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ABSTRACT

This paper deals with the minimum polyadic decomposition
of a nonnegative three-way array. The main advantage of the
nonnegativity constraint is that the approximation problem
becomes well posed. To tackle this problem, we suggest the
use of a cost function including penalty terms built with ma-
trix exponentials. Gradient components are then derived, al-
lowing to efficiently implement the decomposition using clas-
sical optimization algorithms. In our caseALS and conjugate
gradient algorithms are studied and compared with another
existing algorithm, thanks to computer simulations performed
in the context of data analysis.

Index Terms— Data analysis, datamining, non lin-
ear conjugate gradient, nonnegative 3-way array, Canonical
Polyadic decomposition, Tikhonov regularization.

1. INTRODUCTION

Performing the canonical polyadic decomposition of a tensor
(sometimes also called Parafac, CP, or CanD) is of interest in
many fields such as data analysis/mining, signal and image
processing, chemometrics [1, 2, 3, 4]. But some difficulties
may arise when searching forthe zeros of a polynomial of de-
gree six or larger, in a very large number of variables. Hence
the CP calculation can be numerically difficult to complete.
When approximating a tensor by another of lower rank, we
can also face an ill-posed problem, for which solutions may
contain diverging components cancelling each other [5, 6].
Recently, researchers have been paying more and more atten-
tion to nonnegative matrices or tensors for at least two rea-
sons: first their usefulness in fields where it is dealt with im-
ages and/or spectra (such as hyperspectral imaging, chemo-
metrics, etc), and second because their low-rank approxima-
tion becomes well-posed. A book is even entirely dedicated
to that problem [7]. In this paper, we present an approach that
takes into account this constraint by modifying the cost fonc-
tion. Then, the three gradient components are derived allow-
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ing to efficiently implement the decomposition using classical
optimization algorithms (ALS and conjugate gradient algo-
rithms in our case). Computer simulations are performed in
the context of data analysis to illustrate the behavior of the
suggested approach and to compare it with another existing
algorithm described in [7]. The paper is organized as fol-
lows. The problem is stated in Section 2. Next, our approach
to the nonnegativity constraint is described in Section 3, and
optimization algorithms in Section 4. Finally, Section 5 isde-
voted to computer simulations in the context of data mining.

2. PROBLEM STATEMENT

In a given basis, a third order tensor can be represented by
a three-way array. The order of a tensor hence corresponds
to the number of indices of the associated array (itswaysor
modes[4]). In this paper, due to the considered applications,
including fluorescence spectroscopy [8][4] or hyperspectral
imaging [9], we focus on real positive 3-way arrays denoted
by T = (tijk) ∈ R

I×J×K , admitting the following trilin-
ear decomposition, also known as a triadic decomposition
[10] of T: T =

∑F
f=1 af ⊛bf ⊛ cf , where the three in-

volved matricesA = (aif ) = [a1, a2, . . . , aF ] ∈ R
I×F ,

B = (bjf ) = [b1,b2, . . . ,bF ] ∈ R
J×F , C = (ckf ) =

[c1, c2, . . . , cF ] ∈ R
K×F are the so-calledloading matri-

ces, whose columns are theloading factors. F is a suffi-
ciently large integer and⊛ stands for the outer (tensor) prod-
uct. Equivalently,∀i = 1, . . . , I, ∀j = 1, . . . , J, ∀k =
1, . . . ,K, we have the relation between array entries:

tijk =

F∑

f=1

aifbjf ckf (1)

The smallest integerF that can be found such that the equal-
ity above holds exactly is called thetensor rank[11]. For this
value ofF , the above decomposition will be called the Canon-
ical Polyadic decomposition (CP) of tensorT. The aforemen-
tioned model can be written in a compact matrix form using



the Khatri-Rao product⊙, as

T
I,JK

(1) = A(C⊙B)T , T
J,KI

(2) = B(C⊙A)T ,

T
K,JI

(3) = C(B⊙A)T , (2)

whereTI,JK

(1) (resp.TJ,KI

(2) andTK,JI

(3) ) is the matrix of size
I × JK (resp.J ×KI andK × JI) obtained by unfolding
the arrayT of sizeI × J × K in the first mode (resp. the
second and third mode).

