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ABSTRACT ing to efficiently implement the decomposition using cleski

This paper deals with the minimum polyadic decompositiongfr:'nr?'ziinonralgonthrgsﬁl‘sta?di;orlmtjigite grradlerrf\t r?r!gc()j-in
of a nonnegative three-way array. The main advantage of th S in our case). Computer simulations are performe

nonnegativity constraint is that the approximation prable the context of data analysis to illustrate the behavior ef th

becomes well posed. To tackle this problem, we suggest thsuggested approach and to compare it with another existing

use of a cost function including penalty terms built with ma-f’(ﬁ\?vorn_:_]? dfsglr'k:s? mt [t7]'d ;hse p'?pr?rzlsNor)g(gtamzred asr fOI'h
trix exponentials. Gradient components are then derivied, aOWs: The problem s state ection 2. INext, our approac

lowing to efficiently implement the decomposition usingssla to the nonnegativity constraint is described in Sectiom8, a

sical optimization algorithms. In our ca#é&.S and conjugate optimization algorith_ms in _Secti_on 4. Finally, Section EE’
gradient algorithms are studied and compared with anothéllpted to computer simulations in the context of data mining.

existing algorithm, thanks to computer simulations perfed

in the context of data analysis.
. - . 2. PROBLEM STATEMENT
Index Terms— Data analysis, datanining, non lin-

ear conjugate gradient, nonnegative 3-way array, Canbnicg, 5 given basis, a third order tensor can be represented by

Polyadic decomposition, Tikhonov regularization. a three-way array. The order of a tensor hence corresponds
to the number of indices of the associated arraywiaysor
1. INTRODUCTION moded4]). In this paper, due to the considered applications,

including fluorescence spectroscopy [8][4] or hypersgactr
Performing the canonical polyadic decomposition of a tensoimaging [9], we focus on real positive 3-way arrays denoted
(sometimes also called Parafac, CP, or CanD) is of intemest by T = (t;;,) € R*/>*X  admitting the following trilin-
many fields such as data analysis/mining, signal and imagear decomposition, also known as a triadic decomposition
processing, chemometrics [1, 2, 3, 4]. But some difficultie§10] of T: T = ZL a;®b;®cy, where the three in-

may arise when searching ftre zeros of a polynomial of de- yolved matricesA = (a;;) = [a1,a,...,ap] € RIXF,
gree six or larger, in a very large number of variables. Henc@ — (p,;) = [by,by,...,bg] € R7*XF, C = () =
the CP calculation can be numerically difficult to complete.[c, ¢, ... cz] € REXF are the so-calledbading matri-

When approximating a tensor by another of lower rank, wges whose columns are theading factors F is a suffi-
can also face an ill-posed problem, for which solutions mays;ently large integer ane stands for the outer (tensor) prod-
contain diverging components cancelling each other [5, 6lyct. Equivalentlyyi = 1,...,I, Vj =1,...,J, Vk =

Recently, researchers have been paying more and more attan- i, we have the relation between array entries:
tion to nonnegative matrices or tensors for at least two rea-

sons: first their usefulness in fields where it is dealt with im F
ages and/or spectra (such as hyperspectral imaging, chemo- lijk = Z aifbjfcry 1)
metrics, etc), and second because their low-rank apprexima f=1

tion becomes well-posed. A book is even entirely dedicateq.he smallest integeF that can be found such that the equal-

takes into account this constraint by modifying the costfon ?ty above holds exactly is called.trnensqr rank11]. For this
tion. Then, the three gradient components are derived aIIOV\Yalue of ", the above decomposition will be called the Canon-
' ' ical Polyadic decomposition (CP) of tengbr The aforemen-

*This work has been supported by a “PRES euro-méditerrérgrant. tioned model can be written in a compact matrix form using




the Khatri-Rao producd, as The gradient components found in (4)-(6) are replaced by:

T =A(CoB)”, T, =B(CoA), VAG(A,B,C)=VAF(A,B,C)+aA, (7)
T/ — CBoA)T, 2 VBG(A,B,C) = VF(A,B,C)+ 5B,  (8)
VcG(A,B,C) = Ve F(A,B,C) +~C. 9)

WhereTIi‘]K (resp.T'éﬁ“ andTlg"”) is the matrix of size
I x JK (resp.J x KI andK x JI) obtained by unfolding
the arrayT of sizel x J x K in the first mode (resp. the
second and third mode).

