ocuokhwnE

Template Metaprogramming Techniques for
Concept-Based Specialization

Bruno Bachelet#, Antoine Mahul?®
and Loic Yon**

Research RepottMOS/RR-10-18

Revised December 2012

bruno.bachelet@isima.fr - http://frog.isima.fr/boun
antoine.mahul@clermont-universite.fr

loic.yon@isima.fr - http://www.isima.fr/"loic

LIMOS, UMR 6158-CNRS, Université Blaise Pascal, BP 106273 Aubiére, France.
CRRI, Clermont Université, BP 80026, 63177 Aubiére, Eean

Formerly'Generic Programming: Controlling Static Specializatiaith Concepts in C++",

Abstract

In generic programming, software components are paraipeteon types. When available, a static spe-
cialization mechanism allows selecting, for a given setarbmeters, a more suitable version of a generic
component than its primary version. The normal C++ tempdpgialization mechanism is based on the
type pattern of the parameters, which is not always the bagttarguide the specialization process: type
patterns are missing some information on types that coulélegant to define specializations.

The notion of a "concept”, which represents a set of requergm(including syntactic and semantic
aspects) for a type, is known to be an interesting approacbrttrol template specialization. For many
reasons, concepts were dropped from C++11 standard, tiikeaherefore describes template metapro-
gramming techniques for declaring concepts, "modelin¢gti@nships (meaning that a type fulfills the
requirements of a concept), and "refinement" relationsimyEsaning that a concept refines the requirements
of another concept).

From a taxonomy of concepts and template specializatioasdan concepts, an automatic mecha-
nism selects the most appropriate version of a generic cagmdor a given instantiation. Our purely
library-based solution is also open for retroactive extamsnew concepts, relationships, and template
specializations can be defined at any time; such additiolisthvein be picked up by the specialization
mechanism.

Keywords: generic programming, template specialization, conceget overloading/specialization, tem-
plate metaprogramming.

Résumé

En programmation générique, les composants logicielsgamamétrés sur des types. Quand il est dispo-
nible, un mécanisme de spécialisation statique permeteetiséner, pour un jeu de paramétres donné, une
version plus adaptée d’'un composant générique que sa véngiale. Le mécanisme normal de spéciali-
sation de patron du C++ repose sur le motif de type des parespée qui n'est pas toujours la meilleure
maniéere de guider le processus de spécialisation : lessri®itype manquent certaines informations sur
les types qui pourraient étre pertinentes pour définir désiafisations.

La notion de "concept", qui représente un ensemble de speit@ifns (incluant des aspects syntaxiques
et sémantiques) pour un type, est reconnue pour étre unedygpintéressante pour contrdler la spéciali-
sation de patron. Pour diverses raisons, les conceptséoabahdonnés dans le standard C++11, cet article
décrit donc des techniques de métaprogrammation par pataur déclarer des concepts, des relations de
"modélisation" (signifiant qu’un type satisfait les spémfions d’un concept) et des relations de "raffine-
ment" (signifiant qu’un concept raffine les spécificationsdautre concept).

A partir d'une taxonomie de concepts et de spécialisatiengadrons basées sur les concepts, un mé-
canisme automatique sélectionne la version la plus apig@gdiun composant générique pour une instan-
ciation donnée. Notre solution, qui repose uniquement serhibliothéque, permet aussi une extension
rétroactive : de nouveaux concepts, relations et spéaimiss de patrons peuvent étre définis a tout mo-
ment; de tels ajouts seront alors pris en compte par le mgoande spécialisation.

Mots clés :programmation générique, spécialisation de patron, sugelispécialisation par concepts, mé-
taprogrammation par patrons.

1 Introduction

Generic programming focuses on providing parameterizéisvae components, notably al-
gorithms and data structures, as general as possible aadlprdaptable and interoperable [8],
and as efficient as non-parameterized components. Gemegeamming relies on the notion of
a generic component that is a class, function, or method patameters that are types or static
values, instead of dynamic values as the usual argumentsofiéns and methods. No loss in
efficiency is possible with generic programming in langusalgee C++ where the parameters of a
generic component are bound at compile time.

1.1 Template Specialization

Similar to inheritance in object-oriented programming,ickhallows the specialization of
classes, C++ provides a mechanism to specialize generipawents (calledemplates At in-
stantiation time, the compiler selects a version, the pinoa a specialized one, of a template
based on the type pattern of the types (or static values)dtuthe parameters. Here is a C++
example of a generic clas&; r ayConpar at or , that allows comparing two arrays that contiin
elements of typq.

tenplate <class T, int N> class ArrayConparator {

public:

static int run(const T » a, const T » b) {
int i =0;

while (i <N && a[i]==b[i]) ++i;

return (i==N? 0 : (a[i]<b[i] ? -1 : 1));
}
b

The comparison of arrays of characters is presumably maogeset using a built-in function.
Therefore, a specialization of the template with char can be provided.

tenpl ate <int N> class ArrayConparator<char, N> {
public:
static int run(const char * a, const char *» b) { return nencnp(a,b,N); }

}s

1.2 Concepts

In generic programming, binding types to the parametersg#reric component raises two
concerns: (i) how to ensure that a type bound to a paraméfiisfine requirements to be properly
used by the generic component (e.g., any type bourfdnaist provide operators and== in the
ArrayConpar at or class); (ii) how to select the most appropriate speciabmabf the generic
component for a given binding of the parameters (e.g., #tmar is bound to parametdr, then
specializationAr r ay Conpar at or <char , N> is selected; but how to make another type benefit
from the same specialization).

To address these issues, the notion of a "concept" has beeduoed [3]. When a type is
bound to a parameter of a generic component, it must satiséy af requirements represented by
a "concept". Among others, these requirements define simtaanstraints (i.e., on the interface
of the type) and semantic constraints (i.e., on the behadidghe type). When a type fulfills
the requirements of a concept, it is said that the type "nsddble concept. The notion of a
specialization between concepts is called "refinement’oreept that includes the requirements
of another concept is said to "refine" this concept.

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

For instance, let us define the concépt egr al that captures the requirements of an inte-
gral number, and the concegner i cal that captures the requirements of any kind of number.
One can state that typent models concepitnt egr al , and concept nt egr al refines concept
Nureri cal .

1.3 Challenges with Concepts

Concern (i) of the previous section is called "concept chmegl{14], and its goal is to detect
the types bound to the parameters of a generic componemdmett model the required concepts.
A concept acts like a contract between the users and theranfth@eneric component: the author
specifies requirements on the parameters using concepitshamsers must bind the parameters
to types that fulfill these requirements, i.e., to types thatlel the specified concepts.

