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ABSTRACT
This paper deals with the minimal polyadic decomposition
(also known as canonical decomposition or Parafac) of a 3-
way array, assuming each entry is positive. In this case, the
low-rank approximation problem becomes well-posed. The
suggested approach consists of taking into account the non-
negative nature of the loading matrices directly in the problem
parameterization. Then, the three gradient components are
derived allowing to efficiently implement the decomposition
using classical optimization algorithms. In our case, we focus
on the conjugate gradient algorithm, well matched to large
problems.The good behaviour of the proposed approach is il-
lustrated through computer simulations in the context of data
analysis and compared to other existing approaches.

Index Terms— Data analysis, Non linear conjugate gra-
dient, Quasi-Newton, nonnegative, 3-way array, tensor factor-
ization, multi-way data analysis, Canonical Polyadic decom-
position, CanDecomp, Parafac, Chemometrics, Data mining,
Data analysis

1. INTRODUCTION

The polyadic decomposition of a tensor has a wide panel of
applications. In some cases, it is necessary to consider posi-
tive tensors, for example when we deal with images as it is the
case in the hyperspectral or chemometrics fields. Thus, the
loading matrices have to be constrained to be positive. One
advantage is that the problem of the decomposition becomes
well-posed. In this paper, we present numerical algorithms
that take into account this constraint focusing on the conju-
gate gradient algorithm; Quasi-Newton(BFGS and DFP) and
gradient algorithms have also been studied but will not be
presented in details here. Regarding the choice of the step-
size, two strategies are studied based either on a global search
via enhanced line search (ELS) or on backtracking alternating
with ELS.

After recalling some basic notions about third order tensor
decomposition in section 2, we focus on nonnegative tensors
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in Section 3. The suggested algorithm is presented in Section
4. In section 5, computer simulations are performed in the
context of data analysis. Finally, we summarize the advan-
tages enjoyed by the suggested approach.

2. PROBLEM STATEMENT

A tensor is an object defined on a product between linear
spaces. Once the bases of these spaces are fixed, a third
order tensor can be represented by a three-way array (or a
hypermatrix). The order of a tensor hence corresponds to
the number of indices of the associated array. One also
talks about the number ofways or modes[1]. In this pa-
per, due to the considered applications, including fluores-
cence spectroscopy [2][1] and hyperspectral imaging [3],
we focus on real positive 3-way arrays denoted byT =
(tijk) ∈ R

I×J×K , admitting the following trilinear decom-
position:T =

∑F

f=1 af ⊛bf ⊛ cf , also known as a triadic
decomposition [4] ofT, where the three involved matrices
A = (aif ) = [a1, a2, . . . , aF ] ∈ R

I×F , B = (bjf ) =
[b1,b2, . . . ,bF ] ∈ R

J×F , C = (ckf ) = [c1, c2, . . . , cF ] ∈
R

K×F are the so-calledloading matrices, whose columns are
the loading factors, F is a sufficiently large integer and⊛
stands for the outer product. Equivalently,∀i = 1, . . . , I,
∀j = 1, . . . , J and∀k = 1, . . . ,K, the relation between ar-
ray entries is given by

tijk =
F∑

f=1

aifbjfckf . (1)

The smallest integerF that can be found such that the equal-
ity above holds exactly is called thetensor rank[5]. For this
value ofF , the above decomposition is called the Canoni-
cal Polyadic decomposition (CP) of tensorT. Note that this
acronym may also stand for CanDecomp/Parafac, if some
readers prefer [6]. The aforementionned model can be written



in a compact form using the Khatri-Rao product⊙, as

T
I,JK

(1) = A(C⊙B)T ,

T
J,KI

(2) = B(C⊙A)T ,

T
K,JI

(3) = C(B⊙A)T , (2)

whereTI,JK

(1) (resp.TJ,KI

(2) andTK,JI

(3) ) is the matrix of size
I × JK (resp.J ×KI andK × JI) obtained by unfolding
the arrayT of sizeI × J ×K in the first mode (resp. second
and third mode).

