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In generic programming, software components are parameterized on types. When available, a static specialization mechanism allows selecting, for a given set of parameters, a more suitable version of a generic component than its primary version. The normal C++ template specialization mechanism is based on the type pattern of the parameters, which is not always the best way to guide the specialization process: type patterns are missing some information on types that could be relevant to define specializations.

The notion of a "concept", which represents a set of requirements (including syntactic and semantic aspects) for a type, is known to be an interesting approach to control template specialization. For many reasons, concepts were dropped from C++11 standard, this article therefore describes template metaprogramming techniques for declaring concepts, "modeling" relationships (meaning that a type fulfills the requirements of a concept), and "refinement" relationships (meaning that a concept refines the requirements of another concept).

From a taxonomy of concepts and template specializations based on concepts, an automatic mechanism selects the most appropriate version of a generic component for a given instantiation. Our purely library-based solution is also open for retroactive extension: new concepts, relationships, and template specializations can be defined at any time; such additions will then be picked up by the specialization mechanism.

Résumé

En programmation générique, les composants logiciels sont paramétrés sur des types. Quand il est disponible, un mécanisme de spécialisation statique permet de sélectionner, pour un jeu de paramètres donné, une version plus adaptée d'un composant générique que sa version initiale. Le mécanisme normal de spécialisation de patron du C++ repose sur le motif de type des paramètres, ce qui n'est pas toujours la meilleure manière de guider le processus de spécialisation : les motifs de type manquent certaines informations sur les types qui pourraient être pertinentes pour définir des spécialisations. La notion de "concept", qui représente un ensemble de spécifications (incluant des aspects syntaxiques et sémantiques) pour un type, est reconnue pour être une approche intéressante pour contrôler la spécialisation de patron. Pour diverses raisons, les concepts ont été abandonnés dans le standard C++11, cet article décrit donc des techniques de métaprogrammation par patrons pour déclarer des concepts, des relations de "modélisation" (signifiant qu'un type satisfait les spécifications d'un concept) et des relations de "raffinement" (signifiant qu'un concept raffine les spécifications d'un autre concept).

A partir d'une taxonomie de concepts et de spécialisations de patrons basées sur les concepts, un mécanisme automatique sélectionne la version la plus appropriée d'un composant générique pour une instanciation donnée. Notre solution, qui repose uniquement sur une bibliothèque, permet aussi une extension rétroactive : de nouveaux concepts, relations et spécialisations de patrons peuvent être définis à tout moment ; de tels ajouts seront alors pris en compte par le mécanisme de spécialisation.

Mots clés : programmation générique, spécialisation de patron, surcharge/spécialisation par concepts, métaprogrammation par patrons.

Introduction

Generic programming focuses on providing parameterized software components, notably algorithms and data structures, as general as possible and broadly adaptable and interoperable [START_REF] Jazayeri | Generic Programming[END_REF], and as efficient as non-parameterized components. Generic programming relies on the notion of a generic component that is a class, function, or method with parameters that are types or static values, instead of dynamic values as the usual arguments of functions and methods. No loss in efficiency is possible with generic programming in languages like C++ where the parameters of a generic component are bound at compile time.

Template Specialization

Similar to inheritance in object-oriented programming, which allows the specialization of classes, C++ provides a mechanism to specialize generic components (called templates). At instantiation time, the compiler selects a version, the primary or a specialized one, of a template based on the type pattern of the types (or static values) bound to the parameters. Here is a C++ example of a generic class, ArrayComparator, that allows comparing two arrays that contain N elements of type T. The comparison of arrays of characters is presumably more efficient using a built-in function. Therefore, a specialization of the template with T = char can be provided. 

Concepts

In generic programming, binding types to the parameters of a generic component raises two concerns: (i) how to ensure that a type bound to a parameter fulfills the requirements to be properly used by the generic component (e.g., any type bound to T must provide operators < and == in the ArrayComparator class); (ii) how to select the most appropriate specialization of the generic component for a given binding of the parameters (e.g., if type char is bound to parameter T, then specialization ArrayComparator<char,N> is selected; but how to make another type benefit from the same specialization).

To address these issues, the notion of a "concept" has been introduced [START_REF] Matthew | Generic Programming and the STL: Using and Extending the C++ Standard Template Library[END_REF]. When a type is bound to a parameter of a generic component, it must satisfy a set of requirements represented by a "concept". Among others, these requirements define syntactic constraints (i.e., on the interface of the type) and semantic constraints (i.e., on the behavior of the type). When a type fulfills the requirements of a concept, it is said that the type "models" the concept. The notion of a specialization between concepts is called "refinement": a concept that includes the requirements of another concept is said to "refine" this concept.

For instance, let us define the concept Integral that captures the requirements of an integral number, and the concept Numerical that captures the requirements of any kind of number. One can state that type int models concept Integral, and concept Integral refines concept Numerical.

