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ABSTRACT in Section 3. The suggested algorithm is presented in Sectio

This paper deals with the minimal polyadic decompositior4. In section 5, computer simulations are performed in the
(also known as canonical decomposition or Parafac) of a ~ontext of data analysis. Finally, we summarize the advan-
way array, assuming each entry is positive. In this case, th@&ges enjoyed by the suggested approach.

low-rank approximation problem becomes well-posed. The

suggested approach consists of taking into account the non-

negative nature of the loading matrices directly in the f@ob

parameterization. Then, the three gradient components are 2. PROBLEM STATEMENT

derived allowing to efficiently implement the decompositio

using classical optimization algorithms. In our case, welfd A tensor is an object defined on a product between linear
on the conjugate gradient algorithm, well matched to larg@paces. Once the bases of these spaces are fixed, a third
problems The good behaviour of the proposed approach is ilprder tensor can be represented by a three-way array (or a
lustrated through computer simulations in the context ¢&da hypermatrix). The order of a tensor hence corresponds to
analysis and compared to other existing approaches. the number of indices of the associated array. One also

Index Terms— Data analysis, Non linear conjugate gra- talks about the number afaysor modes[1]. In this pa-
dient, Quasi-Newton, nonnegative, 3-way array, tensaofac Per, due to the considered applications, including fluores-
ization, multi-way data analysis, Canonical Polyadic deeo C€ence spectroscopy [2][1] and hyperspectral imaging (3],
position, CanDecomp, Parafac, Chemometrics, Data miningve focus on real positive 3-way arrays denoted By=

Data analysis (tijx) € RI*I*E admitting the following trilinear decom-
position: T = 2?21 ar ®b; ®cy, also known as a triadic
1. INTRODUCTION decomposition [4] ofT', where the three involved matrices
A = (aif) = [al,ag,..., ap] S RIXF, B = (bjf) =
The polyadic decomposition of a tensor has a wide panel db1, b, ..., br] € R7*F, C = (k) = [c1,¢a,...,¢F] €

applications. In some cases, it is necessary to considéer poR”™ " are the so-calletbading matriceswhose columns are
tive tensors, for example when we deal with images as it is th#he loading factors F' is a sufficiently large integer ane
case in the hyperspectral or chemometrics fields. Thus, th&ands for the outer product. Equivalenty, = 1,...,1,
loading matrices have to be constrained to be positive. Onéj = 1,...,J andvk = 1,..., K, the relation between ar-
advantage is that the problem of the decomposition becoméay entries is given by

well-posed. In this paper, we present numerical algorithms

that take into account this constraint focusing on the conju F
gate gradient algorithm; Quasi-Newt(BFGS and DFP) and tije = Z aifbj ey 1)
gradient algorithms have also been studied but will not be =1

presented in details here. Regarding the choice of the step-

s?ze, two strategies are studied based either_on a gIob‘ahseaThe smallest integef” that can be found such that the equal-

via enhanced line searcBI(S) or on backtracking alternating ity above holds exactly is called thensor rank[5]. For this

with ELS. . . . . value of I, the above decomposition is called the Canoni-
After recalling some basic notions about third ordertensoEal Polyadic decomposition (CP) of tensBr Note that this

decomposition in section 2, we focus on nonnegative tensor;dscronym may also stand for CanDecomp/Parafac, if some

*This work has been supported by a “PRES euro-méditerrérgrant. readers prefer [6]. The aforementionned model can be writte




in a compact form using the Khatri-Rao produdgtas Using the differentiali?{ of 7, will allow us to calculate the
LIK _ A(CoB)T gradient componentg & F' matrixVaH, J x F'matrix Vg H
T(l) =A(CoB), and K x F matrix VcH). With this goal, recall that the

Té;“ =B(CoA)T, Frobenius scalar produ¢f, B) = trace{ATB}. We also
K.JI T have: (A, A) = ||A|% = trace{ATA}. As a consequence,
T(3) =CBoA), (2)  the cost functiorH (A, B, C) can be rewritten, in the first
mode for example:
WhereTI T (resp. T/, and T{y"") is the matrix of size P

2)
I xJK (resp J x K§ andK x &}) obtained by unfolding Sos Si) =t 575
the arrayT of sizel x J x K in the first mode (resp. second (O, 0m) = race{ @ (1)}
H T
and third mode). _ trace { (T(Ii.)]K _(ADA)(CEC) 6 (BE B)]T) .

