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Abstract

In generic programming, software components are parameterized on types. When available, a static spe-
cialization mechanism allows selecting, for a given set of parameters, a more suitable version of a generic
component than its primary version. The normal C++ templatespecialization mechanism is based on the
type pattern of the parameters, which is not always the best way to guide the specialization process: type
patterns are missing some information on types that could berelevant to define specializations.

The notion of a "concept", which represents a set of requirements (including syntactic and semantic
aspects) for a type, is known to be an interesting approach tocontrol template specialization. For many
reasons, concepts were dropped from C++11 standard, this article therefore describes template metapro-
gramming techniques for declaring concepts, "modeling" relationships (meaning that a type fulfills the
requirements of a concept), and "refinement" relationships(meaning that a concept refines the requirements
of another concept).

From a taxonomy of concepts and template specializations based on concepts, an automatic mecha-
nism selects the most appropriate version of a generic component for a given instantiation. Our purely
library-based solution is also open for retroactive extension: new concepts, relationships, and template
specializations can be defined at any time; such additions will then be picked up by the specialization
mechanism.

Keywords: generic programming, template specialization, concept-based overloading/specialization, tem-
plate metaprogramming.

Résumé

En programmation générique, les composants logiciels sontparamétrés sur des types. Quand il est dispo-
nible, un mécanisme de spécialisation statique permet de sélectionner, pour un jeu de paramètres donné, une
version plus adaptée d’un composant générique que sa version initiale. Le mécanisme normal de spéciali-
sation de patron du C++ repose sur le motif de type des paramètres, ce qui n’est pas toujours la meilleure
manière de guider le processus de spécialisation : les motifs de type manquent certaines informations sur
les types qui pourraient être pertinentes pour définir des spécialisations.

La notion de "concept", qui représente un ensemble de spécifications (incluant des aspects syntaxiques
et sémantiques) pour un type, est reconnue pour être une approche intéressante pour contrôler la spéciali-
sation de patron. Pour diverses raisons, les concepts ont été abandonnés dans le standard C++11, cet article
décrit donc des techniques de métaprogrammation par patrons pour déclarer des concepts, des relations de
"modélisation" (signifiant qu’un type satisfait les spécifications d’un concept) et des relations de "raffine-
ment" (signifiant qu’un concept raffine les spécifications d’un autre concept).

A partir d’une taxonomie de concepts et de spécialisations de patrons basées sur les concepts, un mé-
canisme automatique sélectionne la version la plus appropriée d’un composant générique pour une instan-
ciation donnée. Notre solution, qui repose uniquement sur une bibliothèque, permet aussi une extension
rétroactive : de nouveaux concepts, relations et spécialisations de patrons peuvent être définis à tout mo-
ment ; de tels ajouts seront alors pris en compte par le mécanisme de spécialisation.

Mots clés :programmation générique, spécialisation de patron, surcharge/spécialisation par concepts, mé-
taprogrammation par patrons.
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1 Introduction

Generic programming focuses on providing parameterized software components, notably al-
gorithms and data structures, as general as possible and broadly adaptable and interoperable [8],
and as efficient as non-parameterized components. Generic programming relies on the notion of
a generic component that is a class, function, or method withparameters that are types or static
values, instead of dynamic values as the usual arguments of functions and methods. No loss in
efficiency is possible with generic programming in languages like C++ where the parameters of a
generic component are bound at compile time.

1.1 Template Specialization

Similar to inheritance in object-oriented programming, which allows the specialization of
classes, C++ provides a mechanism to specialize generic components (calledtemplates). At in-
stantiation time, the compiler selects a version, the primary or a specialized one, of a template
based on the type pattern of the types (or static values) bound to the parameters. Here is a C++
example of a generic class,ArrayComparator, that allows comparing two arrays that containN

elements of typeT.

template <class T, int N> class ArrayComparator {
public:
static int run(const T * a, const T * b) {
int i = 0;
while (i<N && a[i]==b[i]) ++i;
return (i==N ? 0 : (a[i]<b[i] ? -1 : 1));

}
};

The comparison of arrays of characters is presumably more efficient using a built-in function.
Therefore, a specialization of the template withT = char can be provided.

template <int N> class ArrayComparator<char,N> {
public:
static int run(const char * a, const char * b) { return memcmp(a,b,N); }

};

1.2 Concepts

In generic programming, binding types to the parameters of ageneric component raises two
concerns: (i) how to ensure that a type bound to a parameter fulfills the requirements to be properly
used by the generic component (e.g., any type bound toT must provide operators< and== in the
ArrayComparator class); (ii) how to select the most appropriate specialization of the generic
component for a given binding of the parameters (e.g., if typechar is bound to parameterT, then
specializationArrayComparator<char,N> is selected; but how to make another type benefit
from the same specialization).

To address these issues, the notion of a "concept" has been introduced [3]. When a type is
bound to a parameter of a generic component, it must satisfy aset of requirements represented by
a "concept". Among others, these requirements define syntactic constraints (i.e., on the interface
of the type) and semantic constraints (i.e., on the behaviorof the type). When a type fulfills
the requirements of a concept, it is said that the type "models" the concept. The notion of a
specialization between concepts is called "refinement": a concept that includes the requirements
of another concept is said to "refine" this concept.
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For instance, let us define the conceptIntegral that captures the requirements of an inte-
gral number, and the conceptNumerical that captures the requirements of any kind of number.
One can state that typeint models conceptIntegral, and conceptIntegral refines concept
Numerical.

1.3 Challenges with Concepts

Concern (i) of the previous section is called "concept checking" [14], and its goal is to detect
the types bound to the parameters of a generic component thatdo not model the required concepts.
A concept acts like a contract between the users and the author of a generic component: the author
specifies requirements on the parameters using concepts, and the users must bind the parameters
to types that fulfill these requirements, i.e., to types thatmodel the specified concepts.

