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Abstract

In generic programming, software components are parainetbon types (and sometimes static values, as
in C++) rather than dynamic values. When available, a ssgigcialization mechanism allows building, for
a given set of parameters, a more suitable version of a geo@mponent than its primary version. The
normal C++ template specialization mechanism is basedetyfie pattern (or sometimes the static value)
of parameters, which may not be accurate enough and maydeewltiguities or false specializations. This
is mainly due to the fact that some relationships betweesastywhich can be considered as similar in some
ways, are missing. Thus, it is not always possible to detegran order of the specializations of a generic
component.

Concepts can be used to introduce relationships betwemiildsl types: a concept represents a set of
requirements for a component that among others refer totisface and its behavior. This paper describes
generic programming techniques in C++ for declaring cotg;é¢modeling” relationships (between a type
and a concept) and "refinement"” relationships (between bmoepts), and for controlling template special-
izations based on a taxonomy of concepts. This controlgeliea metaprogram that determines, in a given
static specialization context, the most specialized cpnakany type instantiating a template parameter.

The solution presented here is open for retroactive exdanst any time, a new concept or a new
modeling/refinement relationship can be declared, or a aewlate specialization can be defined; and this
new statement will be picked up by the specialization meismanThe control is also improved by avoiding
false specializations and many ambiguities during theiapeation process.

Keywords: generic programming, template specialization, conceget overloading/specialization, meta-
programming.

Résumé

En programmation générique, les composants logicielspamameétrés sur des types (et parfois des valeurs
statiques, comme en C++) plut6t que sur des valeurs dynasiquand il est disponible, un mécanisme
de spécialisation statique permet de construire, pourwdgeparamétres donné, une version plus adaptée
d’'un composant générique que sa version initiale. Le méoamnormal de spécialisation d’templateen

C++ repose sur le patron de type (ou parfois la valeur stafida paramétres, ce qui n’est parfois pas assez
précis et peut conduire a des ambiguités ou a de faussesligagmins. Ceci est principalement di au fait
gue certaines relations entre types, qui peuvent étre dé@rés comme similaires d’une certaine maniére,
sont manquantes. Ainsi, il n’est pas toujours possibleathl&tun ordre des spécialisations d’un composant
générique.

Les concepts peuvent étre utilisés pour introduire desioeentre types "similaires" : un concept
représente un ensemble de spécifications pour un compasg#yent, entre autres, faire référence a son
interface et a son comportement. Ce rapport décrit des ipobs1 de programmation générique en C++
pour déclarer des concepts, des relations de "modélisdeatre un type et un concept) et des relations
de "raffinement" (entre deux concepts), et pour controlersigécialisations deemplatesa partir d’'une
taxonomie de concepts. Ce contrble repose sur un métapnoggajui détermine, dans un contexte de
spécialisation statique donné, le concept le plus spééidk tout type instanciant un paramégamaplate

La solution présentée ici permet une extension rétroaciveut moment, un nouveau concept ou une
nouvelle relation de modélisation/raffinement peut étdatée, ou une nouvelle spécialisatiortemplate
peut étre définie ; et cette nouvelle déclaration sera prismmpte par le mécanisme de spécialisation. Le
contrble est également amélioré en évitant les faussemfipétions et de nombreuses ambiguités au cours
du processus de spécialisation.

Mots clés : programmation générique, spécialisationtei@plate surcharge/spécialisation basée concept,
métaprogrammation.



Abstract

In generic programming, software components are paraipetbon types (and sometimes
static values, as in C++) rather than dynamic values. Whailadole, a static specialization
mechanism allows building, for a given set of parameterspeerauitable version of a generic
component than its primary version. The normal C++ temmptialization mechanism is
based on the type pattern (or sometimes the static valuedrafeters, which may not be
accurate enough and may lead to ambiguities or false sgatiahs. This is mainly due to
the fact that some relationships between types, which catobsidered as similar in some
ways, are missing. Thus, it is not always possible to deteeran order of the specializations
of a generic component.

Concepts can be used to introduce relationships betwemmildsl types: a concept rep-
resents a set of requirements for a component that amongsatifer to its interface and
its behavior. This paper describes generic programmirignigoes in C++ for declaring con-
cepts, "modeling" relationships (between a type and a qhaed "refinement" relationships
(between two concepts), and for controlling template spizeitions based on a taxonomy of
concepts. This control relies on a metaprogram that det&snin a given static specialization
context, the most specialized concept of any type instémgia template parameter.

The solution presented here is open for retroactive exaensit any time, a new concept
or a new modeling/refinement relationship can be declanea new template specialization
can be defined; and this new statement will be picked up bygkeialization mechanism.
The control is also improved by avoiding false specialmadi and many ambiguities during
the specialization process.

1 Introduction

Generic programming aims at providing software componantinly algorithms and data
structures, as general as possible and broadly adaptathlent@noperable [8], with no loss of
efficiency when the language supports generics withoutima-overhead. Generic programming
relies on the notion of a generic component that is a compditass, function, or method) with
parameters that are types or static values, instead of dgnatues as the usual parameters of
functions and methods.

