
HAL Id: hal-00641034
https://hal.science/hal-00641034v1

Submitted on 14 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Omnibus Test of Goodness-of-fit for Conditional
Distribution Functions with Applications to Regression

Models
Gilles R. Ducharme, Sandie Ferrigno

To cite this version:
Gilles R. Ducharme, Sandie Ferrigno. An Omnibus Test of Goodness-of-fit for Conditional Distribution
Functions with Applications to Regression Models. Journal of Statistical Planning and Inference, 2012,
142 (10), pp.2748-2761. �10.1016/j.jspi.2012.04.008�. �hal-00641034�

https://hal.science/hal-00641034v1
https://hal.archives-ouvertes.fr


An Omnibus Test of Goodness-of-fit for Conditional Distribution

Functions with Applications to Regression Models

by

Gilles R. Ducharme*   and   Sandie Ferrigno**

* Équipe de Probabilités et Statistique, Institut de Mathématiques et de Modélisation

de Montpellier (I3M) Université Montpellier II, Place Eugène Bataillon, 34095,
Montpellier, Cedex 5, France (gilles.ducharme@univ-montp2.fr)

** Équipe de Probabilités et Statistique, Institut de Mathématiques Elie Cartan,

Université Henri Poincaré Nancy 1, B.P. 70239, F-54506 Vandoeuvre-lès-Nancy,
Cedex, France (sandie.ferrigno@iecn-unancy.fr)

Key-words: Conditional distribution function, Cramer-von Mises Statistic
Goodness-of-fit test, Local polynomial estimation, Regression Model.



2

Abstract

We introduce a goodness-of-fit test for statistical models about the conditional
distribution function of a random variable. This test is useful for assessing whether a
regression model fits a data set regarding all assumptions made in its elaboration.
The test is based on a generalization of the Cramer-von Mises statistic and involves a
local polynomial estimator of the conditional distribution function. First, the uniform
almost sure consistency of this estimator is established. Then, the asymptotic
distribution of the test statistic is derived under the null hypothesis and local
alternatives. The extension to the case where unknown parameters appear in the
model is developed. Finally, a simulation study is performed to see how the test
behaves with moderate samples. It emerges that, although the test can detect any
departure from the null model, its power is comparable to that of other
nonparametric tests designed to examine only specific departures.

1. Introduction

It is often the case in statistical applications that a model is entertained for the

conditional distribution of a random variable Y on some random vector X (in the
sequel, vectors are represented in italic boldface, matrices in bold and real quantities
in plain italic). This may happen when the distribution of X is known or of secondary
importance and the conditional cumulative distribution function (cdf)

F(y | x) = 
     
P Y ≤ y  X = x⎡
⎣⎢

⎤
⎦⎥
,

which embodies all information about the relationship between X and Y, is the
element that commands attention. It is then of importance to determine if the
entertained model for F(y | x) is consonant with data.

An important case where the above problem occurs is when a regression model

is set up to predict the value of Y from that of X. To this end a common modus
operandi consists of selecting a parametric model relating X to Y from a catalogue,
the choice being guided by more or less solid knowledge about the mechanism that
relates X to Y. The parameters of this model are estimated and prediction proceeds
from there.

Such parametric models usually involve many assumptions and together they

induce a parametric form for F(y | x) that must be validated in each application. As
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an example, consider the problem of predicting the height Y of a human subject
based on his age X. One model for this is:

Y = g(X; θ1) + σ(X; θ2)ε. (1.1)

In addition to assumptions about the functional form of g and σ, this model requires
that the error term ε be additive and, usually, independent of X . Often the
distribution of ε is also assumed normal. These assumptions induce the parametric
conditional cdf F(y | x) = N(g(x; θ1), σ

2(x; θ2)). When all assumptions hold, θ = (θ1,
θ2) can be estimated in some optimal fashion and this confers to the statistical
inference some principled merit in predicting Y for given values x of X.

Typically, in models like (1.1) the task of selecting the structural part g receives

most of the attention because it contains visual information on the relationship
between X and Y. In the human height example, the catalogue of possible g has
grown very large (see Ducharme and Fontez, 2004 for some references). The selection
of σ is, however, often done more casually: in human height a constant σ is usually
taken, based on an argument that, to the best of our knowledge, has not been fully
substantiated (Ducharme and Fontez, 2004). The situation is similar for the other
assumptions; some do get attention (Q-Q plots are routinely produced to check the
normality of ε) others, little or none at all. This may be tolerable when the ensuing
inference is robust to some misspecifications or when an asymptotic argument renders
these inconsequential. Otherwise, unsubstantiated assumptions or incorrect selections
may have a bearing on the validity of the ensuing inference.

Methods that can assess whether a model is concordant with some data fall

under the banner of goodness-of-fit (GoFIT) tests. For models as (1.1), many tests
have been proposed to assess if the assumption about a functional form for g is
consonant with data; for some examples, see Alcala et al. (1999), Ducharme and
Fontez (2004), Van Keilegom et al. (2008). Some authors (Liero, 2003) have proposed
tests for σ. GoFIT procedures for the normality of ε are discussed in D’Agostino and
Stephens (1986). Note that many of these tests require, for their validity and for good
power properties, that the other assumptions of the model be correct. Note also that
these GoFIT tests are “directional” in the sense that they primarily detect departures
from one assumption about the model.

Thus the need for an “omnibus” test that can detect any departures from a
model for F(y| x). If this model is    F0(y | x), the GoFIT problem is that of testing

H0:    F(y | x)  =    F0(y | x). (1.2)



4

In this paper, such an omnibus test is developed. This test compares a

nonparametric estimator of    F(y | x) with    F0(y | x). Here, the nonparametric estimator

   F̂(y | x) is based on the local polynomial approach, which has been recognized as
superior to classical estimates. The comparison of    F̂(y | x) with    F0(y | x) is done
through a version of the generalized Cramer-von Mises statistic.

The paper is organized as follows. In Section 2, we present the local polynomial

estimator    F̂(y | x) and show its almost sure uniform convergence. In Section 3, we
introduce the test statistic and obtain its asymptotic normality under (1.2) in the
case where    F0(y | x) is fully specified. Section 4 gives the local power properties of the
test. Section 5 treats the case where    F0(y | x) depends on unknown parameters and
states that the asymptotic normality is not affected by the introduction of estimators
in the test statistic. The results of a simulation study are presented in Section 6 and
show that, surprisingly, the test yields powers comparable to other, more directional,
tests. Section 7 contains all technical details.

2. The local polynomial estimator of F(y | x)

Let (X i, Yi), i = 1,…, n, be independent and identically distributed (iid)
random vectors with support S × R (S ⊆ Rd), joint density f(x, y) = f(y|x)f(x) and
cdf F(x, y). The problem of estimating nonparametrically f(x, y), f(x) and F(x, y) has
been much investigated and the reader is referred to, among others, Prakasa Rao
(1983). Here, we focus on the problem of estimating the conditional cdf F(y|x). Work
on this using the kernel method was initiated by Collomb (1980). However his
method has recently lost momentum, at least for estimating functionals of F(y |x) (as
E(Y |x)), and been progressively replaced by the design adaptive local polynomial
approach. Following this trend, our task here is to produce a local polynomial
estimator of F(y |x) and investigate some of its properties in view of GoFIT testing.