In C++, concepts can not be defined explicitly, and for noeythare only documentation (e.g.,
Standard Template Librajy This leads to late error detections, and thus to cryptioreanessages
[14]: for instance, let us declare the instantiatiarr ay Conpar at or <X, 10>; if type X has no
operator<, the error will be detected in methadin, and not at the instantiation point. Some
langages, such as Java, rely on interfaces to constrairathepters of generic components in the
following form: parametelr must be a "subtype" dfi (T is a subtype oUif T inherits from class
U, or T implements interface, or T andU are the same type [4]).

Concepts cannot be reduced to interfaces, as they defineamgunts that are not only syn-
tactic. Moreover, concepts bring more flexibility, becaasgpe is not predestined to model any
given concept. A type models a concept either implicitlyfiifills "automatically" all the re-
quirements of a concept, cf. "auto concepts"” [6]), or exihlicone has to declare the modeling
relationship and to make explicit how the type fulfills thgu&gements, cf. "concept maps" [6]).

Concern (i) of the previous section is called "concepteolsverloading” [9], but in this ar-
ticle, we propose to use the term "concept-based spetializaas we will focus more on class
specialization than function overloading. The goal of @piebased specialization is to control
the specialization of generic components with conceptserahan type patterns. By type pat-
tern, we mean a type or a parameterized type (€:gqr vect or <T>), or a "template template"
parameter [16] (e.gt,enpl at e <cl ass> cl ass U). Specialization based on type patterns can
lead to ambiguities (the compiler cannot decide betweenpwssible specializations) or false
specializations (the compiler selects an unintended alieaion), as explained in Section 2.

Several attempts have been made to represent concepts irfOB+#ene hand, implementations
for concept checking have been proposed, mainly to enstedane conformance of types bound
to template parameters [12, 14]. On the other hand, an imgi&ation for concept-based special-
ization has been proposed [11]. In this solution, the sfigzatéon is based on both the SFINAE
(substitution failure is not an errdrprinciple [2] and a mechanism to answer the questaoes
type T model concept C Tthrough theenabl e_i f template). However this approach may still
lead to ambiguitie$.

More recently, an attempt has been initiated to define amsixie of the C++ language to
support concepts [6, 13] that may be added to the C++ Standhrdhis extension is available
within the experimental compiler ConceptGCC [6, 10], andl$® implemented as ConceptClang
in Clang, a C language family front-end for the LLVM compild55]. In the meantime, there
seems to be no satisfactory solution directly availabletiamdard C++ compilers for concept-
based specialization that avoids ambiguities and falseiapetions.

7. As explained in Boost documentation: http://www.bamsdoc/libs/release/libs/utility/enable_if.html

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

1.4 Proposal

In this article, a solution focused on the concept-basedialmation aspect only is proposed.
Due to portability concerns, our goal is to provide a purdydry-based solution that could be
used with any standard C++ compiler, and no need of an adéditiool. The proposed technique
enables declaring concepts, modeling relationships, afiitement relationships. Once a taxon-
omy of concepts has been declared, it can be used to conéralpitcialization of templates: to
define a specialization, concepts, instead of type pattanmesused to constrain parameters. At
instantiation time, the most appropriate version of a textepls selected based on the concepts
modeled by the types bound to the parameters: a metaprogrmrdnes, for each one of these
types, the most specialized concept to consider for thtamisition.

Even if the proposed technique does not detect directlyanmismatches to provide more
understandable error messages, it needs to perform sorokirgp@®n concepts to lead the spe-
cialization process. The checking is only based on "namafbomance” [12] (i.e., checking on
whether a type has been declared to model a given concept)laas not consider "structural
conformance" (i.e., checking on whether a type implemenigen interface).

One key idea of generic programming is to express componeitiisminimal assumptions
[8], therefore our solution is open for retroactive extensi

— A new concept or a new relationship (modeling or refinemeaut) be declared at any time.
The declaration of such relationships is distinct from teérdtion of types and concepts,
contrary to class inheritance and interface implementétiat have to be declared with the
definition of classes.

— A new specialization based on concepts can be defined ainaeytut only for templates
that have been prepared for concept-based specialization.

Section 2 discusses several issues encountered with tengplecialization, and shows how
concepts can be used to bypass most of them. Section 3 Frésemtiate metaprogramming tech-
niques for concept-based specialization, and an examipig asr library-based solution. Section
4 reports the compile-time performance of the library delommn on the number of concepts and
the number of relationships (modeling and refinement) inogg@am. The full source code of the
library and of the examples is available for downl&ad

2 Issues with Template Specialization

This section presents several issues that may occur withlagenspecialization based on type
patterns, and how they can be addressed with concepts:

(i) Some types that can be considered somehow similar {gitfp. a common subset of oper-
ations in their interface) could be bound to the same speatain of a template, but if they have
no type pattern in common, several specializations musebeet.

(i) A specialization based on type patterns may lead tefafsecialization (i.e., an unintended
specialization), because a type pattern can be insuffitdec@pture the requirements that a tem-
plate needs for a parameter.

Existing solutions that use concepts to control templageigfization in C++ are discussed in
this section. It appears that refinement relationships lacereecessary to address another issue:

(i) A type can possibly be bound to different specialivas of a template, when it mod-
els concepts that constrain different specializationghdfe is no clear ordering between these
concepts, to choose one specialization is not possible.

8. Source code is available at: http://forge.clermontsersite.fr/projects/show/cpp-concepts

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

2.1 Specialization Based on Type Patterns

As an example, we propose to develop a generic ctass,al i zer, to store the state of an
object into an array of bytes (the "deflate” action), or tdarssthe state of an object from an array
of bytes (the "inflate" action). The primary version of thenfdate, which makes a bitwise copy
of an object in memory, is defined as follows.

tenpl ate <class T> class Serializer {
public:
static int deflate(char » copy, const T & object);
static int inflate(T & object, const char * copy);

}s

This version should not be used for complex objects, suctoatgimers, where the internal
state may have pointers that should not be stored (becaese ¥harsions of the deflate and inflate
actions would lead to memory inconsistency after restgriigwe consider "sequence contain-
ers" of the STL Standard Template Librajy such as vectors and lists, a specialized version of
Seri al i zer can be provided.

tenpl ate <class T, class ALLOC, tenplate <cl ass, cl ass> cl ass CONTAI NER>
class Serializer< CONTAlI NER<T, ALLOC> > {
public:
static int deflate(char » copy, const CONTAI NER<T, ALLOC> & contai ner);
static int inflate(CONTAI NER<T, ALLOC> & contai ner, const char * copy);

}s

This specialization is based on the type pattern of the STjuesece containers: they are
generic classes with two parameters, the tyweé the elements to be stored, and the tyhe OC
of the object used to allocate elements.