In C++, concepts can not be defined explicitly, and for now, they are only documentation (e.g.,
Standard Template Library). This leads to late error detections, and thus to cryptic error messages
[14]: for instance, let us declare the instantiationArrayComparator<X,10>; if type X has no
operator<, the error will be detected in methodrun, and not at the instantiation point. Some
langages, such as Java, rely on interfaces to constrain the parameters of generic components in the
following form: parameterT must be a "subtype" ofU (T is a subtype ofU if T inherits from class
U, or T implements interfaceU, or T andU are the same type [4]).

Concepts cannot be reduced to interfaces, as they define requirements that are not only syn-
tactic. Moreover, concepts bring more flexibility, becausea type is not predestined to model any
given concept. A type models a concept either implicitly (itfulfills "automatically" all the re-
quirements of a concept, cf. "auto concepts" [6]), or explicitly (one has to declare the modeling
relationship and to make explicit how the type fulfills the requirements, cf. "concept maps" [6]).

Concern (ii) of the previous section is called "concept-based overloading" [9], but in this ar-
ticle, we propose to use the term "concept-based specialization" as we will focus more on class
specialization than function overloading. The goal of concept-based specialization is to control
the specialization of generic components with concepts rather than type patterns. By type pat-
tern, we mean a type or a parameterized type (e.g.,T* or vector<T>), or a "template template"
parameter [16] (e.g.,template <class> class U). Specialization based on type patterns can
lead to ambiguities (the compiler cannot decide between twopossible specializations) or false
specializations (the compiler selects an unintended specialization), as explained in Section 2.

Several attempts have been made to represent concepts in C++. On one hand, implementations
for concept checking have been proposed, mainly to ensure interface conformance of types bound
to template parameters [12, 14]. On the other hand, an implementation for concept-based special-
ization has been proposed [11]. In this solution, the specialization is based on both the SFINAE
(substitution failure is not an error) principle [2] and a mechanism to answer the question"does
type T model concept C ?"(through theenable_if template). However this approach may still
lead to ambiguities7.

More recently, an attempt has been initiated to define an extension of the C++ language to
support concepts [6, 13] that may be added to the C++ Standard[7]. This extension is available
within the experimental compiler ConceptGCC [6, 10], and isalso implemented as ConceptClang
in Clang, a C language family front-end for the LLVM compiler[15]. In the meantime, there
seems to be no satisfactory solution directly available in standard C++ compilers for concept-
based specialization that avoids ambiguities and false specializations.

7. As explained in Boost documentation: http://www.boost.org/doc/libs/release/libs/utility/enable_if.html
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1.4 Proposal

In this article, a solution focused on the concept-based specialization aspect only is proposed.
Due to portability concerns, our goal is to provide a purely library-based solution that could be
used with any standard C++ compiler, and no need of an additional tool. The proposed technique
enables declaring concepts, modeling relationships, and refinement relationships. Once a taxon-
omy of concepts has been declared, it can be used to control the specialization of templates: to
define a specialization, concepts, instead of type patterns, are used to constrain parameters. At
instantiation time, the most appropriate version of a template is selected based on the concepts
modeled by the types bound to the parameters: a metaprogram determines, for each one of these
types, the most specialized concept to consider for this instantiation.

Even if the proposed technique does not detect directly concept mismatches to provide more
understandable error messages, it needs to perform some checking on concepts to lead the spe-
cialization process. The checking is only based on "named conformance" [12] (i.e., checking on
whether a type has been declared to model a given concept), and does not consider "structural
conformance" (i.e., checking on whether a type implements agiven interface).

One key idea of generic programming is to express componentswith minimal assumptions
[8], therefore our solution is open for retroactive extension:

– A new concept or a new relationship (modeling or refinement)can be declared at any time.
The declaration of such relationships is distinct from the definition of types and concepts,
contrary to class inheritance and interface implementation that have to be declared with the
definition of classes.

– A new specialization based on concepts can be defined at any time, but only for templates
that have been prepared for concept-based specialization.

Section 2 discusses several issues encountered with template specialization, and shows how
concepts can be used to bypass most of them. Section 3 presents template metaprogramming tech-
niques for concept-based specialization, and an example using our library-based solution. Section
4 reports the compile-time performance of the library depending on the number of concepts and
the number of relationships (modeling and refinement) in a program. The full source code of the
library and of the examples is available for download8.

2 Issues with Template Specialization

This section presents several issues that may occur with template specialization based on type
patterns, and how they can be addressed with concepts:

(i) Some types that can be considered somehow similar (e.g.,with a common subset of oper-
ations in their interface) could be bound to the same specialization of a template, but if they have
no type pattern in common, several specializations must be defined.

(ii) A specialization based on type patterns may lead to false specialization (i.e., an unintended
specialization), because a type pattern can be insufficientto capture the requirements that a tem-
plate needs for a parameter.

Existing solutions that use concepts to control template specialization in C++ are discussed in
this section. It appears that refinement relationships are also necessary to address another issue:

(iii) A type can possibly be bound to different specializations of a template, when it mod-
els concepts that constrain different specializations. Ifthere is no clear ordering between these
concepts, to choose one specialization is not possible.