This paragraph collects the notation for a concise expression of the Taylor

expansion of a suitably regular function η in the neighborhood of some point x. For k
∈ {0, 1,…, p}, define the sets Jk = {j = (j1,…, jd) | jm ∈ {0, 1,…, k} with 

 
j  = j1 +

… + jd = k}. Write j! = j1! ×…× jd! and, for x ∈Rd, xj =    x1

j1x
2

j2x
d

jd  with    (∂x) j =

    ∂x1

j1∂x
2

j2∂x
d

jd . When x is real, interpret xj as x|j|. The cardinal of Jk is Ck = (k + d –
1)!/((d – 1)!k!). Order the elements of Jk from “smallest” to “largest” according to
the following rule: with j, j ′ ∈  Jk, j < j ′ if the concatenated string of characters
j1…jd forms a number smaller than    

′j
1
... ′j

d
. Set  J  = 

     J
kk=0

p
  and P = 

    C
kk=0

p∑ . The
elements of  J  are also ordered, first the sole element of J0, which is 0 ∈ Rd, then the
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ordered elements of J1 and so on. When encountering expressions where it is implied
that j runs through all elements of  J , such as Diag{xj, j ∈  J }, assume that j takes
successively the values in  J  ordered in this manner. The multivariate (p + 1)-order
Taylor expansion of η(x′) in the neighborhood of x can be expressed as

η(x′) = 
     

1
j !

( ′x −x)j
∂

j

(∂x)j
η(x)

j∈J
∑  + 

      

1
j !

( ′x −x)j
j∈Jp+1

∑ ∂p+1

(∂x)j
η(x *), (2.1)

for some x* on the line segment joining x and x′.

Next, we collect the notation needed to express the p-order local polynomial

estimator of    F(y | x) . Let I{A} be the indicator of event A pertaining to Y. Choose a

kernel function K: [–1, 1]d →  R+ and a bandwidth h > 0. Set η(x) =    F(y | x)  and

replace each occurrence of     ∂
j (∂x)j F(y | x)  in the first part of the right-hand side of

(2.1) by the parameter 
   
β j , j . Collect these into β = {

   
β j , j , j ∈  J } ∈ RP. Consider

  β̂  = 
        
arg min
β∈RP

I{Y
i
≤ y}− (X

i
−x)j β

j , j
j∈J
∑

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪

2

i=1

n

∑ K
X

i
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
.

It is explained in Fan and Gijbels (1996) (see also Masry, 1996, for the case d > 1)

that component 
   
β̂ j , j  of   β̂  is an estimate of 

     
( j !)−1 ∂ j (∂x)j E(I Y ≤ y{ } | x)  and in

particular    F̂(y | x)  =    β̂0,0  is an estimate of    F(y | x) . Note that setting p = 0 in the

above gives back Collomb’s (1980) estimator.

An explicit expression for 
   
β̂ j , j  can be obtained from a standard weighted least

squares argument. Let X be the n × P matrix with i-th line {(Xi – x)j, j ∈  J } and

W = Diag{K((Xi – x)/h), i = 1,…, n}. Set 
  
e j , j  as the P-dimensional vector having a

“1” at the position where 
   
β̂ j , j  appears in β and “0” elsewhere. Finally, put Iy =

(I{Y1 ≤ y }, …, I{Yn ≤ y})t (here t means transposition). Then, 
   
β̂ j , j  =

      
e j , j

t (XtWX)−1XtWIy  and the local polynomial estimator of    F(y | x)  takes the form:

   F̂(y | x)  = 
      

W
X

i
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
I Y

i
≤ y{ }

i=1

n

∑ , (2.2)

where, upon setting 1 = 
    

e j , jj∈J∑ , H = Diag{  h j , j ∈   J } and for t ∈ Rd, T =

Diag{tj, j ∈  J }, we get W(t) = 
     
e0,0

t (XtWX)−1HT1K(t)  = 
     
e0,0

t S
n
−1(x) T1K(t)/nhd  with

Sn(x) = H–1

    
(nhd )−1XtWX( )H–1. (2.3)
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Note for further use that for all x ∈ S

     

(X
i
−x)j W

X
i
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟i=1

n

∑ =
1 if j = 0

0 if 1≤ j ≤ p

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

, (2.4)

so that     F̂(−∞ | x) = 0 and     F̂(∞ | x) = 1. However    F̂(y | x)  may not be a proper cdf
because it could decrease or take negative values, the weight function W in (2.2) not
being necessarily positive. This mainly happens when there are no data in some
sizeable parts of S , an event whose probability decreases as n increases. The
approaches in Hall et al. (1999) could be used to correct this, but in view of the
added computational cost involved, we will not pursue such a refinement further.

Now W in (2.2) is a random function and this causes difficulties in studying the

statistical properties of    F̂(y | x) . Ducharme and Mint el Mouvid (2001) have attacked
the problem directly using the U-statistic structure of    F̂(y | x)  when d = 1, but their
approach seems difficult to extend. However, Fan and Gijbels (1996, p. 64) explain
that W can be approximated by an equivalent kernel (Huang and Fan, 1999). As
shown in Masry (1996), this indirect approach appears easier when d > 1. Let

K(t) = 
     
e

0,0
t S−1T1K(t) (2.5)

where S is the P × P matrix with element 
    
sj , ′j  = 

    
u j+ ′j K(u)du∫ , j, j′ ∈  J  that is

assumed invertible throughout. Note that K(t) satisfies a theoretical version of (2.4):

     

u jK(u)du∫ =
1 if j = 0

0 if 1≤ j ≤ p

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

.

Write

Weq(t) = (nhdf(x))–1K(t), (2.6)

and define

    
F(y | x)  = 

      
W

eq

X
i
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
I Y

i
≤ y{ }

i=1

n

∑ .

We now collect the “global” assumptions needed throughout, to which more

specific assumptions will be added as needed. In the sequel, x is confined to a
compact subset C of S.
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Assumption K: K is a continuous, bounded function on [–1, 1]d whose first order

derivatives are also bounded.

Assumption X: The boundary of C is disjoint from that of S which is compact.

Furthermore, at all points x in C, the density f of X exists with 0 < δ ≤ f(x) ≤ Δ <
∞ and has a bounded continuous derivative.

Assumption H: a) As n → ∞, h → 0 in such a way that   logn nhd  → 0.

b)    nh2p+2+d/2  → 0.

Note that the both parts of Assumption H impose an unwanted relationship

between d and p that seems unavoidable with the tools used here. But, the ensuing
condition on p is mild in practice because p = 1 can be taken as long as d ≤ 7.

