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UNIFORM LAW OF THE LOGARITHM FOR THE CONDITIONAL
DISTRIBUTION FUNCTION AND APPLICATION TO CERTAINTY

BANDS

S. FERRIGNO1, M. MAUMY-BERTRAND2, AND A. MULLER-GUEUDIN1

Abstract. In this paper, we establish exact rate of strong uniform consistency for the
local linear estimator of the conditional distribution function. As a consequence of our
main result, we give asymptotic uniform certainty bands. We illustrate our results with
simulations.
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1. Introduction

1.1. Motivations. Consider (X,Y ), a random vector defined in R×R. Here Y is the variable of
interest and X the concomitant variable. Throughout, we work with a sample {(Xi, Yi)16i6n} of
independent and identically replica of (X,Y ). In the sequel, we impose the following assumptions
upon the distribution of (X,Y ). We will assume that (X,Y ) [resp. X] has a density function
fX,Y [resp. fX ] with respect to the Lebesgue measure. In this paper, we will mostly focus on
the regression function of ψ(Y ) evaluate at X = x defined by

mψ(x) = E (ψ(Y )|X = x) =
1

fX(x)

∫
R
ψ(y)fX,Y (x, y)dy, (1)

whenever this regression function is meaningful. Here and elsewhere, ψ denotes a specified
measurable function, which is assumed to be bounded on each compact subinterval of R. Because
of numerous applications, the problem of estimating the function mψ, the density function fX
and the regression function mψ=Id has been the subject of considerable interest during the

last decades. We can cite for example Nadaraya [14], Watson [17], Devroye [7], Collomb [3],
Härdle [12] and specially mention two articles, Einmahl and Mason [8] and Deheuvels and
Mason [6] for two reasons. The first is that these articles study the functionmψ and its properties.
The second is that we use the tools which are developped in this article in order to establish
our proofs. We now choose ψ(y) = 1{y6t} with t ∈ R arbitrairy but fixed, and 1 the indicator
function, so we obtain the conditional distribution function, for all t ∈ R, defined by

F (t|x) = E
(
1{Y 6t}|X = x

)
= P (Y 6 t|X = x) , for all x ∈ R. (2)

1
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In this article, we study the conditional distribution function and a nonparametric estimator
associated to this function. The distribution function has the advantages of completely charac-
terizing the law of the random considered variable, allowing to obtain the regression function,
the density function, the moments and the quantile function. For example, the conditional dis-
tribution function is used, in medicine domain, for the estimation of the references curves (see
Gannoun et al. [11]).

Introduce the Nadaraya-Watson estimator (see Nadaraya [14] and Watson [17]) of the condi-
tional distribution function F (t|x), defined by

F̂ (0)
n (t|x) =

n∑
i=1

1{Yi6t}K

(
x−Xi

hn

)
n∑
i=1

K

(
x−Xi

hn

) , (3)

where K(·) is a real-valued kernel function defined on R and (hn)n>1 is the bandwidth, and de-
notes a non-random sequence of positive constants satisfying some assumptions. The Nadaraya-
Watson estimator and its properties have been first studied by Stute [15].

Einmahl and Mason [8] have determined, under mild regularity conditions on the joint and
marginal density functions and under hypotheses on the bandwidth hn, exact rates of uniform
strong consistency of kernel-type function estimators and specially for the conditional distribu-
tion function when the random vector (X,Y ) is in R× R. We recall here this result:

Corollary 1.1. (see Corollary 2 in Einmahl and Mason [8].) Let I = [a, b] be a compact
interval. Assume that fX,Y and fX satisfy some regularity conditions and moreover that hn
satisfies hn ↘ 0, nhn ↗ +∞, log h−1n / log logn → +∞ and nhn/ log n → +∞ as n → +∞.
Then we have for any kernel defined in [8], with probability one

lim
n→+∞

sup
t∈R

sup
x∈I

√
nhn

2 log(h−1n )

∣∣∣F̂ (0)
n (t|x)− Ẽ

(
F̂ (0)
n (t|x)

)∣∣∣ = σF (I) (4)

where the centering term is

Ẽ
(
F̂ (0)
n (t|x)

)
=

E
(

1{Y 6t}K
(
x−X
hn

))
hnE

(
f̂n(x)

) ,

and

f̂n(x) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
(5)

is the kernel density estimator of fX(x), and

σ2F (I) =
||K||22

4 inf
x∈I

fX(x)

and ||K||22 =
∫
RK

2(u)du.

Remark 1.2. The limit σF (I) in Equation (4) does not depend on the distribution of Y .

In a more recent article, Einmahl and Mason [9] have given an uniform in bandwidth con-
sistency of kernel-type function estimators, in the case where (X,Y ) is in Rr × R, r ∈ N∗, and
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specially for the estimator F̂
(0)
n (t|x). Moreover, Blondin establishes in [2] a similar result of the

Corollary 1.1 in the multivariate case, i.e. (X,Y ) is in Rr×Rd, r, d ∈ N∗. The major difficulty is
that the approach developed by Einmahl and Mason [8] and Deheuvels and Mason [6], based on
the empirical processes, has not been used in the multivariate case. The results on the empirical
processes indexed by classes of functions are established only for classes of real-valued functions.