8. Source code is available at: http://forge.clermont-universite.fr/projects/show/cpp-concepts
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2.1 Specialization Based on Type Patterns

As an example, we propose to develop a generic class,Serializer, to store the state of an
object into an array of bytes (the "deflate" action), or to restore the state of an object from an array
of bytes (the "inflate" action). The primary version of the template, which makes a bitwise copy
of an object in memory, is defined as follows.

template <class T> class Serializer {
public:
static int deflate(char * copy, const T & object);
static int inflate(T & object, const char * copy);

};

This version should not be used for complex objects, such as containers, where the internal
state may have pointers that should not be stored (because these versions of the deflate and inflate
actions would lead to memory inconsistency after restoring). If we consider "sequence contain-
ers" of the STL (Standard Template Library), such as vectors and lists, a specialized version of
Serializer can be provided.

template <class T, class ALLOC, template <class,class> class CONTAINER>
class Serializer< CONTAINER<T,ALLOC> > {
public:
static int deflate(char * copy, const CONTAINER<T,ALLOC> & container);
static int inflate(CONTAINER<T,ALLOC> & container, const char * copy);

};

This specialization is based on the type pattern of the STL sequence containers: they are
generic classes with two parameters, the typeT of the elements to be stored, and the typeALLOC

of the object used to allocate elements.

Now, let us consider "associative containers" of the STL, such as sets and maps. Their type pat-
tern is different from the one of sequence containers (they have at least one more parameterCOMP

to compare elements), whereas sequence and associative containers have a common subset of
operations in their interface that should allow defining a common specialization ofSerializer.
However, as specialization is based on type pattern for now,another specialization ofSerializer
is necessary.

template <class T, class COMP, class ALLOC,
template <class,class,class> class CONTAINER>

class Serializer< CONTAINER<T,COMP,ALLOC> > { [...] };

Notice that this specialization ofSerializer is only suitable for sets, and not for maps,
because their type pattern is different: maps have an additional parameterK for the type of the keys
associated with the elements of the container. The specializationSerializer< CONTAINER<K,
T, COMP, ALLOC> > is necessary for maps, whereas maps and sets have a common subset of
operations in their interface and should share the same specialization.

The specialization for sets has been written having only STLassociative containers in mind,
but any type matching the same type pattern can be bound to thespecialization. Thus, there could
be an unintended match. For instance, thestd::string class of the C++ standard library is an
alias for a type that matches the type pattern of sets:

std::basic_string< char, std::char_traits<char>, std::allocator<char> >

The first two issues presented in the introduction of the section have been illustrated here.
They could be addressed with concepts:
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(i) "Similar" types (i.e., sharing a common subset of features) could model a same concept,
and a specialization for this concept could be defined. Therefore, "similar" types with different
type patterns could be bound to the same specialization.

(ii) Concepts could avoid false specialization: with template specialization based on concepts,
any template parameter could be constrained by a concept, and only types that model this concept
could be bound to the parameter. This way, only the types thatsatisfy the requirements of a
specialization could be considered.

Figure 1:Taxonomy of concepts for the serialization example.

For the example of serialization discussed here, Figure 1 proposes concepts and their relation-
ships. TheSingleObject andSTLContainer concepts are defined to provide two specializa-
tions forSerializer: one based on bitwise copy, and another one based on the common subset of
operations shared by all STL containers, respectively. TheSTLContainer concept is refined into
the STLSequence andSTLAssociative concepts to provide specializations ofSerializer

using specific operations of sequence containers and associative containers respectively.

2.2 Specialization Based on Concepts

Existing solutions for concept-based specialization in C++ [12, 11] are discussed here. They
use concepts to guide the specialization of templates, and enable addressing the two first issues
presented in the introduction of the section. However, about the third issue, i.e., to find the most
appropriate specialization when a type can possibly be bound to several specializations, the solu-
tions presented here are not fully satisfactory.

2.2.1 Concept-Based Dispatch

A first solution [12] implements concepts with "static interfaces" in C++, and proposes a
"dispatch" mechanism to control template specialization with concepts. The solution is based on
the StaticIsA template that provides some concept checking:StaticIsA<T,C>::valid is
true if T models conceptC. Let us assume thatStaticIsA answers accordingly to the taxonomy
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of concepts of Figure 1 (see the source code for details). Here is an example of the dispatch
mechanism for the specialization of theSerializer generic class.

enum { IS_SINGLE_OBJECT, IS_STL_CONTAINER, IS_STL_SEQUENCE,
IS_STL_ASSOCIATIVE, UNSPECIFIED };

template <class T> struct Dispatcher {
static const int which
= StaticIsA<T,STLAssociative>::valid ? IS_STL_ASSOCIATIVE

: StaticIsA<T,STLSequence>::valid ? IS_STL_SEQUENCE
: StaticIsA<T,STLContainer>::valid ? IS_STL_CONTAINER
: StaticIsA<T,SingleObject>::valid ? IS_SINGLE_OBJECT
: UNSPECIFIED;

};

template <class T> struct ErrorSpecializationNotFound;

template <class T, int = Dispatcher<T>::which>
class Serializer : ErrorSpecializationNotFound<T> {};

template <class T> class Serializer<T,IS_SINGLE_OBJECT> { [...] };
template <class T> class Serializer<T,STL_CONTAINER> { [...] };
template <class T> class Serializer<T,STL_SEQUENCE> { [...] };
template <class T> class Serializer<T,STL_ASSOCIATIVE> { [...] };

The Dispatcher template goes through all the concepts (in a well-defined order) until its
parameterT models a concept. The symbolic constant associated with thefound concept is stored
in thewhich attribute ofDispatcher. For instance,Dispatcher< vector<int> >::which
is equal toIS_STL_SEQUENCE.

Compared to the version of theSerializer template based on type patterns, there is an
additional parameter with a default value that is the answerof the dispatcher for parameterT.
This value is used rather than the type pattern ofT to define the specializations ofSerializer.
This way, it is possible to provide a specialization for any concept. For instance,Serializer<
vector<int> > instantiates in factSerializer< vector<int>, IS_STL_SEQUENCE > and
matches the specialization for theSTLSequence concept.

