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The Roquette category of finite p-groups

Serge Bouc

Abstract : Let p be a prime number. This paper introduces the Roquette category
R, of finite p-groups, which is an additive tensor category containing all finite p-groups
among its objects. In Ry, every finite p-group P admits a canonical direct summand 9P,
called the edge of P. Moreover P splits uniquely as a direct sum of edges of Roquette
p-groups, and the tensor structure of R, can be described in terms of such edges.

The main motivation for considering this category is that the additive functors from R,
to abelian groups are exactly the rational p-biset functors. This yields in particular very
efficient ways of computing such functors on arbitrary p-groups : this applies to the
representation functors Ry, where K is any field of characteristic 0, but also to the

functor of units of Burnside rings, or to the torsion part of the Dade group.

AMS Subject classification : 18B99, 19A22, 20C99, 20J15.

Keywords : p-group, Roquette, rational, biset, genetic.

1. Introduction

Let p be a prime number. This article introduces the Roquette category R,
of finite p-groups, which is an additive tensor category with the following
properties :

e Every finite p-group can be viewed as an object of R,. The tensor
product of two finite p-groups P and () in R, is the direct product
P x Q.

e In R,, any finite p-group has a direct summand OP, called the edge
of P, such that
P= @ O(P/N)

NaP
Moreover, if the center of P is not cyclic, then 0P = 0.

e In R, every finite p-group P decomposes as a direct sum

P= ¢ OR ,
ReS
where § is a finite sequence of Roquette groups, i.e. of p-groups of
normal p-rank 1, and such a decomposition is essentially unique. Given
the group P, such a decomposition can be obtained explicitly from the
knowledge of a genetic basis of P (Theorem 3.11 and Proposition 5.14).



e The tensor product P x 9@ of the edges of two Roquette p-groups P
and () is isomorphic to a direct sum of a certain number vpg of copies
of the edge J(P ¢ () of another Roquette group (where both vpg and
P ¢ @ are known explicitly - see Theorem 4.20 and Corollary 4.24).

e The additive functors from R, to the category of abelian groups are
exactly the rational p-biset functors introduced in [4].

The latter is the main motivation for considering this category : any struc-
tural result on R, will provide for free some information on such rational
functors for p-groups, e.g. the representation functors Rx, where K is a field
of characteristic 0 (see [2], [3], and L. Barker’s article [1]), the functor of
units of Burnside rings ([6]), or the torsion part of the Dade group ([5]).

In particular, the above results on R,, yield isomorphisms describing the
structure of some p-groups as objects of this category, and this is enough to
compute the evaluations of rational p-biset functors. For example

(Dg)" 2 1@ (5" — 1) - 9C,

in Ry (Equation 5.25). More generally, Proposition 5.41 gives a formula
for (Dom)™. A straightforward consequence, applying the functor Rg, is the
following

Example :  For any n € N, the group (Dg)™ has 5™ conjugacy classes of
cyclic subgroups.

Another important by-product of the above result giving the tensor struc-
ture of R, is the explicit description of a genetic basis of a direct product
P x @, in terms of a genetic basis of P and a genetic basis of ) (Theo-
rem 5.20). This allows in particular for a quick computation of the torsion
part of the Dade group of some p-groups, e.g. (Theorem 5.36, Assertion 1
and Assertion 3) :

Theorem :

o Let P be an arbitrary finite direct product of groups of order 2 and
dihedral 2-groups. Then the Dade group of any factor group of P s
torsion free.

o Letn be a positive integer. For any integer m > 4, let P = SDom be a
semidihedral group of order 2™, and let P*" denote the central product
of n-copies of P. Then the torsion part of the Dade group of P*" is
isomorphic to (Z/27)2" "7 .




This also yields similar results on groups of units of Burnside rings of these
groups (Remark 5.39), or on representations of central products of p-groups,
as in Examples 5.34 and 5.35 :

Example : Let p be a prime, let X be an extraspecial p-group, and let Q)
be a non-trivial p-group. Let K be a field of characteristic 0. Then Q) has
the same number (possibly 0) of isomorphism classes of faithful irreducible
representations over K as any central product X ().

Another possibly interesting phenomenon is that some non-isomorphic
p-groups may become isomorphic in the category R,. This means that some
non-isomorphic p-groups cannot be distinguished using only rational p-biset
functors. When p = 2, there are even examples where this occurs for groups
of different orders (Example 5.16). When p > 2, saying that the p-groups P
and @) are isomorphic in R, is equivalent to saying that the group algebras
QP and QQ have isomorphic centers (Proposition 5.17).

The category R, is built as follows : consider first the category Rg,
which is the quotient category of the biset category of finite p-groups (in
which objects are finite p-groups and morphisms are virtual bisets) obtained
by killing a specific element ¢ in the Burnside group of the Sylow p-subgroup
of PGL(3,F,). Then take idempotent completion, and additive completion
of the resulting category.

In particular, this construction relies on bisets, and related functors. Con-
sequently, the paper is organized as follows : Section 2 is a (not so) quick
summary of the background on biset functors, Roquette groups, genetic bases
of p-groups, and rational p-biset functors. The category R, is introduced in
Section 3, and in Section 4, its tensor structure is described. Finally Section 5
gives some examples and applications.

Acknowledgments : Even though the idea of considering the category R,
was implicit in [7], the present paper wouldn’t exist without the illuminat-
ing conversations I had with Paul Balmer in november 2010, during which
I gradually understood 1 was a kind of Monsieur Jourdain of tensor cate-
gories. .. I wish to thank him for this revelation.

2. Rational p-biset functors

2.1. Biset functors. The biset category C of finite groups is defined as
follows :

e The objects of C are the finite groups.



e Let G and H be finite groups. Then
Hom¢(G,H) = B(H,G)

where B(H, G) denotes the Grothendieck group of the category of finite
(H, G)-bisets, i.e. the Burnside group of the group H x G.

e Let GG, H, and K be finite groups. The composition of morphisms
B(K,H) x B(H,G) — B(K,G)

in the category C is the linear extension of the product induced by the
product of bisets (V,U) — V x g U, where V is a (K, H)-biset, and U
is an (H, G)-biset.

e The identity morphism of the finite group G is the image in B(G,G)

of the set G, endowed with its (G, G)-biset structure given by left and
right multiplication.

2.2. Definition : A biset functor is an additive functor from C to the
category of abelian groups. A morphism of biset functors is a natural trans-
formation of functors.

Morphisms of biset functors can be composed, and the resulting category of
biset functors is denoted by F. It is an abelian category.

2.3. Examples :

1. The correspondence B sending a finite group G to its Burnside group
B(G) is a biset functor, called the Burnside functor : indeed B(G) =
Home(1,G), so B is in fact the Yoneda functor Home(1, —).

2. The formalism of bisets gives a single framework for the usual oper-
ations of induction, restriction, inflation, deflation, and transport by
isomorphism via the following correspondences :

o If H is a subgroup of G, then let Ind$, € B(G, H) denote the set G,
with left action of G and right action of H by multiplication.

e If H is a subgroup of G, then let Res$; € B(H,G) denote the set G,
with left action of H and right action of G by multiplication.

o If NG, and H = G/N, then let Inf§, € B(G, H) denote the
set H, with left action of G' by projection and multiplication, and
right action of H by multiplication.

e If NG, and H = G/N, then let Def$ € B(H,G) denote the
set H, with left action of H by multiplication, and right action
of G by projection and multiplication.
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e If o : G — H is a group isomorphism, then let IsoZ = IsoZ (p) €
B(H,G) denote the set H, with left action of H by multiplication,
and right action of G by taking image by ¢, and then multiplying
in H.

e When H is a subgroup of G, let Defreng(H)/H € B(Ng(H)/H,G)
denote the set H\G, viewed as a (Ng(H)/H, G)-biset. It is equal
to the composition Defgg(H)/H o Res%G(H).

e When H is a subgroup of G, let Indinf%G(H)/H € B(G,Ng(H)/H)
denote the set G/H, viewed as a (G, No(H)/H)-biset. It is equal

to the composition Ind%G(H) o Inf%gggm :

2.4. p-biset functors. From now on, the symbol p will denote a prime
number.

2.5. Definition and Notation :

o The biset category C, of finite p-groups is the full subcategory of C
consisting of finite p-groups.

o A p-biset functor is an additive functor from C, to the category of
abelian groups. A morphism of p-biset functors is a natural trans-
formation of functors.

e p-biset functors form an abelian category F,.

2.6. Roquette p-groups.

2.7. Definition : A finite group G is call a Roquette group if it has
normal rank 1, i.e. if all the normal abelian subgroups of G are cyclic.

The Roquette p-groups have been first classified by. .. Roquette ([14], see
also [12]) : these are the cyclic groups, if p > 2. The Roquette 2-groups
are the cyclic groups, the generalized quaternion groups, the dihedral and
semidihedral groups of order at least 16.

More generally, the p-hyperelementary Roquette groups have been clas-
sified by Hambleton, Taylor and Williams (Theorem 3.A.6 of [13]).

The following schematic diagram represents the lattice of subgroups of
the dihedral group Dig, the quaternion group ()14, and the semi-dihedral
group SDjg (an horizontal dotted link between two vertices means that the



corresponding subgroups are conjugate) :
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These diagrams give a good idea of the general case.

2.8. Definition : Let G be a finite group, of exponent e. An axis of G is

a cyclic subgroup of order e in G. An axial subgroup of G is a subgroup of
an azis of G.

With these definitions, let us recall without proof the following properties
of Roquette p-groups :

2.9. Lemma : Let P be a non-trivial Roquette p-group, of exponent ep.

1. The center of P is cyclic, hence P admits a unique central subgroup
Zp of order p.

2. There exists a non-trivial subgroup @ of P such that Q N Z(P) = 1
if and only if p = 2, and P s dihedral or semidihedral. In this case
moreover |Q| = 2, and Np(Q) = QZp.

3. If P is not cyclic, then p =2 and ep = |P|/2.

4. There is a unique axis in P, except in the case P = (Jg, where there
are three of them. Any axis of P is normal in P.




5. If R is a non-trivial azial subgroup of P, then R > Zp, and R P. If
moreover |R| > p?, then Cp(R) is the only axis of P containing R.

Let us also recall the following :

simple faithful QP-module ®p, up to isomorphism.

}2.10. Lemma : Let P be a finite Roquette p-group. Then there is a unique

Proof : See [8] Proposition 9.3.5. O

2.11. Example : Let P be a cyclic group of order p™, and suppose first that
m > 1. The algebra QP is isomorphic to the algebra A = Q[X]/(X?" — 1).
As

m—1

X" 1= (X" —1)Um(X)

where W,,» denotes the p™-th cyclotomic polynomial, it follows that there is
a split exact sequence of A-modules

0 QX]/(¥pm) = A — QIX]/(X?

m—1

-1)—0,
which can be viewed as the following sequence of Q P-modules
0—®p QP - Q(P/Z)—0

where Z is the unique subgroup of order p of P. It follows that there is an
isomorphism of Q-algebras

Endgp®p = Q[X]/(\I/pm) = Q(gpm) )

where (,m is a primitive p™-th root of unity in C.
Now if m =0, then P =1, ®p = Q, and Endgp®Pp = Q, also.

2.12. Expansive and genetic subgroups.
2.13. Definition : A subgroup H of a group G is called expansive if for

any g € G such that H9 # H, the group (Hg N NG(H))H/H contains a non
trivial normal subgroup of No(H)/H, i.e. if

geG—Ng(H)= ()| (H"NNg(H)H>H .

nENg(H)




2.14. Example : If H JG, then H is expansive in G. More generally, if
Ne(H) <G, then H is expansive in G : indeed Ng(HY) = Ng(H), for any
g € G. Hence for g € G — Ng(H)

(| (H"NNg(H))H = (HNNg(H))H=H’-H>H .

nGNg(H)
2.15. Notation : When H is a subgroup of the group G, denote by Zg(H)
the subgroup of Ng(H), containing H, defined by

Zo(H)/H = Z(Ng(H)/H) .

The following is an easy consequence of well known properties of p-
groups :

2.16. Lemma : [[8] Lemma 9.5.2] Let Q) be a subgroup of a finite p-group P.
Then Q is expansive in P if and only if

VgeP, QNZpQ)<Q— Q" =Q .

2.17. Example : Let P be a p-group, and let
A(P)={(z,2) € (Px P) |z € P}

denote the diagonal subgroup of (Px P). Then Npyp(A(P))/A(P) = Z(P),
and A(P) is expansive in (P x P) if and only if

Vee P, [Pz|NZ(P)={1} = xz€ Z(P) ,

where [P, x| is the set of commutators [y, z] = y ‘o~ lyzx = y~'y*, fory € P.
In particular, if [P, P] < Z(P), then A(P) is expansive in (P x P).