It is a well-known fact the asymptotic bias of the Nadaraya-Watson estimator has a bad form.
To overcome this problem, there exists an alternative: the local polynomial techniques described
in Fan and Gijbels [10]. Mint El Mouvid [13] study the local linear estimator of the conditional
distribution function using U -statistics. But this method implies heavy calculations. Here, we
do not use U -statistics in our proofs but the theory of the empirical processes.

The present paper is organized as follows. First, we introduce the main notations and hy-
potheses needed for our task. Then we establish a uniform law of the logarithm for the local
linear estimator of the conditional distribution function (see Theorem 2.1 in Section 2). In Sec-
tion 3, we show that limit laws of the logarithm are useful in the construction of asymptotic
uniform certainty bands for the true considered function. Such certainty bands are obtained
from simulations and displayed in Section 4. Finally, Section 5 is devoted to the proofs of our
results.

1.2. Notations and assumptions. Let (X1, Y1), (X2, Y2), . . . , be independent and identically
distributed replica of (X,Y ) in R× R. Let I = [a, b], J = [a′, b′] ⊃ I, two fixed compacts of R.

First, we impose the following set of assumptions upon the distribution of (X,Y ):

(F.1) fX,Y is continuous on J × R and fX is continuous and strictly positive on J ;
(F.2) Y 1{X∈J} is bounded on R.

K denotes a real-valued kernel function defined on R, fulfilling the conditions:

(K.1) K is right-continuous function with bounded variation on R;
(K.2) K is compactly supported and

∫
RK(u)du = 1;

(K.3)
∫
R uK(u)du = 0 and

∫
R u

2K(u)du 6= 0.

For such a kernel K, we set for any integer r > 0, µr(K) =
∫
R u

rK(u)du, and ||K||22 =∫
RK

2(u)du.

Further, introduce the following growth conditions on the sequence (hn)n>1:

(H.1) hn → 0, as n→ +∞;
(H.2) nhn/ log n→ +∞, as n→ +∞;
(H.3) hn ↘ 0 and nhn ↗ +∞, as n→ +∞;
(H.4) log(h−1n )/ log logn→ +∞, as n→ +∞.

Remark 1.3. The hypotheses (H.1-2) are necessary and sufficient for our uniform probability
convergence result (see Theorem 2.1). In order to have almost surely convergence results, we
should add the hypotheses (H.3-4) (see Blondin [2]).

Our aim will be to establish the strong uniform consistency of the local linear estimator of
the conditional distribution function, defined by

F̂ (1)
n (t|x) =

f̂n,2(x)r̂n,0(x, t)− f̂n,1(x)r̂n,1(x, t)

f̂n,0(x)f̂n,2(x)−
(
f̂n,1(x)

)2 (6)
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where (1) denotes the order 1 of the local polynomial estimator, and

f̂n,j(x) =
1

nhn

n∑
i=1

(
x−Xi

hn

)j
K

(
x−Xi

hn

)
, for j = 0, 1, 2, (7)

r̂n,j(x, t) =
1

nhn

n∑
i=1

1{Yi6t}

(
x−Xi

hn

)j
K

(
x−Xi

hn

)
, for j = 0, 1. (8)

Remark 1.4.

(1) The Nadaraya-Watson estimator F̂
(0)
n (t|x) can be also written with the functions f̂n,j

and r̂n,j as

F̂ (0)
n (t|x) =

r̂n,0(x, t)

f̂n,0(x)
·

It is the local polynomial estimator of order 0 of the conditional distribution function.
Uniform consistency result for this estimator have been given by Einmahl and Mason [8].

(2) The estimator F̂
(1)
n (t|x) is better than the Nadaraya-Watson estimator when the design

is random and has the favorable property to reproduce polynomial of degree 1. Precisely,
the local linear estimator has a high minimax efficiency among all possible estimators,
including nonlinear smoothers (see Fan and Gijbels [10]).

(3) We have state in the beginning of this Section that we restrict ourselves to the local
polynomial estimator of degree 1. The local polynomial estimator can be generalized to
the degrees p > 2, but the equations become more complicated. The general results will
find elsewhere. We show briefly the form of the local polynomial estimator of order 2:

F̂ (2)
n (t|x) =

a1r̂n,0(x, t) + a2r̂n,1(x, t) + a3r̂n,2(x, t)

a1f̂n,0(x) + a2f̂n,1(x) + a3f̂n,2(x)

where


a1 = f̂n,2(x)f̂n,4(x)−

(
f̂n,3(x)

)2
a2 = f̂n,2(x)f̂n,3(x)− f̂n,1(x)f̂n,4(x)

a3 = f̂n,1(x)f̂n,3(x)−
(
f̂n,2(x)

)2
and f̂n,3, f̂n,4 and r̂n,2 are the direct extensions of the definitions given in Equations (7) and (8).