Asumption F: a) For all x  ∈  C ,    F(y | x)  is differentiable in y with a bounded

continuous conditional density f(y | x). For each y, F(y | x) possesses a (p + 1)-order
Taylor expansion as in (2.1) in a neighborhood V(x).

 b) For all j ∈Jp + 1,  
      
sup
x∈C

 sup
y∈R

 
∂p+1F(y | x)

(∂x)j
 ≤ M < ∞.

We can now relate     
F(y | x)  to    F̂(y | x)  through the following result, proved in

Subsection 7.1. The first statement is a slight, but crucial, refinement of Lemma 2.1
in Huang and Fan (1999). Here and throughout the paper, the generic symbol    Oas(1)
represents an almost surely bounded random variable.

Theorem 2.1: Under Assumptions K, X, H–a) and F–a), as n → ∞,

       
sup
x∈C

sup
y∈R

F̂(y | x)− F(y | x)  =    hOas(1) . (2.7)

As a consequence,

      
sup
x∈C

 sup
y∈

F̂(y | x)−F(y | x)     
a .s.⎯ →⎯⎯ 0. (2.8)

Ferrigno and Ducharme (2008) give the optimal bandwidth for (2.2), in the

mean integrated squared error sense, when d = 1 and their results can be extended to
d > 1. In the present GoFIT context however, one should not be too uncompromising
about this optimal h because there appears to be no guarantee that it will work well
in test settings, where optimality refers to power properties. We will get back to this
in Section 6.
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 3. The test statistic and its behavior under H0

Consider the weighted L2 distance between    F̂(y | x)  of (2.2) and F0(y | x):

Tn(x) = 
     
n F̂(y | x)−F0(y | x)( )2

f
0
(y | x)wx(y)dy

R∫ . (3.1)

For the problem of testing (1.2), a test statistic is

Tn = 
     

hd T
n
(x)w(x)dx

C∫ . (3.2)

In (3.1), (3.2), w(x) and    wx(y)are user-supplied positive weight functions whose role
is to direct power toward those alternatives that are believed more plausible. Test
statistic (3.1) is the generalized Cramer-von Mises statistic (D’Agostino and
Stephens, 1986, p. 100) applied to conditional cdfs with x fixed while (3.2) is an
integrated (over the domain of scrutiny C) version.

To build a test from (3.2), the behavior of Tn under H0 is required. Set for
conciseness    w

*(x,y) =    f0(y | x)w(x)wx(y) and add the following:

Assumption W:    w
*(x,y) is bounded over C × R with

     w*(x,y)dy
R∫  bounded over C.

Define    aK(w*)  and     σK
2 (w*)  according to (7.5), (7.6) respectively. We state the

main result of this section, whose proof is given in Subsection 7.2.

Theorem 3.1: Suppose Assumptions K, X, H, W and suppose F0 satisfies Assumption

F. Then when H0 is true,

     

T
n
−h−d/2aK(w*)(1 + hO

as
(1))

σK(w*)
   

L⎯ →⎯  N(0, 1). (3.3)

Note that    aK(w*)and     σK
2 (w*)  involve f. When unknown, this quantity must be

estimated, typically by a nonparametric density estimator involving a different
bandwidth   h . This leads to the estimators    âK(w*) ,     σ̂K

2 (w*) . When d = 1, (3.3) can be
replaced by      (Tn −h−1/2âK(w*) σ̂K(w*) and it can be shown that the optimal rate   h  =
O(n–1/5) still leads to the N(0, 1). When d > 1 however,     h

−d/2aK(w*)(1 + hOas(1)) is not
approximated by     h

−d/2âK(w*)  and it appears better to use another estimator of

   E(Tn)(or    V(Tn)) for example by bootstrapping as explained in Remark 7.6. This
requires a moderate number of bootstrap replications. Another possibility is to
bootstrap the whole distribution of Tn but this requires more calculations.
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The above test calls for rejecting H0 for large values of Tn. This obviously yields

a consistent test strategy against fixed alternatives. The next section investigates the
behavior of Tn under contiguous alternatives.

4. Asymptotic power

Consider the sequence of local alternatives

H1,n:   
F

1,n
(y | x)  =   F0

(y | x) + cnR(y | x),

where R(y|x) =    rx(t) dt−∞
y
∫  and rx(y) is such that f1,n(y|x) = f0(y|x) + cnrx(y) is a

positive bounded density. Because the present investigation is mainly for theoretical

insight, we consider the simplest context and assume that S ⊆ R with w(x) ≡ wx(y) ≡
1. Assume further that on S, 

  
F

1,n
(y | x)  is a polynomial in x of degree ≤ p satisfying

Assumption F. Let (Xi,n, Yi,n), i = 1,.., n, n ≥ 1, be a triangular array of row-wise iid

random vector with joint cdf F1,n(x, y). We may as well consider that the marginal

density f of the Xi,n does not vary with n. All these simplifying assumptions can be

lifted at the expense of a more tedious argument. In view of (2.4), (7.4), this entails

   
F̂(y | x)−F

1,n
(y | x)  = 

     
(1 + hO

as
(1)) W

eq

X
i,n
−x

h

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
I{Y

i,n
≤ y}−F

1,n
(y | X

i,n
)( )

i=1

n

∑ . (4.1)

Finally put cn =    (n h )−1/2 . Then, we have the following.

Theorem 4.1: Under H1,n and Assumptions K, F, X, H, and W, to which we add nh3/2

→ ∞, we have

     

T
n
−h−1/2a

K
(f

0
)

σ
K
(f

0
)

  
L⎯ →⎯  

     
N

b
R
(f

0
)

σ
K
(f

0
)
, 1

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
, (4.2)

where bR(f0) = 
   

R(y | x( )2
f
0
(y | x)dydx∫∫  ≥ 0.

5. The case of unknown parameters

The methods of the previous sections apply to the case where F0(y |x) is entirely

specified. This is rare in applications where usually, as in (1.1), the conditional cdf
involves unknown parameters θ that must be estimated. We now study how this
added layer of complexity affects the behavior of our test.
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First note that in this context, (1.2) evolves into the composite null hypothesis

H0: F(y |x) = 
    
Fθ0 (y | x) for some θ0 ∈ Θ (5.1)

We suppose that f does not depend on θ and change Assumption F into:

Asumption Fθ: For all θ in a neighborhood V(θ0) of θ0 and all x ∈ C, Fθ(y | x) is

continuously differentiable in y with conditional density fθ(y | x). In turn, fθ(y | x) is

continuously differentiable with respect to θ in V(θ0) and there exist a function    hx(y)

such that 
     hx(y)dyR∫ < M for all x ∈ S and such that for each θ in V(θ0) and each y

∈ R, 
     
∂fθ(y | x) ∂θ  ≤    hx(y) . Also, for each θ ∈ V(θ0), y ∈ R, x ∈ C, Fθ(y | x) has a

(p + 1)-order Taylor expansion in a neighborhood of x. Moreover, for all j ∈ Jp + 1,

       
sup
θ∈V(θ0 )

sup
x∈C

 sup
y∈R

 
∂pFθ(y | x)

(∂x)j
 ≤ M.