Now, let us consider "assaociative containers" of the STthsas sets and maps. Their type pat-
tern is different from the one of sequence containers (tlaey lat least one more paramedevP
to compare elements), whereas sequence and associatiig@neos have a common subset of
operations in their interface that should allow defining emown specialization dberi al i zer .
However, as specialization is based on type pattern for anether specialization &ri al i zer
is hecessary.

tenplate <class T, class COW, class ALLCC,
tenpl ate <cl ass, cl ass, cl ass> cl ass CONTAI NER>
class Serializer< CONTAI NER<T, COMP, ALLOC> > { [...] };

Notice that this specialization ®&eri al i zer is only suitable for sets, and not for maps,
because their type pattern is different: maps have an additparametek for the type of the keys
associated with the elements of the container. The speati@n Seri al i zer < CONTAI NER<K,

T, COWP, ALLOC> > is necessary for maps, whereas maps and sets have a comnseh clib
operations in their interface and should share the saméadipation.

The specialization for sets has been written having only 834ociative containers in mind,
but any type matching the same type pattern can be bound sp#wgalization. Thus, there could
be an unintended match. For instance,dhd: : st ri ng class of the C++ standard library is an
alias for a type that matches the type pattern of sets:

std::basic_string< char, std::char_traits<char>, std::allocator<char> >

The first two issues presented in the introduction of thei@ediave been illustrated here.
They could be addressed with concepts:

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

(i) "Similar" types (i.e., sharing a common subset of feas)ircould model a same concept,
and a specialization for this concept could be defined. Toere"similar" types with different
type patterns could be bound to the same specialization.

(i) Concepts could avoid false specialization: with teatplspecialization based on concepts,
any template parameter could be constrained by a concepgray types that model this concept
could be bound to the parameter. This way, only the typesdhtigfy the requirements of a
specialization could be considered.

7777777777777777777 « concept »
« refines » STLSequence
« concept » « concept » ‘ + push_back(:value_type)
SingleObject ComplexObject :
VAN VAN o
' ' i« models »
| « models » S S,
———————————————————— SRR
1 . I iy
- «refines » . std::vector - ‘ std::list -1~
‘ char ‘ ‘ int ‘ ‘ float ‘
«concepty A i « concept »
STLContainer « refines » STLAssociative
Nested t -+ type value_type + insert(:value_type)
ested types ---{-+ type iterator -
— IN
+ begin() : iterator :
+ end() : iterator L «models »
+ insert(:iterator,:value type) | ~ [TTTTTTTTTTTTTTTTTR

Figure 1:Taxonomy of concepts for the serialization example.

For the example of serialization discussed here, Figur@figses concepts and their relation-
ships. TheSi ngl eObj ect andSTLCont ai ner concepts are defined to provide two specializa-
tions forSeri al i zer : one based on bitwise copy, and another one based on the cosuhset of
operations shared by all STL containers, respectively. S&Cont ai ner concept is refined into
the STLSequence and STLAssoci ati ve concepts to provide specializations $dri al i zer
using specific operations of sequence containers and ageaontainers respectively.

2.2 Specialization Based on Concepts

Existing solutions for concept-based specialization iF@H2, 11] are discussed here. They
use concepts to guide the specialization of templates, aable addressing the two first issues
presented in the introduction of the section. However, abwithird issue, i.e., to find the most
appropriate specialization when a type can possibly bedtwuseveral specializations, the solu-
tions presented here are not fully satisfactory.

2.2.1 Concept-Based Dispatch

A first solution [12] implements concepts with "static irfteres" in C++, and proposes a
"dispatch" mechanism to control template specializatidti woncepts. The solution is based on
the St ati cl sA template that provides some concept checkiggat i cl sA<T, C>::validis
true if T models concept. Let us assume tha&t at i cl sAanswers accordingly to the taxonomy

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

of concepts of Figure 1 (see the source code for details).e ifean example of the dispatch
mechanism for the specialization of tBeri al i zer generic class.

enum { 1'S_SINGLE_OBJECT, |S_STL_CONTAI NER, |S_STL_SEQUENCE,
|'S_STL_ASSOCI ATl VE, UNSPECI FI ED };

tenpl ate <class T> struct Dispatcher {
static const int which
= StaticlsA<T, STLAssoci ative>::valid
: Staticl sA<T, STLSequence>::valid
Staticl sA<T, STLCont ai ner>::valid
StaticlsA<T, Singl ethject>::valid
UNSPECI FI ED;

| S_STL_ASSOCI ATI VE
| S_STL_SEQUENCE

| S_STL_CONTAI NER
|'S_SI NGLE_OBJECT

NN) N

b
tenpl ate <class T> struct ErrorSpecializationNot Found;

tenplate <class T, int = Dispatcher<T>::which>
class Serializer : ErrorSpecializationNot Found<T> {};

tenpl ate <class T> class Serializer<T,|S_SINGLE_OBJECT>
tenpl ate <class T> class Serializer<T, STL_CONTAI NER>
tenpl ate <class T> class Serializer<T, STL_SEQUENCE>
tenpl ate <class T> class Serializer<T, STL_ASSCCI ATl VE>

e Rt Natn Rata
—_— o ——
[—
(SN

The Di spat cher template goes through all the concepts (in a well-define@rprdntil its
parametem models a concept. The symbolic constant associated wittotimel concept is stored
in thewhi ch attribute ofDi spat cher. For instancepi spat cher < vect or <i nt >>: : whi ch
is equal td S_STL_SEQUENCE.

Compared to the version of thgeri al i zer template based on type patterns, there is an
additional parameter with a default value that is the ansvighe dispatcher for paramet&r
This value is used rather than the type patterim & define the specializations 6éri al i zer .
This way, it is possible to provide a specialization for aopeept. For instance&eri al i zer <
vect or <i nt > > instantiates in facBeri al i zer < vector<int>, IS STL_SEQUENCE > and
matches the specialization for tB&LSequence concept.

Notice that the primary version of the template inheritsifra class that is only declared, the
aim being that this version could not be instantiated. Thag,weompilation errors related to the
fact thatT has been instantiated with a wrong type occurs at the ingtemt of Seri al i zer,
rather than inside the code 6tri al i zer where it tries to call invalid operations on This
solution avoids usual error messages that could be cryqtithé user [14].

In this solution, a dispatcher (and dispatch rules) mustdfimeld for each context of special-
ization, i.e., for each template that is specialized, wiiah quickly become tedious. Moreover,
to define a new specialization for a template implies to chatsdispatch rules. A solution where
the dispatch rules, for each context of specializationaatematically deduced from the modeling
and refinement relationships of the taxonomy of conceptaldhze provided.