Now, we study the consistency of the estimator F̂
(1)
n (t|x) via the following decomposition:

F̂ (1)
n (t|x)− F (t|x) = F̂ (1)

n (t|x)− Ẽ
(
F̂ (1)
n (t|x)

)
︸ ︷︷ ︸

(1)

+ Ẽ
(
F̂ (1)
n (t|x)

)
− F (t|x)︸ ︷︷ ︸

(2)

where, following the ideas of Deheuvels and Mason [6], the centering term is defined by

Ẽ
(
F̂ (1)
n (t|x)

)
=
fn,2(x)rn,0(x, t)− fn,1(x)rn,1(x, t)

fn,0(x)fn,2(x)− f2n,1(x)
,

where fn,j(x) = E
(
f̂n,j(x)

)
for j = 0, 1, 2 and rn,j(x, t) = E (r̂n,j(x)) for j = 0, 1.

The term (1) is the random part and is the object of our main theorem given in Section 2.
Under (F.1-2), (H.1) and (K.1-3), the term (2) converges uniformly to 0 over (x, t) ∈ I×R. The
argument to proof this is the Bochner’s Lemma (see for instance [8], or our Equations (25) in
Section 5).
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Remark 1.5. If X and Y are independent variables, then Ẽ
(
F̂

(1)
n (t|x)

)
= P(Y 6 t).

2. Main result

We have now all the ingredients to state our main result, the following uniform law of the
logarithm concerning the local linear estimator of the conditional distribution function, cap-
tured in Theorem 2.1 below. We give both probability convergence results, and almost surely
convergence results.

Theorem 2.1. Under (F.1-2), (H.1-2) and (K.1-3), we have probability convergence results:

sup
x∈I

√
nhn

2 log(h−1n )

∣∣∣F̂ (1)
n (t|x)− Ẽ

(
F̂ (1)
n (t|x)

)∣∣∣ P−−−−−→
n→+∞

σF,t(I), (9)

where

σ2F,t(I) = sup
x∈I

(
F (t|x)(1− F (t|x))

fX(x)

)∫
R
K2(u)du = ||K||22 sup

x∈I

(
F (t|x)(1− F (t|x))

fX(x)

)
·

Moreover, we have

sup
t∈R

sup
x∈I

√
nhn

2 log(h−1n )

∣∣∣F̂ (1)
n (t|x)− Ẽ

(
F̂ (1)
n (t|x)

)∣∣∣ P−−−−−→
n→+∞

σF (I), (10)

where

σ2F (I) = sup
t∈R

sup
x∈I

(
F (t|x)(1− F (t|x))

fX(x)

)∫
R
K2(u)du =

||K||22
4 inf
x∈I

fX(x)
·

Under (F.1-2), (H.2-4) and (K.1-3) we have almost surely convergence results:

sup
x∈I

√
nhn

2 log(h−1n )

∣∣∣F̂ (1)
n (t|x)− Ẽ

(
F̂ (1)
n (t|x)

)∣∣∣ −−−−−→
n→+∞

σF,t(I), almost surely. (11)

Moreover, we have

sup
t∈R

sup
x∈I

√
nhn

2 log(h−1n )

∣∣∣F̂ (1)
n (t|x)− Ẽ

(
F̂ (1)
n (t|x)

)∣∣∣ −−−−−→
n→+∞

σF (I), almost surely. (12)

The proof of Theorem 2.1 is postponed to Section 5. In the following section, we present some
direct applications of Theorem 2.1.

Remark 2.2.

(1) The hypothesis (F.2) says that we can found a real M > 0 such that if X ∈ J then

|Y | 6 M . This implies that for x ∈ I and for enough hight n, F̂
(1)
n (t|x) = 0 if t < −M

and F̂
(1)
n (t|x) = 1 if t > M . Our results are then only interesting for |t| 6 M . But this

is not very restrictive, since no upper bound is imposed for the choice of M .
(2) In a next paper, we will give an uniform in bandwidth result. For our applications in

the Section 4, a reference choice for hn is given by minimizing the MISE criteria (see for
instance Berlinet [1] or Deheuvels [6]).

hn ∝ n−1/5.
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(3) The choice of the kernel K is not important in practice. The most common used kernels
are the Gaussian, the indicator function over [−1

2 ,
1
2 ], and the Epanechnikov kernels (see

for instance Deheuvels [4]). Note that the Gaussian kernel is not compactly supported,
but our results can be extended to this case.

3. Uniform asymptotic certainty bands

We show now how our Theorem 2.1 can be used to construct uniform asymptotic certainty
bands for F (t|x).