By equating the gradient components to zero, the following
solutions are found allowing th&LS technique to be imple-
mented [ is the identity matrix of sizé” x F):

N A=T//(CoB)[(CoB)T)(CoB)+alp],
2.1. CP decomposition of 3-way tensors . KT ;
B=T/ (CoA)[(CoA))(CoA)+8Is],

The goal of the CP decomposition for three-way tensors is to _ ;
estimate the 3 loading matricés, B, C. A rather standard C = Tg’)‘H(B ®A)[(BoA))B®A)++IF] . (10)
approach consists of (i) assuming that the rahk known or

overestimated, and (ii) minimizing the Frobenius norm & th Finally, a “projection operator[:]; is applied, whose aim is

error between the data and its model: to enforce positive entries.
F(A,B,C) = |IT;/" —A(CoB)"|} 3) A [AL, B« [EL, C+ [GL, (11)
= |IT, " =B(CoA) |7 = |Tg —CBo AT,

where[M = (m;;)]+ returns a matrix of the same size as

where|| - |2 stands for the Frobenius norm. The matrix gra-M vyhose(z',jl)Gentry ismax{e, mi; } if € is a small constant
dient calculation leads to: (typically 107°°).

VAF(A,B,C) = [foi)JK +ACO B)T] (CoB), ()

VeF(A,B,C) = [-T4" + B(CoA)| (CoA), ()

VcF(A,B,C) = [ng;” +CBO A)T] (BOA). (6)

3.3. Suggested approach

Instead, we suggest to use the following cost function:

I(A,B,C) = F(A,B,C) +ale 2%

+Ble PRI +9le R (12)
wherevu, 7B, Yo are positive constants. The goal is to con-
3. NONNEGATIVE 3-WAY ARRAY straint the cost function to reach high values if the loading
matrices contain negative entries, so that the miniminatio
3.1. Tikhonov regularization problem is achieved only for nonnegative loading matrices.

Gradients are shown to be (see Appendix):

One possible way to take into account the nonnegative con- )

s_trai_nt is to adq “Well—ghosen“ penalty tgrms to the costfun VaZ(A,B,C) = VaoF(A,B,C) + 402 | A — 1I,F} . (13)
tion i.e. negative entries from the loading matrices have to L 274
considerably increase the value of the cost function, wdeere
positive entries must let it nearly unchanged. Thus, thé-min
mization problem (3) is replaced by the minimization of cost
function: Z(A, B, C) = F(A,B,C) + af(A) + Bf(B) +
~f(C),whereq, 3, v are positive scalars which play the role
of weights for the three loading matrices. Ari¢t) is chosen  (Wherel; r is thel x F' matrix of ones), allowing the con-
such that: (i)f(-) is continuous, (i)f(A) > 0 for all A in  Struction of the two followindI 4+ J + K)F x 1 vectors:

IxF —Ni : 4+ IXF
R and (i) f(A) =0ifandonlyif A € R . vec{VAZ(A® B® ck))} vec[{A®)}
g® = [ vec{VBZ(A® B® c®H} | ,x* = [ vec{B™}
vec{VcZ(A® B® ch)} vec{C®)}
(16)

[ 1
VsZ(A,B,C) = VsF(A,B,C)+ 4873 |B — 2§—F] (14)
L B

o1
VcI(A,B,C)=VcF(A,B,C)+ 4972 |C— 2:1“} (15)
L c

3.2. Cichocki'sALS algorithm

In [7], it was suggested to use the cost function below:
where thevec{-} operator applied on a given matrix stacks
G(A,B,C) = F(A,B,C) +a||Al|% + B||B||% +7||C||%. its columns into a column vector.