2.1. CP decomposition of 3-way tensors (TJ,JK

E - (apacBo) e (BDB)]T)}.

Considering third-order tensors and assuming thistknown

or overestimated, the goal of CP decomposition is to estiThe calculation old#H (A, B, C) is performed in Appendix
mate the three loading matricds € R’*F, B € R/*F and  A. Itis shown to be equal to:

C € REXF To achieve this task, the quadratic error between

data and model has to be minimized with respect to the three d%(A, B, C)
loading matrices, i.e. generally the following cost funatis = (4 [ (( 5(1)) (CEOC)e (BO B)])] ,dA)
considered:
ok +{ [BD (( 6(2))[(CDC)®(ADA)])] ,dB)
> T2
F(A,B,C) =T ;)" —A(COB) [k +@[CE((—d3) (BEB)®(ATA))],dC). (5)

HIJQ ! B(CQIU ||2F HI 3,‘]1 C(BQIK) HQFa ) A
(2) (3)
(3) 3.2. Gradient matrices

where| - || stands for the Frobenius norm. In the problemuséng (75_’2’ thebth:jee_ gréidl\e/\r;t go;npo?hem}éi VtBH .
of the polyadic canonical decomposition of the 3-way tensoﬁ)n X gf acfi Tmt?on ;I‘I\(/)(: r.natri?( v?arli':falese grsa tll'1een r;(:r?fc
T,i kF h i . . . ’

, its rankF" has to be estimated too VxZ(X,Y,Z,...) with entrlesaﬂ’g’f‘if“). Thus, the gra-
3 NONNEGATIVE 3-WAY ARRAYS dient components are found to be equal to:

FACTORIZATION VaH(A,B,C) =4A T ((—3,)) [(CEHC) 0 (BEB)),

If one imposes all loading matrices to be nonnegative, the in VBH(A,B,C) = 4B [ ((—d(2))[(CE C) © (AT A)])
mum of (3) is reached and problem is well posed [7]. Itis thenvcfH(A, B,C)=4CO (( d3)(BOB)oO (ADA) )
(

)

referred to as the Nonnegative Tensor Factorization pnoble 6)
(NTF).
Using (6), we can build the two followin@f + J + K)F x 1
3.1. Loading matrices parameterization vectors:
Approaches have already been developed to solvéife vec{ VaH (A ,B(k) C®)}
However, instead of modifying the form of the cost function g = [ vec{VH(A® B® CHk)}
by adding regularization terms like in [8], we constraing th vec{ VcH(A®) B® Ck))1
loading matrices to have positive entries via their paramet vec{A®)}
ization. In order to express the fact that a matrix, agyhas x® = [ vec{B®} @

nonnegative entries, we simply write them as squares, shat i
aj; = a’? i;- Using the Hadamard entry-wise product, this leads

to: A’ = A [0 A. The cost function can be rewritten as:

vec{C(¥)}

where thevec{-} operator applied on a given matrix stacks its
#(A,B,C) = F(AZ A,BOB,CEC) columns into a column vector.

= T3 —(ABA)[(CTC) o BEB) |7 = 1607

=T~ (BEB)[(CEC) o (ADA) [} = 60 lI%

4. NON LINEAR CONJUGATE GRADIENT

K . T ) To estimate the three loading matricks B andC, H given
=T —(CHO)[(BEUB)o (ALA) [z =657 in (4) has to be minimized with respect to those three matri-
(4) ces. To that aim, we suggest to use the non linear conjugate