Let remember the kernel density estimator f̂n(x) of fX(x) (see Equation (5)). It is easy to
deduce from the Proof in Section 5 (see more precisely Equations (23) and (25)), that under
(F.1-2), (H.1-2), (K.1-3) we have,

sup
x∈I

∣∣∣∣∣ f̂n(x)

fX(x)
− 1

∣∣∣∣∣ P−−−−−→
n→+∞

0. (13)

Now, we need the following theorem:

Theorem 3.1. Under (F.1-2), (H.1-2), (K.1-3) we have,

sup
t∈R

sup
x∈I

√
nhn

2 log(h−1n )
f̂n(x)

∣∣∣F̂ (1)
n (t|x)− Ẽ

(
F̂ (1)
n (t|x)

)∣∣∣ P−−−−−→
n→+∞

‖K‖2
2
· (14)

Remark 3.2. The matching almost surely convergence result can also be obtained, by assuming
(H.2-4) instead of (H.1-2).

The proof of this theorem is similar to the proof of Theorem 2.1, in Section 5. To resume, it
is a direct application of our Theorem 5.1, with c(x) = 1/

√
fX(x) and d(x) = −F (t|x)/

√
fX(x)

for x ∈ I, combined with Equation (13).

The interest of this result is that the right part does not depend on the unknown density fX .
We built now the certainty bands from this uniform law of the logarithm. We introduce

Ln(x) :=
‖K‖2

2

√
nhn

2 log(h−1n )
f̂n(x)

−1

such that

sup
t∈R

sup
x∈I
{Ln(x)}−1

∣∣∣F̂ (1)
n (t|x)− Ẽ

(
F̂ (1)
n (t|x)

)∣∣∣ P−−−−−→
n→+∞

1.

Now, this probability convergence result enables us to obtain uniform asymptotic certainty

bands for Ẽ
(
F̂

(1)
n (t|x)

)
in the following sense. For each 0 < ε < 1, we have, as n→ +∞:

P
{
Ẽ
(
F̂ (1)
n (t|x)

)
∈
[
F̂ (1)
n (t|x)± (1 + ε)Ln(x)

]
, ∀(x, t) ∈ I × R

}
→ 1, (15)

and

P
{
Ẽ
(
F̂ (1)
n (t|x)

)
∈
[
F̂ (1)
n (t|x)± (1− ε)Ln(x)

]
, ∀(x, t) ∈ I × R

}
→ 0. (16)
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Remark 3.3. Then, for all 0 < ε < 1 and 0 < δ < 1, there exists n0 = n0(ε, δ) such that for all
n > n0 and with probability greater than 1− δ:

Ẽ
(
F̂ (1)
n (t|x)

)
∈
[
F̂ (1)
n (t|x)± (1 + ε)Ln(x)

]
, uniformly in (x, t) ∈ I × R, (17)

and

Ẽ
(
F̂ (1)
n (t|x)

)
/∈
[
F̂ (1)
n (t|x)± (1− ε)Ln(x)

]
, for some (x, t) ∈ I × R. (18)

Whenever (15) and (16) hold jointly for each 0 < ε < 1, we will say that the intervals[
F̂ (1)
n (t|x)± Ln(x)

]
(19)

provide asymptotic certainty bands (at an asymptotic confidence level of 100%) for Ẽ
(
F̂

(1)
n (t|x)

)
,

uniformly in (x, t) ∈ I × R.

We have noted in the Section 1 that the bias part can be neglected. Then, certainty bands
given in Equation (19) provide also asymptotic certainty bands for the attempted function F (t|x)
uniformly in (x, t) ∈ I × R.

Remark 3.4.

(1) Probability convergence is sufficient for forming certainty bands, and requires less re-
strictive hypotheses on the bandwidth hn than the almost surely convergence results.
That is why we use only the probability convergence result of our main theorem.

(2) Following a suggestion of Deheuvels and Derzko [5], we use, for these upper and lower
bounds for F (t|x), the qualification of certainty bands, rather that of confidence bands,
because there is no preassigned confidence level α ∈ (0, 1). Some authors (see for instance
Deheuvels and Mason [6], or Blondin [2]) have used the term confidence bands.

4. A simulation study

In this paragraph, the certainty bands introduced above are constructed on simulated data.
We worked with sample size n = 1000 and considered the case: X ∼ N (0, 1) where N (0, 1)
denotes the Gaussian distribution with mean 0 and standard deviation 1. We present simulations
for two models:

(1) We introduce λ(x) = 1 + x2, and suppose in a first model that conditionally to X = x,

for every x ∈ R, Y follows an exponential distribution with mean (λ(x))−1, that is
F (t|x) = 1− exp{−λ(x)t} for every (x, t) ∈ R× R.

(2) We suppose in a second model that conditionally to X = x, for every x ∈ R, Y follows

a Gaussian distribution with mean (λ(x))−1 and variance (λ(x))−2.

For the kernel K, we opted for the Epanechnikov kernel. For the bandwidth, we selected
hn = n−1/5. The results are presented in Figures 1 and 2, for x = 0 and x = 1. In the two
cases, E(Y |X = x) = (λ(x))−1, then for practical reasons in the graphic representation, we have
chosen t ∈ [0, 3].

The certainty bands are adequate because they contained the true conditional distribution
function, for every t ∈ [0, 3]. The fact that the true function did not belong to our bands for
some points was expected: it is due to the ε term in Equations (17) and (18).