2.2.2 Concept-Based Overloading

The second solution [11] relies on theabl e_i f template, which can be found in the Boost
Library [1], and the SFINAE gubstitution failure is not an errdrprinciple [2], to provide some

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

control on template specialization with concepts. The dafmof enabl e_i f is recalled here.

tenpl ate <bool B, class T = void>
struct enable_if_c { typedef T type; };

tenpl ate <class T> struct enable_if_c<fal se, T> {};

tenpl ate <class COND, class T = voi d>
struct enable_if : enable_if_c<COND: :val ue, T> {};

At instantiation time, ifB is true, there is a nested typgpe insideenabl e_i f _c, and thus
insideenabl e_i f, if its parameteCOND has an attributgal ue set to true. Let us assume that, for
each concept of the taxonomy of Figure 1, a templdte_C<T> is defined sd s_C<T>: : val ue
is true if T models concepC (see the source code for details). Here is an example of thefus
enabl e_i f for the specialization of th8eri al i zer generic class.

tenpl ate <class T, class = void>
class Serializer : ErrorSpecializationNot Found<T> {};

tenpl ate <class T>
class Serializer<T, typenanme enable_if< is_Singl elbject<T> > :type>

{01}

tenpl ate <class T>
class Serializer<T, typenanme enable_if< is_STLContai ner<T> >.:type>

{1}

tenpl ate <class T>
class Serializer<T, typenane enable_if< is_STLSequence<T> >::type>

{1}

tenpl ate <class T>
class Serializer<T, typename enable_if< is_STLAssoci ative<T> >::type>

{01}

The SFINAE principle is: if there is an error when binding égpto the parameters of a tem-
plate specialization, this specialization is discardedt.ifstance, the instantiatic®eri al i zer <
vect or <i nt > > implies an attempt to instantiat®eri al i zer < vect or <i nt >, typename
enabl e_i f<is_Singl ethj ect <vector<int>>>::type>°, and becausenabl e_i f has
no membet ype in this case, the specialization for conc8phgl eObj ect is ignored.

This solution keeps only the specializations constrainéd & concept modeled by the type
bound taT. If more than one specialization remain, the compiler hatetd with an ambiguity: for
instanceyect or <i nt > models bothSTLCont ai ner andSTLSequence concepts. This ambi-
guity could be avoided: concefTLSequence is more specialized than concefitLCont ai ner ,
so the specialization f@TLSequence should be selected.

2.2.3 Conclusion

In this section, solutions have been presented to contrgblege specialization with concepts.
Concept-based dispatch allows considering refinemertiaeships, but the selection of the spe-
cialization is not automatic and requires some specific ¢odeach context of specialization. At
the opposite, concept-based overloading allows an autoselection of the specialization, but is
not able to deal with ambiguities that could be avoided atergig refinement relationships.

9. typenamne is necessary in C++ to declare that the membygre is actually a type and not a value.

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

3 A Solution for Concept-Based Specialization

Concepts appear to be better suited than type patterns tawktemplate specialization, but
to our knowledge, there is no solution that addresses allsthees brought up in the previous
section. We propose here template metaprogramming tagdmiitpat enable defining a taxonomy
of concepts, and using this taxonomy to automatically $efexr most appropriate specialization

of a template.

Two main goals have guided our choices toward this libraayell solution: to provide a fully
portable C++ code (with no extra tool), and to be open forogattive extension (new concepts,

relationships, and template specializations can be defihady time).

3.1 Example

Let us consider the example of tiseri al i zer generic class with our solution. In a first
step, the taxonomy of concepts of Figure 1 is defined: coecapd relationships (modeling and
refinement) are declared. Then, theri al i zer template is defined: first its primary version,
and then its specializations for each concept. Details enirtiplementation of the library are

presented afterward.

Concepts Declaration

gnx_decl are_concept (Si ngl ebj ect) ;
gnx_decl are_concept (Conpl ex(hj ect) ;
gnx_decl are_concept (STLCont ai ner) ;
gnx_decl are_concept (STLSequence) ;
gnx_decl are_concept (STLAssoci ati ve);

Modeling and Refinement Relationships

tenpl ate <> struct gnx_nodel s_concept <char, Si ngl eCbj ect >

tenpl ate <> struct gnx_nodel s_concept <i nt, Si ngl eCbj ect >

tenpl ate <> struct gnx_nodel s_concept <fl oat, Si ngl eCbj ect > :

tenpl ate <class T>

struct gnx_nodel s_concept <std:

tenpl ate <class T>

struct gnx_nodel s_concept <std:

tenpl ate <class T>

struct gnx_nodel s_concept <std:

tenpl ate <class K, class T>

struct gnx_nodel s_concept <std:

tenpl ate <>

:vect or <T>, STLSequence>

|l'ist<T>, STLSequence>

set <T>, STLAssoci ati ve>

map<kK, T>, STLAssoci ative> :

struct gnx_nodel s_concept <STLCont ai ner, Conpl ex(Obj ect >

tenpl ate <>

struct gnx_nodel s_concept <STLSequence, STLCont ai ner >

tenpl ate <>

struct gnx_nodel s_concept <STLAssoci ati ve, STLCont ai ner >

Template Primary Version
struct SerializerContext;

gnx_true {};
gnx_true {};
gnx_true {};

gnx_true

gnx_true

gnx_true

gnx_true

gnx_true

gnx_true

gnx_true

tenpl ate <class T,class = gnx_best_concept(SerializerContext, T)>
class Serializer : ErrorSpecializationNot Found<T> {};

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

{1

{1

{1

{1

{1

{1

{1

Template Specialized Versions

tenpl ate <>
struct gnx_uses_concept <Seri alizerContext, Si ngl eCbject>: gnx_true {};

tenpl ate <class T> class Serializer<T,SingleOject>{ [...] }:

tenpl ate <>
struct gnx_uses_concept<Seri al i zer Cont ext, STLCont ai ner> : gnx_true {};

tenpl ate <class T> class Serializer<T,STLContainer> { [...] };

tenpl ate <>
struct gnx_uses_concept<Seri al i zer Cont ext, STLSequence> : gnx_true {};

tenpl ate <class T> class Serializer<T, STLSequence> { [...] };

tenpl ate <>
struct gnx_uses_concept<Seri al i zer Cont ext, STLAssoci ative> : gnx_true {};

tenpl ate <class T> class Serializer<T, STLAssociative> { [...] };

Concepts are declared using magrox_decl are_concept . The modeling and refinement
relationships are equally declared using metafunctjorn_nodel s_concept. To control the
specialization, a "specialization context" must be deddgeri al i zer Cont ext in our exam-
ple). Each specialization &keri al i zer based on a concept must be declared and associated with
the specialization contegeri al i zer Cont ext , using metafunctiognx_uses_concept . The
most appropriate concept for a type bound to paranietisr automatically determined by the
gnx_best concept macro and stored in an additional parameter of3tiei al i zer template,
enabling template specialization based on this parameter.