Challenges with Concepts

Concern (i) of the previous section is called "concept checking" [START_REF] Siek | Concept Checking: Binding Parametric Polymorphism in C++[END_REF], and its goal is to detect the types bound to the parameters of a generic component that do not model the required concepts. A concept acts like a contract between the users and the author of a generic component: the author specifies requirements on the parameters using concepts, and the users must bind the parameters to types that fulfill these requirements, i.e., to types that model the specified concepts.

In C++, concepts can not be defined explicitly, and for now, they are only documentation (e.g., Standard Template Library). This leads to late error detections, and thus to cryptic error messages [START_REF] Siek | Concept Checking: Binding Parametric Polymorphism in C++[END_REF]: for instance, let us declare the instantiation ArrayComparator<X,10>; if type X has no operator <, the error will be detected in method run, and not at the instantiation point. Some langages, such as Java, rely on interfaces to constrain the parameters of generic components in the following form: parameter T must be a "subtype" of U (T is a subtype of U if T inherits from class U, or T implements interface U, or T and U are the same type [START_REF] Bracha | Generics in the Java Programming Language[END_REF]).

Concepts cannot be reduced to interfaces, as they define requirements that are not only syntactic. Moreover, concepts bring more flexibility, because a type is not predestined to model any given concept. A type models a concept either implicitly (it fulfills "automatically" all the requirements of a concept, cf. "auto concepts" [START_REF] Gregor | Concepts: Linguistic Support for Generic Programming in C++[END_REF]), or explicitly (one has to declare the modeling relationship and to make explicit how the type fulfills the requirements, cf. "concept maps" [START_REF] Gregor | Concepts: Linguistic Support for Generic Programming in C++[END_REF]).

Concern (ii) of the previous section is called "concept-based overloading" [START_REF] Järvi | Algorithm Specialization in Generic Programming: Challenges of Constrained Generics in C++[END_REF], but in this article, we propose to use the term "concept-based specialization" as we will focus more on class specialization than function overloading. The goal of concept-based specialization is to control the specialization of generic components with concepts rather than type patterns. By type pattern, we mean a type or a parameterized type (e.g., T * or vector<T>), or a "template template" parameter [START_REF] Weiss | Exploring Template Template Parameters[END_REF] (e.g., template <class> class U). Specialization based on type patterns can lead to ambiguities (the compiler cannot decide between two possible specializations) or false specializations (the compiler selects an unintended specialization), as explained in Section 2.

Several attempts have been made to represent concepts in C++. On one hand, implementations for concept checking have been proposed, mainly to ensure interface conformance of types bound to template parameters [START_REF] Mcnamara | Static Interfaces in C++[END_REF][START_REF] Siek | Concept Checking: Binding Parametric Polymorphism in C++[END_REF]. On the other hand, an implementation for concept-based specialization has been proposed [START_REF] Järvi | Concept-Controlled Polymorphism[END_REF]. In this solution, the specialization is based on both the SFINAE (substitution failure is not an error) principle [START_REF] Alexandrescu | Modern C++ Design: Generic Programming and Design Patterns Applied[END_REF] and a mechanism to answer the question "does type T model concept C ?" (through the enable_if template). However this approach may still lead to ambiguities 7 .

More recently, an attempt has been initiated to define an extension of the C++ language to support concepts [START_REF] Gregor | Concepts: Linguistic Support for Generic Programming in C++[END_REF][START_REF] Gabriel | Specifying C++ Concepts[END_REF] that may be added to the C++ standard [START_REF] Gregor | Proposed Wording for Concepts (Revision 3)[END_REF]. This extension is available within the experimental compiler ConceptGCC [START_REF] Gregor | Concepts: Linguistic Support for Generic Programming in C++[END_REF][START_REF] Järvi | Programming with C++ Concepts[END_REF], and is also implemented as ConceptClang in Clang, a C language family front-end for the LLVM compiler [START_REF] Voufo | ConceptClang: an Implementation of C++ Concepts in Clang[END_REF]. In the meantime, there seems to be no satisfactory solution directly available in standard C++ compilers for conceptbased specialization that avoids ambiguities and false specializations.

7. As explained in Boost documentation: http://www.boost.org/doc/libs/release/libs/utility/enable_if.html

Proposal

In this article, a solution focused on the concept-based specialization aspect only is proposed. Due to portability concerns, our goal is to provide a purely library-based solution that could be used with any standard C++ compiler, and no need of an additional tool. The proposed technique enables declaring concepts, modeling relationships, and refinement relationships. Once a taxonomy of concepts has been declared, it can be used to control the specialization of templates: to define a specialization, concepts, instead of type patterns, are used to constrain parameters. At instantiation time, the most appropriate version of a template is selected based on the concepts modeled by the types bound to the parameters: a metaprogram determines, for each one of these types, the most specialized concept to consider for this instantiation.

Even if the proposed technique does not detect directly concept mismatches to provide more understandable error messages, it needs to perform some checking on concepts to lead the specialization process. The checking is only based on "named conformance" [START_REF] Mcnamara | Static Interfaces in C++[END_REF] (i.e., checking on whether a type has been declared to model a given concept), and does not consider "structural conformance" (i.e., checking on whether a type implements a given interface).