8 FERRIGNO, MAUMY-BERTRAND, MULLER-GUEUDIN
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Figure 1. First Model: true conditional distribution function F (t|x) in

full line, estimated conditional distribution F̂
(1)
n (t|x) in black dashed line,

and certainty bands in grey dotted line, for x = 0 (left), and x = 1 (right).
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Figure 2. Second Model: true conditional distribution function F (t|x) in
full line, estimated conditional distribution F̂

(1)
n (t|x) in black dashed line,

and certainty bands in grey dotted line, for x = 0 (left), and x = 1 (right).

5. Proof of Theorem 2.1

We prove the probability convergence result, uniformly in (x, t) ∈ I × R. The uniform in x ∈ I
result (less difficult) is left to the reader. The almost surely convergence result needs some
additional arguments, based on the Borel-Cantelli’s Lemma (see for instance Blondin [2]).

Step 1:

In a first step, we introduce a general local empirical process. For any j = 0, 1, 2 and contin-
uous real valued functions c(·) and d(·) on J , set for x ∈ J , t ∈ R,

Wn,j(x, t) =

n∑
i=1

(
c(x)1{Yi6t} + d(x)

)
Kj

(
x−Xi

hn

)
− nE

((
c(x)1{Y 6t} + d(x)

)
Kj

(
x−X
hn

))
(20)

where Kj(u) = ujK(u), for j = 0, 1, 2 and u ∈ R.
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For every fixed t ∈ R, and j = 0, 1, 2, the process Wn,j(·, t) can be represented as a bivariate
empirical process indexed by a class of functions. More precisely,

Wn,j(·, t) =
√
nαn(g) =

n∑
i=1

{g(Xi, Yi)− E (g(X,Y ))},

where αn is the empirical process based upon (X1, Y1), . . . , (Xn, Yn) and indexed by a suitable
subclass Fn,j of the class of functions defined on J × R

Fj =

{
(x, y) 7→ {c(z)1y6t + d(z)}Kj

(
z − x
h

)
: t ∈ R, z ∈ I, 0 < h < 1

}
·

We give now the result from which our main Theorem 2.1 follows.

Theorem 5.1. Under (F.1-2), (H.1-2), (K.1-3) we have,√
1

2nhn log(h−1n )
sup
t∈R

sup
x∈I
|Wn,j(x, t)|

P−−−−−→
n→+∞

σW,j(I)· (21)

Under (F.1-2), (H.2-4), (K.1-3) we have,√
1

2nhn log(h−1n )
sup
t∈R

sup
x∈I
|Wn,j(x, t)| −−−−−→

n→+∞
σW,j(I), a.s. (almost surely) (22)

where

σ2W,j(I) = sup
t∈R

sup
x∈I

E
(∣∣c(x)1{Y 6t} + d(x)

∣∣2 |X = x
)
fX(x)

∫
R
K2
j (u)du.

Proof: The proof is divided into an upper bound result, and a lower bound result.

Upper bound part: The proof of the upper bound result is divided into two steps. The
hypothesis (F.2) is important in the upper bound part: we can found a real M > 0 such that if
X ∈ J then |Y | 6M .

Step A: Discretization in x ∈ I and t ∈ [−M,M ]. First, we examine the behavior of our process
(x, t) 7→Wn,j(x, t) on an appropriate chosen grid of I × [−M,M ], with increment δhn for I and
increment δ for [−M,M ], for fixed 0 < δ < 1:

zi,n = a+ iδhn, i = 1, . . . , in =
[
b−a
δhn

]
,

tl = −M + lδ, l = 1, . . . , L =
[
2M
δ

]
,

where [u] 6 u < [u] + 1 represents the integer part of u.
The study of the supremum on I× [−M,M ] is then reduced to the study of the maximum on

a finite number of points. The empirical process is then indexed on the finite class of functions

Fn,j =

{
(x, y) 7→ {c(zi,n)1y6tl + d(zi,n)}Kj

(
zi,n − x
hn

)
: i = 1, . . . , in, l = 1, . . . , L

}
·

The useful tool in this Step is the Bernstein inequality (see for instance Deheuvels and Ma-
son [6]).

Step B: Oscillation. Next we study the behavior of our process between the grid points zi,n and
tl for 1 6 i 6 in and 1 6 l 6 L. The objective of this Step is to study the maximal oscillation
between the grid points. The useful tool in this Step is the Talagrand inequality for VC Classes
(see for instance Talagrand [16], Einmahl and Mason [8] or Blondin [2]).
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Few words about the almost surely convergence (blocking argument). To prove the almost surely
convergence, we use the precedent Steps and the Borel-Cantelli’s Lemma. The problem is
simplified in a finite dimensional problem, by considering the empirical process indexed by finite
subclasses Fnk,j , and for a subsequence (nk)k>1. The almost sure convergence of the empirical
processes is extended for processes

√
nαn indexed by the whole F , thanks to relative compacity

technics.