Proof : Indeed Npyp(A(P)) consists of pairs (a,b) € (P x P) such that
ab™! € Z(P). This shows that Npp(A(P))/A(P) = Z(P), and that
Zoer(A(P)) = Npsp(A(P)) = (1 x Z(P)A(P)
Now A(P)®¥) = A(P)3®) for any (u,v) € (P x P), where x = u~'v, and
AP)I N Zpyp(A(P)) = {(t,t") |t € P, t 1" € Z(P)} .
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Hence A(P)3) N Zpyp(A(P)) < A(P) if and only if for any ¢ € P, the
assumption t~1t* € Z(P) implies t = t*, i.e. [t,z] = 1, in other words if
[P,x] N Z(P) = {1}. Hence A(P) is expansive in (P x P) if and only if for
any x € P, the assumption [P, z]NZ(P) = {1} implies (1, z) € Npxp(A(P)),
ie. x € Z(P), as claimed. The last assertion follows trivially. 0

2.18. Definition : Let () be a subgroup of the finite p-group P. Then
Q@ is called a genetic subgroup of P if Q) is expansive in P and if the group
Np(Q)/Q is a Roquette group.

2.19. Definition : Define a relation =
finite p-group P by

p on the set of subgroups of the

Q=,R & 3geP, Q*NZp(R)<R and ‘RN Zp(Q) < Q .

2.20. Lemma : Let P be a finite p-group. If QQ and R are subgroups of P
such that Np(Q) = Np(R) < P, then

QQPR = Q:PR .

Proof : Indeed, since P is a p-group, saying that Q9 N Zp(R) < R is equiv-
alent to saying that the subgroup (Q? N Np(R))R/R of Np(R)/R contains
no non-trivial normal subgroup of Np(R)/R, i.e. that

(| (@"NNp(R)R=R .

nENp(R)

But if Np(Q) <P, then Np(Q) = Np(Q9) = Np(R), for any g € G. Hence

(1 (@"NNp(R)R=0Q R .

nGNg(R)
This is equal to R if and only if @9 < R. Similarly YR N Zp(Q) < @ if and
only if YR < (). Hence )Y = R. 0

2.21. Definition : Let G be a group.
1. A section of G is a pair (T,.5) of subgroups of G such that S <IT. The



quotient T'/S is called the corresponding subquotient of G.

2. Two sections (T,S) and (Y,X) of G are said to be linked (notation
(1,5) — (Y, X)) if

S(TNY)=T, X(TNY)=Y, TnX=5nY .

They are said to be linked modulo G (notation (T,5) —¢ (Y, X)) if
there exists g € G such that (T,5) — (7Y, 9X).

Observe in particular that if (7,.5) —¢ (Y, X), then the corresponding
subquotients 7'/S and Y/ X are isomorphic.

2.22. Theorem : Let P be a finite p-group.
1. If S is a genetic subgroup of P, then the module

V(S) IndP S)Infxpg /S(I)NP(S)/S

Np(S)

is a simple QP-module. Moreover, the functor IndN @Infy )5 -

duces an isomorphism of Q-algebras
EndgpV (S) = Endgn,(s)/sPnp(s)/s -

2. If V is a simple QP-module, then there exists a genetic subgroup S of
P such that V= V(95).

3. If S and T are genetic subgroups of P, then
V(S)=V(T) & S=,T & (Np(5),5)—p (Np(T),T) .

In particular, if S ==, T, then Np(S)/S = Np(T)/T. Moreover, the
relation =, 1is an equivalence relation on the set of genetic subgroups
of P, and the corresponding set of equivalence classes is in one to
one correspondence with the set of isomorphism classes of simple QP-

modules.

Proof : See [8], Theorem 9.6.1. 0

2.23. Definition : Let P be a finite p-group. A genetic basis of P is a
set of representatives of equivalence classes of genetic subgroups of P for the

relation = P -
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2.24. Faithful elements. ([8] Sections 6.2 and 6.3) Let G be a finite
group. If N is a normal subgroup of G, recall from Examples 2.3 that Infg N
denotes the set G/N, viewed as a (G,G/N)-biset for the actions given by
(projection to the factor group and) multiplication in G/N. Similarly Def& N
denotes the same set G/N, considered as a (G/N, G)-biset.

There is an isomorphism of (G/N, G/N)-bisets

(2.25) Idg/n = Defg/N o Infg/N :

More generally, if M and N are normal subgroups of GG, there is a isomor-

phism of (G/M,G/N)-bisets

G/M G/N
(2.26) Defg 5, 0 Inf§ = Infe)yyy 0 Defg/y -

It follows that if j§ is defined by

then j$ o j¢ = j§ . In particular j§ is an idempotent of B(G,G). More-
over, by a standard orthogonalization procedure, the elements f{ defined

for N <G by
fN=D_ nac(N,M)jg

N<M<G

where p«g(N, M) is the Mobius function of the poset of normal subgroups
of G, are orthogonal idempotents of B(G,G), and their sum is equal to Idg/n.
The idempotent f{ is of special importance :

2.27. Lemma : Let G be a finite group, and N be a normal subgroup of G.
1. f§ =Mty o fy/" o Detl y in B(G,G).

2. If N # 1, then Def¢ )y o f& =0 in B(G/N,G), and f{ o Infg,y =0
in B(G,G/N).

Proof : Assertion 1 is Remark 6.2.9 of [8], and Assertion 2 is a special case
of Proposition 6.2.6. 0

If F'is a biset functor, the set OF(G) of faithful elements of F(G) is
defined by
OF(G) = F(f{)F(G) .

It can be shown ([8] Lemma 6.3.2) that

OF(G) = ﬂ Ker F(Defg/N) :

I<N G

11



2.28. Example : Let F' = Rk be the representation functor over a field K
of characteristic 0. Then for a finite group G, the group 0R (G) is the direct
summand of Rg(G) with basis the set of (isomorphism classes of) faithful
irreducible K G-modules.

2.29. Lemma : Let G be a group, and S be a subgroup of G, such that
SN Z(G) # 1. Then Defres_ s /5/¢ =0 in B(Na(5)/S,G).

Proof : Set N =SNZ(G), G=G/N,and S = S/N. Then

G G G
DefreSNG(S)/S — DefreSNé(g)/gDefG/N .

Now Defg/NfIG =0if N # 1, by Lemma 2.27. O

2.30. Theorem : [[8] Theorem 10.1.1] Let P be a finite p-group, and B
be a genetic basis of P. Then, for any p-biset functor F', the map

Tz = @ Indinff . @® OF(Np(S)/S) — F(P
B 56698111“1\/1)(5)/5 56698 (Np(S)/S) (P)

is split injective. A left inverse is the map

Dy = Ne(9)/S o Defrest, - F(P) = @ OF(Np(S)/S) .
B SEEBfl o Defresyy, (g5 1 F(P) 5625 (Np(S)/S)

One can show ([8] Lemma 10.1.2) that if B and B’ are genetic bases of P,
the map Zp is an isomorphism if and only if the map Zp/ is an isomorphism.
This motivates the following definition :

2.31. Definition : A p-biset functor F' is called rational if for any finite
p-group P, there exists a genetic basis B of P such that the map Zg is an
isomorphism.

So F' is rational if and only if for any finite p-group P and any genetic
basis B of P, the map Zpz is an isomorphism.

2.32. Examples :

e The functor Rg of rational representations, which sends the finite p-group
P to the group Rg(P), is a rational p-biset functor. This example is of course
the reason for calling rational the p-biset functors of Definition 2.31. This

12



choice has proved rather unfortunate, since the p-biset functor R¢ of complex
representations is also a rational functor...More generally, if K is a field of
characteristic 0, then the functor Ry is a rational p-biset functor.

e The functor of units of the Burnside ring, sending a p-group P to the group
of units B*(P) of its Burnside ring, is a rational p-biset functor (see [6]).

e Let k be a field of characteristic p. The correspondence sending a finite
p-group P to the torsion part Di(P) of the Dade group of P over k is not
a biset functor in general, because of phenomenons of Galois twists, but still
the maps Z and Dg can be defined for D}, and Theorem 2.30 holds (see [5]).

3. The Roquette category

3.1. Notation : Let m be a projective plane over I, and let X denote
a Sylow p-subgroup of Aut(mw) = PGL(3,F,). Let L be the set of lines of 7,
and let P be the set of points of m, both viewed as elements of B(X). Let
=L —P e B(X). Equivalently

§=(X/I-X/12)—(X)J—X/JZ)

where I and J are non-conjugate non-central subgroups of order p of X, and
Z is the center of X.
Let Bs denote the p-biset subfunctor of B generated by §.

3.2. Remark : When p = 2, the group X is dihedral of order 8, and 9
is well-defined up to a sign. When p > 2, the group X is an extraspecial
p-group of order p® and exponent p, and there are several possible choices for
the element §. However, in any case, the functor Bs does not depend on the
choice of §.

3.3. Definition : The Roquette category R, of finite p-groups is defined
as the idempotent additive completion of the category Rf), quotient of the
biset category C,, defined as follows :

1. the objects of Rf, are the finite p-groups.
2. if P and Q) are finite p-groups, then

HomRQ(P,Q) = (B/B;)(Q, P)

13



is the quotient of B(Q x P°P) by Bs(Q x P°P).
3. the composition in Rf, 1s induced by the composition of bisets.

4. the identity morphism of the finite p-group P in Rf, 1s the image of Idp
in (B/Bs)(P, P).

3.4. Remark : It was shown in [7] that R} is indeed a category. It was
also shown there that if p > 2, the functor Bs is equal to the kernel K of
the linearization morphism B — Rg. It follows that in this case, for any two
finite p-groups P and @)

Homg, (P, Q) = R (Q x P”)

is isomorphic to the Grothendieck group of (QQ, QP)-bimodules, or, equiva-
lently by the Ritter-Segal theorem, to the Grothendieck group of the subcat-
egory of (QQ, QP)-permutation bimodules. In other words in this case, the
category R, is the full subcategory category of the category considered by
Barker in [1], consisting of finite p-groups. The construction of the category
R, is also very similar to the construction of the category QG-Morita by
Hambleton, Taylor, and Williams in [13] (Definition 1.A.4).

In the case p = 2, the situation is more complicated : the functor Bs is a
proper subfunctor of the kernel K, and there is a short exact sequence

0— K/Bs - B/Bs - Ry — 0

of p-biset functors. Moreover, for each p-group P, the group (K/Bs)(P) is
a finite elementary abelian 2-group of rank equal to the number of groups S
in a genetic basis of P for which Np(S)/S is dihedral.

3.5. Lemma : The direct product (P,Q) — P x Q of p-groups induces a
well defined symmetric monoidal structure on Rg.

Proof : Let P, P, Q and @' be finite p-groups. If U is a finite (P’, P)-biset
and V' is a finite (@', Q)-biset, then U x V' is a (P’ x @', P x @))-biset. This

induces a bilinear map
m:B(P',P)x B(Q',Q) — B(P"xQ',PxQ) ,

and this clearly induces a symmetric monoidal structure on the biset cate-
gory C,. This induces a monoidal structure on the quotient category if

7(Bs(P', P), B(Q,Q)) € Bs(P' x Q, P x Q) .

14



But this is a consequence of the following : let X be as defined in Notation 3.1,
let U be a finite (P’, P x X)-set, let D be an X-set, and V be a finite (@', Q)-
biset. Clearly, there is an isomorphism of (P’ x @Q', P x Q)-sets

(UxxD)xV=({UxV)xxD
where the right action of X on U x V is defined in the obvious way
V(u,v) e U x V, Vo € X, (u,v)x = (uz,v) .

The lemma follows. O

3.6. Recall that the objects of the idempotent additive completion R, are by

definition formal finite sums @ (P, e) of pairs of the form (P, e), where P
(P,e)eP

is a finite p-group, and e is an idempotent in Hong(P, P)=(B/Bs)(P,P).

A morphism ¢ : @& (Pe) = & (Q,f)in R, is a matrix indexed by
(Pe)eP (Q,f)eQ

P x Q, where the coefficient ¢(p.) @,r) belongs to fHong(P, Q)e. The
composition of morphisms is given by matrix multiplication. In particular :

3.7. Definition and Notation : Let P be a finite p-group.

1. The object (P,1dp) of R, is denoted by P. Similarly, when Q) is a finite
p-group, and f € B(Q, P), the corresponding morphism from (P,1dp)
to (Q,1dp) in the category R, is simply denoted by f.