3.2 Metafunctions

Some fundamental "metafunctions" are necessary to impleow library. These generic
classes are common in metaprogramming libraries (e.gharBoost MPL Library). A meta-
function acts similarly to an ordinary function, but ingdeaf manipulating dynamic values, it
deals with "metadata”, i.e., entities that can be handledmipile time in C++: mainly types and
static integer values [1]. In order to manipulate equallyety and static values in metafunctions,
metadata are embedded inside classes, as fotfows

tenpl ate <class TYPE> struct gnx_type { typedef TYPE type; };

tenpl ate <cl ass TYPE, TYPE VALUE>
struct gnx_value { static const TYPE value = VALUE;, };

t ypedef gnx_val ue<bool ,true> gnx_true;
t ypedef gnx_val ue<bool, fal se> gnx_fal se;

Templategnx_t ype<T> represents a type and provides a type menlygre that isT it-
self. The same way, templatgx_val ue<T, V> represents a static value and provides an at-
tributeval ue that is the valué/ of type T. Based on templatgnx_val ue, typesgnx_t r ue and
gnx_f al se are defined to represent the boolean values.

10. We chose to prefix all the metafunctions and macros ofibrary with "gnx_". We also chose to use our own
metafunctions instead of the ones of MPL for two reasons: mkg meeded few of them and we wanted to be able to
adapt easily their implementation to optimize the compitest

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

10

The parameters of a metafunction, which are the parametéinge template representing the
metafunction, are assumed to be metadata, i.e., to be shagtbea membet ype orval ue. The
"return value" of a metafunction is implemented with inkemice: the metafunction inherits from a
class representing a metadata. This way the metafuncsielf litas a membetrype orval ue, and
can be a parameter of another metafunction. Here are metafus necessary for the discussion
of this section.

tenpl ate <class TYPEl, class TYPE2> struct gnx_sane : gnx_false {};
tenpl ate <class TYPE> struct gnx_same<TYPE, TYPE> : gnx_true {};

tenpl ate <class TEST, class IF, class ELSE, bool = TEST::val ue>
struct gnx_if : ELSE {};

tenpl ate <class TEST, class IF, class ELSE>
struct gnx_if<TEST,|F, ELSE, true> : |F {};

Metafunctions usually need template specialization tly fimhplement their behavior. Meta-
function gnx_same determines whether two types are identicghx_sane<T1, T2> inherits
from gnx_true if T1 and T2 are the same type, or fromnx_f al se otherwise. Thus, the
value returned by metafunctiagx_sane<T1, T2> is stored in itsval ue attribute. Metafunc-
tion gnx_i f acts similarly to the commonf instruction: gnx_i f <T, A, B> inherits fromA if
T: : val ue is true, or fromB otherwise. IfA andB represent metadata, thgnx_i f <T, A, B>
inherits the member nested Aor B.

3.3 Declaring Concepts

Concepts must be identified in C++. In our solution, mapma_decl ar e_concept defines
an empty structure to represent a concept. For instangejct STLCont ai ner {}; declares
conceptSTLCont ai ner .

3.3.1 Typelists

Concepts also need to be stored in a container, in order toapguoiated by metafunctions,
e.g., to determine the most specialized concept for a tempfzecialization. Notably, the "type-
list" technique [5, 2], based on metaprogramming, allowklimg a static linked list to store types,
and can be defined as follows.

tenpl ate <cl ass CONTENT, class NEXT> struct gnx_|ist {

typedef CONTENT content;
typedef NEXT next ;

b

struct gnx_nil {};

Typegnx_ni | represents "no typeV6i d is not used, as it could be a valid type to be stored
in a list), and is used to indicate the end of a list. For instario store thesTLSequence and
STLAssoci at i ve concepts in a list:

t ypedef gnx_list< STLSequence,
gnx_l i st<STLAssoci ative,gnx_nil> > nylistl1;

Common operations on linked lists can be defined on typg¢it-or instance, to add concept
STLCont ai ner in the previous list:

t ypedef gnx_list<STLCont ai ner, nylistl> nylist2;

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

11

However, typelists are too static for our needs: in the meviexample, listyl i st 1 cannot
be modified to add a type, so a new listl i st 2 has to be created instead. In the following
section, a solution is proposed to build a list of concepét ttan be modified at compile time
to add new concepts, without changing the identifier of the liTypelists will nevertheless be
useful in our solution for several metafunctions where afiens for merging and searching lists
of concepts are necessary.

3.3.2 Indexing Concepts

To design a list where concepts can be added at any time, aameoh for indexing the
concepts is proposed. The metafunctiprx_concept is defined: it has one parameter that is an
integer value, and it returns the concept associated wigmtimber. Adding a concept to the list
is performed by the specialization of the metafunction.

tenplate <int ID> struct gnx_concept : gnx_type<gnx_nil> {};

tenpl ate <> struct gnx_concept<1> : gnx_type<STLContai ner> {};
tenpl ate <> struct gnx_concept<2> : gnx_type<STLSequence> {};

[...]

Indexing the concepts by hand is not acceptable, so a soltdiget the number of concepts
already in the list is needed. For this purpose, a prelingizvarsion of thegnx_nb_concept
metafunction is proposed. It goes through all the conceptisd list by increasing an index until
findinggnx_ni | .

tenplate <int N = 0> struct gnx_nb_concept

gnx_i f < gnx_sane<typename gnx_concept <N+1>::type, gnx_nil >,
gnhx_val ue<i nt, N>,
gnx_nb_concept <N+1>

> {}

For an automatic indexing of the concepts, one would usedherr value of metafunction
gnx_nb_concept to determine the next index to assign to a new concept.

tenpl ate <> struct gnx_concept <gnx_nb_concept <>:: val ue+1>
gnx_t ype<STLCont ai ner> {};

tenpl ate <> struct gnx_concept <gnx_nb_concept <>:: val ue+1>
gnx_t ype<STLSequence> {};

[...]

However, this solution is not working as is, because usging_nb_concept <> infers that
gnx_concept is instantiated fromgnx_concept <0> to gnx_concept <N+1>, whereN is the
number of indexed concepts. Due to this fact, specializing_concept for STLCont ai ner
and STLSequence in the previous example is not possible, becayise concept <N+1> has
already been instantiated based on the primary versigmofconcept . To eliminate this flaw,
an additional parameter, called here "observer", is adddabth metafunctiongnx_concept
andgnx_nb_concept.

tenplate <int ID, class OBS = gnx_nil>
struct gnx_concept : gnx_type<gnx_nil> {};

tenplate <class OBS, int N = 0> struct gnx_nb_concept
gnx_i f < gnx_sane<typename gnx_concept <N+1, OBS>::type, gnx_nil >,
gnx_val ue<i nt, N>,
gnx_nb_concept <OBS, N+1>
> {};

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

12

The idea is to provide a different observer each time the ejotscneed to be counted to
determine the next index to assign to a new concept: the newept itself will be the ob-
server. With this solution, counting the concepts with obse0BS induces the instantiation of
gnx_concept <N+1, OBS>, S0 any specialization for index+1 with an observer other thatBS
is still possible. Finally, concepts are indexed as follows

tenpl ate <cl ass OBS>
struct gnx_concept <gnx_nb_concept <STLCont ai ner >: : val ue+1, 0OBS>

gnx_t ype<STLCont ai ner> {};

tenpl ate <cl ass OBS>
struct gnx_concept <gnx_nb_concept <STLSequence>: : val ue+1l, OBS>
gnx_t ype<STLSequence> {};

[...]