gradient algorithm, in which the vectar(given in (7)) is up-  relative spectra (from which we are able to recover the flu-
dated at each stefp (k = 1,2...) according to the following orescence imagesy,(A¢(i)) ande,(A:(j)), that match re-
adaptation rule: spectivelya; r andb; ¢, and also the concentration of the com-
ponents through all the samples,, that matches ;.
xEHD) = x(®) 4 (R gk) 8 ’
At = gt + g, ®) 5.2. Obtained results
Two expressions of3 are classically used: the Fletcher- Inthe following, we will consider a tens@r with a number of
Reeves frr) and the Polak-Ribiére56r) formula [9]: components (or rankl = 4 and whose emission-excitation
(1) _ g(k?l));‘g((k:rl) (1) _ g““*”i(g)f*(”;g“”) matrices are of siz&l x 47 (a;b?, Vi = 1,...,4). We ran-
g k g k ) g k g k : . .
As noticed in [9], if a conjugate gradient method is reirtitia doml>(/jgendetrate;rposlltlvi;nat;(ox §|_3|ze20 x 4)',[hTh(;].‘;’f’ thet
ized, from time to time, by settind® = —g(®, we mightget ~CONSIAEr€AIENSONIS 7l > 47> 20. 10 compare the oitteren

better performance; that is why in our case we have chosen Eadgorlthms, an error index is |ntroAduceB:F: HAT N T”% Er’
perform this “restart” every +.J + K) F iterations. With re- 1N dB, Bap = 10 logo(E), whereT = 3 a; @by ®¢y
gard to the choice of step sizé"), several approaches can be anda, b andc are the estimated factors. The reconstruction
envisaged. We can use either a fixed stepsize, which leads ¢oror of T is minimal and, consequently the best results are
the poorest results, or a global search denoteflltfy (which ~ obtained, whert? = 0 (—oo in logarithmic scale). In Fig. 1,
amounts, in this specific case, to the calculation of theaedl we have compared the behaviour of different algorithms (our
positive roots of a 11-th order polynomial), or else a logall gradient and conjugate gradient methods with positivity-co
optimal stepsize using a backtracking method as descnibed straint and thé\LS suggested in [11, 8] with regularization of
[10]. Those two alternatives are compared in Fig. 3. the cost function and projection). The gradient is the skiwe
and have the poorest results. The conjugate gradient affers
good compromise between speed and performances. Besides,
contrary to Quasi-Newton algorithms (BFGS and DFP [9]),

.the conjugate gradient algorithm does not require the astim

Simulations are now provided in the context of data analygﬁon of the(I + J + K)F x (I +.J + K)F Hessian matrices
(more precisely in chemometrics with fluorescence images).(Or their approximation), and as a consequence it can be ap-

plied to very large tensors. Concerning #eS algorithm of
5.1. Application field [11], itis indeed rather fast to converge, but the perforoesn
are always satisfactory, even when the reconstructiom exro
f§mal|. In fact, as shown in the next section, a small recon-
struction error does not necessarily imply a good estimatio
of the loading matrices.

5. COMPUTER SIMULATIONS

Excitation of dissolved organic matter by an excitation v
length leads to several effects: Raman and Rayleigh di
fusion and fluorescence. The following relation holds:
I(Af, Aes k) = Inv(Af) €(Ae) ¢, Where X and ). are re-
spectively the fluorescence emission wavelength and the ex- )
citation wavelength.k is the number of sample, for which -3 Number of components overestimated

concentration can varyy is the relative emission spectrum, A mixture containing 4 components has been built, but we
€ is the relative excitation spectrum, angl is the concen- p5ve assumed that — 5 to perform the simulations (the
tration of the component in the sampite When excitation  rany is overestimated). The 5 reconstructed fluorescence im
wavelengths in a certain range are used, an image called Flyges are displayed in Fig. 2. On the left, we have used the
orescent Ex0|tat|on-Em|SS|qn_MatnceEE(EM) can be con-  conjugate gradient algorithm whereas #iS algorithm of
structed. It becomes more difficult when several organicco 11] was used on the right. With the conjugate gradient al-
ponents are dissolved in the solution since the componenr;g%rithm’ the four components have been well estimated (the
have to be restored from their mixing. Yet, at low concentrasisp, image is nearly null). With th\L'S algorithm of [11]

tions, the Beer-Lambert law is linear and reads: we cannot assert that there are 4 components instead of 5.