2. The edge OP of P is the pair (P, fI') of R,.

The category of additive functors from R, to abelian groups is equivalent
to the category of additive functors from Rlﬁ) to abelian groups. It was shown
in [7] that the latter is exactly the category of rational p-biset functors. If F*
is such a functor, then F* extends to a functor F' on R, defined as follows :

e)) — te)(F
F(,0 (Pe)= & F)FP)

with the obvious definition of F'(¢) for a morphism ¢ in the category R,. In
particular, with the above notation

F(OP) = OF*(P) .

In the sequel, we will use the same symbol for F and F*, writing in particular

F(OP) = OF(P).
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3.8. Proposition : Let P be a finite p-group. Then

P~ @ 9(P/N)

NJP

in the category R,.

Proof : Let

a:P— NGS]BPO(P/N)

be the direct sum of the morphisms induced by the elements flp / NDef£ /v of
B(P/N, P), and let
b: @& O(P/N)—P

NP

be defined similarly from the elements Infh N ek Noof B (P,P/N).
By Lemma 2.27

Z Infﬁ/fo/NDefg/N = Z le\; = Idp

N<P N<P

in B(P, P), thus a o b is equal to the identity morphism of P in Rp. Con-
versely, for normal subgroups N and M of P

PIN P/M P/Ny_+P/N P/M  ,P/M
1/ Def]P;/NInf]P;/Mfl/ = 1/ Ian?NMDefPfNM 1/ )

by Equation 2.25. This is equal to 0 if N # M, by Lemma 2.27. And if

N = M, this is equal to ff N 1t follows that bo a is equal to the identity

morphism of @ O(P/N), and this completes the proof. 0
NaP

3.9. Corollary : If P is non-trivial, with cyclic center, then

P=0P® (P/Z)

in R,, where Z 1is the unique central subgroup of order p in P.

Proof : Indeed, if N is a non-trivial normal subgroup of P, then N > Z.
Thus
P=0P® ® O(P/N)=0P® (P/Z)

N>Z

in the category R,. 0
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3.10. Remark : More generally, let P be a finite p-group, and let N be a
normal subgroup of P. Since in R,

P/N = I((P/N)/(M/N)) = d(P/M

IN= o (PIN/MN) = o ap/M)

it follows that P/N is isomorphic to a direct summand of P in the cate-
gory R,.

3.11. Theorem :
1. The Roquette category R, is an additive tensor category.

2. Let P be a finite p-group, and B be a genetic basis of P. Then, in the
category R, B
P~ @& ONp(S) ,
SeB
where N p(S) = Np(S9)/S.

3. Let P be a finite p-group, and B be a genetic basis of P. Then, in the
category R, _

SeB
SnZ(P)=1

Proof : Assertion 1 results from standard results : in particular, the tensor

product of @ (P,e)and @ (Q,f) is defined by
(Pe)eP (Q,N)eQ
(& (Pe)x( @ (Qf)= & (PxQex/f).
(Pe)eP @,NeeQ (Pe)eP

(@.f)eQ

For Assertion 2, by Proposition 10.7.2 of [8], if F'is a rational p-biset functor,
the functor Fp obtained from F by the Yoneda-Dress construction at P is
also a rational p-biset functor. This applies in particular to the functor
Y = B/Bs, so the functor Yp is rational. Hence, if @) is any finite p-group
and By, is a genetic basis of (), there are mutual inverse isomorphisms

D
€bqQ

where 7o = @ Indinf%}g(s) and Do = @ {v ?5) o Defrest .. Thus for

SeBg SeBg Np(9)
any f € Yp(Q)

_ . P Np(S) P
f= (SXB: Indinfg o f1" Defresﬁp(s)) of .
€bq
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Applying this to @) = P, Bg = B, and f = Idp gives that ZpoDp = Idp. On
the other hand, by Proposition 6.4.4 and Theorem 9.6.1 of [8], for S, T € B,
the composition

P Np(S)

Np(S
fi P Defrest V()1

Np(s) © Indinf

is equal to fINP(S) in B(Np(S),Np(S)) if T =S, and to 0 if T # S. It
follows that Dp o Zp is also equal to the identity map of the direct sum
® 9Yp(Np(S)) in the category R,.

seB

For Assertion 3, observe that by Lemma 2.29
Np(S
1 2 )Defres§P(S)flp =0
if SN Z(P) # 1. Taking opposite bisets, this gives also

. Np(S
flndmf%l)(s) Ve g |

so the isomorphism of Assertion 2 restricts to an isomorphism

oP~ @& ONp(9) ,
SeB
SNZ(P)=1

as the diagram
P——=®5e5INp(S)

iEi

OP— @ ONp(9)
SeB
SNZ(P)=1

1S commutative. O

3.12. Corollary : Let P be a finite p-group. If Z(P) is non-cyclic, then
OP =0 in R,.

Proof : This follows from Assertion 3 : suppose indeed that there exists a
genetic subgroup S of P such that SN Z(P) # 1. Then the group Z(P)
maps injectively in the center of the Roquette group N p(S), which is cyclic.
Hence Z(P) is cyclic. 0
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3.13. Examples :

1. Let P = Dg be a dihedral group of order 8. Let A, B, and C be
the subgroups of index 2 in P, and let I be a non-central subgroup of
order 2 in P. Then the set {P, A, B,C, 1} is a genetic basis of P, and
there is an isomorphism

P=1®4-00,

in the category Rs, where 4 - 9Cy denotes the direct sum of 4 copies
of 9C5 : indeed, for S € {A, B,C, I}, the group Np(S) is isomorphic
to 02.

2. Let P = Qg be a quaternion group of order 8. Let A, B, and C
be the subgroups of index 2 in P. Then the set {P, A, B,C,1} is a
genetic basis of P (such a basis is unique in this case), and there is an
isomorphism

P=13®3-0C @ 0Qs
in the category R,.

3. Let P = (C,)" be an elementary abelian p-group of rank n. Then P
has a unique genetic basis, consisting of P, and all its subgroups of

index p. Hence
pr—1
T oC,

P=1®

in the category R,.

4. The tensor structure

4.1. Notation : Let G and H be groups. When L is a subgroup of G x H,
set

(L) = {9eG|3heH, (g9,h) € L}
p(L) = {heH|3geG, (g,h) € L}

(L) {9€G|(g.1) €L}

(L) = {heH|(1,h) e L}

Recall (/8] 2.5.18 and 2.8.21) that k;(L) <p;(L), for i € {1,2}, and that
(k1(L) x ko(L)) S L. Set q(L) = L/(ki(L) x k2(L)), and recall that there are
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canonical group isomorphisms

q(L) = pu(L)/ k(L) = pa(L)/ka(L) -

4.2. Definition : Let G and H be groups. A subgroup L of (G x H) will
be called diagonal if

LN(Gx1)=LN(1xH)=1,

i.e. equivalently, if k1(L) =1 and ko(L) = 1.
The subgroup L will be called centrally diagonal if

LN(Z(G)x1)=LN(1xZ(H)) =1,
i.e. equivalently, if ky(L)NZ(G) =1 and ko(L)NZ(H) = 1.

4.3. Notation : Let G and H be groups. When K is a subgroup of G,
and ¢ : K — H is a group homomorphism, set

Ro(K) = {(z.0()) [s € K} <G x H |

and
Z¢(K) ={(¢(2),2) |[re K} <HxG .

4.4. Remark : The subgroup L of (G x H) is diagonal if and only if there
exists a subgroup K < GG and an injective group homomorphism ¢ : K — H
such that L = A (K).

4.5. Lemma : Let P and Q be p-groups, and let L and L' be genetic
subgroups of (P x Q) such that L =0 L'. Then L is centrally diagonal in
(P x Q) if and only if L' is centrally diagonal in (P X Q).

Proof : Let (z,y) € (P x Q) such that

LN Zpo(L) < L .
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Since Z(P) x Z(Q) < Zpxq(L), it follows that
I'n(z(P)x1) = (L’ N (2(P) x 1))(‘%)

L' (Z(P) x 1)

= L™ Zpyo(L)N (Z(P) x 1)

< LN(Z(P)x1)=1.

A similar argument shows that L' N (1 x Z(Q)) = 1. 0

Recall from Definition 2.8 that an axial subgroup of a finite group G is a
subgroup of a cyclic subgroup of maximal order of G :

4.6. Theorem : Let P and @) be non-trivial Roquette p-groups, let ep
(resp. eq) denote the exponent of P (resp. of Q), and let Zp (resp. Zg)
denote the central subgroup of order p in P (resp. in Q).

1. Let L be a centrally diagonal genetic subgroup of (P x Q). Then
L = X¢(H), where H < P and ¢ : H — @Q 1is an injective group
homomorphism. Moreover, either P = (Q = Qg, and H = P, or H is
an azxial subgroup of P of order min(ep, eq), such that o(H) is an axial

subgroup of Q).

2. Conversely :

%
(a) if P=Q=Qg, let L =L, = A,(P), where p : P — @ is a group
isomorphism. Then L is a centrally diagonal genetic subgroup of

(P X Q), and NpXQ<L)/L = Cg.

(b) in all other cases, let L = L, = ZZ,(H), where H is an axial sub-
group of P of order min(ep,eq), and ¢ : H — () is an injective
group homomorphism such that p(H) is an axial subgroup of Q.
Then L is a centrally diagonal genetic subgroup of (P x Q). More-

over, the isomorphism class of the group Npyxq(L)/L depends only
on P and Q.

Proof : e Observe first that the group (Zp x Zg)L/L is a central subgroup of
the Roquette group Npy«(L)/L, hence it is cyclic. Hence (Zp x Zg)NL # 1.
Since both (Zpx1)NL and (1x Zg)NL are trivial, is follows that (Zpx Zg)NL
is equal to

(4.7) Ro(Zp) = {(2.0(2)) | 2 € Zp}

where ¢ : Zp = Zg is some group isomorphism. In particular p; (L) contains
Zp, and po(L) contains Zg,.
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e Let us prove now that L is diagonal, i.e. that there exists a subgroup H
of P and an injective group homomorphism ¢ : H < () such that

L=2R,(H)={(hph) | heHd) .

Otherwise, at least one of the groups k(L) or ko(L) is non trivial. But
the assumption L N (Z(P) x 1) = 1 is equivalent to L N (Zp x 1) = 1,
ie. k(L) N Zp = 1, and similarly, the assumption L N (1 x Z(Q)) = 1 is
equivalent to k(L) N Zg = 1. But if there exists a non trivial subgroup X
of P such that X N Zp =1, then p = 2, X has order 2, and P is dihedral or
semidihedral (Lemma 2.9). So if L is not diagonal, then p = 2, and at least
one of P or () is dihedral or semidihedral.

Up to exchanging P and (), one can assume that the group C' = k(L)
is non-trivial, hence non-central of order 2 in P. Set A = p;(L). Since
A < Np(C) = CZp (Lemma 2.9), it follows that q(L) = A/C has order 1
or 2.

If (L) =1, then A= C, and L = C x D, where D = ky(L) = po(L). In
this case

Npxg(L)/L = (Np(C)/C) % (No(D)/D) = G5 x (Ng(D)/D)

cannot be a Roquette group, since Ng(D)/D is non-trivial (as DN Zg = 1).

And if |¢(L)| = 2, then A = CZp. If (a,b) € Npyg(L), then in particular
a € Np(A,C) = A. Thus Npyg(L) < A x Q. Now the group Np(A) is
a proper subgroup of P, since A is elementary abelian of rank 2, and P
is a Roquette group. Choose x € P — Np(A), whence A* N A = Zp. If
(a,b) € L@V N (A X Q), then a € AN A = Zp, hence (a,b) = @ (a,b) € L.
Thus L&Y N (A x Q) < L, and

L@V Zpyo(L) L@V N Np,o(L)
L@V N (A x Q)

L

IN A IA

but L™V #£ L, since A® # A. It follows that L is not expansive in (P x Q),
hence L is not a genetic subgroup of (P x Q).

e Hence L is diagonal in (P x Q), i.e.
%
L=R,(H) = {(ho(h) | heH) .

for some subgroup H > Zp of P and some ¢ : H < @), such that o(H) > Z.
Then

Nexo(L) = {(2,5) € Np(H) x No(¢(H)) | Vh € H, ¢(*h) ="o(h)} .
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The unique central subgroup of order p of the Roquette group Npyg(L)/L
is equal to Z/L, where

(4.8) Z=(Zpx1)L=(1xZo)L .