Lower bound part: The lower bound result is proved with technical results based on Poisson
processes, and needs the Bochner’s Lemma. In this part, the hypothesis (F.1) is particularly
important.

Few words about the almost surely convergence. The almost surely convergence is obtained with
the same arguments, associated to the Borel-Cantelli’s Lemma (see Einmahl and Mason [8]).

Step 2: We give now useful corollaries of Theorem 5.1. We give only the probability convergence
results. The almost surely convergence results are similar. It suffice to take hypotheses (H.2-4)
instead of hypotheses (H.1-2).

Corollary 5.2. Under (F.1-2), (H.1-2) and (K.1-3), we have, by application of Theorem 5.1
with c(x) = 0, d(x) = 1, j = 0, 1, 2:√

nhn

2 log(h−1n )
sup
x∈I
|f̂n,j(x)− fn,j(x)| P−−−−−→

n→+∞
σf,j(I), (23)

where

σ2f,j(I) = sup
x∈I
{fX(x)}

∫
R
Kj(u)2du = ||Kj ||22 sup

x∈I
{fX(x)} ·

Corollary 5.3. Under (F.1-2), (H.1-2) and (K.1-3), we have, by application of Theorem 5.1
with c(x) = 1, d(x) = 0, j = 0, 1:√

nhn

2 log(h−1n )
sup
t∈R

sup
x∈I
|r̂n,j(x, t)− rn,j(x, t)|

P−−−−−→
n→+∞

σr,j(I) (24)

where

σ2r,j(I) = ||Kj ||22 sup
t∈R

sup
x∈I

{
E
(
1{Y 6t}|X = x

)
fX(x)

}
.

Moreover, under (F.1-2), (H.1) and (K.1-3), the Bochner’s Lemma (cf for instance [8]) implies,
uniformly in (x, t) ∈ I × R:

fn,0(x) = fX(x)µ0(K) + o(1),
fn,1(x) = fX(x)µ1(K) + o(1),
fn,2(x) = fX(x)µ2(K) + o(1),
rn,0(x, t) = fX(x)F (t|x) + o(1),
rn,1(x, t) = fX(x)F (t|x)µ1(K) + o(1),

(25)
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where µj(K) =
∫
RKj(u)du, for j = 0, 1, 2. The hypotheses (K.2-3) imply that µ0(K) = 1,

µ1(K) = 0 and µ2(K) 6= 0.

Step 3: In a third step, the deviation F̂
(1)
n (t|x)− Ẽ

(
F̂

(1)
n (t|x)

)
can be asymptotically expressed

as a linear function of the bivariate empirical process.

F̂
(1)
n (t|x)− Ẽ

(
F̂

(1)
n (t|x)

)

=
r̂n,0(x, t)f̂n,2(x)− f̂n,1(x)r̂n,1(x, t)

f̂n,2(x)f̂n,0(x)− f̂2n,1(x)
− rn,0(x, t)fn,2(x)− fn,1(x)rn,1(x, t)

fn,2(x)fn,0(x)− f2n,1(x)
, (26)

=
r̂n,0(x, t)f̂n,2(x)− rn,0(x, t)fn,2(x) + fn,1(x)rn,1(x, t)− f̂n,1(x)r̂n,1(x, t)

f̂n,2(x)f̂n,0(x)− f̂2n,1(x)
(27)

+
(rn,0(x, t)fn,2(x)− fn,1(x)rn,1(x, t))

(
fn,2(x)fn,0(x)− f2n,1(x)− f̂n,2(x)f̂n,0(x) + f̂2n,1(x)

)
(
f̂n,2(x)f̂n,0(x)− f̂2n,1(x)

)(
fn,2(x)fn,0(x)− f2n,1(x)

) ·(28)

First, studying the numerator of the expression (27), we have

Num(27) =
((
f̂n,2(x)− fn,2(x)

)
+
(
fn,2(x)− fX(x)µ2(K)

)
+ fX(x)µ2(K)

)
(r̂n,0(x, t)− rn,0(x, t))

+
((
rn,0(x, t)− fX(x)F (t|x)

)
+ fX(x)F (t|x)

) (
f̂n,2(x)− fn,2(x)

)
+fn,1(x) (rn,1(x, t)− r̂n,1(x, t))

+
((
r̂n,1(x, t)− rn,1(x, t)

)
+ rn,1(x, t)

) (
fn,1(x)− f̂n,1(x)

)
.