Finally for each x ∈ C, Fθ(y | x) is twice continuously differentiable with respect to θ
in V(θ0) and these derivatives are bounded on V(θ0).

To which we add:

Assumption E: The estimator   θ̂  is  n -consistent for θ0.

With these, test statistic (3.2) becomes

Tn(  θ̂ ) = 
     
nhd/2 F̂(y | x)−F

θ̂
(y | x)( )2

w(x)wx(y)f
θ̂
(y | x)dydx∫∫ . (5.2)

Theorem 5.1: Under Assumptions K, X, H, Fθ, W and E, and under (5.1), we have

      

T
n
(θ̂)−h−d/2a

θ̂,K
(f
θ̂
)(1 + hO

as
(1))

σ
θ̂,K

(f
θ̂
)

  
L⎯ →⎯  

   
N 0, 1( ) . (5.3)

where     aθ,K(fθ) ,     
σθ,K

2 (fθ)  have the form (7.5), (7.6) respectively, with   Fθ replacing F0.

The proof of this is given in Subsection 7.4. The resulting test strategy for (5.1)

rejects H0 when the left hand side of (5.3) is greater that    z1−α , the (1 – α)-th quantile
of the N(0, 1) distribution.

Note that it is possible to show, with added work, that a similar results holds

when the weight function wx(y) also depends on θ. Finally, as explained at the end of
Section 3, the procedure can be adapted to the case where f is unknown (d = 1).
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Otherwise bootstrapping (first from the empirical cdf of the X i and then from

    Fθ̂(y | x)) can be used to get better estimates of E(Tn(  θ̂ ), V(Tn(  θ̂ ). Thus the test
procedure can be adapted to contexts encountered in practical situations.

6. Simulations

The test of the previous section is based on an asymptotic approximation. It is

of interest to check if this asymptotic behavior holds for moderate sample sizes and
to study power against various departures from the null hypothesis.

As a first experiment, we have replicated the first simulation in Alcala et al.
(1999) who develop a GoFIT test, based on a local polynomial estimator, for the
structural part g in model (1.1). Their null and alternative hypothesis are H0: Y = θX
+ ε, H1: Y = θX + aX 2 + ε, where θ = 5, a = 1, 5, ε ~ N(0, σ2) with σ2 = 1, 2, 3 and
independent from X. As for the X, Alcala et al. (1999) do not need the constraint in
Assumption X and use C = S = [0, 1] with X  ~ U(0, 1). In our context, C is
constrained and to allow comparisons with their results, we have taken C = [0, 1]
with X ~ U(–0.1, 1.1). Sample sizes were n = 50, 100 and p = 1, a local linear
smoother. Alcala et al. (1999) do not specify the kernel used in their test. We have
taken the Epanechnikov kernel, after observing similar results with other kernels. As
for the bandwidth, Alcala et al. (1999) consider h = 0.1, 0.25 and see little effects on
their test. Thus we have taken the “reasonable” values h = 0.20 for n = 50 and h =
0.12 for n = 100. The parameters θ, a and σ2

 were estimated by least squares.

Alcala et al. (1999) do not specify their weight function but, for ease of

computation, we have taken w = wx ≡ 1. One advantage of this choice is that test
statistic Tn(x) has the more explicit form:

Tn(x)/n = 1/3 + 
    

(F̂(y
(i)

| x))2 F
θ̂
(y

(i+1)
| x)−F

θ̂
(y

(i)
| x)⎡

⎣⎢
⎤
⎦⎥

i=1

n−1

∑

    
− (F̂(y

(i)
| x)) F

θ̂
2(y

(i+1)
| x)−F

θ̂
2(y

(i)
| x)⎡

⎣⎢
⎤
⎦⎥

i=1

n−1

∑  + 
    
F
θ̂
2(y

(n)
| x)−F

θ̂
(y

(n)
| x)⎡

⎣⎢
⎤
⎦⎥ .

The simulation was conducted as follows. For each combinations of (n, a, σ2),

1000 samples were generated from the above H0, H1 and the percentage of rejections
at level α = 5% was recorded. Results are shown in Table 6.1 along with the powers
reported in Alcala et al. (1999) in parenthesis. The shaded values correspond to the
actual levels of our tests.
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Regarding levels, it is seen that the asymptotic normal is relatively accurate.

More interesting is that the power of our omnibus test is in most cases comparable
and often better than the “directional” test of Alcala et al. (1999). Thus even if the
misspecification concerns only the structural part g, there is some advantage to use
our test over this competitor.

Table 6.1: Percentage of rejection of H0 at level α = 5%, based on
1000 replications. In parenthesis, the powers of Alcala et al.
(1999). Shaded, the actual levels of our tests.

σ2 a n % of rejection
1 0 50 4.9

100 4.4
1 1 50 9.1 (8.7)

100   9.0 (18.1)
1 5 50 90.7 (76.1)

100 99.1 (96.8)
2 0 50 4.7

100 4.3
2 1 50 6.9 (7.2)

100   6.9 (12.5)
2 5 50 58.6 (53.6)

100 86.1 (84.8)
3 0 50 4.6

100 4.5
3 1 50 6.4 (6.9)

100 5.9 (8.4)
3 5 50 42.1 (35.2)

100 69.9 (68.1)

To investigate some other types of misspecification, a second experiment was

conducted, inspired from the first simulation in Van Keilegom et al. (2008). Here the
data is generated from either one of the models: H0: Y  = θX + ε;   H0

* : Y = θX +

   σ(X)ε ;   H1
* : Y = θX + a(X) +    σ(X)ε , independent X, ε and   H1

** : Y = θX + a(X) +

   σ(X)ε , correlated X, ε (ρ = 0.3). In these, θ = 1 and ε ~ N(0, 1). As for the functions
a(•), σ(•), we followed Van Keilegom et al. (2008) and took a(x) =   x exp(x)/ 2 ,

   0.3sin(4πx)  with    σ(x)  =    (1 + X)/ 5 . The parameters θ and V(ε) were estimated by
standard (for H0) and weighted (for   H0

* ) least squares. The rest of the settings were
as in our first experiment. Table 6.2 gives the results along with the powers of TCM,
the best test (among four) of   H0

*  against   H1
*  investigated by Van Keilegom et al.

(2008).

The shaded areas in Table 6.2 correspond to pairs of identical null and

alternative hypotheses and serve as a check on the accuracy of the levels of the test,
which are reasonably close to nominal. For a more precise control of the type 1 error,
bootstrapping could be applied.
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Regarding power, our omnibus test is again generally better than their

directional test for   H0
*  against   H1

* . Note that the departure from independence
between X and ε (e.g. H0,   H0

*  against   H1
**  with a(x) = 0) gets detected with some

accuracy despite the correlation between X and ε being rather low.