For any (z,y) € (P x Q), saying that L®%) N Zp,o(L) is contained in L
is equivalent to saying that the group I = L®¥ N Z is contained in L. In
particular, for y =1

I = L@YN(Zp x1)L
_ {(hl‘,@(h)) |heH, 3z€ Zp, I € H, (b p(h)) = (zh’,w(h’))}

_ {(hx,cp(h)) |heH, h'h" e Zp} :

since p(h) = @(h') implies h = I/, and since Zp is central in P. Denoting by
[h, 2] = h~'h® the commutator of h and z, it follows that I < L if and only
if

Vhe H. [ho) € Zp = h* € H, (h.o(h) = (h". (k")) .
In other words [h, 2] € Zp implies h* = h. Thus I < L if and only if

Vh e H, |h,z] € Zp = |h,z]=1 .

Equivalently [H,z] N Zp = {1}, where [H, z] denotes the set of commutators
[h,x], for h € H.

Since L = KW(H) is expansive in (P x @), it follows that
H,z)NZp={1} = L&Y =L .
Now (x,1) normalizes L if and only if x € Cp(H), i.e. if [H,z] = {1}. Hence
(4.9) H,z|NZp={1} = [H,z] = {1} .

e Let us show now that unless H = P = ) = (g, the group H is an axial
subgroup of P, and the subgroup ¢(H) is an axial subgroup of Q.

Let X be a cyclic subgroup of P of order ep, let = be a generator of X,
and suppose that H £ X. Then in particular P is not cyclic, so p = 2, the
group X is a (normal) subgroup of index 2 of P (Lemma 2.9), and X is equal
to its centralizer in P. Moreover |H : HN X| = 2 since H - X = P. The
set [H,z] is equal to {1,z%} if P is cyclic or generalized quaternion, or to
{1,22t2" 7} if P is semidihedral : indeed, the image of H in the group of
automorphisms of X has order 2, as H N X centralizes X, and H does not.
Since Zp is generated by 22" 7, it follows that [H,2] N Zp = {1} if n > 4,
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ie. if |P| > 16. But [H,z] # {1}, hence L is not expansive in (P x @), if
P > 16.

So if H £ X, then p = 2, and P is non-cyclic, of order at most 8. Hence
P =~ Qs. If H# P, then H is cyclic, and H « X. Thus |H| = 4 = ep,
and in particular H is an axis of P. Since H embeds into @), it follows that
|H| = min(ep, eg). The same argument applied to ¢(H) shows that p(H) is
an axial subgroup of @), as claimed.

In this case moreover, the group ) cannot be isomorphic to (Jg : indeed
otherwise, one can assume that P = @) and L = A(H) is the diagonal
embedding. Then

Npxp(L) = {(a,b) | a™'b € H} .
The group Npy«p(L)/L has order 8, generated by the cyclic subgroup
C={(a,1)L|a€ H}

of index 2, and the involution (b, b) L, where b € P—H. Hence Npyp(L)/L =
Dy is not a Roquette group, and L is not a genetic subgroup of (P x P).

If H is non-cyclic, then H = P, and the same argument applied to ¢(H)
shows that @ = Qs. And indeed ZZ,(P) is a genetic subgroup of P x @ :
this follows from Example 2.17, since the map (z,y) — (z, ¢ (y)) is a group

%
isomorphism from (P x Q) to (P x P), sending A, (P) to A(P). Moreover
[P, P] < Z(P), and Z(P) has order 2. In particular

(4.10) Npyo(L)/L = Cy
does not depend on ¢, up to isomorphism. This proves part a) of Assertion 2.

e In the remaining cases L = ZZ,(H ), where H is a non-trivial axial subgroup
of P, and ¢ : H < (@ is such that ¢(H) is an axial subgroup of Q). In
particular H is cyclic, and non-trivial. As H = ¢(H) < @, it follows that
|H| < min(ep, eq).

Let C,, be an axis of P containing H, and C¢, be an axis of ) contain-
ing ¢(Q). Then (C,, x Ce,)/A,(H) is an abelian normal subgroup of the
Roquette group Npyg(L)/L, hence it is cyclic. Thus L = A,(H) is not con-

tained in the Frattini subgroup (Ce,/p X Ce,/p) of (Cep X Co,,). In particular
pi(L) = Cep, or po(L) = Cepy. In other words H = C.,,, or p(H) = C.,,

hence |H| = min(ep, eg). This completes the proof of Assertion 1.

e Now assume that at least one of the groups P or () is not isomorphic to QJg.
Assume also that ep < eg, and let H be an axis of P : then H is unique if
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P 2¢ Q)g, and there are three possibilities for H if P = Qg (Lemma 2.9). In
any case H < P. Let K denote an axial subgroup of ) of order ep. Such a
group is unique, except if p =2, ep =4, and Q = Qg (thus P = Cy as P has
exponent 4, and is not isomorphic to Qg). In any case K <Q.

Let ¢ : H = K be any group isomorphism, and set L, = KW(H) <
(P x Q). Then L, is obviously centrally diagonal, and

Nowo(Ly) = {(a,b) € (P x Q) | Vh € H, @(*h) ="p()} .
Since H is cyclic of order ep, the map
1T € (ZL)epZ)” — (x+— ") € Aut(H)
is a canonical group isomorphism. Similarly, the map
i1 € (LlepZ)” — (x +— 2") € Aut(K)

is a canonical group isomorphism.

—1
Let a : P — Aut(H) - (Z/epZ)* denote the group homomorphism
obtained from the action of P on its normal subgroup H by conjugation, and

-1
B:Q — Aut(K) =5 (Z/epZ)* denote the group homomorphism obtained
from the action of @ on its normal subgroup K. Then

Nrxq(Ly) = {(a,b) € (P x Q) | a(a) = B(D)} .
Now the group (Z/epZ)* is abelian. The map
O:(a,b) € (Px Q) B(b)" ala) € (Z/epZ)*

is a group homomorphism, and Np.qg(L,) = Ker ©. In particular, it is
a normal subgroup of (P X ), which does not depend on ¢, once H and
K = p(H) are fixed. In particular L, is an expansive subgroup of (P x @),
by Example 2.14. Moreover setting Ipo = Im(a) N Im(5), there is an exact
sequence

(4.11) 1 — Cp(H) x Co(K) = Npyo(Ly) — Ipg — 1,

where U(a,b) = a(a) = B(b), for (a,b) € Npxo(Ly).

§. Suppose first that ep = p, i.e. that P = C,. In this case H = Zp = P,
and K = Zg, so L, is central in (P x Q). Moreover

(4.12) Npxa(Lo)/Ly = (P x Q)/Ly = (P x Q)/K,(P) = Q
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is a Roquette group, independent of ¢, up to isomorphism. In particular L,
is a genetic subgroup of (P x Q).

§. Assume from now on that ep > p?. Then Cp(H) = C

ep»

and Cp(K) =

Ceq> by Lemma 2.9.
§6. If p > 2, then P and @) are cyclic, hence H = P, and
_>
(413) Nexo(Ly)/Ly = (P x Q)/R,(P) = Q

as above. It is a Roquette group, independent of ¢, up to isomorphism. In
particular L., is genetic in (P X Q).

§8. Assume now that p = 2. The image of a has order |P : Cp(H)|,
which is equal to 1 if P is cyclic, and to 2 otherwise. Similarly, the image
of # has order |Q) : Cq(K)|, which is equal to 1 if K is central in @), i.e. if
Q) is cyclic (since |K| = ep > 4 by assumption), and to 2 otherwise. Set
Ipg = Im(a) NIm(B). Then Ipg has order 1 or 2, and there is an exact
sequence

(414) 1— Cep X CeQ — NpXQ<L<p) — [p,Q —1 .
Note that Ipq does not depend on ¢ : H = K : more precisely

{1} if P is cyclic,
Im(a) = {1, -1} if P is dihedral or generalized quaternion,
{1,ep/2 — 1} if P is semidihedral.

So Im(«) only depends on the type of P.
Similarly

{1} if @ is cyclic,
Im(B) = {1,-1} if @ is dihedral or generalized quaternion,
{1,eq/2 — 1} if Q) is semidihedral.

Moreover if ) is semidihedral and if e > ep, then eg/2 — 1 = —1(mod.ep),
hence Im(8) = {1, —1}. In other words, the group Ipg is trivial in one of
the following cases :

e P or (@ is cyclic,

e P is dihedral or generalized quaternion, () is semidihedral, and ep = eq,
(i.e. equivalently |P|=[Q|),

e P is semidihedral, and () is dihedral or generalized quaternion,

e P and () are semidihedral, and ep < e (i.e. equivalently |P| < [Q)),
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and the group Ipg has order 2 in all other cases, i.e. in one of the following
cases :

e P and () are dihedral or generalized quaternion,
e P is dihedral or generalized quaternion, @ is semidihedral, and |Q|>|P|,
e P and @ are semidihedral, and P = Q).

As L, <C., xC,

the exact sequence 4.14 yields the exact sequence

eQ?
(4.15) 1= (Cep x Cepy) /Ly — Npxq(Ly)/Ly — Ipg — 1 .
Case 1 : If Ipg is trivial, then Npyg(Ly) = Ce) X Cep,, and
(416) NPXQ(LLP)/LL,O = CeQ )

which is a Roquette group, independent of ¢, up to isomorphism. In par-
ticular L, is a genetic subgroup of (P x Q).

Case 2 : Suppose now that Ip g has order 2, i.e. that Im(a)) = Im(3) = {1, €},
where € is either —1 or eg/2 —1 (in the case where P and () are semidihedral
and isomorphic). One can choose an element u € P, of order 2 if P is
dihedral or semidihedral, and of order 4 if P is generalized quaternion, such
that o(u) = e. Similarly, one can choose an element v € @, of order 2 if @) is
dihedral or semidihedral, and of order 4 if () is generalized quaternion, such
that B(v) = e. These choices imply that (u,v) € Npxg(Ly).
In the exact sequence 4.15
1= (Cep X Cep)/Ly — Npxq(Ly)/Ly — {1,e} = 1,

the group C = (C., x C,)/L, is cyclic, isomorphic to Ce,. The element
m = (u,v)L, of Npyg(Ly)/L, acts on C in the same way that v acts on
the subgroup C,, of @, namely by inversion if () is dihedral or generalized
quaternion, and by raising elements to the power eg/2—1 if () is semidihedral.
Finally 7% = (u* v*)L, = L, if none of P and @ are generalized quaternion.
If P is generalized quaternion and @ is not, then 7n? = (zp, 1)L, € C' — {1},
where zp is a generator of Zp. Similarly, if ) is generalized quaternion and P
is not, then 7 = (1, zg) L, € C—{1}, where z( is a generator of Zg. In these
two cases 7 = (1,1)L, = Ly, so 7 has order 4 in Npxg(Ly,)/L,. And finally,
if both P and @ are generalized quaternion, then 7 = (z2p, 2g) L, = L, since
p(Zp) = Zq-

(4.17)
It follows that the group Npx(Ly)/L, has order 2eq = |@Q|, and that it is :
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e dihedral if P and ) are both dihedral, or both generalized quaternion,

e generalized quaternion if one of P, () is generalized quaternion, and the
other is dihedral,

e semidihedral if () is semidihedral.

So Npyxq(Ly)/ L, is a Roquette group, independent of ¢, up to isomorphism.
In particular, it follows that L, is a genetic subgroup of (P x Q). This
completes the proof of Theorem 4.6. 0

4.18. Notation :

o Let P and ) be Roquette p-groups. If P and @) are non-trivial, set
Po@Q = Npyg(L)/L, where L is a centrally diagonal genetic subgroup
of (P x Q). Set moreover Lo P =Pol=P.

o Let P and Q) be Roquette p-groups. If P and ) are non-trivial, let vpg
denote the number of equivalence classes of centrally diagonal genetic
subgroups of (P x Q) for the relation =pr0- Set moreover V1 p =
Vp1 = 1.

4.19. Remark : if P =1, and @ is a Roquette p-group, then P x Q) = @,
and the centrally diagonal genetic subgroups of P x () are the subgroups
1 x R, where R is a genetic subgroup of @ such that RNZ(Q) = 1. The only
such subgroup is R =1, so Ng(R)/R = Q) = Np.o(1 x R)/(1 x R). Hence
the above definition of P ¢ () and vpg is consistent, in the case P = 1.

4.20. Theorem : Let P and Q) be Roquette p-groups, of exponents ep and
eq, respectively. Suppose ep < eq, and set ¢ = |Q|. Then

( Q@ ifP=1orP=C,
Cy if P=Q =0,
D, ifq>16 and P and Q) are both dihedral,
or both generalized quaternion,
Q, if one of P,Q is dihedral,
PoQ = and the other one is generalized quaternion,
SD, if Q is semidihedral, and
- either P 1is dihedral or generalized quaternion,
and |P| <[Q,
-or P=Q,

Cep otherwise.