Let αn =

√
nhn

2 log(h−1n )
−→ +∞ as n −→ +∞. Combining with previous corollaries and

results (25), we see that

αn supt∈R supx∈I |Num(27)− ĝn(x, t)| P−−−−−→
n→+∞

0

where ĝn(x, t) = fX(x)µ2(K) (r̂n,0(x, t)− rn,0(x, t))− fX(x)F (t|x)
(
f̂n,2(x)− fn,2(x)

) (29)

Now, we show that the denominator of the expression (27), now denoted Den(27), satisfies

sup
x∈I

∣∣∣∣Den(27)− 1

fX(x)2µ2(K)

∣∣∣∣ P−−−−−→
n→+∞

0 (30)

Indeed, for all ε > 0, let the event

Aε =

{
sup
x∈I

∣∣∣∣Den(27)− 1

fX(x)2µ2(K)

∣∣∣∣ > ε

}
,
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and for all B > 0, let the event

B =

{
sup
x∈I

∣∣∣(f̂n,2(x)f̂n,0(x)− f̂n,1(x)2
)
fX(x)2µ2(K)

∣∣∣ > B

}
·

Then,

P(Aε) = P(Aε ∩ B) + P(Aε ∩ Bc)
and

P(Aε ∩ Bc) 6 P(Bc) 6 P
(

sup
x∈I

∣∣∣f̂n,2(x)f̂n,0(x)− f̂n,1(x)2
∣∣∣ 6 B

infx∈I fX(x)2µ2(K)

)
,

taking B = 1
2

(
infx∈I fX(x)2µ2(K)

)2
, we obtain

P(Aε∩Bc) 6 P
(

sup
x∈I

∣∣∣f̂n,2(x)f̂n,0(x)− f̂n,1(x)2 − fX(x)2µ2(K)
∣∣∣ > 1

2
inf
x∈I

fX(x)2µ2(K)

)
−−−−−→
n→+∞

0·

This last limit is obtained by the following trivial decomposition

f̂n,2(x)f̂n,0(x)− f̂n,1(x)2 − fX(x)2µ2(K) =((
f̂n,2(x)− fn,2(x)

)
+
(
fn,2(x)− fX(x)µ2(K)

)
+ fX(x)µ2(K)

)
·
((
f̂n,0(x)− fn,0(x)

)
+
(
fn,0(x)− fX(x)

))
+
((
f̂n,2(x)− fn,2(x)

)
+
(
fn,2(x)− fX(x)µ2(K)

))
fX(x),

and by applying the corollary 5.2 and results (25), combined with the boundedness property of
fX on I.

Now,

P(Aε ∩ B) 6 P
(

sup
x∈I

∣∣∣f̂n,2(x)f̂n,0(x)− f̂n,1(x)2 − fX(x)2µ2(K)
∣∣∣ > εB

)
−−−−−→
n→+∞

0

for the same reason as before. We have then proved (30).

Combining (29) and (30), we have:

αn sup
t∈R

sup
x∈I

∣∣∣∣(27)− r̂n,0(x, t)− rn,0(x, t)
fX(x)

− F (t|x)

fX(x)µ2(K)

(
f̂n,2(x)− fn,2(x)

)∣∣∣∣ P−−−−−→
n→+∞

0· (31)

This last limit is due to the following lemma:

Lemma 5.4. Let I ⊂ Rd, with d ∈ N∗, and Xn, Zn, Yn and Y random functions defined on I
such that

sup
w∈I
|Xn(w)− Zn(w)| P−−−−−→

n→+∞
0, sup

w∈I
|Yn(w)− Y (w)| P−−−−−→

n→+∞
0,

and for enough high B > 0, limn→∞ P(supw∈I |Xn(w)| > B) = 0 and Y is bounded on I. Then,

sup
w∈I
|Xn(w)Yn(w)− Zn(w)Y (w)| P−−−−−→

n→+∞
0.
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Proof:

sup
I
|XnYn − ZnY | 6 sup

I
|Xn| sup

I
|Yn − Y |+ sup

I
|Y | sup

I
|Xn − Zn| ,

then for all ε > 0,

P
(

sup
I
|XnYn − ZnY | > ε

)
6 P

(
sup
I
|Xn| sup

I
|Yn − Y | >

ε

2

)
+ P

(
sup
I
|Y | sup

I
|Xn − Zn| >

ε

2

)
.

Introducing the event B = {supI |Y | > B} with B > 0, we bound the second term

P
(

sup
I
|Y | sup

I
|Xn − Zn| >

ε

2

)
6 P (B) + P

(
sup
I
|Xn − Zn| >

ε

2B

)
−−−−−→
n→+∞

0

for enough high B. Now, we bound the first term

P
(

sup
I
|Xn| sup

I
|Yn − Y | >

ε

2

)
6 P

(
sup
w∈I

sup
n∈N
|Xn(w)| > B

)
+ P

(
sup
I
|Yn − Y | >

ε

2B

)
6 P

(
sup
w∈I
|Xn| > B

)
+ P

(
sup
I
|Yn − Y | >

ε

2B

)
−−−−−→
n→+∞

0

for enough high B. �

Let’s studying now the second part (28) in the expression of F̂
(1)
n (t|x) − Ẽ

(
F̂

(1)
n (t|x)

)
. Note

that the numerator is equal to:

(rn,0(x, t)fn,2(x)− fn,1(x)rn,1(x, t))
(
fn,2(x)fn,0(x)− f2n,1(x)− f̂n,2(x)f̂n,0(x) + f̂2n,1(x)