To declare a concept in a single and easy instruction, asmiex$ in the example at the start
of the section, thgnx_decl ar e_concept macro is defined.

#defi ne gnx_decl ar e_concept (CONCEPT)
struct CONCEPT {};

tenmpl ate <cl ass OBS>
struct gnx_concept <gnx_nb_concept < CONCEPT >::val ue+l, OBS>
gnhx_t ype< CONCEPT > {}

\
\
\
\
\

To conclude, thenx_nb_concept metafunction require®)(n) operations, where is the
number of concepts already in the program. Hence, indexingncepts require® (> ;" ;i) =
O(n?) operations at compile time.

3.4 Modeling and Refinement Relationships

Modeling relationships, between a type and a concept, divkneent relationships, between
two concepts, are declared equally in our solution withgiive_nodel s_concept metafunction.

tenpl ate <cl ass TYPE_OR_CONCEPT, cl ass CONCEPT>
struct gnx_nodel s_concept : gnx_false {};

The primary version of the template returns false, and tlaioaships are declared through
specializations of the template: if typemodels concept (or concepiX refines concept), then
specializatiorgnx_nodel s_concept <X, C> must return true.

tenpl ate <> struct gnx_nodel s_concept<X,C : gnx_true {};

Notice thatgnx_nodel s_concept provides an answer for a direct relationship only. If a type
T models a conceptl that refines a concegr, this metafunction returns false for a relationship
betweenT andC2. Additional metafunctions, necessary in our solution ta famy relationship
between a type and a concept (or between two concepts), iefty lpresented below (see the
source code for details).

— Metafunctiongnx_di r ect _concept s<X> provides a list (using the typelist technique) of
all the concepts directly modeled by a type (or refined by acept) X. It goes through
all the concepts using their index, and checks whexherodels (or refines) each concept
using metafunctiomnx_nodel s_concept . Assuming that to retrieve a concept from its
index (i.e., to call metafunctiopnx_concept) is a constant time operation, metafunction
gnx_di rect _concept s requiresO(n) operations, where is the number of concepts in

the program.

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

13

— Metafunctiongnx_al | _concept s<X> provides a list of all the concepts directly or in-
directly modeled by a type (or refined by a concext)t calls gnx_di rect _concepts
to list the concepts directly related ¥ and recursively gets all the concepts related to
each one of the direct concepts. This metafunction reqaies + rn) operations, where
r is the number of modeling and refinement relationships ded¢lin the program: at
worst, all then concepts are asked for their direct concepts (i.e., a calhaétafunction
gnx_di rect _concept s), which requires)(n?) operations; to build the final list, at worst
all ther relationships are considered, and each time the list ofuhectly found concepts
is merged with the list of the newly found concepts, whichuiegs O(rn) operations (at
worst2n operations are necessary for the merging, as it avoidsahies).

— Metafunctiongnx_nat ches_concept <X, C>returns whether a type (or a conceytnod-
els (or refines) a conceg directly or indirectly. This metafunction searches in the
list of concepts provided by metafunctigmx_al | _concept s and require€) (n? + rn)
operationsO(n? + rn) operations to build the list, and(n) for the search.

3.5 Specialization Based on Concepts
3.5.1 Declaring Specializations

With our solution, controlling the specialization of a tdatp with concepts that constrain one
of its parameters implies an additional parameter. In tlaergle, clasSeri al i zer has initially
one parametel, and based on different concepts that types bound moight model, several
specializations oferi al i zer must be provided. For this purpose, an extra parameter isdadd
toSeri alizer.

tenpl ate <class T, class = gnx_best_concept(SerializerContext, T)>
class Serializer : ErrorSpecializationNot Found<T> {};

This additional parameter is the most specialized condgta type bound t& models and
that is of interest for the specialization $ri al i zer . This "best" concept is obtained using the
gnx_best _concept macro, which eases the call to metafunctiprx_cont ext ual _concept .

#defi ne gnx_best _concept (CONTEXT, TYPE) \
t ypenane gnx_cont ext ual _concept <CONTEXT, TYPE>: : t ype

Notice that metafunctiomnx_cont ext ual _concept requires a "specialization context",
which is a type that represents the context of a given temsla¢cialization. Each template that
uses specialization based on concepts requires its owaxtont

There are two main reasons for this notion of a specialimatintext: (i) as seen previously,
metafunctiongnx_nb_concept, called by many metafunctions, requires an observer toparf
correctly and to allow defining new concepts at any time, aigldbserver will be the specializa-
tion context; (ii) we want our solution to be portable on atanglard C++ compiler, meaning we
do not want to modify the C++ language itself and to providexna tool to preprocess the code,
so to know which concepts are of interest for a given speeiiin context, each one of these
concepts must be associated with the context usingrikeuses_concept metafunction.

tenpl ate <>
struct gnx_uses_concept<Seri al i zer Cont ext, STLContai ner> : gnx_true {};

In our example, theSeri al i zer Cont ext context has been declared for the specialization
of Seri al i zer. Among others, conce@TLCont ai ner is used to define a specialization of
Serial i zer, sognx_uses_concept is specialized (the same way@sx_nodel s_concept)
to specify that conce@@TLCont ai ner is used in theSeri al i zer Cont ext context.

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

14

3.5.2 Selecting the Best Specialization

Based on the list of concepts declared in a specializatiotegfy and a taxonomy of concepts,
metafunctiongnx_cont ext ual _concept determines the "best" concept for a typemeaning
the most specialized concept tHatodels and that is of interest for the context of specidbipat

- T T~
. ~

/ N
‘ « concept » !
C1 /
\\ /
i
« refines » |
o N
/ ‘ N
‘ « concept » | « concept »
\ C2 / Coé
. a / AN
S — .7 T
«rqﬁnes‘»?' T T :
! /, N
« concept » « concept » ‘ « concept » |
c3 c4 .| s)
N / !« models »
Ea Ea A
: « models » | « models » | |

«models » | ----mmmmmmmmmmmeeeeeeo- ——— e

I w A B

Figure 2:Example of best concept selection.

If we consider the taxonomy of concepts of Figure 2, and asaitithat provides specializa-
tions for concept£l, C2 andCs in this example, the following best concepts should be sadiec

— For typeA: conceptC2, candidates ar€l andC2, butC2 is more specialized.