I(Af, X, k) =1, Yo(Ar) es(Ne) ¢ 9
s, AcrK) %: es) eelde) ere 6. CONCLUSION

Assuming a finite number of excitation and emission wavein this paper, we have proposed a new algorithm combining
lengths, the data can be stored into a third order array. Conglobal search and conjugate gradient, to address the prob-
paring equations (9) and (1), we can identify the componentsem of the computation of the minimal polyadic decompo-
because of the uniqueness of the CP decomposition, guarasition of nhonnegative three-way arrays. First, the gradien
teed if F' is not too large; see.g[6] and refs therein. Then, matrices have been derived, then, classical optimization a
up to scale and permutation, the separation provides the twgorithms such as gradient and conjugate gradient have been
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Fig. 1. Reconstruction error (dB) versus the number of iteraFig. 3. Reconstruction error (dB) versus the number of iterations f
ELS and backtracking (alternating wiLS) versions of the conju-

gate gradient algorithm.

tions using a nonnegativid x 47 x 20 tensor.

used to solve the factorization problem. Two solutions have

been systematically studied: tf#S version and the back-
tracking version (alternating witkLS). Computer simula-

tions have been provided to illustrate the good behaviour of_
the suggested approach and to compare it to other algorithms
_F

found in the literature.
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Fig. 2. Mixture of 4 factors, assumlng? = 5; the 5 estimated
emission-excitation images using the Conjugate Gradigotithm
with positivity constraint (left) and th&LS algorithm of [11, 8] (reg-
ularization + projection) (right).

Appendix A

DenoteK; = (CLC)®(BEB), K, = (CHC)®
Ks;=(BEB)©® (AQDA). Thenfori € {1,2,3}:

(ATIA),

dH(A, B, C) = 2trace {7,dd ;) }

— 4trace { 81 (ADdA)KT — 8%, (BE dB)K]
N ¥ (elo dC)K3T}

—5y)") (AEdA)}

—812))") (BEdB)}
~83)") (CEdC)}

= trace {4 (KlT
+ trace {4 (K (
+ trace {4 (K3T

= trace {4 [(
2(=0@2))") IBT]dB +4[(K

4[AE

4[CH (=63 Ks)],dC)

(K

(75(1))T) O AT] dA} + trace {4
3 (=0()") B CT]dC}

(-61K1)],dA) + (4 [BE (—6(2)K2)] ,dB)

7. REFERENCES

[1] A. Smilde, R. Bro, and P. GeladiMulti-Way Analysis with

(2]

(3]

[4]

[5] T. Lickteig,

[6]

[7]

applications in the chemical sciencedliley, 2004.

R. Bro, “Parafac: tutorial and applicationsChemometr. In-
tell. Lab, vol. 38, pp. 149-171, 1997.

Q. Zhang, H. Wang, R. Plemmons, and P. Pauca, “Tensors
methods for hyperspectral data processing: a space object
identification study,” Journal of Optical Society of America

A, Dec. 2008.

F. L. Hitchcock, “The expression of a tensor or a polyaalkc
a sum of products,”J. Math. and Phys.ol. 6, pp. 165-189,
1927.

“Typical tensorial rank,” Linear Algebra Appl.
vol. 69, pp. 95-120, 1985.

P. Comon, X. Luciani, and A. L. F. De Almeida, “Tensor de-
compositions, alternating least squares and other talesif.
Chemometricsvol. 23, pp. 393-405, Aug. 2009.

L-H. Lim and P. Comon, “Nonnegative approximations of
nonnegative tensors,Jour. Chemometri¢svol. 23, pp. 432—
441, Aug. 2009.

[8] A. Cichocki, R. Zdunek, A. H. Phan, and S. I. Amarion

[9]
(10]

(11]

negative matrix and tensor factorizationd/iley, 2009.

E. Polak, Optimization algorithms and consistent approxima-
tions, Springer, 1997.

S. Boyd and L. VandenbergheConvex optimization Cam-
bridge University Press, Mar. 2004.

M. Plumbley, A. Cichocki, and R. Bro, “Non-negative mix
tures,” inHandbook of Blind Source Separatijdh Comon &
C.Jutten, Ed., chapter 1, pp. 515-547. Academic Press, Lon-
don, UK, 2010.