1.1 Static Specialization

Similar to inheritance in object-oriented programming,ichhallows the specialization of
classes, C++ provides a mechanism to specialize generiparents (calledemplates The
decision to select a specialized version of a template isenbgdhe compiler based on the type
pattern (or static value) of parameters at instantiatioareHs a C++ example of a generic class,
Ar r ayConpar at or , that allows comparing arrays of lengttand containing elements of type

tenplate <class T, int N> class ArrayConparator {

public:
static int run(const T » a, const T » b) {
int i =0;
while (i<N & a[i]==b[i]) ++i;
return (i==N? 0 : (a[i]<b[i] ? -1 : 1));
}

}

A specialization of the template with = char, presumably more efficient than the primary
version, is proposed.

tenpl ate <int N> class ArrayConparat or<char, N> {

public:
static int run(const char * a, const char * b) { return nencnp(a,b,N); }

}s
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1.2 Concepts

In generic programming, the instantiation of the paransetdra generic component raises
two concerns:(i) how to ensure that a type instantiating a parameter fulfidsrequirements to
be properly used by the generic component (e.g., any typantiating T must provide opera-
tors< and== in the Ar r ayConpar at or class);(ii) how to find the best static specialization of
the generic component for a given instantiation of the patars (e.g., if typehar instantiates
parametefT, then specializatio®r r ay Conpar at or <char , N> must be selected).

To specify requirements for a type, the notion of a "concéyas been introduced [3]. When
a type instantiates a parameter of a generic component,si follow a set of requirements rep-
resented by a "concept”. Among others, these requiremefaisto the interface of the type (e.g.,
the existence of a method) and its behavior (e.g., the codtylef a method). When a type ful-
fills the requirements of a concept, it is said that the typedeis” the concept. The notion of
specialization between concepts is possible and is cal&dmhément”: a concept "refines" a more
general concept.

For instance, let us define the conceépt egr al that models the requirements of an inte-
gral number, and the conceftineri cal that models the requirements of any kind of number.
One can state that typent models concepitnt egr al , and concept nt egr al refines concept
Nureri cal .

1.3 Challenges

Concern (i) of Section 1.2 is referred to as "concept cheglit¥], and its goal is to identify at
compile time which types do not model the concepts requiyea d¢peneric component. A concept
acts like a contract between the users and the author of @igenenponent: the author specifies
requirements on the parameters using concepts, and thermast instantiate the parameters with
types that fulfill these requirements, i.e., with types thatdel the specified concepts.

In C++, concepts can not be defined explicitly and they arg dotumentation (e.gStandard
Template Library. This leads to late error detections, and thus to cryptiorenessages [14]: for
instance, let us declare the instantiatimn ay Conpar at or <x, 10>; if type x has no operatox,
the error will be detected in methodin, and not at the instantiation declaration. Some langages,
such as Java, rely on interfaces to express requirementarampter types. Constraints can be
expressed on the parameters of a generic component in theifgd form: parametem must be
a "subtype" ofU, whereT is a subtype o if T inherits from clas4), or T implements interface),
or T andU are the same type [4].

Concern (ii) of Section 1.2 is referred to as "concept-baseulioading” [9], but in this article,
we propose to use the term "concept-based specializatom/eawill focus more on class spe-
cialization than function overloading. The goal of conebased specialization is to control the
specialization of generic components with concepts rdtiar type patterns. By pattern, we mean
a type or a parameterized type (e:,0r vect or <T>), or a "template template" parameter [16]
(e.g.,tenpl ate <cl ass> cl ass U). Specialization based on type patterns can lead to ambi-
guities (the compiler cannot decide between two possildeiafizations) or false specializations
(the compiler selects the wrong specialization), as it ellpresented in Section 2.

Several attempts have been made to represent concepts irf0@+#one hand, implementations
for concept checking have been proposed, mainly to ensteddne conformance of types instan-
tiating template parameters [12, 14]. On the other handyriementation for concept-based
specialization has been proposed [11]. In this solutiomsfecialization is based on both the SFI-
NAE (substitution failure is not an errdrprinciple [2] and a mechanism to answer the question
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"does type T model concept C (hrough theenabl e_i f template). However this approach may
still lead to ambiguitie$.

More recently, an attempt has been initiated to define amsixte of the C++ language to sup-
port concepts [6, 13] that may be added to the C++ Standard fii$ extension is available within
the experimental compiler ConceptGCC [6, 10], and is imgeted as ConceptClang in Clang, a
C language family front-end for the LLVM compiler [15]. Indhmeantime, there seems to be no
satisfactory solution directly available in standard Cempilers for concept-based specialization
that avoids ambiguities and false specializations.