28



Proof : The case P = 1 is trivial, the case P = (), follows from 4.12, the
case P = () = Qg follows from 4.10, the three next cases in the list follow
from 4.17, and the last case follows from 4.13 and 4.16. O

4.21. Theorem : Let P and () be Roquette p-groups, of exponent ep
and eq, respectively, and let m = min(ep, eq).

1. If p =2 and and one of the groups P or () is isomorphic to Qg, then
then L b0 L' for any centrally diagonal genetic subgroups L and L'
of P x Q. In other words vpg = 1.

2. In all other cases, if L and L' are centrally diagonal genetic subgroups
of P x @, then L =00 L' if and only if L and L' are conjugate in

[P oQ)

1PlQI

P x Q. In particular vpg = ¢(m)m where ¢ is the FEuler

function.

Proof : Assume ep < eg, without loss of generality.

1) If P =1, then vpg = 1, and P o @ = @ by definition, and ep = 1, so
there is nothing to prove.

2) If p=2and P = @ = Qg, then by Theorerr;4.6, a genetic centrally

diagonal subgroup L of P x @) is of the form L, = A,(P), where ¢ : P — Q

is some group isomorphism. Moreover Npyq(L)/L = Cy, so P o Q) = Cy.
Now let ¢, ¢ : P — @ be two group isomorphisms. Then L, =, 0 Ly

if and only if there exists (z,y) € (P x @) such that

LEY 0 Zpxo(Ly)
DLy N Zpxo(Ly)

Ly,
L

IAINA

v -

These conditions depend only on the double coset Npyq(Ly)(2, y)Npxo(Ly),
which admits a representative of the form (u, 1).
Now the condition Lfou’l) N Zpxg(Ly) < Ly is equivalent to

vhe Pooo(h) (h") € Zg = () O(h) = 1,
and similarly, the condition “Y L, N Zpxo(L,) < L, is equivalent to

vh e P, (h)"'p("h) € Zg = v(h)'p("h) =1 .
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Applying 1! to the first condition and ¢~! to the second one, and setting
0 = 1Ly, these two conditions become

VheP, O(h)'h* e Zp = O(h) = h"
VYheP, 0N h) "heZp = 07'(h)="h .

Since h*h~! € [P, P] = Zp, there are equivalences

O(h)'h" € Zp <= O(h)*heZp <= h'9(h)e€ Zp ,
O (h)y""he Zp <= 07 (h)'heZp < h'0(h) € Zp .

Hence, in order to prove that L, = prQ Ly for any ¢,¢ : P S Q, it is
enough to prove that
(4.22)
1 O(h) = h*
V0 € Aut(P), Jue P,Yhe P, O(h)h™" € Zp = { 6-1(h) = uh

If A has order 1 or 2, then #(h) = h = h" for any u € P, hence the conditions
6(h) = h* and 67'(h) = “h only have to be checked for |h| = 4. Now the
group Aut(P) permutes the three cyclic subgroups of order 4 of P, and this
gives an exact sequence

1 — Inn(P) - Aut(P) - S35 —» 1 ,

where S3 is the symmetric group on three symbols. Saying that (h)h~t € Zp
is equivalent to saying that §(<h>) = <h>. Hence, either 6 stabilizes the
three subgroups of order 4 of P, and in this case # is inner, hence there exists
u € P such that 6(h) = h*, for any h € P, hence ' (h) = “h, for any h € P.

Or there exists a unique subgroup C' of order 4 of P such that §(C) = C.
Then either (h) = h for any h € C, or §(h) = h™!, for any h € C. In the
first case, take © = 1, and in the second case take u € P — <h>, and then
6(h) = h* for any h € C, hence h = 6='(h)" for h € C, since C' = §(C).
Hence 4.22 holds. This completes the proof in this case.

3) If P = Qg and @ 2 Qs, then a centrally diagonal genetic subgroup of

(P x Q) is of the form L = X¢(H), where H is one of the 3 subgroups of
order 4 of P, and ¢ is some isomorphism from H to the unique axial subgroup
K of order 4 of ). Moreover Zp, (L) = L(1 x Zg).

Let H and H’ be subgroups of order 4 of P._>Let p: H —>_>K and
¢' : H — K be group isomorphisms, and set L = A(yp) and L' = A, (H').
Suppose first that H # H', and let (a,b) € L' N Zpyg(L) = L(1 x Zg). It
means that « € H'NH = Zp, and that there exists z € Zg such that ¢'(a) =

30



v(a)z. But the restrictions of ¢ and ¢’ to Zp are equal, so ¢'(a) = ¢
hence z = 1. It follows that L' N Zpxg(L) < L, hence LN Zpyg(L') < L
symmetry, so L =, L’ in this case.

Now if H = H’, choose a subgroup H” of order 4 in P, different from H,
and a group isomorphism ¢” : H” — K. Set L" = XW(H”). Then
L=, 0 L" =00 L', by the previous argument, thus L =00 L.

Hence vpg = 1 in this case, as was to be shown.

4) In the case there are several choices for K, i.e. if Q = Qg and K has order
4 = min(ep, eg), it follows that P = Cy, since P 2 (s. In this case, we can
exchange P and (), and use the previous argument. Hence vpg = 1 in this
case as well.

5) In all other cases, by Theorem 4.6, a centrally diagonal genetic subgroup
L of (P x Q) is of the form X¢(H), where H < P is the unique axis of P,
and ¢ : H — @ is a group isomorphism to the unique axial subgroup K of
order ep of (). The normalizer of L in P x () does not depend on ¢, by 4.11,
so it does not depend on L, since H and K are also unique.

Let L and L' be two such centrally diagonal genetic subgroups of P x Q.
Then Npyxq(L) = Npxq(L'), thus L =, , L"if and only if L and L" are
conjugate in (P x @), by Lemma 2.20. Moreover, it follows from the definition
of P ¢ () that

[Npxo(L) = |L||PoQ=ep|Po@)| ,
Pl

so the conjucacy class of L in (P x @) has cardinality ————. Since
ep|P o Q)
there are ¢(ep) possible choices for the isomorphism ¢ : H — K, i.e. ¢(ep)

centrally diagonal subgroups of (P x @), it follows that

[PoQ)
PRI

as was to be shown. O

Vp = <Z5(€P)€P

4.23. Remark : Suppose that P = Qg and Q) 2 Qs. Then |Po Q| = |Q)|,
by Theorem 4.20. Hence

[PoQl _ 1QF

gb(ep)ep =2x4x = ]_:I/p7 R
PlIQ] 8@ ¢
so the formula for vpg holds in this case. The only case where vpg is not
P
equal to ¢(m)m|\Pr|C§\‘ (where m = min(ep, eq)) is the case P = Q = Qs :
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in this case vpg = 1, but

|PoQ)| 2 1
=2x4x =— .
"IPQ) TEXSX] 4

¢(m)

4.24. Corollary : Let P and () be Roquette p-groups. Then, in the
category R,
8PX6Q2VP,Q'8<P<>Q) .

In other words, if P has exponent ep, if Q) has order q and exponent eg, and
ifep <eq :

( 0Q if P=1 or P2 (Y,
802 ZfP = Q = Q87
¢’(;P) oD, if ¢ > 16 and P and Q are both dihedral,
or both generalized quaternion,
olcr) - 0Q, if one of P, Q) is generalized quaternion,
2
OPx0Q = and the other one is dihedral,
¢(§P) -05D, if Q is semidihedral, and
- either P s dihedral or generalized
quaternion, and |P| < |Q|,
-or P=(Q),
d(ep)epeq .
————=.0C,, otherwise.
([Pl ¢

Proof : Let B be a genetic basis of the group R = P x (). In the category
R,, the product P x 9Q is equal to (P x Q, f{’ x le), and it is a summand
of R. By Theorem 3.11, there are mutual inverse isomorphisms

D _
R— ONRg(S
1 56698 R( )

where 7 is the direct sum of the maps Indinf%R(S), and D is the direct sum

of the maps fl]v R(S)Defres%R(S). Corollary 4.24 follows from the fact that
Nr(S
(4.25) Nal )Defres%R(s)(ff X f2)y=0
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unless S is centrally diagonal in R = P x @) : indeed Defres%R(S) is given
by the (Ng(S), R)-biset S\R. On the other hand

o f2 = (P/L=P[Zp) x (Q/1 = Q/Zq)
R/(1x1)—R/(1x Zg)—R/(Zp x 1)+ R/(Zp x Zg) ,

hence Defres o (ff x /) is equal to

S\R/(1 x 1) — S\R/(1 x Zg) — S\R/(Zp x 1) + S\R/(Zp x Zo)
which is
(4.26) S\R — S(1 x Zo)\R — S(Zp x D\R + S(Zp x Zo)\R .

If S is not centrally diagonal in R = P x @, then either S = S(1 x Zg) or
S =85(Zp x 1). In each case the sum 4.26 vanishes.
And if S is centrally diagonal in R, then

S(l X ZQ) = S(ZP X 1) = S(ZP X ZQ) ,

since the image of these groups in the Roquette group Ng(S) is equal to its
unique central subgroup S/S of order p. In this case

Defres o (ff x f) = S\R— S\R .

Since flﬁR(S) = Ng(S)/S — Ng(S )/§ it follows that Defres%R(S)(ffD X f2) is

invariant by composition with fNR ),

Conversely, if S is not centrally dlagonal in (P x @), then

(fi x f1 )Indlnfﬁ S) NR(S) —0,

as can be seen by taking opposite bisets in equation 4.25. And if S is centrally
diagonal, then

(fi x f1 )IndmfR NR(S =R/S — R/§ = Indinf%R(S) INR(S) ,

Hence the isomorphisms D and Z restrict to mutual inverse isomorphisms
between OP x JQ and the direct sum of the edges ONi(S), where S is a
centrally diagonal genetic subgroup of R. But for all such subgroups S, the
group Nx(S) is isomorphic to P ¢ @Q, and there are vpg centrally diagonal
subgroups in a genetic basis of R = P x (). This completes the proof. 0
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5. Examples and applications

5.1. Suppose first that p is odd. Then the Roquette p-groups are just the
cyclic groups Cyn, for n > 0. The “multiplication rule” of the edges OC)n is
the following

(5.2) Ym,¥n € N, 0Cpn x 0Cyn = ¢(p™™ ™™ )OC jmastmn)

where ¢ is the Euler function (thus ¢(p*) = p*~*(p — 1) if k¥ > 0, and
¢(1) =1).

5.3. Some surprising phenomenons occur when p =2 :

5.4. Proposition : In R,, the edge OC5 is isomorphic to the trivial group 1
(or its edge O1).

Proof : Indeed Corollary 3.12 implies that if £ = (Cy)?, then OF = 0 in R,.
Let X, Y and Z denote the subgroups of order 2 of . The element

— E E E
u = Resy xg fi7 Xg Indy

of B(X,Y) can be viewed as a morphism from Y to X in the category R,
which factors through OF. So this morphism is equal to 0. Since

ff=E/1-E/X-E)Y -E/Z+2E/E ,

it follows that
u = Indy Res} — Infy Res} — Indy Def] — Iso(¢) + 2Infy Def] |
where ¢ is the unique group isomorphism from Y to X. Thus
0 = u Iso(¢™!) = Indy Resy* — Inf{ Resy — Indj Defy — Idx + 2Infy Defy .
Hence in the category Ro
Idyx = (Ind{ — Inf{')(Resy — Defy) + Infy Defy .

It follows that
(5.5) FX = X (Indy — e (Resy — Def) f .
But on the other hand f;¥ = Idy — Inf{ Defy, so

fi¥(Indy —Infy) = f;'Ind{
= Ind{ — Inf{Def{Ind;

= Ind{ — Infy .
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It follows that

(Resy” — Defy) f;i*(Indy" — Infy") = (Resy — Defy)(Indy — Infy)
2Id; — Id; — Id; + Id4
Id; .

Thus, setting

= fX(Ind{ — Infy") € Homg,(1,0X)
b = (Resy — Defy)f; € Homg,(0X,1) ,

the composition b o a is equal to Id;, and Equation 5.5 shows that the com-
position a o b is equal to the identity of 0X. So a and b are mutual inverse
isomorphisms between 1 and 0.X. 0

5.6. Corollary : Let F' be a rational 2-biset functor. Then for any finite
2-group P
F(Cyx P)2 F(P)® F(P) .

F(Ds x P) = F(P)® .

Proof : Indeed rational p-biset functors are exactly those p-biset functors
which factor through the category R,. And in the category Ry, by Theo-
rem 3.11, there is an isomorphism

Co=1000;,=21601 .

Thus Cy x P =2 P® P, and the first assertion follows. The second one follows
from Example 3.13, which shows that in R»

D 2194-0C,25-1 .