Notice that the primary version of the template inherits from a class that is only declared, the
aim being that this version could not be instantiated. This way, compilation errors related to the
fact thatT has been instantiated with a wrong type occurs at the instantiation of Serializer,
rather than inside the code ofSerializer where it tries to call invalid operations onT. This
solution avoids usual error messages that could be cryptic for the user [14].

In this solution, a dispatcher (and dispatch rules) must be defined for each context of special-
ization, i.e., for each template that is specialized, whichcan quickly become tedious. Moreover,
to define a new specialization for a template implies to change its dispatch rules. A solution where
the dispatch rules, for each context of specialization, areautomatically deduced from the modeling
and refinement relationships of the taxonomy of concepts should be provided.

2.2.2 Concept-Based Overloading

The second solution [11] relies on theenable_if template, which can be found in the Boost
Library [1], and the SFINAE (substitution failure is not an error) principle [2], to provide some
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control on template specialization with concepts. The definition of enable_if is recalled here.

template <bool B, class T = void>
struct enable_if_c { typedef T type; };

template <class T> struct enable_if_c<false,T> {};

template <class COND, class T = void>
struct enable_if : enable_if_c<COND::value,T> {};

At instantiation time, ifB is true, there is a nested typetype insideenable_if_c, and thus
insideenable_if, if its parameterCOND has an attributevalue set to true. Let us assume that, for
each conceptC of the taxonomy of Figure 1, a templateis_C<T> is defined sois_C<T>::value
is true if T models conceptC (see the source code for details). Here is an example of the use of
enable_if for the specialization of theSerializer generic class.

template <class T, class = void>
class Serializer : ErrorSpecializationNotFound<T> {};

template <class T>
class Serializer<T, typename enable_if< is_SingleObject<T> >::type>
{ [...] };

template <class T>
class Serializer<T, typename enable_if< is_STLContainer<T> >::type>
{ [...] };

template <class T>
class Serializer<T, typename enable_if< is_STLSequence<T> >::type>
{ [...] };

template <class T>
class Serializer<T, typename enable_if< is_STLAssociative<T> >::type>
{ [...] };

The SFINAE principle is: if there is an error when binding types to the parameters of a tem-
plate specialization, this specialization is discarded. For instance, the instantiationSerializer<
vector<int> > implies an attempt to instantiateSerializer< vector<int>, typename

enable_if< is_SingleObject< vector<int> > >::type> 9, and becauseenable_if has
no membertype in this case, the specialization for conceptSingleObject is ignored.

This solution keeps only the specializations constrained with a concept modeled by the type
bound toT. If more than one specialization remain, the compiler has todeal with an ambiguity: for
instance,vector<int> models bothSTLContainer andSTLSequence concepts. This ambi-
guity could be avoided: conceptSTLSequence is more specialized than conceptSTLContainer,
so the specialization forSTLSequence should be selected.

2.2.3 Conclusion

In this section, solutions have been presented to control template specialization with concepts.
Concept-based dispatch allows considering refinement relationships, but the selection of the spe-
cialization is not automatic and requires some specific codefor each context of specialization. At
the opposite, concept-based overloading allows an automatic selection of the specialization, but is
not able to deal with ambiguities that could be avoided considering refinement relationships.

9. typename is necessary in C++ to declare that the membertype is actually a type and not a value.
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3 A Solution for Concept-Based Specialization

Concepts appear to be better suited than type patterns to control template specialization, but
to our knowledge, there is no solution that addresses all theissues brought up in the previous
section. We propose here template metaprogramming techniques that enable defining a taxonomy
of concepts, and using this taxonomy to automatically select the most appropriate specialization
of a template.

Two main goals have guided our choices toward this library-based solution: to provide a fully
portable C++ code (with no extra tool), and to be open for retroactive extension (new concepts,
relationships, and template specializations can be definedat any time).

3.1 Example

Let us consider the example of theSerializer generic class with our solution. In a first
step, the taxonomy of concepts of Figure 1 is defined: concepts and relationships (modeling and
refinement) are declared. Then, theSerializer template is defined: first its primary version,
and then its specializations for each concept. Details on the implementation of the library are
presented afterward.

Concepts Declaration
gnx_declare_concept(SingleObject);
gnx_declare_concept(ComplexObject);
gnx_declare_concept(STLContainer);
gnx_declare_concept(STLSequence);
gnx_declare_concept(STLAssociative);

Modeling and Refinement Relationships
template <> struct gnx_models_concept<char,SingleObject> : gnx_true {};
template <> struct gnx_models_concept<int,SingleObject> : gnx_true {};
template <> struct gnx_models_concept<float,SingleObject> : gnx_true {};

template <class T>
struct gnx_models_concept<std::vector<T>,STLSequence> : gnx_true {};

template <class T>
struct gnx_models_concept<std::list<T>,STLSequence> : gnx_true {};

template <class T>
struct gnx_models_concept<std::set<T>,STLAssociative> : gnx_true {};

template <class K, class T>
struct gnx_models_concept<std::map<K,T>,STLAssociative> : gnx_true {};

template <>
struct gnx_models_concept<STLContainer,ComplexObject> : gnx_true {};

template <>
struct gnx_models_concept<STLSequence,STLContainer> : gnx_true {};

template <>
struct gnx_models_concept<STLAssociative,STLContainer> : gnx_true {};