Table 6.2: Percentage of rejection of H0,   H0
*  at level α = 5%, based on 1000

replications. In parenthesis, the results of Van Keilegom et al. (2008).
Null % of rejection

Hypothesis a(x) n
  H1

*

  H1
**

0 50 5.3        23.1
100 6.4        38.2

x exp(x)/2 50 63.4 93.5
100 88.1 99.8

0.3Sin(4πx) 50 16.1 22.7H0

100 99.3 99.6

0 50 4.8     21.7
100 4.1     32.5

x exp(x)/2 50 54.2 (35.0) 89.9
100 76.4 (54.7) 99.4

0.3Sin(4πx) 50 18.3 (30.6) 21.4
  H0

*

100 99. 3(77.1) 99.5

Thus as a general conclusion, the omnibus test of the paper can detect
departures from any assumptions made in setting up a model and this, while paying a
lower premium in power than the above directional competitors when the model is
misspecified on its structural part. Thus, in testing the GoFIT of models like (1.1),
there is generally much to gain by using the present approach.

7. Technical details

Throughout this section, the symbol M denotes a positive majoring constant
that may change from one occurrence to another.

7.1 Proof of Theorem 2.1

The components of matrix Sn(x) in (2.3) have the form:

sn,j(x) = 
    

1

nhd

X
i
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

j

K
X

i
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟i=1

n

∑ ,

for j ∈      J
kk=0

2p
 , whereas those of matrix S in (2.5) are µj = 

    
u jK(u)du∫ .
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The following lemma is a version of Corollary 1 ii) of Masry (1996), adapted to

the case of iid (Xi, Yi).

Lemma 7.1: Under Assumptions K, X and H–a), as n → ∞

      
sup
x∈C

s
n, j

(x)−µ
j
f (x)  = 

    

logn

nhd

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

1/2

+ h
⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
O

as
(1) ,

and the optimal rate of convergence is obtained when h ∼ (logn/n)1/(d + 2).

Lemma 7.2: Under the assumptions of Theorem 2.1,

      
sup
x∈C

 sup
y∈

F(y | x)−F(y | x)    
as⎯ →⎯  0.

Proof. Obviously,

     
F(y | x)−F(y | x)  ≤ 

      
F(y | x)−E( F(y | x))  + 

      
E( F(y | x))−F(y | x) . (7.1)

An application of Theorem 2.1.1 of Prakasa Rao (1983, p. 35) to the uniformly

continuous (in x ∈ C, y ∈ R) function    F(y | x) f(x) shows that the last term on the
right-hand side of (7.1) is o(1) as h → 0. As for the first term, we have

       
sup
x∈C

 sup
y∈

F(y | x)−E( F(y | x))  ≤ 
        
δ−1 sup

x∈C
 sup

y∈

F
num

(y | x)−E( F
num

(y | x)) ,

where     
F
num

(y | x)  is the numerator of     
F(y | x) :

    
F
num

(y | x)  = 
      

1

nhd
K

X
i
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
I Y

i
≤ y{ }

i=1

n

∑ .

Now, we follow closely the first part of the proof of Theorem 3.1.7 p. 185 of Prakasa
Rao (1983). For ε > 0, choose m points z1,…, zm such that for any x ∈ C, 

    
inf

k
x −z

k

< bn =     εh
d+1 / 8C , where C is the Lipschitz constant of K. It is easy to see that m =

O(h–d(d + 1)). Then,

        
P sup

x∈C
 sup

y∈

F
num

(y | x)−E( F
num

(y | x)) ≥ ε
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 ≤

       
m max

1≤k≤m
P sup

x−zk ≤bn

 sup
y∈

F
num

(y | x)− F
num

(y | z
k
) ≥
ε
3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪
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+ 
       
P sup

x−zk ≤bn

 sup
y∈

E( F
num

(y | x))−E( F
num

(y | z
k
)) ≥

ε
3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+ 
       
P sup

y∈
( F

num
(y | z

k
))−E( F

num
(y | z

k
)) ≥

ε
3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⎫
⎬
⎪⎪

⎭⎪⎪
. (7.2)

But 
     

sup
x−zk ≤bn

 sup
y∈

F
num

(y | x)− F
num

(y | z
k
)  ≤ 

     

1

hd
 sup

x−zk ≤bn

w∈SX

 K
w−x

h

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
−K

w−z
k

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
 ≤ ε/8,

so that the first probability in the right hand side of (7.2) is zero. Similarly, Jensen’s

inequality shows that the second probability also vanishes. Now, we follow the
argument in Pollard (1984), p. 14. Let     (Xn+i

,Y
n+i

) , i = 1,…, n, be another iid sample
from F(x, y), independent from the first and let E1 ,…, En by iid Rademacher random
variables independent from the “double sample” ϕ = {(X i, Yi), i = 1,…, 2n}. By
Chebyshev’s inequality, for any y ∈ R and for n large enough,

       
P F

num
(y | z

k
))−E( F

num
(y | z

k
)) ≤

ε
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥≥ 

 

1
2

,

so that by a first and second symmetrization as in Pollard (1984), p. 15, we get

       
P sup

y∈
( F

num
(y | z

k
))−E( F

num
(y | z

k
)) ≥

ε
3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  ≤ 

      
4 P sup

y∈
E

i
R

ik
(y)

i=1

n

∑ ≥
nhdε
12

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

⎫
⎬
⎪⎪

⎭
⎪⎪
,

where Rik(y) = 
      
K X

i
−z

k( ) h( )I{Y
i
≤ y}. If we condition on ϕ, the Rik(y) can take at

most n + 1 different values, say t0,…, tn, because the indicator function is constant
between each pair of adjacent Yi. Thus

       
P sup

y∈
E

i
R

ik
(y)

i=1

n

∑ ≥
nhdε
12

  ϕ
⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥
 = 

      
P max

0≤ ′i ≤n
E

i
R

ik
(t ′i )

i=1

n

∑ ≥
nhdε
12

  ϕ
⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥
,

≤ 
      
(n +1)max

0≤ ′i ≤n
P E

i
R

ik
(t ′i )

i=1

n

∑ ≥
nhdε
12

 ϕ
⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥
.

At this stage, a standard idea is to apply some variant of Bernstein’s inequality.
However, this leads to a bound of the unwanted order    exp{−nh2dO(1)} . Thus a finer

argument must is required. To this end, note that 
    
E E

i
R

ik
(t ′i )( )  = 0, 

   
E

i
R

ik
(t ′i )( )2

 ≤

     
K2 X

i
−z

k( ) h( )  which is independent of   ′i while, for l ≥ 2,
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K X

i
−z

k( ) h( )( )
l

 ≤    C1
l−2R

ik
2 (∞) where C1 ≥ 

   
sup

x
K(x) .