Hence Dg x P 25 P, thus F(Ds x P) = F(P)®. O

5.7. Proposition : The edge 0Qg is an involution : more precisely

anxanzaCle .

Proof : Indeed Qg ¢ Qs = C5, and v, g, = 1, by Theorem 4.21. 0
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5.8. Remark : The “action” of this involution on the edges of the other
Roquette 2-groups (that is, different from 1, Cy, and @g) is as follows : it
stabilizes cyclic and semidihedral groups, and exchanges dihedral and gen-
eralized quaternion groups. More precisely, it follows from Corollary 4.24
that

Vi > 2, Qs X OCyn = 9Chn
Vn >4, Qg X ODgn = OQgn
Vn >4, Qg X 0Qan = 9Dan

Vn >4, 9Qg X OSDyn = S Dan

5.9. By Theorem 3.11, any finite p-group is isomorphic to a direct sum of
edges of Roquette p-groups in the category R,. The following result shows
that the summands of such an arbitrary direct sum are unique, up to group
isomorphism, with the possible exception of the isomorphism 1 = 01 = 9C,
of Proposition 5.4 :

5.10. Proposition : LetS and T be finite sequences of Roquette p-groups,
such that there exists an isomorphism

(5.11) ® IS @ T
SeS TeT

in the category R,. If p = 2, replace any occurrence of Cy in S and T by the
trivial group, which does not change the existence of the isomorphism 5.11,
by Proposition 5.4.
Then there ezists a bijection ¢ : S — T such that the groups S and p(5)
are isomorphic, for any S € S.

Proof : By [3], the simple biset functors Sgr,, where R is a Roquette p-group
different from C,, are rational biset functors. Moreover, if |R| > p?, then for
any finite p-group P, the dimension of Spr,(P) is equal to the number of
groups S in a genetic basis of P such that Np(S) = R. On the other hand,
the F,-dimension of Sy r,(P) is equal to the number of groups S in a genetic
basis of P such that [Np(9)| < p.

The functor Sgr, extends to an additive functor from R, to the category
of IF-vector spaces, and the value of this functor at the edge JP is by defini-
tion equal to dSgr,(P). If |R| > p?, then the F,-dimension of dSg g, (P) is

~Y

equal to the number of groups S in a genetic basis of P such that Np(S) = R
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and SN Z(P) = 1. In particular, if P itself is a Roquette group, then

1 if P=ER

dim]pp SRJFP (8P) = dim]Fp GSR,FP(P) - { 0 otherwise

Applying the functor Sgpr, to the isomorphism 5.11, this implies that the
number of terms in the sequence & which are isomorphic to R is equal to the
corresponding number in the sequence T .

Similarly, for any finite p-group P, the [F,-dimension of 051, (P) is equal
to the number of groups S in a genetic basis of P such that Np(S) < p and
SN Z(P)=1.If P itself is a Roquette group, this gives

1 it P=C,
dimpp Sl,Fp (8P) = dimpp 851715‘17 (P) = 1 if P=1
0 otherwise

Hence the number of terms in the sequence & which are isomorphic to 1 or
C, is equal to the corresponding number in the sequence 7. If p = 2, there
are no S in S U T such that S = (5, by assumption. It follows that for
any Roquette p-group R, the number of terms in the sequence S which are
isomorphic to R is equal to the corresponding number in the sequence 7.
The proposition follows in this case.

If p > 2, the above argument shows that

SEBS 0S = TEBT oT .
IS\EZP2 \T|62p2

Let M denote this direct sum. The isomorphism 5.11 can be rewritten as
(5.12) my1 ® me,0C, M = n11 S ne,0C, M |

for some integers my, mc,, n1, nc, such that my +me, = ny +nge,.

Now, let ¢ be a primitive (i.e. non-trivial, since p is prime) character
(Z/pZ)* — C. Such a character exists since p > 2. The functor S¢, ¢ is
a rational p-biset functor, as it is a summand of CR¢ ([8] Corollary 7.3.5).
Applying this functor to the isomorphism 5.12 and taking dimensions gives

me, + dim¢ Scp,c(M) =ng, + dime SCp,C<M> )

since Scp,C<1> =0 and SCp,C<CP) = aSch(Cp) ~ C.
It follows that mc, = nc,, hence my = ny, which completes the proof. 0
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5.13. Corollary : Let X, Y, and Z be objects of R,, isomorphic to direct
sums of edges of Roquette p-groups.

1. If X®eZ=2Y D Z inR,, then X =Y.
2. If n is a positive integer, and if n- X =n-Y inR,, then X =Y.

Proof : Decompose X as X = @ ng(X)-0R, where R runs through the set of
R

isomorphism classes of Roquette p-groups, and the function R — ng(X) € N
has finite support. Choose similar decompositions ¥ = @ ng(Y) - R and
R
Z = ®dng(Z) - 0R.
R
For Assertion 1, if p > 2, it follows from Proposition 5.10 that

nR(X) + nR(Z) = nR(Y) + nR(Z) ,

for each R. Thus ng(X) = ng(Y) for each R, hence X =Y in R,,.

If p=2, and if R is a Roquette p-group different from 1 and C5, Propo-
sition 5.10 shows that ng(X) + nr(Z) = ng(Y) + nr(Z), hence ng(X) =
ng(Y). Proposition 5.10 also implies that
m1(X) 416, (X) +n1(2) + ne,(2) = na(Y) +n6,(Y) +n1(2) +ne,(2)
whence n1(X) +ne,(X) = n1(Y) + ne, (Y), and X =Y in R, again, since
1=0C..

The proof of Assertion 2 is similar : if p > 2, Proposition 5.10 shows that
nnr(X) = nng(Y), for any R, thus ng(X) = ng(Y), and X =Y. And if
p = 2, the conclusion ng(X) = ng(Y) is valid for R different from 1 and Cs.
Moreover n(ni(X)+ne,(X)) = n(n1(Y)+ne,(Y)), hence ny (X)4ne,(X) =
n1(Y) +ne,(Y), and X 2 Y, since 1 = (. 0

In the case of the decomposition of a p-group as a direct sum of edges of

Roquette groups, the above isomorphism 9dCs =2 91 doesn’t matter, and the
decomposition is unique :

5.14. Proposition : Let P and Q be finite p-groups. The following
assertions are equivalent :

1. The groups P and Q) are isomorphic in the category R,.

2. There exist genetic bases Bp and By of P and @), respectively, and a
bijection o : Bp =, Bo such that

(5.15) VS € Bp, Nq(o(S))/o(S) = Np(S)/S .
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3. For any genetic bases Bp and Bg of P and @), respectively, there exists
a bijection o : Bp =, Bgo such that 5.15 holds.

Proof : Assertion 2 implies Assertion 1 by Theorem 3.11. Now suppose that
Assertion 1 holds. Then in particular F'(P) = F(Q), for any rational p-biset
functor F'. Let Bp and Bg be genetic bases of P and @), respectively. If R is
a Roquette p-group, set

mp(R) = |{S € B| Np(5)/S = R}| ,

and define similarly mg(R) for the group (). The integers mp(R) and mqg(R)
do not depend on the choices of the genetic bases Bp and By.

If R is not isomorphic to C,, then the simple functor Sgp, is rational.
Moreover, the F,-dimension of Sgr,(P) is equal to mp(R) if |R| > p, and
to 1 + mp(C,), if R = 1. Since P is the only element S of B such that
Np(S)/S = 1, it follows mp(1) = 1, and then mp(R) = mg(R) for any
Roquette p-group R. Assertion 2 follows. The equivalence of Assertions 2
and 3 follows from Theorem 2.22. 0

5.16. Examples :

e Let p > 2, and let X (resp. X~) denote the extraspecial p-group of order
p* and exponent p (resp. p?). Then XT = X~ in R, for if P is one of these
groups, each genetic basis of P consists of S = P, for which Np(S)/S = 1,
of the p+ 1 subgroups S of index p in P, for which Np(S) = P/S = C,, and
an additional non-normal genetic subgroup S such that Np(S)/S = C,. In
other words

Xt X" >1a(p+2)- 00,

in the category R,.

e Similar examples exist for p = 2 : if P is one of the groups labelled 6 or 7
in the GAP list of groups of order 32 (see [11]), with respective structure
((Cy x Cy) x Cy) x Cy and (Cg x Co) x Cy, then in any genetic basis of P,
there is a unique group S(= P) such that Np(S)/S = 1, there are 6 groups
S such that Np(S)/S = Cy, and 2 groups S such that Np(S)/S = Cy.

e Some 2-groups with different orders may become isomorphic in the cate-
gory Rs : using GAP, one can show that the elementary abelian group of
order 16 is isomorphic to each of the groups labelled 134, 138, and 177 in
GAP’s list of groups of order 64. These groups have respective structure

((C4XC4)>402)><102, (((C4XCQ)><102)><102)>402, and (CQXD16)>402 .
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I couldn’t find any similar example for p > 2. In this case however, the
following result characterizes those p-groups which become isomorphic in the
category R, :

5.17. Proposition : Let p be a prime number, and let P and @) be finite
D-groups.
1. If P = Q in the category R,, then the Q-algebras ZQP and ZQQ) are
1somorphic.

2. If p> 2, and if ZQP and ZQQ are isomorphic Q-algebras, then P = ()
in the category R,.

Proof : Let G be a genetic basis of P. For S € G, let V(S) denote the
corresponding simple QP-module, defined by

. P
The multiplicity vg of V(S) in the QP-module QP is equal to

dim(@ Ende (V(S))

Us

As S is a genetic subgroup of P, there is an isomorphism of (skew-)fields

Endgp(V(S)) = Endgy,(s) (Prps) -

It follows that there is an isomorphism of Q-algebras

QP =[] M, <End@ﬁp(5) (‘DNP(S))> :
Seg

Hence
2QP = ] Z(Endgw, s (Px,5)) -
Seg

It shows that the isomorphism type of the Q-algebra ZQP depends only on
the genetic basis G : more precisely, it is determined by the isomorphism
type of P in R,. This proves Assertion 1.

Now if p > 2, the group Np(S) is cyclic, of order p™s, say. By Exam-
ple 2.11, there is an isomorphism of (skew-)fields

Endg,s) (Pxpes) = Q(Gms)
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where (,ms is a primitive root of unity of order p™s. Hence

ZQP = [T Q(gms) -

Seg

Similarly, if H is a genetic basis of )

Z@Q = H @(CP"T) I

TeH

where p"T = |Ng(T)|.

Let [ be an integer bigger than all the mg’s, for S € G, and all the ny’s,
for T'e H. Set K = Q((,), and let G be the Galois group of K over Q. By
Galois theory ([15] Theorem 1.5.4 and Remark 1.5.5), the Q-algebras ZQP
and ZQQ are isomorphic if and only if there is an isomorphism of G-sets

Hom,,(ZQP, K) = Hom,,(ZQQ, K) .

When r <[ is an integer, let G, denote the Galois group of K over Q((,r).
Then the G-set Hom,,(ZQP, K) is isomorphic to

| | G/Gns

Seg

The isomorphism ZQP = ZQE implies that for any r < [, the number of
S € G such that Np(S) has order p" is equal to the number of T' € H such
that Ng(T) has order p". Now Assertion 2 of the proposition follows from
Proposition 5.14. 0

5.18. Remark : Assertion 2 of Proposition 5.17 is not true for p = 2 : let
P = Dg and ) = Qg denote a dihedral group of order 8 and a quaternion
group of order 8, respectively. By Example 3.13, in a genetic basis of P, there
is one group S such that Np(S)/S =1 (namely S = P), and 4 subgroups S
such that Np(S)/S = C; (the 3 subgroups of index 2 in P, and a non-central
subgroup of order 2 of P). It follows easily that

QDs=Qa Qe Qe Qe M(Q) .

On the other hand, a genetic basis of () contains one subgroup S such that
No(S)/S =1 (namely S = @), 3 subgroups S such that No(S5)/S = C; (the
3 subgroups of index 2 in @), and one subgroup S such that Ng(S5)/S = Qs
(the trivial subgroup of ). Hence

QWs=QeQeQe®Q®Hg ,
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where Hy is the field of quaternions over Q. Then

ZQDs = Q* = ZQQs -
But Dg and Qg are not isomorphic in R, by Proposition 5.14.

5.19. Genetic bases of direct products. Theorem 4.21 yields a way to
compute a genetic basis of a direct products of p-groups. More precisely:

5.20. Theorem : Let P and () be finite p-groups, let Bp be a genetic basis
of P, and let Bg be a genetic basis of ().

1. For each paii(S, T) € Bp x Bg, let R be a centrally diagonal genetic
subgroup of Np(S) x Ng(T'), and let

R={(z,y) € Np(S) x No(T) | (zS,yT) € R} .
Then R is a genetic subgroup of P X @, such that

Nexo(R) = Np(S) o No(T) .