One key idea of generic programming is to express components with minimal assumptions [START_REF] Jazayeri | Generic Programming[END_REF], therefore our solution is open for retroactive extension:

-A new concept or a new relationship (modeling or refinement) can be declared at any time.

The declaration of such relationships is distinct from the definition of types and concepts, contrary to class inheritance and interface implementation that have to be declared with the definition of classes. -A new specialization based on concepts can be defined at any time, but only for templates that have been prepared for concept-based specialization.

Section 2 discusses several issues encountered with template specialization, and shows how concepts can be used to bypass most of them. Section 3 presents template metaprogramming techniques for concept-based specialization, and an example using our library-based solution. Section 4 reports the compile-time performance of the library depending on the number of concepts and the number of relationships (modeling and refinement) declared in a program. The full source code of the library and of the examples is available for download 8 .

Issues with Template Specialization

This section presents several issues that may occur with template specialization based on type patterns, and how they can be addressed with concepts:

(i) Some types that can be considered somehow similar (e.g., with a common subset of operations in their interface) could be bound to the same specialization of a template, but if they have no type pattern in common, several specializations must be defined.

(ii) A specialization based on type patterns may lead to false specialization (i.e., an unintended specialization), because a type pattern can be insufficient to capture the requirements that a template needs for a parameter.

Existing solutions that use concepts to control template specialization in C++ are discussed in this section. It appears that refinement relationships are also necessary to address another issue:

(iii) A type can possibly be bound to different specializations of a template, when it models concepts that constrain different specializations. If there is no clear ordering between these concepts, to choose one specialization is not possible.

8. Source code is available at: http://forge.clermont-universite.fr/projects/show/cpp-concepts

Specialization Based on Type Patterns

As an example, we propose to develop a generic class, Serializer, to store the state of an object into an array of bytes (the "deflate" action), or to restore the state of an object from an array of bytes (the "inflate" action). The primary version of the template, which makes a bitwise copy of an object in memory, is defined as follows. This version should not be used for complex objects, such as containers, where the internal state may have pointers that should not be stored (because these versions of the deflate and inflate actions would lead to memory inconsistency after restoring). If we consider "sequence containers" of the STL (Standard Template Library), such as vectors and lists, a specialized version of Serializer can be provided. This specialization is based on the type pattern of the STL sequence containers: they are generic classes with two parameters, the type T of the elements to be stored, and the type ALLOC of the object used to allocate elements. Now, let us consider "associative containers" of the STL, such as sets and maps. Their type pattern is different from the one of sequence containers (they have at least one more parameter COMP to compare elements), whereas sequence and associative containers have a common subset of operations in their interface that should allow defining a common specialization of Serializer. However, as specialization is based on type pattern for now, another specialization of Serializer is necessary. Notice that this specialization of Serializer is only suitable for sets, and not for maps, because their type pattern is different: maps have an additional parameter K for the type of the keys associated with the elements of the container. The specialization Serializer< CONTAINER<K, T, COMP, ALLOC> > is necessary for maps, whereas maps and sets have a common subset of operations in their interface and should share the same specialization.

The specialization for sets has been written having only STL associative containers in mind, but any type matching the same type pattern can be bound to the specialization. Thus, there could be an unintended match. For instance, the std::string class of the C++ standard library is an alias for a type that matches the type pattern of sets: std::basic_string< char, std::char_traits<char>, std::allocator<char> >

The first two issues presented in the introduction of the section have been illustrated here. They could be addressed with concepts: (i) "Similar" types (i.e., sharing a common subset of features) could model a same concept, and a specialization for this concept could be defined. Therefore, "similar" types with different type patterns could be bound to the same specialization.

(ii) Concepts could avoid false specialization: with template specialization based on concepts, any template parameter could be constrained by a concept, and only types that model this concept could be bound to the parameter. This way, only the types that satisfy the requirements of a specialization could be considered. For the example of serialization discussed here, Figure 1 proposes concepts and their relationships. The SingleObject and STLContainer concepts are defined to provide two specializations for Serializer: one based on bitwise copy, and another one based on the common subset of operations shared by all STL containers, respectively. The STLContainer concept is refined into the STLSequence and STLAssociative concepts to provide specializations of Serializer using specific operations of sequence containers and associative containers respectively.

Specialization Based on Concepts

Existing solutions for concept-based specialization in C++ [START_REF] Mcnamara | Static Interfaces in C++[END_REF][START_REF] Järvi | Concept-Controlled Polymorphism[END_REF] are discussed here. They use concepts to guide the specialization of templates, and enable addressing the two first issues presented in the introduction of the section. However, about the third issue, i.e., to find the most appropriate specialization when a type can possibly be bound to several specializations, the solutions presented here are not fully satisfactory.