4. OPTIMIZATION ALGORITHMS Comparing (19) and (1) shows that(A;(i)) corresponds to
_ aif, €(Ae(j)) to bjy andc, , matches ;. For each excita-
4.1. ALS algorithm tion wavelength absorbed by the component, an intensity of

By equating the gradient components to zero, we can estimaf&iorescence depending on the emission wavelength is mea-
successively the three loading matrices in the case of the Apured, so that a fluorescence image can be reconstructed.

ternated Least Squaresl(S) algorithm: The results - We have simulated a tens@gr, with ' = 4
N components, whose fluorescence images are ofigize71.
A= [Tfi}’K(C ©B)+ 20¢7A11,F} [(C ©B)"(CoB) A matrix C of size50 x 4 is randomly generated. It con-
2 T tains positive values only. Thug, is of size47 x 71 x 50.
+4yaale]’,

R To be able to compare the behaviour of the different algo-
B= [Tg’z’ff(c OA)+ Qﬁ'yBL],F] [(C ®A)(CoA) rithms, we introduce an error indek: = || T—T||%, orin dB,
Eqp = 10log,(E), whereT = Y7, a; ® by ®¢; anda,

b andc are the estimated factors. The three aforementioned

o K,JI T
C= [T<3> (BoA)+ 27701’”} [(B ©A) (BOA) algorithms are compared in Fig. 1. For Cichockt&S al-
2y IF}T‘ 17) gorithm, we have applied = 8 = v = 107%. Regarding
our algorithms, it was chosen to “normalize. v4 = m,
This process is repeated until an error criterion is satistie g = ﬁ* N ﬁ Moreover,a, /3, v are decreased at

until a given number of iterations. . . a(k)
each iterationa(k + 1) = Bk +1) = y(k+1) = ==,

with m a constant and(0) = 0.5), so that the influence

of the penalty terms becomes more and more weak. We can
To estimate the three loading matrices A, B, and@jvenin  observe that the three algorithms are quite fast (convesgen
(12) has to be minimized with respect to those three matricegeached in less than 100 iterations). The reconstructiam er
With this aim, several descent algorithms could be used. Wis smaller with our algorithms than with the Cichocki&S.
focus on the non linear conjugate gradient algorithm, inclvhi Its performance is indeed bounded because of the addition
a vectorx given in (16) is updated at each stepccordingto ~ Of penalty terms; such a problem is avoided in our case by di-

4.2. Non linear conjugate gradient

the following adaptation rule: minishing the influence of penalty terms as more iteratioes a
run. However, a small reconstruction error does not necessa

xEHD = x(®) (K q (k) 18 ily imply a good estimation of the loading matrices, as now
{ dtFD = gkt 4 gkIq(k)| (18) " Gemonstrated. Assume we still have a mixture of 4 compo-

) o _nents, but sef’ = 5 in the model (the rank is overestimated).
Two expressions of can be used [12]. Asnoticedin [12], ifa The obtained results are displayed in Fig. 2. On the left, the
conjugate gradient method is reinitialized, from time to&i  jmages have been obtained thanks to our algorithm (combin-
by settingd”) = —g*), we might get better performance that jng conjugate gradient and Tikhonov regularization), velaer
is why in our case we have chosen to perform this “restartyn the right, they have been reconstructed thanks to the algo
every( + J 4 K)F iterations. With regard to the choice of jinm of [7] (combiningALS, regularization and projection).

the step size,(*) see [13]. In both cases, it is difficult to assert there are 4 components
The artefact remains nevertheless less important with pur a
5. COMPUTER SIMULATIONS proach. Note that our other approach proposed in [13] did a

better job in this respect.
Simulations are now provided in the context of data analy-
sis (more precisely in chemometrics with fluorescence im-
ages). The application field - Considering a water sample 6. CONCLUSION
containing one component of dissolved organic matter dalle
. . Glarization and either thé\LS or the conjugate gradient
concentration of the component for the considered saifple