Template Primary Version
struct SerializerContext;

template <class T,class = gnx_best_concept(SerializerContext,T)>
class Serializer : ErrorSpecializationNotFound<T> {};
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Template Specialized Versions

template <>
struct gnx_uses_concept<SerializerContext,SingleObject> : gnx_true {};

template <class T> class Serializer<T,SingleObject> { [...] };

template <>
struct gnx_uses_concept<SerializerContext,STLContainer> : gnx_true {};

template <class T> class Serializer<T,STLContainer> { [...] };

template <>
struct gnx_uses_concept<SerializerContext,STLSequence> : gnx_true {};

template <class T> class Serializer<T,STLSequence> { [...] };

template <>
struct gnx_uses_concept<SerializerContext,STLAssociative> : gnx_true {};

template <class T> class Serializer<T,STLAssociative> { [...] };

Concepts are declared using macrognx_declare_concept. The modeling and refinement
relationships are equally declared using metafunctiongnx_models_concept. To control the
specialization, a "specialization context" must be declared (SerializerContext in our exam-
ple). Each specialization ofSerializer based on a concept must be declared and associated with
the specialization contextSerializerContext, using metafunctiongnx_uses_concept. The
most appropriate concept for a type bound to parameterT is automatically determined by the
gnx_best_concept macro and stored in an additional parameter of theSerializer template,
enabling template specialization based on this parameter.

3.2 Metafunctions

Some fundamental "metafunctions" are necessary to implement our library. These generic
classes are common in metaprogramming libraries (e.g., in the Boost MPL Library). A meta-
function acts similarly to an ordinary function, but instead of manipulating dynamic values, it
deals with "metadata", i.e., entities that can be handled atcompile time in C++: mainly types and
static integer values [1]. In order to manipulate equally types and static values in metafunctions,
metadata are embedded inside classes, as follows10.

template <class TYPE> struct gnx_type { typedef TYPE type; };

template <class TYPE, TYPE VALUE>
struct gnx_value { static const TYPE value = VALUE; };

typedef gnx_value<bool,true> gnx_true;
typedef gnx_value<bool,false> gnx_false;

Templategnx_type<T> represents a type and provides a type membertype that is T it-
self. The same way, templategnx_value<T,V> represents a static value and provides an at-
tributevalue that is the valueV of typeT. Based on templategnx_value, typesgnx_true and
gnx_false are defined to represent the boolean values.

10. We chose to prefix all the metafunctions and macros of our library with "gnx_". We also chose to use our own
metafunctions instead of the ones of MPL for two reasons: we only needed few of them and we wanted to be able to
adapt easily their implementation to optimize the compile time.
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The parameters of a metafunction, which are the parameters of the template representing the
metafunction, are assumed to be metadata, i.e., to be classes with a membertype or value. The
"return value" of a metafunction is implemented with inheritance: the metafunction inherits from a
class representing a metadata. This way the metafunction itself has a membertype or value, and
can be a parameter of another metafunction. Here are metafunctions necessary for the discussion
of this section.

template <class TYPE1, class TYPE2> struct gnx_same : gnx_false {};

template <class TYPE> struct gnx_same<TYPE,TYPE> : gnx_true {};

template <class TEST, class IF, class ELSE, bool = TEST::value>
struct gnx_if : ELSE {};

template <class TEST, class IF, class ELSE>
struct gnx_if<TEST,IF,ELSE,true> : IF {};

Metafunctions usually need template specialization to fully implement their behavior. Meta-
function gnx_same determines whether two types are identical:gnx_same<T1,T2> inherits
from gnx_true if T1 and T2 are the same type, or fromgnx_false otherwise. Thus, the
value returned by metafunctiongnx_same<T1,T2> is stored in itsvalue attribute. Metafunc-
tion gnx_if acts similarly to the commonif instruction: gnx_if<T,A,B> inherits fromA if
T::value is true, or fromB otherwise. IfA andB represent metadata, thengnx_if<T,A,B>
inherits the member nested inA or B.

3.3 Declaring Concepts

Concepts must be identified in C++. In our solution, macrognx_declare_concept defines
an empty structure to represent a concept. For instance,struct STLContainer {}; declares
conceptSTLContainer.

3.3.1 Typelists

Concepts also need to be stored in a container, in order to be manipulated by metafunctions,
e.g., to determine the most specialized concept for a template specialization. Notably, the "type-
list" technique [5, 2], based on metaprogramming, allows building a static linked list to store types,
and can be defined as follows.

template <class CONTENT, class NEXT> struct gnx_list {
typedef CONTENT content;
typedef NEXT next;

};

struct gnx_nil {};

Typegnx_nil represents "no type" (void is not used, as it could be a valid type to be stored
in a list), and is used to indicate the end of a list. For instance, to store theSTLSequence and
STLAssociative concepts in a list:

typedef gnx_list< STLSequence,
gnx_list<STLAssociative,gnx_nil> > mylist1;

Common operations on linked lists can be defined on typelists[2]. For instance, to add concept
STLContainer in the previous list:

typedef gnx_list<STLContainer,mylist1> mylist2;
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However, typelists are too static for our needs: in the previous example, listmylist1 cannot
be modified to add a type, so a new listmylist2 has to be created instead. In the following
section, a solution is proposed to build a list of concepts that can be modified at compile time
to add new concepts, without changing the identifier of the list. Typelists will nevertheless be
useful in our solution for several metafunctions where operations for merging and searching lists
of concepts are necessary.

3.3.2 Indexing Concepts

To design a list where concepts can be added at any time, a mechanism for indexing the
concepts is proposed. The metafunctiongnx_concept is defined: it has one parameter that is an
integer value, and it returns the concept associated with this number. Adding a concept to the list
is performed by the specialization of the metafunction.

template <int ID> struct gnx_concept : gnx_type<gnx_nil> {};

template <> struct gnx_concept<1> : gnx_type<STLContainer> {};
template <> struct gnx_concept<2> : gnx_type<STLSequence> {};
[...]