2. For (S,T) € Bp x Bg, let Esr denote the set of subgroups R obtained
in Assertion 1, when R runs through a set of representatives of cen-
trally diagonal genetic subgroups of Np(S) x Ngo(T'), for the relation

QNP(S)X]VQ(T) , as described in Theorem 4.21.

Then the sets Egp consist of mutually inequivalent genetic subgroups

of P x Q, for the relation =, and the (disjoint) union
Brvg= || &sr
(S, T)eBp XBQ

is a genetic basis of (P X Q).

Proof : Assertion 1 is straightforward if the group Np(S) is trivial, i.e. if
S = P, or if the group Ng(T) is trivial, i.e. if T = Q. So we can assume
that S < Pand T < Q.

By Theorem 4.6, the group R is diagonal in Np(S) x Ng(T). It follows
that k1 (R) = S, ko(R) =T, and R = R/(S x T). This implies in particular
that Npyg(R) < Np(S) x Ng(T'). More precisely

Npxq(R) = {(a,b) € Np(S) x No(T) | (aS,0T) € Ny, (syxxom (R}
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and the map (a,b) — (aS,bT") induces a group isomorphism

Npx@(R)/R = Ny, (s)xnom)(R)/R -

It follows that Np«o(R)/R is a Roquette group, and by Theorem 4.6 again,
and Notation 4.18

Npxq(R)/R = Np(S)oNq(T) .

Let S > S denote the subgroup of N p(S) such that 3 /S is the unique central
subgroup of order p of the Roquette group Np(S). Define T > T similarly,
and let R/R be the unique central subgroup of order p of Npyg(R)/R. Then

~

R=(Sx1R=(1xT)R .

Let (z,y) € P x Q such that R@% N R < R. Intersecting this inclusion with
P x 1 gives R
(S*NS)x1<8Sx1,

thus 5* N S < S, and it follows that x € Np(S), since S is an expansive
subgroup of P. Similarly, intersecting the inclusion R®¥ N R < R with
1xQ gives TYNT < T, hence y € No(T).

Now S x T < R@v N R < R, and taking the quotient by S x T' gives

R A (RI(SxT) <R .

As R is a genetic subgroup of Np(S) x Ng(T), it follows that R 4
equal to R, hence R®¥ = R. Thus R is an expansive subgroup of P x Q.
Since Npyg(R)/R is a Roquette group, the group R is a genetic subgroup of
P x @, and this completes the proof of Assertion 1.

For Assertion 2, let (S,T") and (S, 7") in Bp x Bg, and let R € £g 7 and
R' € Eg 17, such that R =0 R'. Tt means that there exists (z,y) € P x Q
such that

(5.21) R*YNR <R , "RNR<R .
Intersecting these two inclusions with P x 1 gives
STNS<S ., 9NS<S .

Hence S" =, 5, thus S’ = S, since S and S’ are in the same genetic basis
of P. Moreover x € Np(S). Similarly, intersecting 5.21 with 1 x @ implies
T =T, and y € No(T).
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Quotienting the inclusions 5.21 by (S xT') gives that R =

Hence R’ = R, as was to be shown.
Now setting

Np(S)xNg(T)

BP xQ — |_| 5S,T

(S,T)eBpxBg

yields a set of genetic subgroups of P x (), which are inequivalent to one

other for the relation QPXQ . But

Esr| = VNp(S),No(T) >
and Npxo(R)/R = Np(S) o No(T), for any R € Esr it follows that

©  ONpxg(R)/R = & V]VP(S),JVQ(T)a(NP(S>ONQ<T))

ReBpxq gegp
€5qQ
o ONp(S ONo(T
(SEGZP p(S)) x (Tg%@ o(T))
2 PxQ .

In particular, the rank lg(P x Q) of the group Ro(P x Q) is equal to |Bpxg-
Since Bpxq is contained in a genetic basis of P x (), which has cardinality
lo(P x Q), it follows that Bpy( is a genetic basis of P x Q. 0

5.22. Remark : Theorem 5.20 does not mean that any genetic subgroup
of P x () can be obtained by the construction of Assertion 1. For example, if
[P,P] < Z(P) and Z(P) is cyclic, then the diagonal R = A(P) is a genetic
subgroup of Px P, by Example 2.17. But k;(R) = 1 is not a genetic subgroup
of P, if P is not a Roquette group.

5.23. Example of application. As explained in Example 3.13, the
dihedral group Dg splits as

(5.24) Ds = 16 40C,

in the category R,. By Proposition 5.4, it follows that Dg = 5 -1 in Rs.
Hence (Dg)" = 5" -1, for any n € N. In particular, if F' is a rational 2-biset
functor such that (1) = {0}, then F((Ds)") = {0}. Hence F(P) = {0} for
any quotient of a direct product of copies of Dg, by Remark 3.10.

Actually, one can be more precise : since 9Cy x 9Cy = 9Cy by Corol-
lary 4.24, it follows that for any n € N

7)42‘-(802)1' = 1@@3 (?)4-8@ ~15(5"—1)-0C, .

7

5:25) (D= (
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It means that a genetic basis of the group P = (Dg)™ is made of the group
S = P, for which Np(S5)/S = 1, and of (5" — 1) subgroups S for which
Np(S)/S = Cs.

In particular, by Theorem 9.5 of [5] (or Corollary 12.10.3 of [8]), the
Dade group of P is torsion free, and so is the Dade group of any factor group
of P, by Remark 3.10 again. It shows that the Dade group of a central
product of any number of copies of Dg is torsion free (see Theorem 5.36 for
a generalization of this result) : this was proved by Nadia Mazza and me
(Theorem 9.2 of [9]). However, the above argument cannot be considered as
a new proof of this result, since Theorem 9.5 of [5] relies on Theorem 9.2
of [9].

5.26. Edges of central products. Let P and () be non-trivial finite
p-groups. Recall that a central product P x, () of P and () is by definition
a group of the form (P x Q)/K@(Zp), where Zp is a central subgroup of
order p of P, and ¢ : Zp — Z(Q) is some isomorphism from Zp to some
central subgroup Zg of Q.

In the case where p = 2 and the groups P and @) both have cyclic center,
the group Zp is unique, as well as the morphism ¢, so the central product is
simply denoted by P x @ in this case.

5.27. Proposition : Let p be a prime number, and let P and ) be non-
trivial finite p-groups. Let Zp (resp. Zg) denote a central subgroup of order p

of P (resp. Q).
1. If one of the groups Z(P) or Z(Q) is non-cyclic, or if |Z(P)| > p and
1Z(Q)] > p, then O(P *, Q) = 0 in R, for any group isomorphism
QY ZP — ZQ.
2. If Z(P) and Z(Q) are cyclic, and if moreover Z(P) or Z(Q) has or-
der p, then, in 'R,

& (P, Q)= OP x0Q .

go:Zp%ZQ

Proof : The center of the group P, (@ is equal to Z(P)*, Z(Q). It is cyclic
if and only if both Z(P) and Z(Q) are cyclic, and if one of them has order p.
This proves Assertion 1.

For Assertion 2, suppose that Z(P) and Z(Q) are cyclic, and that one of
them has order p. Then the subgroups Zp and Z; are uniquely determined,
and there are p — 1 group isomorphisms ¢ : Zp — Zg. For each of them, the

%
only central subgroup Z,, of order p of Px,Q is equal to (Zp x Zg)/ A (Zp),
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and
(P*,Q)/Z, = (PxQ)[(Zpx Zg) =P xQ ,
where P = P/Zp and Q = Q/Zg.
By Proposition 3.8

Px@Q = @ 3((P><Q)/N)
1<N A(PxQ)
PrQ = Aw(ZP)SEJ%S(PXQ) 6((P x Q)/N)
P ~ b N
) Q (ZP><1)_€E§1(P><Q) a(( X Q)/ )
Px(Q = P N
“ (1XZQ)S€1?7§1(PXQ) 8(( xQ)/ )
PxQ = @ 3((P><Q)/N)
(ZpxZg)<N A(PxQ)
Set
(5:28)  S=0FxQ)& < ® (P*soQ)> O(PxQ)e(PxQ) .
©:Zp>Zg

Then S is equal to the direct sum of the edges ((PxQ)/N), for N A(PxQ),
with multiplicity (p + 1) if N > (Zp x Zg), and multiplicity 1 otherwise.
Hence

(5.29) SE(PxQ)+p-(PxQ) .

Now 9(P x @) = 0 by Corollary 3.12. Moreover, by Corollary 3.9, for each
v Zp = Zg,

Px,Q=0(Px,Q)®(PxQ) .
But P~ 0P @ P and Q = 0Q @ Q, by Corollary 3.9 again. Replacing P, Q,
and P *, () by these values in Equation 5.28 gives
(5.30)

S%’( P 6(P*SOQ))@(p+1)-(ﬁ><@)@(ﬁ><(8@))@((8P)x@).

©:Zp=7¢
But replacing P by 9P @ P and Q by 0Q ® @ in Equation 5.29 gives
(5.31) S (OPx9Q)d(p+1)-(PxQ)a (P x(9Q)) & ((0P) x Q) .
Comparing Equations 5.30 and 5.31 gives
® O(Px,Q)=0P x0Q ,

©:Zp>2Z0
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by Corollary 5.13. This completes the proof. 0

5.32. Corollary :

1. Let P and Q) be non-trivial finite 2-groups with cyclic center, and as-
sume that Z(P) or Z(Q) has order 2. Then

I(P Q) =2 IP x 0Q
in the category R.
2. For each 1 € {1,...,n}, let P; be a finite 2-group with center Z; of

order 2. Let >k P; = Py x Py*---x P, denote the central product of the
i=1

groups P;. Then

n

g1_[ HP/Zi)

=1

H%:

in the category R.

3. In particular, for any positive integer n, and any integer m > 4, there
are isomorphisms

(ng)*n 2(n 1)(m—3) aDQm (Dmel)n
(SDQm)*n ~ 2(n 1)(m—3) 6SD2m (D2m l)n

o 20=1)(m=3) . 9 Dym @ (Doym—1)"™ if n is even
(QQm) (n—1)(m—3) ; :
2 - 0Qaom @ (Dom—-1)" if n is odd

12

in the category Ro, where P*™ denote the central product of n copies
of P.

Proof : For Assertion 1, the assumptions imply that there is a unique iso-
morphism ¢ : Zp — Zg. Hence there is only one term in the summation of
Proposition 5.27.

Assertion 2 follows from Corollary 3.9, which gives an isomorphism

*PS a(;klpi) & ((;klpi)/y) ,

n

where Y is the unique central subgroup of order p in >k P,. Now an easy
i=1
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induction argument, using Assertion 1, shows that 0( * PZ-) =~ [](9F;), and

=1
that (i%ll%)/Y = f[l(Pi/Zi)-

Finally, when P is one of the groups Dom, SDom, or SDom, then P/Z =
Dym—1. Now Assertion 3 follows from Assertion 2 and from an easy induction
argument using Corollary 4.24. 0

5.33. Remark : It follows from Assertion 3 that when n is even, the groups
(Dgm )*™ and (Qam )™ are isomorphic in the category R : it is actually easy
to check that they are isomorphic as groups.

5.34. Example : From Corollary 4.24 and Assertion 1, it follows that :
® 6((D8)*") = 802

0C5 if n is even

* a((QS) ) - { 0Qg if n is odd

° 8((SD2m)*") =~ o(=1)(m=3) . 9SG Do, for m > 4.
More generally, if P is any central product of groups isomorphic to Dg or
(s, that is, if P is an extraspecial 2-group, then 0P = 90C,, or 0P = 0Q)s.
In particular (see Example 2.28), we recover the well known fact that P has
a unique faithful rational irreducible representation. But there is more : let
(@ be a non trivial 2-group. If the center of @) is not cyclic, then the center
of any central product P x @ is not cyclic, hence 0Q = I(P x Q) = 0 in Rs.
If the center of () is cyclic, then there is a unique central product P * Q). By
Theorem 3.11, there is a finite sequence S of Roquette 2-groups such that

00~ @ OR
ReS

in the category Rs. By Assertion 1 of Corollary 5.32, it follows that
IP*Q)= @ (OP x OR) .
ReS

Now 0P = 0C5 or OP = 0Qs. In both cases, by Proposition 5.4 and Propo-
sition 5.7, the multiplication by P is a permutation of the edges of the
Roquette 2-groups. It follows that there is a sequence &’ of Roquette 2
groups, of the same length as S, such that

I(Px*Q) = RGEBS/ OR .