Concept-Based Dispatch

A first solution [START_REF] Mcnamara | Static Interfaces in C++[END_REF] implements concepts with "static interfaces" in C++, and proposes a "dispatch" mechanism to control template specialization with concepts. The solution is based on the StaticIsA template that provides some concept checking: StaticIsA<T,C>::valid is true if T models concept C. Let us assume that StaticIsA answers accordingly to the taxonomy of concepts of Figure 1 (see the source code for details). Here is an example of the dispatch mechanism for the specialization of the Serializer generic class. The Dispatcher template goes through all the concepts (in a well-defined order) until its parameter T models a concept. The symbolic constant associated with the found concept is stored in the which attribute of Dispatcher. For instance, Dispatcher< vector<int> >::which is equal to IS_STL_SEQUENCE.

Compared to the version of the Serializer template based on type patterns, there is an additional parameter with a default value that is the answer of the dispatcher for parameter T. This value is used rather than the type pattern of T to define the specializations of Serializer. This way, it is possible to provide a specialization for any concept. For instance, Serializer< vector<int> > instantiates in fact Serializer< vector<int>, IS_STL_SEQUENCE > and matches the specialization for the STLSequence concept.

Notice that the primary version of the template inherits from a class that is only declared, the aim being that this version could not be instantiated. This way, compilation errors related to the fact that T has been instantiated with a wrong type occurs at the instantiation of Serializer, rather than inside the code of Serializer where it tries to call invalid operations on T. This solution avoids usual error messages that could be cryptic for the user [START_REF] Siek | Concept Checking: Binding Parametric Polymorphism in C++[END_REF].

In this solution, a dispatcher (and dispatch rules) must be defined for each context of specialization, i.e., for each template that is specialized, which can quickly become tedious. Moreover, to define a new specialization for a template implies to change its dispatch rules. A solution where the dispatch rules, for each context of specialization, are automatically deduced from the modeling and refinement relationships of the taxonomy of concepts should be provided.

Concept-Based Overloading

The second solution [START_REF] Järvi | Concept-Controlled Polymorphism[END_REF] relies on the enable_if template, which can be found in the Boost Library [START_REF] Abrahams | C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and Beyond[END_REF], and the SFINAE (substitution failure is not an error) principle [START_REF] Alexandrescu | Modern C++ Design: Generic Programming and Design Patterns Applied[END_REF], to provide some control on template specialization with concepts. The definition of enable_if is recalled here. At instantiation time, if B is true, there is a nested type type inside enable_if_c, and thus inside enable_if, if its parameter COND has an attribute value set to true. Let us assume that, for each concept C of the taxonomy of Figure 1, a template is_C<T> is defined so is_C<T>::value is true if T models concept C (see the source code for details). Here is an example of the use of enable_if for the specialization of the Serializer generic class. The SFINAE principle is: if there is an error when binding types to the parameters of a template specialization, this specialization is discarded. For instance, the instantiation Serializer< vector<int> > implies an attempt to instantiate Serializer< vector<int>, typename enable_if< is_SingleObject< vector<int> > >::type> 9 , and because enable_if has no member type in this case, the specialization for concept SingleObject is ignored. This solution keeps only the specializations constrained with a concept modeled by the type bound to T. If more than one specialization remain, the compiler has to deal with an ambiguity: for instance, vector<int> models both STLContainer and STLSequence concepts. This ambiguity could be avoided: concept STLSequence is more specialized than concept STLContainer, so the specialization for STLSequence should be selected.

Conclusion

In this section, solutions have been presented to control template specialization with concepts. Concept-based dispatch allows considering refinement relationships, but the selection of the specialization is not automatic and requires some specific code for each context of specialization. At the opposite, concept-based overloading allows an automatic selection of the specialization, but is not able to deal with ambiguities that could be avoided considering refinement relationships. 9. typename is necessary in C++ to declare that the member type is actually a type and not a value.

A Solution for Concept-Based Specialization

Concepts appear to be better suited than type patterns to control template specialization, but to our knowledge, there is no solution that addresses all the issues brought up in the previous section. We propose here template metaprogramming techniques that enable defining a taxonomy of concepts, and using this taxonomy to automatically select the most appropriate specialization of a template.

Two main goals have guided our choices toward this library-based solution: to provide a fully portable C++ code (with no extra tool), and to be open for retroactive extension (new concepts, relationships, and template specializations can be defined at any time).

Example

Let us consider the example of the Serializer generic class with our solution. In a first step, the taxonomy of concepts of Figure 1 is defined: concepts and relationships (modeling and refinement) are declared. Then, the Serializer template is defined: first its primary version, and then its specializations for each concept. Details on the implementation of the library are presented afterward. Concepts are declared using macro gnx_declare_concept. The modeling and refinement relationships are equally declared using metafunction gnx_models_concept. To control the specialization, a "specialization context" must be declared (SerializerContext in our example). Each specialization of Serializer based on a concept must be declared and associated with the specialization context SerializerContext, using metafunction gnx_uses_concept. The most appropriate concept for a type bound to parameter T is automatically determined by the gnx_best_concept macro and stored in an additional parameter of the Serializer template, enabling template specialization based on this parameter.