2.1. CP decomposition of 3-way tensors

The goal of the CP decomposition for three-way tensors is to
estimate the 3 loading matricesA, B, C. A rather standard
approach consists of (i) assuming that the rankF is known or
overestimated, and (ii) minimizing the Frobenius norm of the
error between the data and its model:

F(A,B,C) = ‖TI,JK

(1) −A(C⊙B)T ‖2F (3)

= ‖TJ,KI

(2) −B(C⊙A)T ‖2F = ‖TK,JI

(3) −C(B⊙A)T ‖2F ,

where‖ · ‖2F stands for the Frobenius norm. The matrix gra-
dient calculation leads to:

∇AF(A,B,C) =
[
−T

I,JK

(1) +A(C⊙B)T
]
(C⊙B), (4)

∇BF(A,B,C) =
[
−T

J,KI

(2) +B(C⊙A)T
]
(C⊙A), (5)

∇CF(A,B,C) =
[
−T

K,JI

(3) +C(B⊙A)T
]
(B⊙A). (6)

3. NONNEGATIVE 3-WAY ARRAY

3.1. Tikhonov regularization

One possible way to take into account the nonnegative con-
straint is to add “well-chosen” penalty terms to the cost func-
tion i.e. negative entries from the loading matrices have to
considerably increase the value of the cost function, whereas
positive entries must let it nearly unchanged. Thus, the mini-
mization problem (3) is replaced by the minimization of cost
function: I(A,B,C) = F(A,B,C) + αf(A) + βf(B) +
γf(C),whereα, β, γ are positive scalars which play the role
of weights for the three loading matrices. Andf(·) is chosen
such that: (i)f(·) is continuous, (ii)f(A) ≥ 0 for all A in
R

I×F and (iii) f(A) = 0 if and only ifA ∈ R
+I×F .

3.2. Cichocki’sALS algorithm

In [7], it was suggested to use the cost function below:

G(A,B,C) = F(A,B,C) + α‖A‖2F + β‖B‖2F + γ‖C‖2F .

The gradient components found in (4)-(6) are replaced by:

∇AG(A,B,C) = ∇AF(A,B,C) + αA, (7)

∇BG(A,B,C) = ∇BF(A,B,C) + βB, (8)

∇CG(A,B,C) = ∇CF(A,B,C) + γC. (9)

By equating the gradient components to zero, the following
solutions are found allowing theALS technique to be imple-
mented (IF is the identity matrix of sizeF × F ):

Â = T
I,JK

(1) (C⊙B)
[
(C⊙B)T )(C⊙B) + αIF

]†
,

B̂ = T
J,KI

(2) (C⊙A)
[
(C⊙A)T )(C⊙A) + βIF

]†
,

Ĉ = T
K,JI

(3) (B⊙A)
[
(B⊙A)T )(B⊙A) + γIF

]†
. (10)

Finally, a “projection operator”[·]+ is applied, whose aim is
to enforce positive entries.

Â←
[
Â
]
+
, B̂←

[
B̂
]
+
, Ĉ←

[
Ĉ
]
+
, (11)

where[M = (mij)]+ returns a matrix of the same size as
M whose(i, j) entry ismax{ǫ,mij} if ǫ is a small constant
(typically 10−16).