L . algorithm, in order to compute the minimal polyadic decom-
Ercl]j?nt(:e( f x;l.ta}tgn S)F\) e%;una((A;)%,)\a?g(Ti Le-evr?lﬁt:: Ssg\?c- position of nonnegative three-way arrays. First, a new cost
) frN\esy = o f e)Cp- -

ral components are dissolved. we f roblem of mixt rfunction has been introduced, then the gradient matrices ha
eral components are dissolved, we face a problem o Ualculated and two different optimization algorithms have
separation. Yet, when their concentration is low enough, th

B Lambert law is d reads: been used. Computer simulations have been provided to
eer-L.ambertiaws finear and reads. illustrate the behaviour of the suggested approaches and to
IO des k) = 1, ZW(AJ‘) eo(Ne) pe (19) compare them to other algorithms found in the literature.
¢



—— Conjugate gradient with Tikhonov]
20} ALS-Cichocki
== ALS with Tikhonov

or (dB)

Fig. 1. Reconstruction error (dB) versus number of iterationqzig 2. Mixture of 4 factors, assuming”

: ) = 5; the 5 esti-
using a nonnegativel x 47 x 50 tensor.

mated emission-excitation images using the conjugate-grad
ent algorithm with Tikhonov regularization (left) and tAeS

Appendix algorithm of [7] (regularization + projection) (right).
Our aim is now to calculate the derivatives of the penalty [3] T. G. Kolda and B. W. Bader, “Tensor decompositions
terms:df(A) = df|e~¥Relvec{A}}||3. Considering a square and applications,Siam Revieywol. 51, no. 3, pp. 455
N x N matrix A, we have the following propertyD,. e = 500, Sept. 2009.
k=0 %1+ OF [4] A. Smilde, R. Bro, and P. GeladiMulti-Way Analysis
||e*7diag{"e°{A}}|\% _ trace{(ef”diag{"ec{A}})T. with applications in the chemical sciencé¥iley, 2004.
e—’ydiag{vec{A}}} _ trace{e—}ydiag{vec{A}}}- [5] P. Paatero, “Construction and analysis of degenerate
Parafac models,”J. Chemometrigsvol. 14, no. 3, pp.
wheretrace{-} stands for the trace of the matrix given in ar- 285-299, 2000.
gument. UsindD,, we have: [6] L. H. Lim and P. Comon, “Nonnegative approximations
o (o of nonnegative tensors,Jour. Chemometrigsvol. 23,
Je~2dnstvec(A)) 2 — 3 (—k'v) trace{[diag{vec{A}}]} pp. 432-441, Aug. 2009.
k=0 ' [7] A. Cichocki, R. Zdunek, A. H. Phan, and S. I. Amari,

Considering only the three first terms in the series expansio Non negative matrix and_tensor factorlzatl_ons: Ap_pll-
we find that: cation to exploratory multi-way data analysis and blind

separation Wiley, 2009.
—~diag{vec{A}} 2
dlle _HF - i [8] R.Bro, “Parafac: tutorial and application&ghemometr.
_ 9[lir — 2ydiag{vec{A}} + 2y [diag{vec{A}}]*] | Intell. Lab, vol. 38, pp. 149-171, 1997.
N Ovec{A} vec{A}

~ [-29I;r + 4y diag{vec{A}}] dvec{A}

[9] Q. Zhang, H. Wang, R. Plemmons, and P. Pauca, “Ten-
sors methods for hyperspectral data processing: a space
~ 44? |diag{vec{A}} — II_F] dvec{A} (20) object identification study,"Journal of Optical Society
2y of America A Dec. 2008.

or in its matrix (and not vectorial) fornfry? [A - 15—;} dA. [10] F. L. Hitchcock, “The expression of a tensor or a
polyadic as a sum of products]’ Math. and Physvol.

6, pp. 165-189, 1927.
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