Concepts Declaration

Metafunctions

Some fundamental "metafunctions" are necessary to implement our library. These generic classes are common in metaprogramming libraries (e.g., in the Boost MPL Library). A metafunction acts similarly to an ordinary function, but instead of manipulating dynamic values, it deals with "metadata", i.e., entities that can be handled at compile time in C++: mainly types and static integer values [START_REF] Abrahams | C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and Beyond[END_REF]. In order to manipulate equally types and static values in metafunctions, metadata are embedded inside classes, as follows 10 . Template gnx_type<T> represents a type and provides a type member type that is T itself. The same way, template gnx_value<T,V> represents a static value and provides an attribute value that is the value V of type T. Based on template gnx_value, types gnx_true and gnx_false are defined to represent the boolean values.

10. We chose to prefix all the metafunctions and macros of our library with "gnx_". We also chose to use our own metafunctions instead of the ones of MPL for two reasons: we only need few of them and we want to be able to adapt easily their implementation to optimize the compile time.

The parameters of a metafunction, which are the parameters of the template representing the metafunction, are assumed to be metadata, i.e., to be classes with a member type or value. The "return value" of a metafunction is implemented with inheritance: the metafunction inherits from a class representing a metadata. This way the metafunction itself has a member type or value, and can be a parameter of another metafunction. Here are metafunctions necessary for the discussion of this section. Metafunctions usually need template specialization to fully implement their behavior. Metafunction gnx_same determines whether two types are identical: gnx_same<T1,T2> inherits from gnx_true if T1 and T2 are the same type, or from gnx_false otherwise. Thus, the value returned by metafunction gnx_same<T1,T2> is stored in its value attribute. Metafunction gnx_if acts similarly to the common if instruction: gnx_if<T,A,B> inherits from A if T::value is true, or from B otherwise. If A and B represent metadata, then gnx_if<T,A,B> inherits the member nested in A or B.

Declaring Concepts

Concepts must be identified in C++. In our solution, macro gnx_declare_concept defines an empty structure to represent a concept. For instance, struct STLContainer {}; declares concept STLContainer.

Typelists

Concepts also need to be stored in a container, in order to be manipulated by metafunctions, e.g., to determine the most appropriate concept for a template specialization. Notably, the "typelist" technique [START_REF] Czarnecki | Generative Programming: Methods, Tools, and Applications[END_REF][START_REF] Alexandrescu | Modern C++ Design: Generic Programming and Design Patterns Applied[END_REF], based on metaprogramming, allows building a static linked list to store types, and can be defined as follows. Type gnx_nil represents "no type" (void is not used, as it could be a valid type to be stored in a list), and is used to indicate the end of a list. For instance, to store the STLSequence and STLAssociative concepts in a list: typedef gnx_list< STLSequence, gnx_list<STLAssociative,gnx_nil> > mylist1;

Common operations on linked lists can be defined on typelists [START_REF] Alexandrescu | Modern C++ Design: Generic Programming and Design Patterns Applied[END_REF]. For instance, to add concept STLContainer in the previous list: However, typelists are too static for our needs: in the previous example, list mylist1 cannot be modified to add a type, so a new list mylist2 has to be created instead. In the following section, a solution is proposed to build a list of concepts that can be modified at compile time to add new concepts, without changing the identifier of the list. Typelists will nevertheless be useful in our solution for several metafunctions where operations for merging and searching lists of concepts are necessary.

Indexing Concepts

To design a list where concepts can be added at any time, a mechanism for indexing the concepts is proposed. The metafunction gnx_concept is defined: it has one parameter that is an integer value, and it returns the concept associated with this number. Adding a concept to the list is performed by the specialization of the metafunction. Indexing the concepts by hand is not acceptable, so a solution to get the number of concepts already in the list is needed. For this purpose, a preliminary version of the gnx_nb_concept metafunction is proposed. It goes through all the concepts in the list by increasing an index until finding gnx_nil. However, this solution is not working as is, because using gnx_nb_concept<> infers that gnx_concept is instantiated from gnx_concept<0> to gnx_concept<N+1>, where N is the number of indexed concepts. Due to this fact, specializing gnx_concept for STLContainer and STLSequence in the previous example is not possible, because gnx_concept<N+1> has already been instantiated based on the primary version of gnx_concept. To eliminate this flaw, an additional parameter, called here "observer", is added to both metafunctions gnx_concept and gnx_nb_concept. The idea is to provide a different observer each time the concepts need to be counted to determine the next index to assign to a new concept: the new concept itself will be the observer. With this solution, counting the concepts with observer OBS induces the instantiation of gnx_concept<N+1,OBS>, so any specialization for index N+1 with an observer other than OBS is still possible. Finally, concepts are indexed as follows. To declare a concept in a single and easy instruction, as presented in the example at the start of the section, the gnx_declare_concept macro is defined. 

Modeling and Refinement Relationships

Modeling relationships, between a type and a concept, and refinement relationships, between two concepts, are declared equally in our solution with the gnx_models_concept metafunction. The primary version of the template returns false, and the relationships are declared through specializations of the template: if type X models concept C (or concept X refines concept C), then specialization gnx_models_concept<X,C> must return true.

template <> struct gnx_models_concept<X,C> : gnx_true {};

Notice that gnx_models_concept provides an answer for a direct relationship only. If a type T models a concept C1 that refines a concept C2, this metafunction returns false for a relationship between T and C2. Additional metafunctions, necessary in our solution to find any relationship between a type and a concept (or between two concepts), are briefly presented below (see the source code for details).