In particular, for any field K of characteristic 0, the groups Rg(OP) =
IR (P) and Rk (O(P * Q)) = ORk (P % Q) are free of the same rank, equal
to the length of S or §'.
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Hence in any case, the groups @ and P x () have the same number (pos-
sibly 0 if the center of @) is not cyclic) of faithful irreducible representations
over K, up to isomorphism.

Similarly, the last example above means in particular that the group
(SDgm )*™ admits 2("~D™=3) non isomorphic faithful rational irreducible rep-
resentations.

5.35. Example : Let p be an odd prime, and let P = X (where € € {£1})
be one of the extraspecial groups of order p* considered in Examples 5.16.
Then 0P = 0C,. Moreover Z(P) has order p, and any automorphism of
Z(P) = Zp can be extended to an automorphism of P. It follows that Px,Q
is independent (up to a group isomorphism) of the choice of an embedding
¢ P <= Z(Q), for any non-trivial p-group @) with cyclic center, so we can
denote this group by P x Q).

Now if () is a non-trivial p-group, and B is a genetic basis of @), it follows
from Theorem 3.11 that

0Q= @& OINg(S) ,
SeB
5NZ(Q)=1
and the right hand side is a direct sum of non-trivial Roquette p-groups. By
Equation 5.2, for any non trivial Roquette p-group R

0C, x OR= (p—1)0R .
Hence for any non-trivial p-group @)
0C, x 0Q = (p—1)0Q .

It follows that if @) is a non-trivial p-group with cyclic center, and if P = X°¢,
then

D AP, Q)= (p- VAP Q) =C, x 0Q = (p—1)0Q

<p:ZpE>ZQ

hence 0(X“* Q) = 0Q, by Corollary 5.13. Note that this is also true (for any
central product of X¢ with @) if the center of @) is non-trivial, since in this
case the center of X« (@ is also non trivial, and then 9(X¢* Q) = 0Q = 0
in R, by Corollary 3.12.

It follows easily by induction that if P is any central product of groups
isomorphic to X+ or X, i.e. if P is an extraspecial p-group, then 0P = 9C,,.
We recover this way the well known fact that for p > 2 also, extraspecial p-
groups have a unique faithful rational irreducible representation. The same
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argument shows more generally that 0(P * ()) = 0@ in R,, for any non-
trivial p-group ). In particular @ and P % () have the same number of
faithful irreducible representations over a given field K of characteristic 0.

5.36. Theorem :

1. Let P be an arbitrary finite direct product of groups of order 2 and
dihedral 2-groups. Then the Dade group of any factor group of P s
torsion free.

2. Let4 <mq <mg < ---<m, be anon decreasing sequence of integers.

n—1

Set s = > (m; — 3). Then the torsion part of the Dade group of
i=1

k SDym; is isomorphic to (Z/2Z)* " if my < my, and to (Z/272)% if
i=1
myp = My.

3. In particular, for any integers n > 1 and m > 4, the torsion part of
the Dade group of (SDom)*™ is isomorphic to (Z)2Z)*" """

Proof : First by Example 3.13
Ds=1d4-0C,

in Ry. Now by Corollary 3.9, since the center Z of D14 has order 2, and since
D16/ Z = Dy
D16 = 1@4802@8D16 .

Since for n > 3, the group Dy» has a center Z of order 2, and since Dgn /Z =
Dyn—1, it follows by induction that

(5.37) Dy 21&4-0C, & @ oDy .
=4

Now by Corollary 4.24, the product 0Dg X 0 Dom, for | < m, is isomorphic to
2!=3 . 9Dgym. Moreover 9Cy x OP =2 9P for any 2-group P, since 9Cy = 1 by
Proposition 5.4, it follows that any product of dihedral 2-groups and groups
of order 2 is isomorphic to a direct sum of edges of the trivial group, of the
edge of the group of order 2, and of edges of dihedral 2-groups.

It follows that if P is a direct product of dihedral 2-groups and groups of
order 2, then P is isomorphic in Ry to the direct sum of the trivial group,
and some copies of edges of the group of order 2 and the edge of dihedral
2-groups. In other words, if S is a genetic subgroup of P, then Np(S)/S
is either trivial, or of order 2, or dihedral. Now the Dade group of dihedral
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2-groups is torsion free (by [10] Theorem 10.3 (a)), and the Dade groups of
the trivial group and the group of order 2 are trivial. It follows that the Dade
group of P is torsion free, as well as the Dade group of any quotient of P, as
is it a direct summand of the Pade group of P. This proves Assertion 1.

For Assertion 2, set P = >k SDym;. By Assertion 2 of Corollary 5.32,
i=1

(5.38) 2= ﬁ 9SDym; & f[ Dymi—1

i=1 i=1

in the category Ry. Now an easy induction on n, using Corollary 4.24, shows
that
n s—1 | o — :
H@Sngig{z 0Cymn—1 i my <m,
i=1

25 . aSDan if my = My

n—1
where s = Y (m; — 3).
i=1

By 5.38, this means that in a genetic basis B of P, there are 2°~! or 2°
subgroups S such that Np(S)/S is semidihedral, depending on m; < m,, or
my = m,, and for the other S € B, the group Np(S)/S is trivial, of order 2,
or dihedral.

The Dade group of a dihedral 2-group is torsion free, and the Dade groups
of the trivial group and C5 are trivial. Moreover, the faithful torsion part
OD'(Cyn) of the Dade group of Cym is isomorphic to Z/2Z, if m > 2 (see [8]
Theorem 12.10.3). Similarly, the faithful torsion part 9D*(S Dam ), for m > 4,
is isomorphic to Z/27. This completes the proof of Assertion 2. Assertion 3
is a particular case of Assertion 2. 0

5.39. Remark : Let P be a finite product of groups of order 2, and dihedral
2-groups, as in Assertion 1, and let () be a quotient of P. If T is a genetic
subgroup of (), then Ng(7')/T is either trivial, of order 2, or dihedral : indeed

T lifts to a genetic subgroup S of P, such that Np(S)/S = No(T)/T. It
follows in particular that the map

éq : B*(Q) — Homg (Rg(Q),F>)

introduced in [6], Notation 8.4, is a group isomorphism from the group of
units of the Burnside ring of @ to the Fa-dual of Rg(Q) : indeed, there are
non-negative integers a and b;, for i € {4,...,m} such that

Q%l@a@CQ@é%bzaDQz
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in the category Ro. Then B*(Q) = (F2)", where r = 1 +a + > b;, by [6],
i=4
Theorem 8.5. Similarly Rg(Q) = Z" (hence r is equal to the number of

conjugacy classes of cyclic subgroups of @), so Homy (RQ(Q),IFQ) = (Fy)".
As € is injective, it is an isomorphism.

5.40. Proposition : Let m > 3 be an integer. Then for any integer n,
there 1s an isomorphism

)n _ (3 + 21—3)n
21-3

n n T (38+277
(5.41) (Dyn)"=1@ (5" —1)-0C, & P - Dy,
=4

in the category R.

Proof : Let S, denote the full subcategory of R, consisting of finite direct
sums of edges of Roquette p-groups, and let I' = K(S,) be the Grothendieck
group of this category, for relations given by direct sum decomposition. Then
Corollary 5.13 shows that I' is a free abelian group, and that two objects of S,
have the same image in I' if and only if they are isomorphic in R,,. Moreover,
by Corollary 4.24, the category S, is a tensor subcategory of R,, and I' is
actually a commutative ring.

It follows that I' identifies to a subring of the Q-algebra QI' = Q ®7 I,
and that, to prove the proposition, it suffices to check that the two sides of
Equation 5.41 have the same image in QI'. Let ¢ denote the image of 0C,
in I'; and for [ > 4, let d; denote the image of 9Dy in I'. By Equation 5.37,
the image ,, of Dom in I is equal to

im=1+4c+ Y d; .
=4

By Corollary 4.24, for 4 <1 < k

dl X dk = 21_3dk .
1
o3

\V/l,k?,4§l§k’, e Xe,=eL .

It follows that the elements ¢; = d; of QI', for [ > 4, are such that

In particular ¢; is an idempotent, and the elements

fi=e —eq, ford <l <m,and f,=e,
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are orthogonal idempotents of QI'. With this notation, for [ > 4

e=fi+fipi+ o+ fom

and the element 7, can be written as

im

= 1+4C+idl

= 14de+ > 27%(fi+ for -+ fun)
1=

= ltde+) 2277 -1)f .
=4

Moreover, it follows from Proposition 5.4 that ¢ x f; = f;, for 4 < 1 < m.
Thus

J
(1+ 4¢)" (Zm“” )

5n ]22]2l3 jl

=4

(im)" = (1+4c)" +Z(?)
— (1+4c"+i(n)

Jlj

<n 5" i3 — 1y | f,
Jj=1 J

NER

= (1+40)" +
I

Il
N

(im)" = (1+4e)" +

NE

((5 +228 — )" - 5”) fi

=4

NE

= (14+40)"+ Y (B+27)"=5")1

o~
I

4

NE

= (1+49"+) (B+27)" = (3+27)")e

l

Il
IS

The proposition follows, since (1 + 4¢)"” =1+ (5" — 1)¢, by Equation 5.25,

and since ¢; = ﬁdl. O

5.42. Remark : The isomorphism 5.41 is equivalent to saying that a
genetic basis of the group P = (Dym)" consists of one subgroup S such
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that Np(5)/S = 1 (namely S = P), of 5" — 1 subgroups S such that
2l_2 n __ 2l—3 n
Np(S)/S = Cs, and, for 4 <[ < m, of (3 + ) 3+ )

91-3
S such that Np(S)/S = Dq.
Together with Assertion 3 of Corollary 5.32, this also gives the structure
of genetic bases of the groups (Dagm)*™, (S Dagm)*™, (Qam )*" :

subgroups

5.43. Corollary : Let P be one of the groups Dom, SDom, or Qom, for
m > 4. Then, for any positive integer n, any genetic basis of the group
Q = P consists :

o of one group S such that Np(S)/S =1 (namely S = Q).
e of 5" — 1 subgroups S such that Np(S)/S = Cs.

(3 + 2l72)n _ (3 + 2l73)n

o ford <l <m-—1, of =

o of 2=VMm=3) subgroups S such that Np(S)/S is isomorphic to

subgroups S such that

Dym  if P = Dom

SDgm if P = SDom

Dom  if P = Qm and n is even
Qom  if P = Qom and n is odd .

References

[1] L. Barker. Rhetorical biset functors, rational p-biset functors, and their
semisimplicity in characteristic zero. J. Algebra, 319(9):3810-3853, 2008.

[2] S. Bouc. Foncteurs d’ensembles munis d'une double action. J. of Algebra,

183(0238):664-736, 1996.

[3] S. Bouc. The functor of rational representations for p-groups. Advances
in Mathematics, 186:267-306, 2004.

[4] S. Bouc. Biset functors and genetic sections for p-groups. Journal of
Algebra, 284(1):179-202, 2005.

[5] S. Bouc. The Dade group of a p-group. Inv. Math., 164:189-231, 2006.

o4



[6]

[11]

[12]

[13]

[14]

[15]

S. Bouc. The functor of units of Burnside rings for p-groups. Comm.
Math. Helv., 82:583-615, 2007.

S. Bouc. Rational p-biset functors. Journal of Algebra, 319:1776-1800,
2008.

S. Bouc. Biset functors for finite groups, volume 1990 of Lecture Notes
in Mathematics. Springer, 2010.

S. Bouc and N. Mazza. The Dade group of (almost) extraspecial p-
groups. J. Pure and Applied Algebra, 192:21-51, 2004.

J. Carlson and J. Thévenaz. Torsion endo-trivial modules. Algebras and
Representation Theory, 3:303-335, 2000.

The GAP Group. GAP — Groups, Algorithms, and Programming, Ver-
sion 4.4.12, 2008. (http://www.gap-system.org).

W. Gorenstein. Finite groups. Chelsea, 1968.

[. Hambleton, L. R. Taylor, and E. B. Williams. Detection theorems for
K-theory and L-theory. J. Pure and Applied Algebra, 63:247-299, 1990.

P. Roquette. Realisierung von Darstellungen endlicher nilpotente Grup-
pen. Arch. Math., 9:224-250, 1958.

T. Szamuely. Galois Groups and Fundamental Groups, volume 117
of Cambridge studies in advanced mathematics. Cambridge University
Press, 2009.

Serge Bouc - CNRS-LAMFA, Université de Picardie, 33 rue St Leu, 80039,
Amiens Cedex 01 - France.
email : serge.bouc@u-picardie.fr

web

http://www.lamfa.u-picardie.fr/bouc/

55