2.1. CP decomposition of 3-way tensors

Considering third-order tensors and assuming thatF is known
or overestimated, the goal of CP decomposition is to esti-
mate the three loading matricesA ∈ R

I×F , B ∈ R
J×F and

C ∈ R
K×F . To achieve this task, the quadratic error between

data and model has to be minimized with respect to the three
loading matrices, i.e. generally the following cost function is
considered:

F(A,B,C) = ‖TI,JK

(1) −A(C⊙B)T ‖2F

= ‖TJ,KI

(2) −B(C⊙A)T ‖2F = ‖TK,JI

(3) −C(B⊙A)T ‖2F ,

(3)

where‖ · ‖F stands for the Frobenius norm. In the problem
of the polyadic canonical decomposition of the 3-way tensor
T, its rankF has to be estimated too.

3. NONNEGATIVE 3-WAY ARRAYS
FACTORIZATION

If one imposes all loading matrices to be nonnegative, the infi-
mum of (3) is reached and problem is well posed [7]. It is then
referred to as the Nonnegative Tensor Factorization problem
(NTF).

3.1. Loading matrices parameterization

Approaches have already been developed to solve theNTF.
However, instead of modifying the form of the cost function
by adding regularization terms like in [8], we constraint the
loading matrices to have positive entries via their parameter-
ization. In order to express the fact that a matrix, sayA, has
nonnegative entries, we simply write them as squares, that is
a′ij = a2ij . Using the Hadamard entry-wise product, this leads
to: A′ = A⊡A. The cost function can be rewritten as:

H(A,B,C) = F(A⊡A,B⊡B,C⊡C)

= ‖TI,JK

(1) − (A⊡A) [(C⊡C)⊙ (B⊡B)]
T
‖2F = ‖δ(1)‖

2
F

= ‖TJ,KI

(2) − (B⊡B) [(C⊡C)⊙ (A⊡A)]
T
‖2F = ‖δ(2)‖

2
F

= ‖TK,JI

(3) − (C⊡C) [(B⊡B)⊙ (A⊡A)]
T
‖2F = ‖δ(3)‖

2
F

(4)

Using the differentialdH of H, will allow us to calculate the
gradient components (I×F matrix∇AH, J×F matrix∇BH
andK × F matrix ∇CH). With this goal, recall that the
Frobenius scalar product〈A,B〉 = trace{ATB}. We also
have:〈A,A〉 = ‖A‖2F = trace{ATA}. As a consequence,
the cost functionH(A,B,C) can be rewritten, in the first
mode for example:

〈δ(1), δ(1)〉 = trace

{
δ
T
(1)δ(1)

}

= trace

{(
T

I,JK

(1) − (A⊡A)[(C⊡C)⊙ (B⊡B)]T
)T

·

(
T

I,JK

(1) − (A⊡A)[(C⊡C)⊙ (B⊡B)]T
)}

.

The calculation ofdH(A,B,C) is performed in Appendix
A. It is shown to be equal to:

dH(A,B,C)

= 〈4
[
A⊡

(
(−δ(1)) [(C⊡C)⊙ (B⊡B)]

)]
, dA〉

+ 〈4
[
B⊡

(
(−δ(2)) [(C⊡C)⊙ (A⊡A)]

)]
, dB〉

+ 〈4
[
C⊡

(
(−δ(3)) [(B⊡B)⊙ (A⊡A)]

)]
, dC〉. (5)

3.2. Gradient matrices

Using (5), the three gradient components∇AH, ∇BH
and∇CH can be derived. We define the gradient respect
to X of a function I of matrix variables, as the matrix
∇XI(X,Y,Z, ...) with entries∂I(X,Y,Z,...)

∂Xij
. Thus, the gra-

dient components are found to be equal to:

∇AH(A,B,C) = 4A⊡
(
(−δ(1)) [(C⊡C)⊙ (B⊡B)]

)
,

∇BH(A,B,C) = 4B⊡
(
(−δ(2))[(C⊡C)⊙ (A⊡A)]

)
,

∇CH(A,B,C) = 4C⊡
(
(−δ(3))[(B⊡B)⊙ (A⊡A)]

)
.