-Metafunction gnx_direct_concepts<X> provides a list (using the typelist technique) of all the concepts directly modeled by a type (or refined by a concept) X. It goes through all the concepts using their index, and checks whether X models (or refines) each concept using metafunction gnx_models_concept. Assuming that to retrieve a concept from its index (i.e., to call metafunction gnx_concept) is a constant time operation, metafunction gnx_direct_concepts requires O(n) operations, where n is the number of concepts declared in the program.

-Metafunction gnx_all_concepts<X> provides a list of all the concepts directly or indirectly modeled by a type (or refined by a concept) X. It calls gnx_direct_concepts to list the concepts directly related to X, and recursively gets all the concepts related to each one of the direct concepts. This metafunction requires O(n 2 + rn) operations, where r is the number of modeling and refinement relationships declared in the program: at worst, all the n concepts are asked for their direct concepts (i.e., a call to metafunction gnx_direct_concepts), which requires O(n 2 ) operations; to build the final list, at worst all the r relationships are considered, and each time the list of the currently found concepts is merged with the list of the newly found concepts, which requires O(rn) operations (at worst 2n operations are necessary for the merging, as it avoids duplicates). -Metafunction gnx_matches_concept<X,C> returns whether a type (or a concept) X models (or refines) a concept C, directly or indirectly. This metafunction searches for C in the list of concepts provided by metafunction gnx_all_concepts and requires O(n 2 + rn) operations: O(n 2 + rn) operations to build the list, and O(n) for the search.

Specialization Based on Concepts

Declaring Specializations

With our solution, controlling the specialization of a template with concepts that constrain one of its parameters implies an additional parameter. In the example, class Serializer has initially one parameter T, and based on different concepts that types bound to T might model, several specializations of Serializer must be provided. For this purpose, an extra parameter is added to Serializer. This additional parameter is the most specialized concept that a type bound to T models and that is of interest for the specialization of Serializer. This "best" concept is obtained using the gnx_best_concept macro, which eases the call to metafunction gnx_contextual_concept.

#define gnx_best_concept(CONTEXT,TYPE) \ typename gnx_contextual_concept<CONTEXT,TYPE>::type Notice that metafunction gnx_contextual_concept requires a "specialization context", which is a type that represents the context of a given template specialization. Each template that uses specialization based on concepts requires its own context.

There are two main reasons for this notion of a specialization context: (i) as seen previously, metafunction gnx_nb_concept, called by many metafunctions, requires an observer to perform correctly and to allow defining new concepts at any time, and this observer will be the specialization context; (ii) we want our solution to be portable on any standard C++ compiler, meaning we do not want to modify the C++ language itself and to provide an extra tool to preprocess the code, so to know which concepts are of interest for a given specialization context, each one of these concepts must be associated with the context using the gnx_uses_concept metafunction.

template <> struct gnx_uses_concept<SerializerContext,STLContainer> : gnx_true {};

In our example, the SerializerContext context has been declared for the specialization of Serializer. Among others, concept STLContainer is used to define a specialization of Serializer, so gnx_uses_concept is specialized (the same way as gnx_models_concept) to specify that concept STLContainer is used in the SerializerContext context.

Selecting the Best Specialization

Based on the list of concepts declared in a specialization context, and a taxonomy of concepts, metafunction gnx_contextual_concept determines the "best" concept for a type T, meaning the most specialized concept that T models and that is of interest for the context of specialization. If we consider the taxonomy of concepts of Figure 2, and a context X that provides specializations for concepts C1, C2 and C5 in this example, the following best concepts should be selected.

-For type A: concept C2, candidates are C1 and C2, but C2 is more specialized. -For type B: no concept, there is no candidate in the context's list, gnx_nil is returned.

-For type C: concept C5, it is the only choice.

-For type D: concepts C1 or C5, both concepts are valid (because D models both), and there is no relationship between them to determine that one is more specialized than the other. The selected one depends on the implementation of gnx_contextual_concept. In our solution, the concept with the highest index is selected. But to avoid this arbitrary selection, one can add relationships to the taxonomy of concepts, or can specialize metafunction gnx_contextual_concept for type D in context X. Metafunction gnx_contextual_concept<X,T> goes through the list of all the concepts modeled directly or indirectly by type T (provided by gnx_all_concepts<T>), and selects the one that does not refines directly or indirectly any other concept in the list (using metafunction gnx_matches_concept) and that is declared in context X. This metafunction requires O(n 2 + rn) operations: O(n 2 + rn) operations to build the list, and O(n) to select the best candidate (because gnx_all_concepts has already achieved all the necessary gnx_matches_concept instantiations).

Conclusion

Several steps are necessary for concept-based specialization with our solution: (i) to declare concepts and modeling/refinement relationships in order to define a taxonomy of concepts; (ii) for each context of specialization, to declare the concepts that are used to control the specialization. These steps are not monolithic, and new concepts, relationships, and specializations can be defined at any time (but before the first instantiation of the targeted generic component), which provides high flexibility with minimal assumptions about components.