— For typeB: no concept, there is no candidate in the context'sdisk_ni | is returned.

— For typeC:. conceptCs, it is the only choice.

— For typeD: conceptsCl or C5, both concepts are valid (becausdenodels both), and there
is no relationship between them to determine that one is mpeeialized than the other.
The selected one depends on the implementatiagmef cont ext ual _concept . In our
solution, the concept with the highest index is selectedt tBwavoid this arbitrary selec-
tion, one can add relationships to the taxonomy of conceptsan specialize metafunction
gnx_cont ext ual _concept for typeDin contextX.

Metafunctiongnx_cont ext ual _concept <X, T> goes through the list of all the concepts
modeled directly or indirectly by typ€ (provided bygnx_al | _concept s<T>), and selects the
one that does not refines directly or indirectly any othercep in the list (using metafunction
gnx_mat ches_concept) and that is declared in context This metafunction require®(n? +
rn) operations:O(n? + rn) operations to build the list, an@(n) to select the best candidate
(becausaynx_al | _concept s has already achieved all the necessgity_mat ches_concept
instantiations).

3.6 Conclusion

Several steps are necessary for concept-based spedaalingdth our solution: (i) to declare
concepts and modeling/refinement relationships in orddetime a taxonomy of concepts; (ii) for
each context of specialization, to declare the conceptsatigaused to control the specialization.
These steps are not monolithic, and new concepts, relaissand specializations can be defined

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

15

at any time (but before the first instantiation of the tardegeneric component), which provides
high flexibility with minimal assumptions about components

The selection of the best specialization is fully automatic safe as long as the modeling
and refinement relationships are correct. Notice that thelsgionships, declared manually with
our solution, could be automated using a mechanism to chaeitgral conformance, such as the
St ati cl sAtemplate (cf. Section 2.2.1) for instance.

tenpl ate <class TYPE, class CONCEPT> struct gnx_nodel s_concept
gnx_val ue<bool , Staticl sA<TYPE, CONCEPT>: : val i d> {};

However, a few issues occur with our solution. First, thestpattern of any template spe-
cialized based on concepts is altered: for each primary lemparameter, an extra "hidden”
parameter may be added to get its best concept. For instapees of theSeri al i zer generic
class could think that this template has only one parametereas it actually has two.

Secondly, the notion of an observer, which is totally hiddiemm the users of a template
specialized based on concepts, has been introduced tosogpasstantiation problem with meta-
functiongnx_nb_concept (cf. Section 3.3.2). However there are very specific situregtiwhere
the issue remains. For instance, the following speciatimanay be troublesome.

tenplate <> class Serializer<int>{ [...] };

It induces the full instantiation dferi al i zer that forces the default value of the "hidden"
parameter to be instantiated, i.gnx_cont ext ual _concept <Seri al i zer Cont ext, i nt>,
which itself forcesgnx_nb_concept to be instantiated for observeeri al i zer Cont ext . If
concepts are added after this code, another call to metiammx_cont ext ual _concept with
contextSeri al i zer Cont ext will ignore the new concepts. Hence, one should avoid t@amst
tiategnx_cont ext ual _concept before the final use of the targeted template. In our example,
the full instantiation can be avoided as follows.

tenpl ate <cl ass CONCEPT> cl ass Serializer<int, CONCEPT> { [...] };

4 Compile-Time Performance

The theoretical performance of the metafunctions of ourtgm has been studied in this paper.
We assumed some operations of the compiler to be constamtgimit is important to confirm the
theoretical performance with practical experiments. Tl implementation of the library, that
is presented in this paper, is meant for understanding. ,Tdnescond version of the library has
been designed to optimize the compile time. Neverthelbssmetaprogramming techniques and
how to use the library remain unchanged with this new versidn understand what kind of
optimization has been performed, let us discuss on thewollp example of metafunction.

tenpl ate <class A> struct plain_neta
gnx_if < test<A>, branchl<A>, branch2<A> > {};

At instantiation time, botlbr anch1<A> andbr anch2<A> are instantiated. But depending
on the value of est <A>, only one of the two templates actually needs to be instiatian our
library, such cases occur many times and lead to lots of wssacy instantiations. Metafunctions
can be rewritten using an intermediate template that "hities two possible branches of the
conditional statement in separate specializations ofaheplate. Here is an optimized version of
the example that shows the technique that has been appl&titbe metafunctions of the library.

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

16

tenmpl ate <class A, bool TEST> struct _optimzed_mneta_;

tenmpl ate <class A> struct optimzed_neta
_optimzed_neta_<A, test<A>::value> {};

tenpl ate <class A> struct _optim zed_neta_<A true>: branchl<A> {};
tenpl ate <class A> struct _optim zed_neta_<A false>: branch2<A> {};

The tests presented here have been performed with the mptinviersiort! of the library
on an Intel Core 2 Duo T8100 2.1 GHz with 3 GB of memory, and giseNU G++ 4.3.4 (its
template recursion limit set to 1024). Instances with d&fé numbers: of concepts ana of
modeling/refinement relationships in the whole programehasen randomly generated (see the
source code for details). Each compile time presented he&pgressed in seconds and is the mean
of compilations of 10 different instances.

Figure 3 reports the compile time, dependingmemor indexing concepts. As predicted by the
theoretical performance analysis, there is a quadratierddgnce om (confirmed by a quadratic
regression with a correlation coefficiédtR = 0.997).

140 T T
Measure

Quadratic Regression (R=0.997) -------

120

100

60

Compile Time (s)

40

20

40 60 80 100 120 140 160 180 200
Number of Concepts

Figure 3:Compile time for indexing concepts & 100).

Figure 4 reports the compile time, depending :onof 50 instantiations of metafunction
gnx_di rect _concepts (which lists the concepts that a given type or concept direobd-
els or refines respectively). The theoretical performamedysis predicted a linear dependence on
n, but the practical results show otherwise, which we thinkelated to our assumption that ac-
cessing a concept through its index (i.e., a calji@_concept) was constant time. It seems that
to find a specialization of a template, the compiler may negainumber of operations dependent
on the total number of specializations for this template wkler, this non-linear dependence is
not so significant, as the linear regression shows a cdomrlabefficientR = 0.986 in the range
of our experiments, and the instantiationgyak_di r ect _concept s represent only one step of
the whole compilation process.

11. Optimized version 2011-08-25 was used for the expettisnen
12. R = Pearson’s correlation coefficient; the closet t¢he more the regression fits the curve.

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

17

50 T T

T
Measure

Linear Regression (R=0.986) -------

40

30

20

Compile Time (s)

10 +

_10 Il Il Il Il Il Il Il
40 60 80 100 120 140 160 180 200

Number of Concepts

Figure 4:Compile time forgnx_di r ect _concept s (50 instantiationsy = 100).