3.3. Suggested approach

Instead, we suggest to use the following cost function:

I(A,B,C) = F(A,B,C) + α‖e−γAA‖2F

+ β‖e−γBB‖2F + γ‖e−γCC‖2F , (12)

whereγA, γB, γC are positive constants. The goal is to con-
straint the cost function to reach high values if the loading
matrices contain negative entries, so that the minimization
problem is achieved only for nonnegative loading matrices.
Gradients are shown to be (see Appendix):

∇AI(A,B,C) = ∇AF(A,B,C) + 4αγ2
A

[
A−

1I,F

2γA

]
, (13)

∇BI(A,B,C) = ∇BF(A,B,C) + 4βγ2
B

[
B−

1J,F

2γB

]
, (14)

∇CI(A,B,C) = ∇CF(A,B,C) + 4γγ2
C

[
C−

1K,F

2γC

]
(15)

(where1I,F is theI × F matrix of ones), allowing the con-
struction of the two following(I + J +K)F × 1 vectors:

g
(k) =




vec{∇AI(A(k),B(k),C(k))}

vec{∇BI(A(k),B(k),C(k))}

vec{∇CI(A(k),B(k),C(k))}



 ,x
(k) =




vec{A(k)}

vec{B(k)}

vec{C(k)}





(16)

where thevec{·} operator applied on a given matrix stacks
its columns into a column vector.



4. OPTIMIZATION ALGORITHMS

4.1. ALS algorithm

By equating the gradient components to zero, we can estimate
successively the three loading matrices in the case of the Al-
ternated Least Squares (ALS) algorithm:

Â =
[
T

I,JK

(1) (C⊙B) + 2αγA1I,F

] [
(C⊙B)T (C⊙B)

+4γ2
Aα IF

]†
,

B̂ =
[
T

J,KI

(2) (C⊙A) + 2βγB1J,F

] [
(C⊙A)T (C⊙A)

+4γ2
Bβ IF

]†
,

Ĉ =
[
T

K,JI

(3) (B⊙A) + 2γγC1K,F

] [
(B⊙A)T (B⊙A)

+4γ2
Cγ IF

]†
. (17)

This process is repeated until an error criterion is satisfied, or
until a given number of iterations.

4.2. Non linear conjugate gradient

To estimate the three loading matrices A, B, and C,I given in
(12) has to be minimized with respect to those three matrices.
With this aim, several descent algorithms could be used. We
focus on the non linear conjugate gradient algorithm, in which
a vectorx given in (16) is updated at each stepk according to
the following adaptation rule:

{
x(k+1) = x(k) + µ(k)d(k)

d(k+1) = −g(k+1) + β(k)d(k).
(18)

Two expressions ofβ can be used [12]. As noticed in [12], if a
conjugate gradient method is reinitialized, from time to time,
by settingd(i) = −g(i), we might get better performance that
is why in our case we have chosen to perform this “restart”
every(I + J +K)F iterations. With regard to the choice of
the step sizeµ(k) see [13].

5. COMPUTER SIMULATIONS

Simulations are now provided in the context of data analy-
sis (more precisely in chemometrics with fluorescence im-
ages).The application field - Considering a water sample
containing one component of dissolved organic matter called
fluorophore, and excited by an optical light, we can estab-
lish a relation. The intensity of fluorescence depends on the
concentration of the component for the considered samplek

(ck), the excitation spectrum (ǫ(λe)), and the re-emitted spec-
trum (γ(λf )): I(λf , λe, k) = Io γ(λf ) ǫ(λe) ck. When sev-
eral components are dissolved, we face a problem of mixture
separation. Yet, when their concentration is low enough, the
Beer-Lambert law is linear and reads:

I(λf , λe, k) = Io
∑

ℓ

γℓ(λf ) ǫℓ(λe) ck,ℓ (19)

