our algorithm so that only
one evaluation of the generating function is needed, and the stochastic part only needs to
draw uniform random variables. If T ′ = F(T ), the value of x itself is not needed, but
only the evaluation of T at x. Then the equality T (tx) = (1 − U)T (0) + UT (x) gives a
very efficient and convenient way to compute the successive values of T (x) during the whole
algorithm: start with a given precomputed value for T (x) =: Tx, and after each iteration,
update Tx ← U(Tx − T (0)) + T (0) where U is drawn uniformly on [0, 1] and independently
at each step.

Also notice that, if T [−1] is known, even in the case when F also depends on Z the previous
scheme still applies: draw a uniform random variable U , update Tx ← U(Tx − T (0)) + T (0),
and then, if necessary, compute x← T [−1] (Tx).
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4 Examples

We present two different examples, in order to highlight the sampling of ordered objects with
our algorithm. The first example is on alternating permutations and gives a good illustration
of the general framework for differential structures, although it relies on the closed-form
expression of the generating function for its successive evaluations in different values. The
second example deals with ternary increasing trees, a class whose specification obeys the
simple form T ′ = F(T ); in this case the multiple evaluations of the generating series can be
avoided, and we only need to draw according to uniform random variables. The experimental
results that are presented in both cases, show that the samplers are very efficient and can be
used to generate very large objects.

Alternating permutations. The class of alternating permutations, which is in bijection
with increasing binary trees, is defined by the specification

T ′ = ε+ T × T and T0 = ∅

This specification translates into d
dzT (z) = 1 + T 2(z) and T (0) = 0, which leads to the

solution T (z) = tan(z) with ρT = π
2 .

The probability density function δTx is thus defined by

δTx (u) =
xf(ux, T (ux))

T (x)− T (0)
=
x(1 + tan2(ux))

tan(x)

Hence, according to our algorithm (and simplifying the Bernoulli trial with a parameter
equal to 0), we obtain the following Boltzmann sampler ΓT (x), for 0 ≤ x < ρT = π

2 :

Algorithm 3 ΓT : Boltzmann sampler for alternating permutations

Input: x ∈ R
Output: An object of T , meaning an increasing binary tree
Require: 0 ≤ x ≤ π

2
1: Draw U in [0, 1] according to the probability density function δTx
2: if Bernoulli

(
1

T 2(Ux)

)
then

3: f = ε
4: else
5: f = (ΓT (Ux),ΓT (Ux))
6: end if
7: return the (labelled) object (Z, f), where the atom Z has the greatest label

Approximate size generation proceeds as explained before, by rejection. Moreover, for the
specific class of binary increasing trees, it is possible to compute the number of trials. We
can calculate that, for a given precision ε, only e

4
1

sinh ε trials are required: this number does
not depend on n! For example, if ε = 5%, only 13.6 trials are required on average.

The figure below presents our experimentations, made on a 1GHz notebook, with 2Go of
RAM, and a naive implementation in OCaml. We can reach sizes about 107 in reasonable
time (about 10 seconds for free generation).

Notice that the figure is a log-log plot. The slope of the two sets of points is 1, and this
proves that the time for the generation is linear in the size of the output object. Moreover, the
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fact that the two lines are parallel shows that the number of rejected objects when performing
approximate generation does not depend on the targeted size. In addition, since the distance
between the two sets is slightly more than one graduation, it means that around 10 trials are
necessary, this last number being coherent with the theoretical one of 13.6.

Size

Time, in seconds

102 103 104 105 106
10−4

10−3

10−2

10−1

100

101

102

+: Free generation; ×: Approximate size generation with ε = 5%

Figure 3: Time for generating an increasing binary tree of given size

Using this approach, we can use Boltzmann model advantages, and draw large objects.
The tree displayed in Figure 4 can be computed in less than one millisecond on a standard
computer.

Figure 4: Sample increasing binary tree of size 2033

Increasing strict ternary trees. This second example illustrates that, when the specifi-
cation does not depend on Z, we can avoid all (but one) oracle calculations, and just draw
uniform random variables. The specification of the class of increasing trees is:

T ′ = ε+ T × T × T and T0 = ∅

which is of the form T ′ = F(T ), not depending on Z. This specification translates into
d
dzT (z) = 1 + T 3(z) and T (0) = 0, which leads to the implicit solution

∫ T (z)
0

du
1+u3

= z. There

is no closed-form solution for T . However, we can compute its radius of convergence ρT = 2π
3
√
3
.