Figures 5 and 6 report the compile time, depending resgdgtdnn andr, of 50 instantiations
of gnx_cont ext ual _concept (which determines the best concept for a type bound to a &mpl
parameter). The performance of each intermediate metidaris not shown, as it is similar. As
predicted by the theoretical performance analysis, tiemeguadratic dependencewiconfirmed
with R = 1), and a linear dependence oifconfirmed withR = 0.989).

160 T

T
Measure
Quadratic Regression (R=1) -------

Compile Time (s)

o Il Il Il Il Il Il Il Il
50 60 70 80 90 100 110 120 130 140

Number of Concepts

Figure 5:Compile time forgnx_cont ext ual _concept (50 instantiationsy = 300).

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

70

Compile Time (s)

18

T
Measure

Linear Regression (R=0.989) -------

100

200 300 400 500 600
Number of Relationships

700

800

Figure 6:Compile time forgnx_cont ext ual _concept (50 instantiationsp = 80).

Our library has been tested successfully on several cormpi&NU GCC from 3.4.5t0 4.4.3,
Microsoft Visual C++ 10, and Embarcadero C++ 6.20. Figuremnd 8 report the time of the
whole compilation process for those compilers, from indgxihe concepts to finding the best
concepts for types bound to template parameters, dependingandr. Notice that we were not
able to test all the instances with Embarcadero’s compulleg,to a hard limitation of 256 levels in
the template recursion.

80

70

60

50

40

Compile Time (s)

30

Gcc ——

Visual
Embarcadero

Number of Concepts

Figure 7:Whole compile time (with 30 instantiations ghx_cont ext ual _concept , 7 = 100).

Research Report LIMOS/RR-10-18

LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

19

25

GCC ——
Visual -------
Embarcadero ===~

20 -]

15 | g

Compile Time (s)

10 - g

0 Il Il Il Il
0 100 200 300 400 500

Number of Relationships

Figure 8:Whole compile time (with 50 instantiations ghx_cont ext ual _concept ,n = 50).

5 Conclusion

This paper describes template metaprogramming techniguesntrol the specialization of
generic components with concepts. As concepts are not ptre €++ language yet, a library-
based solution is provided to declare concepts and modedfimgement relationships in order to
define a taxonomy of concepts. It relies on an automatic indesf the concepts that allows a
retroactive extension: at any time, new concepts and mugledifinement relationships can be
declared.

The library also provides a mechanism to automaticallycselee most appropriate special-
ization of a template based on concepts. Specializatiogeméric components can be defined by
constraining template parameters with concepts rathertile patterns. At instantiation time, a
metafunction determines the most specialized concept fiiven specialization context, of any
type bound to a template parameter, and thus guides thdiseletthe most appropriate special-
ization. Our solution is a bit invasive because an extrarpatar (invisible to the user) must be
added to any template that is intended to be specializedll@seoncepts; but after the defini-
tion of the primary version of the template, specializatidtased on concepts can be added non
intrusively and retroactively.

The retroactive extension enabled by the proposed techmaovides high flexibility with
minimal assumptions about the components: the couplingdmt a template and the types bound
to its parameters only occurs at instantiation time, while nost appropriate specialization is
selected. However, because our goal was to provide a fulbalple C++ code with no extra tool,
we were not able to automate the identification of the corsctyztt control the specialization of
a given template. Therefore, the notion of a "specializationcept” is necessary and requires to
explicitly declare each concept that is involved in the oolmf a specialization.

To conclude, a theoretical performance analysis and tHempeance of practical experiments
have been presented to show the compile time overhead ofotutics. Even if a quadratic
dependence on the number of concepts has been identifiedptingile time is reasonable for
many applications: compiling 50 specializations with 5@@epts and 250 modeling/refinement
relationships on an average computer requires less thactohds

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

20

References

[1] David Abrahams and Aleksey GurtovoyC++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyohddison-Wesley, 2004.

[2] Andrei Alexandrescu.Modern C++ Design: Generic Programming and Design Patterns
Applied Addison-Wesley, 2001.

[3] Matthew H. Austern. Generic Programming and the STL: Using and Extending the C++
Standard Template LibraryAddison-Wesley, 1999.

[4] Gilad Bracha. Generics in the Java Programming Languggehnical report, Sun Microsys-
tems, 2004.

[5] Krzysztof Czarnecki and Ulrich Eisenecké&enerative Programming: Methods, Tools, and
Applications Addison-Wesley, 2000.

[6] Douglas Gregor, Jaakko Jarvi, Jeremy Siek, Bjarne Strap, Gabriel Dos Reis, and An-
drew Lumsdaine. Concepts: Linguistic Support for GenermmgPamming in C++. IrPro-
ceedings of OOPSLA'Qpages 291-310, 2006.

[7] Douglas Gregor, Bjarne Stroustrup, Jeremy Siek, ancedaiidman. Proposed Wording for
Concepts (Revision 3). Technical report, N2421=07-0280Q/IEC JTC 1, 2007.

[8] Mehdi Jazayeri, Rudiger Loos, David Musser, and Alexan8tepanov. Generic Program-
ming. InReport of the Dagstuhl Seminar on Generic Programmirg$8.

[9] Jaakko Jarvi, Douglas Gregor, Jeremiah Willcock, Amdteimsdaine, and Jeremy G. Siek.
Algorithm Specialization in Generic Programming: Chadjes of Constrained Generics in
C++. InProceedings of PLDI'O6ACM Press, 2006.

[10] Jaakko Jarvi, Mat Marcus, and Jacob N. Smith. Progrargmith C++ Concepts. I8cience
of Computer Programming/olume 75, pages 596—614. Elsevier, 2010.

[11] Jaakko Jarvi, Jeremiah Willcock, and Andrew Lumsdairi@oncept-Controlled Polymor-
phism. InLecture Notes in Computer Scienoslume 2830, pages 228-244. Springer-
Verlag, 2003.

[12] Brian McNamara and Yannis Smaragdakis. Static Inbegan C++. InFirst Workshop on
C++ Template Programming2000.

[13] Gabriel Dos Reis and Bjarne Stroustrup. Specifying @encepts. InProceedings of
POPL'06, pages 295-308. ACM Press, 2006.

[14] Jeremy G. Siek and Andrew Lumsdaine. Concept Checkitigding Parametric Polymor-
phism in C++. InFirst Workshop on C++ Template Programmiriz000.

[15] Larisse Voufo, Marcin Zalewski, and Andrew Lumsdair@onceptClang: an Implementa-
tion of C++ Concepts in Clang. Ifith ACM SIGPLAN Workshop on Generic Programming
2011.

[16] Roland Weiss and Volker Simonis. Exploring Templatenpéate Parameters. lbecture
Notes in Computer Scienceolume 2244, pages 500-510. Springer-Verlag, 2001.

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermbrtrand, France, 2010.