Indexing the concepts by hand is not acceptable, so a solution to get the number of concepts
already in the list is needed. For this purpose, a preliminary version of thegnx_nb_concept
metafunction is proposed. It goes through all the concepts in the list by increasing an index until
findinggnx_nil.

template <int N = 0> struct gnx_nb_concept
: gnx_if< gnx_same<typename gnx_concept<N+1>::type, gnx_nil>,

gnx_value<int,N>,
gnx_nb_concept<N+1>

> {};

For an automatic indexing of the concepts, one would use the return value of metafunction
gnx_nb_concept to determine the next index to assign to a new concept.

template <> struct gnx_concept<gnx_nb_concept<>::value+1>
: gnx_type<STLContainer> {};

template <> struct gnx_concept<gnx_nb_concept<>::value+1>
: gnx_type<STLSequence> {};

[...]

However, this solution is not working as is, because usinggnx_nb_concept<> infers that
gnx_concept is instantiated fromgnx_concept<0> to gnx_concept<N+1>, whereN is the
number of indexed concepts. Due to this fact, specializinggnx_concept for STLContainer
andSTLSequence in the previous example is not possible, becausegnx_concept<N+1> has
already been instantiated based on the primary version ofgnx_concept. To eliminate this flaw,
an additional parameter, called here "observer", is added to both metafunctionsgnx_concept
andgnx_nb_concept.

template <int ID, class OBS = gnx_nil>
struct gnx_concept : gnx_type<gnx_nil> {};

template <class OBS, int N = 0> struct gnx_nb_concept
: gnx_if< gnx_same<typename gnx_concept<N+1,OBS>::type, gnx_nil>,

gnx_value<int,N>,
gnx_nb_concept<OBS,N+1>

> {};
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The idea is to provide a different observer each time the concepts need to be counted to
determine the next index to assign to a new concept: the new concept itself will be the ob-
server. With this solution, counting the concepts with observer OBS induces the instantiation of
gnx_concept<N+1,OBS>, so any specialization for indexN+1 with an observer other thanOBS
is still possible. Finally, concepts are indexed as follows.

template <class OBS>
struct gnx_concept<gnx_nb_concept<STLContainer>::value+1, OBS>
: gnx_type<STLContainer> {};

template <class OBS>
struct gnx_concept<gnx_nb_concept<STLSequence>::value+1, OBS>
: gnx_type<STLSequence> {};

[...]

To declare a concept in a single and easy instruction, as presented in the example at the start
of the section, thegnx_declare_concept macro is defined.

#define gnx_declare_concept(CONCEPT) \
struct CONCEPT {}; \

\
template <class OBS> \
struct gnx_concept<gnx_nb_concept< CONCEPT >::value+1, OBS> \
: gnx_type< CONCEPT > {}

To conclude, thegnx_nb_concept metafunction requiresO(n) operations, wheren is the
number of concepts already in the program. Hence, indexingn concepts requiresO(

∑n
i=1

i) =
O(n2) operations at compile time.

3.4 Modeling and Refinement Relationships

Modeling relationships, between a type and a concept, and refinement relationships, between
two concepts, are declared equally in our solution with thegnx_models_conceptmetafunction.

template <class TYPE_OR_CONCEPT, class CONCEPT>
struct gnx_models_concept : gnx_false {};

The primary version of the template returns false, and the relationships are declared through
specializations of the template: if typeX models conceptC (or conceptX refines conceptC), then
specializationgnx_models_concept<X,C> must return true.

template <> struct gnx_models_concept<X,C> : gnx_true {};

Notice thatgnx_models_concept provides an answer for a direct relationship only. If a type
T models a conceptC1 that refines a conceptC2, this metafunction returns false for a relationship
betweenT andC2. Additional metafunctions, necessary in our solution to find any relationship
between a type and a concept (or between two concepts), are briefly presented below (see the
source code for details).

– Metafunctiongnx_direct_concepts<X> provides a list (using the typelist technique) of
all the concepts directly modeled by a type (or refined by a concept) X. It goes through
all the concepts using their index, and checks whetherX models (or refines) each concept
using metafunctiongnx_models_concept. Assuming that to retrieve a concept from its
index (i.e., to call metafunctiongnx_concept) is a constant time operation, metafunction
gnx_direct_concepts requiresO(n) operations, wheren is the number of concepts in
the program.
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– Metafunctiongnx_all_concepts<X> provides a list of all the concepts directly or in-
directly modeled by a type (or refined by a concept)X. It calls gnx_direct_concepts
to list the concepts directly related toX, and recursively gets all the concepts related to
each one of the direct concepts. This metafunction requiresO(n2 + rn) operations, where
r is the number of modeling and refinement relationships declared in the program: at
worst, all then concepts are asked for their direct concepts (i.e., a call tometafunction
gnx_direct_concepts), which requiresO(n2) operations; to build the final list, at worst
all ther relationships are considered, and each time the list of the currently found concepts
is merged with the list of the newly found concepts, which requiresO(rn) operations (at
worst2n operations are necessary for the merging, as it avoids duplicates).

– Metafunctiongnx_matches_concept<X,C> returns whether a type (or a concept)Xmod-
els (or refines) a conceptC, directly or indirectly. This metafunction searches forC in the
list of concepts provided by metafunctiongnx_all_concepts and requiresO(n2 + rn)
operations:O(n2 + rn) operations to build the list, andO(n) for the search.