The selection of the best specialization is fully automatic and safe as long as the modeling and refinement relationships are correct. Notice that those relationships, declared manually with our solution, could be automated using a mechanism to check structural conformance, such as the StaticIsA template (cf. Section 2.2.1) for instance. However, a few issues occur with our solution. First, the type pattern of any template specialized based on concepts is altered: for each primary template parameter, an extra "hidden" parameter may be added to get its best concept. For instance, users of the Serializer generic class could think that this template has only one parameter, whereas it actually has two.

Secondly, the notion of an observer, which is totally hidden from the users of a template specialized based on concepts, has been introduced to bypass an instantiation problem with metafunction gnx_nb_concept (cf. Section 3.3.2). However there are very specific situations where the issue remains. For instance, the following specialization may be troublesome. It induces the full instantiation of Serializer that forces the default value of the "hidden" parameter to be instantiated, i.e., gnx_contextual_concept<SerializerContext,int>, which itself forces gnx_nb_concept to be instantiated for observer SerializerContext. If concepts are added after this code, another call to metafunction gnx_contextual_concept with context SerializerContext will ignore the new concepts. Hence, one should avoid to instantiate gnx_contextual_concept before the final use of the targeted template. In our example, the full instantiation can be avoided as follows. 

Compile-Time Performance

The theoretical performance of the metafunctions of our solution has been studied in this paper. We assumed some operations of the compiler to be constant time, so it is important to confirm the theoretical performance with practical experiments. The initial implementation of the library, that is presented in this paper, is meant for understanding. Thus, a second version of the library has been designed to optimize the compile time. Nevertheless, the metaprogramming techniques and how to use the library remain unchanged with this new version. To understand what kind of optimization has been performed, let us discuss on the following example of metafunction.

template <class A> struct plain_meta : gnx_if < test<A>, branch1<A>, branch2<A> > {};

At instantiation time, both branch1<A> and branch2<A> are instantiated. But depending on the value of test<A>, only one of the two templates actually needs to be instantiated. In our library, such cases occur many times and lead to a lot of unnecessary instantiations. Metafunctions can be rewritten using an intermediate template that "hides" the two possible branches of the conditional statement in separate specializations of the template. Here is an optimized version of the example that shows the technique that has been applied on all the metafunctions of the library. The tests presented here have been performed with the optimized version 11 of the library on an Intel Core 2 Duo T8100 2.1 GHz with 3 GB of memory, and using GNU G++ 4.3.4 (its template recursion limit set to 1024). Instances with different numbers n of concepts and r of modeling/refinement relationships declared in the whole program have been randomly generated (see the source code for details). Each compile time presented here is expressed in seconds and is the mean of compilations of 10 different instances. Figure 3 reports the compile time, depending on n, for indexing concepts. As predicted by the theoretical performance analysis, there is a quadratic dependence on n (confirmed by a quadratic regression with a correlation coefficient 12 R = 0.997). Figure 4 reports the compile time, depending on n, of 50 instantiations of metafunction gnx_direct_concepts (which lists the concepts that a given type or concept directly models or refines respectively). The theoretical performance analysis predicted a linear dependence on n, but the practical results show otherwise, which we think is related to our assumption that accessing a concept through its index (i.e., a call to gnx_concept) was constant time. It seems that to find a specialization of a template, the compiler may require a number of operations dependent on the total number of specializations for this template. However, this non-linear dependence is not so significant, as the linear regression shows a correlation coefficient R = 0.986 in the range of our experiments, and the instantiations of gnx_direct_concepts represent only one step of the whole compilation process.

11. Optimized version 2011-08-25 was used for the experiments. 12. R = Pearson's correlation coefficient; the closer to 1, the more the regression fits the curve. Figures 5 and 6 report the compile time, depending respectively on n and r, of 50 instantiations of gnx_contextual_concept (which determines the best concept for a type bound to a template parameter). The performance of each intermediate metafunction is not shown, as it is similar. As predicted by the theoretical performance analysis, there is a quadratic dependence on n (confirmed with R = 1), and a linear dependence on r (confirmed with R = 0.989). Our library has been tested successfully on several compilers: GNU GCC from 3.4.5 to 4.4.3, Microsoft Visual C++ 10, and Embarcadero C++ 6.20. Figures 7 and8 report the time of the whole compilation process for those compilers, from indexing the concepts to finding the best concepts for types bound to template parameters, depending on n and r. Notice that we were not able to test all the instances with Embarcadero's compiler, due to a hard limitation of 256 levels in the template recursion. 

Conclusion

This paper describes template metaprogramming techniques to control the specialization of generic components with concepts. As concepts are not part of the C++ language yet, a librarybased solution is provided to declare concepts and modeling/refinement relationships in order to define a taxonomy of concepts. It relies on an automatic indexing of the concepts that allows a retroactive extension: at any time, new concepts and modeling/refinement relationships can be declared.