(6)

Using (6), we can build the two following(I + J +K)F × 1
vectors:

g(k) =



vec{∇AH(A(k),B(k),C(k))}
vec{∇BH(A(k),B(k),C(k))}

vec{∇CH(A(k),B(k),C(k))}


 ,

x(k) =



vec{A(k)}
vec{B(k)}

vec{C(k)}


 (7)

where thevec{·} operator applied on a given matrix stacks its
columns into a column vector.

4. NON LINEAR CONJUGATE GRADIENT

To estimate the three loading matricesA, B andC, H given
in (4) has to be minimized with respect to those three matri-
ces. To that aim, we suggest to use the non linear conjugate



gradient algorithm, in which the vectorx (given in (7)) is up-
dated at each stepk (k = 1, 2...) according to the following
adaptation rule:

{
x(k+1) = x(k) + µ(k)d(k)

d(k+1) = −g(k+1) + β(k)d(k).
(8)

Two expressions ofβ are classically used: the Fletcher-
Reeves (βFR) and the Polak-Ribière (βPR) formula [9]:

β
(k+1)
FR

= g(k+1)T g(k+1)

g(k)T ,g(k)
, β

(k+1)
PR

= g(k+1)T (g(k+1)
−g(k))

g(k)T g(k)
.

As noticed in [9], if a conjugate gradient method is reinitial-
ized, from time to time, by settingd(i) = −g(i), we might get
better performance; that is why in our case we have chosen to
perform this “restart” every(I+J+K)F iterations. With re-
gard to the choice of step sizeµ(k), several approaches can be
envisaged. We can use either a fixed stepsize, which leads to
the poorest results, or a global search denoted byELS (which
amounts, in this specific case, to the calculation of the realand
positive roots of a 11-th order polynomial), or else a locally
optimal stepsize using a backtracking method as described in
[10]. Those two alternatives are compared in Fig. 3.

5. COMPUTER SIMULATIONS

Simulations are now provided in the context of data analysis
(more precisely in chemometrics with fluorescence images).

5.1. Application field

Excitation of dissolved organic matter by an excitation wave-
length leads to several effects: Raman and Rayleigh dif-
fusion and fluorescence. The following relation holds:
I(λf , λe, k) = Io γ(λf ) ǫ(λe) ck, whereλf andλe are re-
spectively the fluorescence emission wavelength and the ex-
citation wavelength.k is the number of sample, for which
concentration can vary.γ is the relative emission spectrum,
ǫ is the relative excitation spectrum, andck is the concen-
tration of the component in the samplek. When excitation
wavelengths in a certain range are used, an image called Flu-
orescent Excitation-Emission Matrices (FEEM) can be con-
structed. It becomes more difficult when several organic com-
ponents are dissolved in the solution since the components
have to be restored from their mixing. Yet, at low concentra-
tions, the Beer-Lambert law is linear and reads:

I(λf , λe, k) = Io
∑

ℓ

γℓ(λf ) ǫℓ(λe) ck,ℓ (9)

Assuming a finite number of excitation and emission wave-
lengths, the data can be stored into a third order array. Com-
paring equations (9) and (1), we can identify the components,
because of the uniqueness of the CP decomposition, guaran-
teed ifF is not too large; seee.g [6] and refs therein. Then,
up to scale and permutation, the separation provides the two

relative spectra (from which we are able to recover the flu-
orescence images),γℓ(λf (i)) and ǫℓ(λe(j)), that match re-
spectivelyaif andbjf , and also the concentration of the com-
ponents through all the samplesck,ℓ, that matchesckf .