3.5 Specialization Based on Concepts

3.5.1 Declaring Specializations

With our solution, controlling the specialization of a template with concepts that constrain one
of its parameters implies an additional parameter. In the example, classSerializer has initially
one parameterT, and based on different concepts that types bound toT might model, several
specializations ofSerializer must be provided. For this purpose, an extra parameter is added
to Serializer.

template <class T, class = gnx_best_concept(SerializerContext,T)>
class Serializer : ErrorSpecializationNotFound<T> {};

This additional parameter is the most specialized concept that a type bound toT models and
that is of interest for the specialization ofSerializer. This "best" concept is obtained using the
gnx_best_conceptmacro, which eases the call to metafunctiongnx_contextual_concept.

#define gnx_best_concept(CONTEXT,TYPE) \
typename gnx_contextual_concept<CONTEXT,TYPE>::type

Notice that metafunctiongnx_contextual_concept requires a "specialization context",
which is a type that represents the context of a given template specialization. Each template that
uses specialization based on concepts requires its own context.

There are two main reasons for this notion of a specialization context: (i) as seen previously,
metafunctiongnx_nb_concept, called by many metafunctions, requires an observer to perform
correctly and to allow defining new concepts at any time, and this observer will be the specializa-
tion context; (ii) we want our solution to be portable on any standard C++ compiler, meaning we
do not want to modify the C++ language itself and to provide anextra tool to preprocess the code,
so to know which concepts are of interest for a given specialization context, each one of these
concepts must be associated with the context using thegnx_uses_concept metafunction.

template <>
struct gnx_uses_concept<SerializerContext,STLContainer> : gnx_true {};

In our example, theSerializerContext context has been declared for the specialization
of Serializer. Among others, conceptSTLContainer is used to define a specialization of
Serializer, sognx_uses_concept is specialized (the same way asgnx_models_concept)
to specify that conceptSTLContainer is used in theSerializerContext context.
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3.5.2 Selecting the Best Specialization

Based on the list of concepts declared in a specialization context, and a taxonomy of concepts,
metafunctiongnx_contextual_concept determines the "best" concept for a typeT, meaning
the most specialized concept thatT models and that is of interest for the context of specialization.

Figure 2:Example of best concept selection.

If we consider the taxonomy of concepts of Figure 2, and a contextX that provides specializa-
tions for conceptsC1, C2 andC5 in this example, the following best concepts should be selected.

– For typeA: conceptC2, candidates areC1 andC2, butC2 is more specialized.
– For typeB: no concept, there is no candidate in the context’s list,gnx_nil is returned.
– For typeC: conceptC5, it is the only choice.
– For typeD: conceptsC1 or C5, both concepts are valid (becauseD models both), and there

is no relationship between them to determine that one is morespecialized than the other.
The selected one depends on the implementation ofgnx_contextual_concept. In our
solution, the concept with the highest index is selected. But to avoid this arbitrary selec-
tion, one can add relationships to the taxonomy of concepts,or can specialize metafunction
gnx_contextual_concept for typeD in contextX.

Metafunctiongnx_contextual_concept<X,T> goes through the list of all the concepts
modeled directly or indirectly by typeT (provided bygnx_all_concepts<T>), and selects the
one that does not refines directly or indirectly any other concept in the list (using metafunction
gnx_matches_concept) and that is declared in contextX. This metafunction requiresO(n2 +
rn) operations:O(n2 + rn) operations to build the list, andO(n) to select the best candidate
(becausegnx_all_concepts has already achieved all the necessarygnx_matches_concept

instantiations).

3.6 Conclusion

Several steps are necessary for concept-based specialization with our solution: (i) to declare
concepts and modeling/refinement relationships in order todefine a taxonomy of concepts; (ii) for
each context of specialization, to declare the concepts that are used to control the specialization.
These steps are not monolithic, and new concepts, relationships, and specializations can be defined
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at any time (but before the first instantiation of the targeted generic component), which provides
high flexibility with minimal assumptions about components.

The selection of the best specialization is fully automaticand safe as long as the modeling
and refinement relationships are correct. Notice that thoserelationships, declared manually with
our solution, could be automated using a mechanism to check structural conformance, such as the
StaticIsA template (cf. Section 2.2.1) for instance.

template <class TYPE, class CONCEPT> struct gnx_models_concept
: gnx_value<bool, StaticIsA<TYPE,CONCEPT>::valid> {};

However, a few issues occur with our solution. First, the type pattern of any template spe-
cialized based on concepts is altered: for each primary template parameter, an extra "hidden"
parameter may be added to get its best concept. For instance,users of theSerializer generic
class could think that this template has only one parameter,whereas it actually has two.

Secondly, the notion of an observer, which is totally hiddenfrom the users of a template
specialized based on concepts, has been introduced to bypass an instantiation problem with meta-
functiongnx_nb_concept (cf. Section 3.3.2). However there are very specific situations where
the issue remains. For instance, the following specialization may be troublesome.

template <> class Serializer<int> { [...] };

It induces the full instantiation ofSerializer that forces the default value of the "hidden"
parameter to be instantiated, i.e.,gnx_contextual_concept<SerializerContext,int>,
which itself forcesgnx_nb_concept to be instantiated for observerSerializerContext. If
concepts are added after this code, another call to metafunction gnx_contextual_conceptwith
contextSerializerContext will ignore the new concepts. Hence, one should avoid to instan-
tiategnx_contextual_concept before the final use of the targeted template. In our example,
the full instantiation can be avoided as follows.

template <class CONCEPT> class Serializer<int,CONCEPT> { [...] };

4 Compile-Time Performance

The theoretical performance of the metafunctions of our solution has been studied in this paper.
We assumed some operations of the compiler to be constant time, so it is important to confirm the
theoretical performance with practical experiments. The initial implementation of the library, that
is presented in this paper, is meant for understanding. Thus, a second version of the library has
been designed to optimize the compile time. Nevertheless, the metaprogramming techniques and
how to use the library remain unchanged with this new version. To understand what kind of
optimization has been performed, let us discuss on the following example of metafunction.