On one hand, for any 0 < t <    C1
−1  we have,

    
E exp{tE

i
R

ik
(t ′i )( )  ≤ 

   
1 +

1
2
t 2R

ik
2 (∞)×

2
l !

tl−2C
1
l−2

l=2

∞

∑  ≤ 
   
1 +

3
2
t 2R

ik
2 (∞) .

On the other hand, in view of the inequality exp{|x|} ≤ exp{x} + exp{–x},

     
E exp t E

i
R

ik
(t ′i )

i=1

n

∑ |ϕ
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
 ≤ 

   
2 (1 +

3
2
t 2R

ik
2 (∞))

i=1

n

∏ .

Hence, by Markov’s inequality,

      
P E

i
R

ik
(t ′i )

i=1

n

∑ ≥
nhdε
12

 ϕ
⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥
 ≤ 2

    
exp −t

nhdε
12

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
1 +

3
2
t 2R

ik
2 (∞)

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟i=1

n

∏ . (7.3)

We get rid of the conditioning by taking expectation on both side of (7.3). Now

    E(R
ik
2 (∞))  ≤ hdC1. Upon using the inequality 1 + x ≤ exp{x}, we get

    
E 1 +

3
2
t 2R

ik
2 (∞)

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟i=1

n

∏
⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
 ≤ 

   
exp nhdt 2 3

2
C

1

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
.

Hence

     
P E

i
R

ik
(t ′i )

i=1

n

∑ ≥
nhdε
12

 
⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥
 ≤     8(n +1)exp{−tnhdε /12 + t 2nhd 3C

1
/ 2} .

The term in the exponential is minimized at t* = ε/36C1. This shows that

        
P sup

x∈C
 sup

y∈

F
num

(y | x)−E( F
num

(y | x)) ≥ ε
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 ≤     8(n +1)h−d(d+1) exp{−nhdε2C

3
} .

where C3 = 1/(648C1). The Borel-Cantelli lemma finishes the proof. 

Proof of Theorem 2.1. From Lemma 7.1 and upon using standard results from matrix

theory, we get      Sn
−1(x) = 

      
S−1 1 + hOas(1)( )/ f (x) . Thus, from (2.6)

W(t) = 
     
Weq(t)(1 + hOas(1)) . (7.4)

Hence 
     
F̂(y | x)− F(y | x)  = 

    
hOas(1) F(y | x)  and Lemma 7.2 finishes the proof of the

first assertion. Now, in view of this,
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sup
x∈C

 sup
y∈

F̂(y | x)−F(y | x)  ≤    hO
as
(1)  + 

      
sup
x∈C

 sup
y∈

F(y | x)−F(y | x) .

Applying Lemma 7.2 again gives the second assertion. 

7.2 Proof of Theorem 3.1

Write Ii(y) = I{Yi ≤ y} – F0(y | X i). In the following proofs, integration with

respect to y, yi or y(j) is over R while integration with respect to xi (resp. x, x(j)) is
over S (resp. C). Note that the results in this subsection are derived under H0.

Lemma 7.3: Suppose Assumption X and let H be a kernel satisfying Assumption K
with h according to Assumption H–a). Let g(x,y) satisfy Assumption W. Consider

V = 
     
nhd/2 1

n2h2d f 2(x)
H2 X

i
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟∫∫ I
i
2(y)

i=1

n

∑ g(x,y)dxdy .

Then, setting H (2) = 
     

H2(u)du
[−1,1]d∫  and

aH(g) = 
     
H(2) F

0
(y | x)(1−F

0
(y | x))

f (x)∫∫ g(x,y)dydx , (7.5)

we have E(V) = 
    
h−d/2aH(g) 1 +O(h)( ) , V(V) = O((nhd)–1), so that V – E(V) = op(1).

Proof: Because 
     

I
1
2(y)f

0
(y

1
| x

1
)dy

1∫  = 
    
F

0
(y | x

1
) 1−F

0
(y | x

1
)( ),

E(V) = 

     

1

nh3d/2
H2 x

1
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
F

0
(y | x

1
) 1−F

0
(y | x

1
)( ) f (x

1
)dx

1∫
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

g(x,y)

f 2(x)
dydx∫∫ .

By a change of variable, the integral in brackets is      h
dH(2)F

0
(y | x)(1−F

0
(y | x))f (x)  +

hd+1O (1), uniformly in (x , y). Hence E(V) has the stated form. Now because

      
E I

1
(y)2 I

1
( ′y )2 | X

1
= x

1( )  ≤ 1 and in view of Assumption X

V(V) ≤ 
     

M

nh3d
H2 x

1
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
H2 x

1
− ′x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
dx d ′x dx

1∫∫∫  + o((nhd)–1) ≤ 
    

M

nhd
H(2)( )2

.

Thus V(V) is of the stated order. Chebyshev’s inequality finished the proof. 

Remark 7.3.1: Lemma 7.3 holds for a triangular array {(Xi,n, Yi,n), i = 1,…, n, n ≥ 1}
of row-wise iid random vectors with the joint structure described in Section 4.

Lemma 7.4: Under the assumptions of Lemma 7.3, we have
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1

nhd

1
f (x)

H
X

i
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
I

i
(y)g(x,y)dydx∫∫

i=1

n

∑  =
   

v
ii=1

n∑  = 
   
o

p
((n1/2hd/4)−1) .

When H–b) is added, 
   

v
ii=1

n∑  = 
   
o

p
((nhp+1+d/4)−1) .

Proof: Because       E(I
i
(y) | X

1
,...,X

n
) = 0 , we have    E(v

i
) = 0. Moreover

    E(v
i
2 | X

1
,...,X

n
) ≤ 

     

M

n2h2d
H

X
1
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟∫∫ H
X

1
− ′x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
dx d ′x  ≤ 

   

M

n2
,

hence    E(v
i
2)  = O(n–2). Applying Chebyshev’s inequality concludes the proof. 

Lemma 7.5: Under the assumptions of Lemma 7.3, to which we add H–b), consider

W = 

     

1

nh3d/2

1

f 2(x)
H

X
i
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
H

X
j
−x

h

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟∫∫ I
i
(y)I

j
(y)g(x,y)dxdy

1≤i≠ j≤n
∑  = 

   
w

ij ,n
1≤i≠ j≤n
∑ .

Then W   
L⎯ →⎯  N(0,     σH

2 (g)) where     σH

2 (g)  = 
    
lim
n→∞

V(W ) , e.g.

    σH

2 (g)  = 

      

2(H(*2))(2)
τ

y, ′y
(x)

f (x)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∫∫
2

 g(x,y)g(x, ′y )dyd ′y dx , (7.6)

with   (H
(*2))(2) = 

     
H(t +u)H(u)du∫( )

2

∫ dt  ,
     
τ

y, ′y
(x)  =     F0

(y ∧ ′y | x)−F
0
(y | x)F

0
( ′y | x) .