5.2. Obtained results

In the following, we will consider a tensorT with a number of
components (or rank)F = 4 and whose emission-excitation
matrices are of size71 × 47 (aib

T
i , ∀i = 1, . . . , 4). We ran-

domly generate a positive matrixC (size20 × 4). Thus, the
considered tensorT is 71×47×20. To compare the different
algorithms, an error index is introduced:E = ‖T− T̂‖2F or,
in dB,EdB = 10 log10(E), whereT̂ =

∑F
f=1 âf ⊛ b̂f ⊛ ĉf

andâ, b̂ andĉ are the estimated factors. The reconstruction
error of T̂ is minimal and, consequently the best results are
obtained, whenE = 0 (−∞ in logarithmic scale). In Fig. 1,
we have compared the behaviour of different algorithms (our
gradient and conjugate gradient methods with positivity con-
straint and theALS suggested in [11, 8] with regularization of
the cost function and projection). The gradient is the slowest
and have the poorest results. The conjugate gradient offersa
good compromise between speed and performances. Besides,
contrary to Quasi-Newton algorithms (BFGS and DFP [9]),
the conjugate gradient algorithm does not require the estima-
tion of the(I + J +K)F × (I + J +K)F Hessian matrices
(or their approximation), and as a consequence it can be ap-
plied to very large tensors. Concerning theALS algorithm of
[11], it is indeed rather fast to converge, but the performances
are always satisfactory, even when the reconstruction error is
small. In fact, as shown in the next section, a small recon-
struction error does not necessarily imply a good estimation
of the loading matrices.

5.3. Number of components overestimated

A mixture containing 4 components has been built, but we
have assumed thatF = 5 to perform the simulations (the
rank is overestimated). The 5 reconstructed fluorescence im-
ages are displayed in Fig. 2. On the left, we have used the
conjugate gradient algorithm whereas theALS algorithm of
[11] was used on the right. With the conjugate gradient al-
gorithm, the four components have been well estimated (the
fifth image is nearly null). With theALS algorithm of [11],
we cannot assert that there are 4 components instead of 5.

6. CONCLUSION

In this paper, we have proposed a new algorithm combining
global search and conjugate gradient, to address the prob-
lem of the computation of the minimal polyadic decompo-
sition of nonnegative three-way arrays. First, the gradient
matrices have been derived, then, classical optimization al-
gorithms such as gradient and conjugate gradient have been
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Fig. 1. Reconstruction error (dB) versus the number of itera-
tions using a nonnegative71× 47× 20 tensor.

used to solve the factorization problem. Two solutions have
been systematically studied: theELS version and the back-
tracking version (alternating withELS). Computer simula-
tions have been provided to illustrate the good behaviour of
the suggested approach and to compare it to other algorithms
found in the literature.
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Fig. 2. Mixture of 4 factors, assumingF = 5; the 5 estimated
emission-excitation images using the Conjugate Gradient algorithm
with positivity constraint (left) and theALS algorithm of [11, 8] (reg-
ularization + projection) (right).

Appendix A

Denote:K1 = (C⊡C)⊙(B⊡B),K2 = (C⊡C)⊙(A⊡A),
K3 = (B⊡B)⊙ (A⊡A). Then fori ∈ {1, 2, 3}:

dH(A,B,C) = 2trace
{
δ
T
(i)dδ(i)

}

= 4trace
{
−δ

T
(1)(A⊡ dA)KT

1 − δ
T
(2)(B⊡ dB)KT

2

−δ
T
(3)(C⊡ dC)KT

3

}

= trace
{
4
(
KT

1 (−δ(1))
T
)
(A⊡ dA)

}

+ trace
{
4
(
KT

2 (−δ(2))
T
)
(B⊡ dB)

}

+ trace
{
4
(
KT

3 (−δ(3))
T
)
(C⊡ dC)

}
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Fig. 3. Reconstruction error (dB) versus the number of iterations for
ELS and backtracking (alternating withELS) versions of the conju-
gate gradient algorithm.

= trace
{
4
[(
KT

1 (−δ(1))
T
)
⊡AT

]
dA

}
+ trace {4

[(
KT

2 (−δ(2))
T
)
⊡BT

]
dB+ 4

[(
KT

3 (−δ(3))
T
)
⊡CT

]
dC

}

= 〈4
[
A⊡

(
−δ(1)K1

)]
, dA〉+ 〈4

[
B⊡

(
−δ(2)K2

)]
, dB〉

+ 〈4
[
C⊡

(
−δ(3)K3

)]
, dC〉
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