template <class A> struct plain_meta
: gnx_if < test<A>, branch1<A>, branch2<A> > {};

At instantiation time, bothbranch1<A> andbranch2<A> are instantiated. But depending
on the value oftest<A>, only one of the two templates actually needs to be instantiated. In our
library, such cases occur many times and lead to lots of unnecessary instantiations. Metafunctions
can be rewritten using an intermediate template that "hides" the two possible branches of the
conditional statement in separate specializations of the template. Here is an optimized version of
the example that shows the technique that has been applied onall the metafunctions of the library.
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template <class A, bool TEST> struct _optimized_meta_;

template <class A> struct optimized_meta
: _optimized_meta_<A, test<A>::value> {};

template <class A> struct _optimized_meta_<A,true> : branch1<A> {};
template <class A> struct _optimized_meta_<A,false> : branch2<A> {};

The tests presented here have been performed with the optimized version11 of the library
on an Intel Core 2 Duo T8100 2.1 GHz with 3 GB of memory, and using GNU G++ 4.3.4 (its
template recursion limit set to 1024). Instances with different numbersn of concepts andr of
modeling/refinement relationships in the whole program have been randomly generated (see the
source code for details). Each compile time presented here is expressed in seconds and is the mean
of compilations of 10 different instances.

Figure 3 reports the compile time, depending onn, for indexing concepts. As predicted by the
theoretical performance analysis, there is a quadratic dependence onn (confirmed by a quadratic
regression with a correlation coefficient12 R = 0.997).
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Figure 3:Compile time for indexing concepts (r = 100).

Figure 4 reports the compile time, depending onn, of 50 instantiations of metafunction
gnx_direct_concepts (which lists the concepts that a given type or concept directly mod-
els or refines respectively). The theoretical performance analysis predicted a linear dependence on
n, but the practical results show otherwise, which we think isrelated to our assumption that ac-
cessing a concept through its index (i.e., a call tognx_concept) was constant time. It seems that
to find a specialization of a template, the compiler may require a number of operations dependent
on the total number of specializations for this template. However, this non-linear dependence is
not so significant, as the linear regression shows a correlation coefficientR = 0.986 in the range
of our experiments, and the instantiations ofgnx_direct_concepts represent only one step of
the whole compilation process.

11. Optimized version 2011-08-25 was used for the experiments.
12. R = Pearson’s correlation coefficient; the closer to1, the more the regression fits the curve.
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Figure 4:Compile time forgnx_direct_concepts (50 instantiations,r = 100).

Figures 5 and 6 report the compile time, depending respectively onn andr, of 50 instantiations
of gnx_contextual_concept (which determines the best concept for a type bound to a template
parameter). The performance of each intermediate metafunction is not shown, as it is similar. As
predicted by the theoretical performance analysis, there is a quadratic dependence onn (confirmed
with R = 1), and a linear dependence onr (confirmed withR = 0.989).
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Figure 5:Compile time forgnx_contextual_concept (50 instantiations,r = 300).
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Figure 6:Compile time forgnx_contextual_concept (50 instantiations,n = 80).

Our library has been tested successfully on several compilers: GNU GCC from 3.4.5 to 4.4.3,
Microsoft Visual C++ 10, and Embarcadero C++ 6.20. Figures 7and 8 report the time of the
whole compilation process for those compilers, from indexing the concepts to finding the best
concepts for types bound to template parameters, dependingonn andr. Notice that we were not
able to test all the instances with Embarcadero’s compiler,due to a hard limitation of 256 levels in
the template recursion.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 30  40  50  60  70  80  90  100

C
om

pi
le

 T
im

e 
(s

)

Number of Concepts

GCC
Visual

Embarcadero

Figure 7:Whole compile time (with 30 instantiations ofgnx_contextual_concept, r = 100).
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Figure 8:Whole compile time (with 50 instantiations ofgnx_contextual_concept,n = 50).

5 Conclusion

This paper describes template metaprogramming techniquesto control the specialization of
generic components with concepts. As concepts are not part of the C++ language yet, a library-
based solution is provided to declare concepts and modeling/refinement relationships in order to
define a taxonomy of concepts. It relies on an automatic indexing of the concepts that allows a
retroactive extension: at any time, new concepts and modeling/refinement relationships can be
declared.

The library also provides a mechanism to automatically select the most appropriate special-
ization of a template based on concepts. Specializations ofgeneric components can be defined by
constraining template parameters with concepts rather than type patterns. At instantiation time, a
metafunction determines the most specialized concept, fora given specialization context, of any
type bound to a template parameter, and thus guides the selection of the most appropriate special-
ization. Our solution is a bit invasive because an extra parameter (invisible to the user) must be
added to any template that is intended to be specialized based on concepts; but after the defini-
tion of the primary version of the template, specializations based on concepts can be added non
intrusively and retroactively.

The retroactive extension enabled by the proposed technique provides high flexibility with
minimal assumptions about the components: the coupling between a template and the types bound
to its parameters only occurs at instantiation time, while the most appropriate specialization is
selected. However, because our goal was to provide a fully portable C++ code with no extra tool,
we were not able to automate the identification of the concepts that control the specialization of
a given template. Therefore, the notion of a "specialization concept" is necessary and requires to
explicitly declare each concept that is involved in the control of a specialization.

To conclude, a theoretical performance analysis and the performance of practical experiments
have been presented to show the compile time overhead of our solution. Even if a quadratic
dependence on the number of concepts has been identified, thecompile time is reasonable for
many applications: compiling 50 specializations with 50 concepts and 250 modeling/refinement
relationships on an average computer requires less than 5 seconds.
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