)
·

The first term Num1(28) = rn,0(x, t)fn,2(x) − fn,1(x)rn,1(x, t) of this last expression converges
uniformly, thanks to (25):

sup
t∈R

sup
x∈I

∣∣Num1(28)− fX(x)2µ2(K)F (t|x)
∣∣ −−−−−→
n→+∞

0. (32)

With the same arguments as in the study of the numerator of (27), we study the second term

Num2(28) = fn,2(x)fn,0(x)− f2n,1(x)− f̂n,2(x)f̂n,0(x) + f̂2n,1(x)

and show that

αn sup
x∈I

∣∣∣Num2(28)− fX(x)µ2(K)
(
fn,0(x)− f̂n,0(x)

)
− fX(x)

(
fn,2(x)− f̂n,2(x)

)∣∣∣ P−−−−−→
n→+∞

0·

(33)
Thanks to the boundedness property of fX on I, and the corollary 5.2, we have, by the Lemma

5.4:

αn supt∈R supx∈I

∣∣∣Num(28)− ĵn(x, t)
∣∣∣ P−−−−−→
n→+∞

0

where ĵn(x, t) = fX(x)3µ2(K)F (t|x)
(
µ2(K)

(
fn,0(x)− f̂n,0(x)

)
+
(
fn,2(x)− f̂n,2(x)

))
(34)

The denominator in (28) can be expressed as

Den(28) = Den(27)
1

fn,2(x)fn,0(x)− fn,1(x)2
·
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It is clear that, thanks to (25)

sup
x∈I

∣∣∣∣ 1

fn,2(x)fn,0(x)− fn,1(x)2
− 1

fX(x)2µ2(K)

∣∣∣∣ −−−−−→n→+∞
0·

Then, tanks to the boundedness property of fX on I, the Lemma 5.4 says that

sup
x∈I

∣∣∣∣Den(28)− 1

fX(x)4µ2(K)2

∣∣∣∣ P−−−−−→
n→+∞

0· (35)

Finally, we have, thanks to the Lemma 5.4

αn sup
t∈R

sup
x∈I

∣∣∣∣(28)− F (t|x)

fX(x)

(
fn,0(x)− f̂n,0(x)

)
− F (t|x)

fX(x)µ2(K)

(
fn,2(x)− f̂n,2(x)

)∣∣∣∣ P−−−−−→
n→+∞

0·

(36)

Remember that F̂
(1)
n (t|x)− Ẽ

(
F̂

(1)
n (t|x)

)
= (27) + (28). Then, combining (31) and (36) it is

easy to see finally that

αn sup
t∈R

sup
x∈I

∣∣∣∣F̂ (1)
n (t|x)− Ẽ

(
F̂ (1)
n (t|x)

)
+
F (t|x)

fX(x)

(
f̂n,0(x)− fn,0(x)

)
− r̂n,0(t, x)− rn,0(t, x)

fX(x)

∣∣∣∣ P−−−−−→
n→+∞

0·

(37)

Step 4:

Now choosing c(x) =
1

fX(x)
and d(x) = −F (t|x)

fX(x)
in the definition of Wn,0(x, t), the local

empirical process, it is easy to show that

Wn,0(x, t) =
nh

fX(x)
r̂n,0(x, t)−

F (t|x)

fX(x)
× nhf̂n,0(x)− nh

fX(x)
rn,0(x, t) +

F (t|x)

fX(x)
× nhfn,0(x)

=
nh

fX(x)

[
r̂n,0(x, t)− rn,0(x, t)− F (t|x)(f̂n,0(x)− fn,0(x))

]
·

Let An =
√

2nhn log(h−1n )
−1

, so

AnWn,0(x, t) = αn

(
r̂n,0(t, x)− rn,0(t, x)

fX(x)
− F (t|x)

fX(x)

(
f̂n,0(x)− fn,0(x)

))
. (38)

Then

αn

(
F̂ (1)
n (t|x)− Ẽ

(
F̂ (1)
n (t|x)

))
= AnWn,0(x, t)

+αn

(
F̂ (1)
n (t|x)− Ẽ

(
F̂ (1)
n (t|x)

)
+
F (t|x)

fX(x)

(
f̂n,0(x)− fn,0(x)

)
− r̂n,0(t, x)− rn,0(t, x)

fX(x)

)
,

and applying Theorem 5.1

sup
t∈R

sup
x∈I

∣∣∣αn (F̂ (1)
n (t|x)− Ẽ

(
F̂ (1)
n (t|x)

))∣∣∣ P−−−−−→
n→+∞

σF (I) (39)

with
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σ2F (I) = sup
t∈R

sup
x∈I

E

([
1{Y 6t}

fX(x)
− F (t|x)

fX(x)

]2
|X = x

)
fX(x)||K||22

= sup
t∈R

sup
x∈I

E
([

1{Y 6t} − E(Y 6 t|X = x)
]2 |X = x

)
fX(x)

||K||22

= sup
t∈R

sup
x∈I

(
F (t|x)(1− F (t|x))

fX(x)

)
||K||22.

This finishes the proof of Theorem 2.1.
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