Proof: Because W is a U-statistic, we use de Jong’s (1987) Theorem 2.2 which state

that asymptotic normality holds under the following conditions:

1) E(
  
w

ij ,n
| (Xi, Yi)) = 0,

2) 
    

Max
1≤i≤n

  V(w
ij ,n

)
j =1
j≠i

n

∑

V(W )
  →  0   while   3) 

   

E(W 4) 

V2(W )
  →  3.

Condition 1) follows immediately from 
      
E I

1
(y) | X

1( ) = 0 , as noted above. As for

Condition 2), the use of de Jong’s (1987) formula on p. 266 shows that the term on

the left side is 1/2n because    V(W ) = 
    2n(n−1)E(w

12,n
2 ) . But

   E(w
12,n
2 )  = 

     

1

n2h3d
H

x
1
−x (1)

h

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
H

x
2
−x (1)

h

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
H

x
1
−x (2)

h

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
H

x
2
−x (2)

h

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟∫∫∫∫∫∫
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× τ

y1 ,y2
(x

1
)τ

y1 ,y2
(x

2
)f −2(x (1))f −2(x (2))g(x (1),y

1
)g(x (2),y

2
)dx (1)dx (2)dx

1
dx

2
dy

1
dy

2
.

It follows directly that 2n2

   E(w
ij ,n
2 ) , and thus    V(W ) , →     σH

2 (g)  of (7.6). Condition 3) is

more difficult because it involves the term    E(W 4) . We use the decomposition given in
Table 1 of de Jong (1987):

    

E w
ij ,n

1≤i≠ j≤n
∑

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

4⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
 = 16G1 + 96G2 + 192G3 + 384G4 + 96G5,

where, because (Xi, Yi) are iid, 16G1 = 8n(n – 1)
    
E w

12,n
4( ) , 96G2 = 48n(n – 1)(n –

2)
    
E w

12,n
2 w

13,n
2( ),   G3

 ≤ G2, 384G4 = 48n(n – 1)(n – 2)(n – 3)
    
E w

12,n
w

13,n
w

42,n
w

43,n( ) , 96G5

= 12n(n – 1)(n – 2)(n – 3)
    
E2 w

12,n
2( ) . The first four of the above expectations are

respectively O(n–4h–d), O(n–4), O(n–4) and O(n–4hd), so that the terms G1, G2, G3 and

G4 are o(1). To see this requires lengthy calculations. We present only the case of G1

that is typical. No new difficulty arises in the other cases.

    
E w

12,n
4( )  = 

      

1

n 4h6d
 H

x
i
−x ( j )

h

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟i=1

2

∏
j =1

4

∏∫∫

     
× (I{y

i
≤ y( j )}−F

0
(y( j ) |

j =1

4

∏  x
i∫ ))f

0
(y

i
| x

i
)dy

i
i=1

2

∏

    
× g(x ( j ),y( j ))

j =1

4

∏ dy( j ) f −2(x ( j ))dx ( j )

j =1

4

∏ f (x
i
)

i=1

2

∏ dx
i
,

≤ Mn–4h–6d

      

 H
x

i
−x ( j )

h

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟j =1

4

∏
i=1

2

∏
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
∫∫ dx (1)

dx (4)dx
1
dx

2
.

But,

     

1

h2d
H

x
i
−x ( j )

h

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟i=1

2

∏∫ dx ( j )  ≤ 
     

1

hd
H

+
(2) x

2
−x

1

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
,

where    H+
(2)  denotes the convolution of 

 
H . Hence,

    
E w

12,n
4( )  ≤ 

     

M

n 4h2d
H

+
(2) x

2
−x

1

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟∫∫
4

dx
1
dx

2
,
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≤
     

M

n 4hd
H

+
(2) t( )( )∫∫

4
dtdx

1
 = O(n–4h–d).

As forG5, it was noted above that 
    
E w

12,n
2( )  = V(W)/(2n(n – 1)). Hence

96G5 = 
    
3V2(W )

(n− 2)(n− 3)
n(n−1)

.

Condition 3 follows. 

Proof of Theorem 3.1: First note that K and w* satisfy the conditions of Lemmas 7.3,

7.4 and 7.5. Now write

    F̂(y | x)−F
0
(y | x) = 

     
(1 + hO

as
(1)) W

eq

X
i
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
I

i
(y)

i=1

n

∑

+ 
     

W
X

i
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
F

0
(y | X

i
)−F

0
(y | x)( )

i=1

n

∑ , (7.7)

=     (1 + hO
as
(h))An(x, y) + Bn(x, y).

Making use of Assumption F, expand F0(y |Xi) about x. From (2.4), we get for    xi
*  on

the line segment between x and Xi,

   
B

n
(x,y)  = 

      

1
j !j∈Jp+1

∑ W
X

i
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
(X

i
−x)j

i=1

n

∑ ∂p+1

(∂x)j
F

0
(y | x

i
*) ,

≤ 

     

(1 + hO
as
(1))

Mhp+1

f (x)
1
j !j∈Jp+1

∑ 1

nhd

X
i
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

j

K
X

i
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟i=1

n

∑ ,

in view of (7.4). Applying Lemma 7.1 with K yields, uniformly in x, y:

   
B

n
(x,y)  ≤ hp + 1

   Oas
(1) .

Now, (7.7) and (3.2) give

Tn =     (1 + hO
as
(h))

    
nhd/2 A

n
2 x,y( )w*(x,y)dydx∫∫

+ 2
     
nhd/2+p+1O

as
(1) A

n
x,y( )w*(x,y)dydx∫∫  + nhd/2 + 2p +2 

   Oas
(1) ,

=     (1 + hO
as
(h))U1 + U2 + op(1),
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in view of Assumption H–b). Using (7.4) and applying Lemma 7.4 shows that U2 =

op(1), so that Tn =     (1 + hO
as
(h))U1 + op(1). Now, again from (7.4),

U1 = 

      

nhd/2 W
eq

X
i
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
I

i
(y)

i=1

n

∑
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

2

w*(x,y)dy  dx∫∫  = 
    
ζ

ii,n
i=1

n

∑  + 

    

ζ
ij ,n

i, j =1
i≠ j

n

∑ .

Lemmas 7.3, 7.5 show that U1 –     h
−d/2a

K
(g)(1 + hO(1))  

L⎯ →⎯  N(0,     σK

2 (g) ). 

Remark 7.6: The argument above shows that E(Tn) ≈        
n2hd/2E ψ(X

i
;W

eq
)( ) , where

     ψ(Xi
;W)  = 

     
W 2 X

i
−x

h

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
F

0
(y | x)(1−F

0
(y | x))w*(x,y)dxdy∫∫ .

When n increases, W → Weq by (7.4) and by continuity,      ψ(Xi
;W)  → 

     
ψ(X

i
;W

eq
) . The

expectation of this quantity can be consistently estimated by taking a bootstrap
sample   X1

* ,…,    Xn
*  from the empirical distribution of the Xi computing W* and the

sum of the     ψ(Xi
* ;W*) and repeating this over B bootstrap replication. The average of

these sums is a bootstrap estimator of n
       
E ψ(X

i
;W)( ) . More generally the whole

distribution of Tn can be bootstrapped by first sampling    Xi
*  first from the empirical

distribution of the Xi and then   Yi
*  from F0(y|   Xi

* ).