The library also provides a mechanism to automatically select the most appropriate specialization of a template based on concepts. Specializations of generic components can be defined by constraining template parameters with concepts rather than type patterns. At instantiation time, a metafunction determines the most specialized concept, for a given specialization context, of any type bound to a template parameter, and thus guides the selection of the most appropriate specialization. Our solution is a bit invasive because an extra parameter (invisible to the user) must be added to any template that is intended to be specialized based on concepts; but after the definition of the primary version of the template, specializations based on concepts can be added non intrusively and retroactively.

The retroactive extension enabled by the proposed technique provides high flexibility with minimal assumptions about the components: the coupling between a template and the types bound to its parameters only occurs at instantiation time, while the most appropriate specialization is selected. However, because our goal was to provide a fully portable C++ code with no extra tool, we were not able to automate the identification of the concepts that control the specialization of a given template. Therefore, the notion of a "specialization concept" is necessary and requires to explicitly declare each concept that is involved in the control of a specialization.

To conclude, a theoretical performance analysis and the performance of practical experiments have been presented to show the compile time overhead of our solution. Even if a quadratic dependence on the number of concepts has been identified, the compile time is reasonable for many applications: compiling 50 specializations with 50 concepts and 250 modeling/refinement relationships on an average computer requires less than 5 seconds.

  template <class T, int N> class ArrayComparator { public: static int run(const T * a, const T * b) { int i = 0; while (i<N && a[i]==b[i]) ++i; return (i==N ? 0 : (a[i]<b[i] ? -1 : 1)); } };

  template <int N> class ArrayComparator<char,N> { public: static int run(const char * a, const char * b) { return memcmp(a,b,N); } };

  template <class T, class COMP, class ALLOC, template <class,class,class> class CONTAINER> class Serializer< CONTAINER<T,COMP,ALLOC> > { [...] };
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 1 Figure 1: Taxonomy of concepts for the serialization example.

  template <bool B, class T = void> struct enable_if_c { typedef T type; }; template <class T> struct enable_if_c<false,T> {}; template <class COND, class T = void> struct enable_if : enable_if_c<COND::value,T> {};

  template <class TYPE> struct gnx_type { typedef TYPE type; }; template <class TYPE, TYPE VALUE> struct gnx_value { static const TYPE value = VALUE; }; typedef gnx_value<bool,true> gnx_true; typedef gnx_value<bool,false> gnx_false;

  template <class TYPE1, class TYPE2> struct gnx_same : gnx_false {}; template <class TYPE> struct gnx_same<TYPE,TYPE> : gnx_true {}; template <class TEST, class IF, class ELSE, bool = TEST::value> struct gnx_if : ELSE {}; template <class TEST, class IF, class ELSE> struct gnx_if<TEST,IF,ELSE,true> : IF {};

  typedef gnx_list<STLContainer,mylist1> mylist2;Research Report LIMOS/RR-10-18 LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

  template <int N = 0> struct gnx_nb_concept : gnx_if< gnx_same<typename gnx_concept<N+1>::type, gnx_nil>, gnx_value<int,N>, gnx_nb_concept<N+1> > {};For an automatic indexing of the concepts, one would use the return value of metafunction gnx_nb_concept to determine the next index to assign to a new concept. template <> struct gnx_concept<gnx_nb_concept<>::value+1> : gnx_type<STLContainer> {}; template <> struct gnx_concept<gnx_nb_concept<>::value+1> : gnx_type<STLSequence> {}; [...]

#

  define gnx_declare_concept(CONCEPT) \ struct CONCEPT {}; \ \ template <class OBS> \ struct gnx_concept<gnx_nb_concept< CONCEPT >::value+1, OBS> \ : gnx_type< CONCEPT > {} To conclude, the gnx_nb_concept metafunction requires O(n) operations, where n is the number of concepts already declared in the program. Hence, at compile time, indexing n concepts requires O( n i=1 i) = O(n 2 ) operations.

  template <class TYPE_OR_CONCEPT, class CONCEPT> struct gnx_models_concept : gnx_false {};

  template <class T, class = gnx_best_concept(SerializerContext,T)> class Serializer : ErrorSpecializationNotFound<T> {};

Figure 2 :

 2 Figure 2: Example of best concept selection.

  template <class TYPE, class CONCEPT> struct gnx_models_concept : gnx_value<bool, StaticIsA<TYPE,CONCEPT>::valid> {};

  template <> class Serializer<int> { [...] };

  template <class CONCEPT> class Serializer<int,CONCEPT> { [...] };
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 3 Figure 3: Compile time for indexing concepts (r = 100).
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 4 Figure 4: Compile time for gnx_direct_concepts (50 instantiations, r = 100).
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 5 Figure 5: Compile time for gnx_contextual_concept (50 instantiations, r = 300).
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 6 Figure 6: Compile time for gnx_contextual_concept (50 instantiations, n = 80).
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 7 Figure 7: Whole compile time (with 30 instantiations of gnx_contextual_concept, r = 100).
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 8 Figure 8: Whole compile time (with 50 instantiations of gnx_contextual_concept, n = 50).