In this case, we obtain a Boltzmann sampler ΓT (x), for 0 ≤ x < ρT = 2π
3
√
3
, by following

our algorithm (simplifying the Bernoulli trial, and having T (0) = 0). The first step con-
sists in computing (once) the value Tx of the series T (x); and then use procedure Γ̄T (Tx),
which recursively calls itself with parameters modified by the uniform density. Note that
Γ̄T (T (x)) = ΓT (x).

12



Algorithm 4 Γ̄T : Boltzmann sampler for increasing strict ternary trees

Input: Tx := T (x) ∈ R+

Output: An object of T , meaning an increasing ternary tree
1: Draw α in [0, 1] according to the uniform density
2: if αTx ≤ 1 then
3: f = ε
4: else
5: Draw U in [0, 1] according to the uniform density
6: Tx ← UTx
7: f =

(
Γ̄T (Tx), Γ̄T (Tx), Γ̄T (Tx)

)
8: end if
9: return the (labelled) object (Z, f), where the atom Z has the greatest label

We can compute the expected size of the output:

ETx (N) = x
T ′(x)

T (x)
=

∫ T (x)

0

du

1 + u3
· 1 + T 3(x)

T (x)
∼

x→ 2π
3
√
3

2π

3
√

3
T 2(x)

More precisely, we can compute the distribution of size for the output, PTx (N = n). This
probability asymptotically follows a geometric distribution of parameter x

2π/3
√
3
. Notice that

this behavior is different from the strict ternary case (see Figure 5) where the asymptotic
distribution of sizes follows a power law2 when x = ρ, with an extra exponentially decreasing
factor when x < ρ [6].

0

1

Figure 5: Distribution of output size (×: Strict ternary trees; +: Increasing strict ternary trees)

Using this approach, we can use the advantages of the Boltzmann model, and draw large
objects. The example displayed in Figure 6 was computed in less than two milliseconds on a
standard computer.

Figure 6: Sample increasing strict ternary tree of size 2056

2where ρ is here the radius of convergence of the series of ternary trees
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5 Conclusion

This paper presents a Boltzmann model to efficiently generate combinatorial structures de-
fined by first-order differential specifications and allows to extend the model beyond the
framework of algebraic and Pólya combinatorial structures, while keeping the same good
properties of simplicity and complexity.

The basic idea consists in stochastically modifying the parameter’s value during the re-
cursive calls of the generation algorithm, introducing a bias which transforms a Boltzmann
sampler for a given combinatorial class into a Boltzmann sampler for a related class (here
from T ′ to T ). This idea can be extended to generate a lot of other structures and operators.
For example, we applied variants of it to deal with the box operator [20], the shuffle operator
for regular languages [7] and the Hadamard product [3]. There is still some work in progress
about extending the framework to be able to deal with systems of differential equations in
general, and with multivariate versions of Boltzmann samplers [4].

Regarding the samplers implementation, the critical points concern random drawing ac-
cording to arbitrary densities, and evaluation of generating functions at multiple stochastic
values. In favorable cases, which include the case when T (z) has an explicit expression and the
case when the functional equation expresses as T ′ = f(T ), we have shown that we can avoid
all oracle calculations, and thus our algorithm is in a sense optimal. Moreover, a great variety
of classical ordered structures (such as alternating permutations and increasing k-ary trees)
belong to these favorable cases. In the more general case, we addressed the two main issues:
first, drawing a real variable according to various probability density functions, which can be
done by inversion; and second, evaluating the generating functions in many different values.
For this challenging point, we gave a simple approach by iteration in order to approximate
the evaluation of the series (note that alternative ways exist, such as Newton’s or Runge–
Kutta methods, or a merge of them, for which a precise analysis is forthcoming). Recent
improvements of the Boltzmann theory confirm that even with an approximate evaluation of
the series, Boltzmann samplers still produce uniform sampling.

Finally, we made various experimentations for generating increasing trees, and managed to
produce very large objects, with size up to 107, in reasonable time, at most about 100 seconds,
on a standard PC.
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