7.3 Proof of Theorem 4.1

Substituting F0(y|x) = F1,n(y|x) – cnR(y|x), one gets from (3.2)

Tn = 
   
nh1/2 F̂(y | x) – F

1,n
(y | x)( )2

f
0
(y | x)dydx∫∫  + bR(f0)

+ 
   
2 c

n
−1 (F̂(y | x)−F

1,n
(y | x))R(y | x)f

0
(y | x)dydx∫∫ ,

= C1,n + bR(f0) + C2,n.

Writing Ii,n(y) = I{Yi,n ≤ y} – Fi,n(y | Xi,n) it is easy to see, in view of (2.4), (7.4) and

(4.1) that C2,n = 
    
2(1 + hO

as
(1))c

n
−1 v

i,n
*

i=1

n∑ , where

  
v

i,n
*  = 

    

W
eq

X
i,n
−x

h

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
I

i,n
(y)R(y | x)f

0
(y | x)dydx∫∫ .
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This is a function of (Xi,n Yi,n) where the density of Xi,n does not vary with n. Thus

we can apply Lemma 7.4 with H = K, g(x, y) = R(y | x)f0(y | x) to get under H1,n, C2,n

  
P⎯ →⎯  0. Now, write

C1,n = 
    
(1 + hO

as
(1))nh1/2 w

ii,n
*

i=1

n

∑ + w
ij ,n
*

1≤i≠ j≤n
∑

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
,

where 
  
w

ij ,n
* = 

     

W
eq

X
i,n
−x

h

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
W

eq

X
j ,n
−x

h

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟∫∫ I
i,n

(y)I
j ,n

(y)f
0
(y | x)dydx .

Applying the triangular version of Lemma 7.3 yields

    
nh1/2E w

ii,n
*

i=1

n

∑
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
= 

    
h−1/2a

1,K
(f

0
)(1 +O(h)) ,

where 
   
a

1,K
(f

0
) has the same structure as (7.5) with F1,n replacing F0, and is such that

    
h−1/2 a

1,K
(f

0
)−a

K
(f

0
) = O((nh3/2)−1/2) .

The treatment of the remaining (U statistic) part of C1,n is a bit more involved

because de Jong’s (1987) work does not deal with triangular arrays. But it does allow

for a kernel varying with n, so his Theorem 2.2 can be adapted to the present context

via the following argument. Starting from a sequence of iid Zi = (Xi, Yi) ~ F0(x, y),

one can build the iid sequence Zi,n = (Xi,    
F

1,n
−1(F

0
(Y

i
| X

i
) | X

i
) ) = (Xi, Hn(Zi)) ~ F1,n(x,

y) (here F1,n(x, y) is the joint cumulative cdf associated with F1,n(y | x) and f(x)). The

moments of a U statistic of the form 
   

h
n
(Z

i,n
,Z

j ,n
)1≤i<j≤n∑  are the same as those of

   
h

n
*(Z

i
,Z

j
)1≤i<j≤n∑ , where 

  
h

n
*(Z

i
,Z

j
)  = 

  
h

n
((X

i
,H

n
(Y

i
)),(X

j
,H

n
(Y

j
))) . This is the

context of de Jong’s theorem and, applying Lemma 7.5, we get

 
     
c

n
−2 w

ij ,n
*

1≤i≠ j≤n
∑ / σ

1,K
(f

0
)   

L⎯ →⎯  N(0, 1),

where 
    
σ

1,K
2 (f

0
) has the same expression as     σK

2 (f
0
) in (7.6) with F1,n replacing F0. Notice

also that 
    
σ

1,K
2 (f

0
) →     σK

2 (f
0
). Combining these results concludes the proof. 

7.4 Proof of Theorem 5.1

We write the proof for θ ∈  R. Expand in Taylor series both     Fθ̂(y | x) and

    fθ̂(y | x)  about the true value θ0. Write 
    
g
θ*
(x,y) = 

      
w(x)wx(y)(fθ0 (y | x) + c

n
fθ* (y | x)) ,

where θ* lies on the line segment joining θ0 and   ̂θ ,   
f  is the derivative of f with
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respect to θ and cn = (  ̂θ  – θ0) = Op(n
–1/2) by Assumption E. Also write    

F
θ
,    
F
θ
 for the

first and second derivative of Fθ with respect to θ. Injecting these into (5.2) yields,

Tn(  ̂θ ) = 
     
nhd/2 F̂(y | x)−F

θ0
(y | x)( )

2

g
θ*
(x,y)dydx∫∫

+ 
     
2nhd/2c

n
F̂(y | x)−F

θ0
(y | x)( )Fθ0 (y | x)g

θ*
(x,y)dydx∫∫

+ 
      
nhd/2c

n
2 F

θ*
(y | x)( )2

g
θ*
(x,y)dydx∫∫ (7.8)

+ 
      
2nhd/2c

n
2 F̂(y | x)−F

θ0
(y | x)( ) Fθ* (y | x)g

θ*
(x,y)dydx∫∫ ,

=    Tn
*(θ

0
)  + 

  
n1/2hd/2O

p
(1)R

n,1
 + 

  
hd/2O

p
(1)R

n,2
 + 

  
hd/2O

p
(1)R

n,3
.

Obviously, the last two terms are op(1). Note that both 
    
g
θ*
(x,y) and 

     
F
θ*
(y | x)g

θ*
(x,y)

satisfies Assumption W so that applying Lemmas 7.3, 7.4 and 7.5 as in the proof of

Theorem 3.1 shows that 
  
R

n,1
 = Op((nhd/2)–1) and the second term is op(1). Finally,

   Tn
*(θ

0
)  =    Tn

(θ
0
) + 

  
n1/2hd/2O

p
(1)R

n,4
, where

  
R

n,4
 ≤ 

     
nhd/2 F̂(y | x)−F

θ0
(y | x)( )

2

w(x)wx(y)hx(y)dydx∫∫ .

Applying the reasoning of Theorem 3.1 shows that 
  
R

n,4
 = Op(1). Therefore, Tn(  ̂θ ) =

   Tn
(θ

0
) + op(1). Because    Tn

(θ
0
) is exactly the same statistic as Tn, we get

     

T
n
(θ̂)−h−d/2a

θ0 ,K
(f
θ0
)(1 + hO

as
(1))

σ
θ0 ,K

(f
θ0
)

  
L⎯ →⎯  

   
N 0, 1( ) . (7.9)

Noting that 
    
a
θ̂,K

(f
θ̂
)  = 

    
a
θ0 ,K

(f
θ0
)  + Op(n

–1/2) and similarly for 
    
σ
θ̂,K
2 (f

θ̂
) , concludes the

proof. 
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