Comparing (19) and (1) shows thatγℓ(λf (i)) corresponds to
aif , ǫℓ(λe(j)) to bjf andck,ℓ matchesckf . For each excita-
tion wavelength absorbed by the component, an intensity of
fluorescence depending on the emission wavelength is mea-
sured, so that a fluorescence image can be reconstructed.
The results - We have simulated a tensorT , with F = 4
components, whose fluorescence images are of size47× 71.
A matrix C of size 50 × 4 is randomly generated. It con-
tains positive values only. Thus,T is of size47 × 71 × 50.
To be able to compare the behaviour of the different algo-
rithms, we introduce an error index:E = ‖T−T̂‖2F , or in dB,
EdB = 10 log10(E), whereT̂ =

∑F
f=1 âf ⊛ b̂f ⊛ ĉf andâ,

b̂ andĉ are the estimated factors. The three aforementioned
algorithms are compared in Fig. 1. For Cichocki’sALS al-
gorithm, we have appliedα = β = γ = 10−6. Regarding
our algorithms, it was chosen to “normalize”i.e. γA = 1

‖A‖ ,

γB = 1
‖B‖ , γC = 1

‖C‖ . Moreover,α, β, γ are decreased at

each iteration:α(k + 1) = β(k + 1) = γ(k + 1) = α(k)
m

,
with m a constant andα(0) = 0.5), so that the influence
of the penalty terms becomes more and more weak. We can
observe that the three algorithms are quite fast (convergence
reached in less than 100 iterations). The reconstruction error
is smaller with our algorithms than with the Cichocki’sALS.
Its performance is indeed bounded because of the addition
of penalty terms; such a problem is avoided in our case by di-
minishing the influence of penalty terms as more iterations are
run. However, a small reconstruction error does not necessar-
ily imply a good estimation of the loading matrices, as now
demonstrated. Assume we still have a mixture of 4 compo-
nents, but setF = 5 in the model (the rank is overestimated).
The obtained results are displayed in Fig. 2. On the left, the
images have been obtained thanks to our algorithm (combin-
ing conjugate gradient and Tikhonov regularization), whereas
on the right, they have been reconstructed thanks to the algo-
rithm of [7] (combiningALS, regularization and projection).
In both cases, it is difficult to assert there are 4 components.
The artefact remains nevertheless less important with our ap-
proach. Note that our other approach proposed in [13] did a
better job in this respect.

6. CONCLUSION

An algorithm has been proposed, combining Tikhonov reg-
ularization and either theALS or the conjugate gradient
algorithm, in order to compute the minimal polyadic decom-
position of nonnegative three-way arrays. First, a new cost
function has been introduced, then the gradient matrices have
calculated and two different optimization algorithms have
been used. Computer simulations have been provided to
illustrate the behaviour of the suggested approaches and to
compare them to other algorithms found in the literature.
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Fig. 1. Reconstruction error (dB) versus number of iterations
using a nonnegative71× 47× 50 tensor.

Appendix

Our aim is now to calculate the derivatives of the penalty
terms:df(A) = d‖e−γdiag{vec{A}}‖2F . Considering a square
N ×N matrixA, we have the following property:D0. e

A =∑∞
k=0

A
k

k! . Or:

‖e−γdiag{vec{A}}‖2F = trace{(e−γdiag{vec{A}})T .

e−γdiag{vec{A}}} = trace{e−2γdiag{vec{A}}}.

wheretrace{·} stands for the trace of the matrix given in ar-
gument. UsingD0, we have:

‖e−2γdiag{vec{A}}‖2F =

∞∑

k=0

(−2γ)k

k!
trace{[diag{vec{A}}]

k
}

Considering only the three first terms in the series expansion,
we find that:

d‖e−γdiag{vec{A}}‖2F

=
∂
[
IIF − 2γdiag{vec{A}}+ 2γ2[diag{vec{A}}]2

]

∂vec{A}
dvec{A}

≃
[
−2γIIF + 4γ2

diag{vec{A}}
]
dvec{A}

≃ 4γ2

[
diag{vec{A}} −

IIF

2γ

]
dvec{A} (20)

or in its matrix (and not vectorial) form4γ2
[
A−

1I,F

2γ

]
dA.
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