1.4 Proposal

We propose here a C++ library that focuses on the conceptdbszecialization aspect only.
Due to portability concerns, our goal was to provide a soluthat could be used with any standard
C++ compiler, with no need of an additional tool such as aqegssor. Our solution enables
declaring concepts, modeling relationships, and refinémadationships. Once a taxonomy of
concepts has been declared, it can be used to control thelsgs®n of generic components:
to define a specialization, concepts are used instead ofpgtierns to constrain parameters. At
instantiation time, the selection of the best specialiwatelies on a metaprogram that determines,
in the context of a given static specialization, the mostghieed concept of any type instantiating
a parameter of a generic component.

Even if this proposal does not detect directly concept mishes to provide more understand-
able error messages, it needs to perform some checking @eisnto control the specialization
process. The checking is only based on "named conformad¢'(ife., checking on whether a
type has been declared as modeling a given concept), andsatatructural conformance” (i.e.,
checking on whether a type implements a given interface).

Following the key ideas of generic programming [8], maimyekpress components with min-
imal assumptions, and to enable that the most specialineidhas presumably the most efficient,
form of a generic component is chosen, our proposal is operfimactive extension:

— A new concept or new relationships (modeling and refinejreamt be declared at any time.
Declaring such relationships is not tightly related to tledimtion of types or concepts,
contrary to inheritance relationships, for instance, thast be declared at the definition of
classes.

— A new specialization of a generic component can be definadyatime. For instance, if a
new concept is defined, the specialization of any generigooorent can be defined for this
concept.

Section 2 discusses several issues encountered withstatialization, and shows how con-
cepts can be used to bypass most of them. Section 3 preser@s-edibrary for concept-based
specialization, and an example using this solution. Seetishows compilation performances of
the library depending on the number of concepts and the nuoflyelationships (modeling and
refinement) in a program. The full source code of the librarg the examples is available for
download’.

2 Issues with Static Specialization

This section presents several issues that may occur witls sfzecialization based on type
patterns, and how most of these issues can be addressedniipts:

6. See the documentation abautabl e_i f at: http://www.boost.org/doc/libs/release/libs/wyilenable_if.html
7. Source code is available at: http://forge.clermont-airsite.fr/projects/show/cpp-concepts.
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(i) Some types that can be considered somehow similar {gitfp. a common subset of oper-
ations in their interface) may have the same specializabahbecause of different type patterns,
they have different specializations.

(i) A specialization based on type patterns may lead tcefalsecialization, because a type
pattern is not often related to the interface of the matchypes.

Existing solutions that use concepts to control static igfization in C++ are discussed. It
appears that refinement relationships are also necessadyltess the last issue:

(iii) A type may have several suitable specializations. Beré¢ is no clear ordering between
these specializations, it is not possible to choose onepkatly.

2.1 Specialization Based on Type Patterns

As an example, we propose to develop a generic ct&ss,al i zer, to store the state of an
object into an array of bytes (the "deflate" action), or tdaesthe state of an object from an array
of bytes (the "inflate" action). The primary version of thenfdate, which makes a bitwise copy
of an object in memory, is as follows.

tenpl ate <class T> class Serializer {

public:

static int deflate(char » copy, const T & object);
static int inflate(T & object, const char * copy);

b

This version should not be used for complex objects, suctoagimers, where the internal
state may have pointers that should not be stored (becaese ¥harsions of the deflate and inflate
actions would lead to memory inconsistency after restyriigve consider "sequence containers"
of the STL Standard Template Librajysuch as vectors and lists, we can provide a specialized
version ofSeri al i zer.

tenplate <class T, class ALLOC, tenplate <cl ass, cl ass> cl ass CONTAI NER>
class Serializer< CONTAI NER<T, ALLOC> > {

public:

static int deflate(char * copy, const CONTAI NER<T, ALLOC> & contai ner);
static int inflate(CONTAI NER<T, ALLOC> & contai ner, const char * copy);

b

This specialization is based on the type pattern of the STjueece containers: they are
generic classes with two parameters, the tymeé the elements to be stored, and the tyjhe OC
of the object used to allocate elements.

Now, let us consider "associative containers" of the STkhsas sets and maps. Their type
pattern is different from the one of sequence containeesy(Have at least one more parameter
COWP to compare elements), whereas sequence and associatianeos have a common sub-
set of operations in their interface that should ideallpwlbdefining a common specialization of
Seri al i zer. However, as specialization is based on type pattern for anether specialization
of Seri al i zer is necessary.

tenpl ate <class T, class COW, class ALLCC,
tenpl ate <cl ass, cl ass, cl ass> cl ass CONTAI NER>
class Serializer< CONTAI NER<T, COWP, ALLOC> > { [...] };

Notice that this specialization ®&eri al i zer is only suitable for sets, and not for maps,
because their type pattern is different: maps have an additparametek for the type of the keys
associated with the elements of the container. The speaii@n Seri al i zer < CONTAI NER<K,
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T, COWP, ALLOC> > is necessary for maps, whereas maps and sets have a comnseh clib
operations in their interface and could ideally share timesspecialization.

The specialization for sets has been written having only &34ociative containers in mind,
but any type with the same type pattern matches the spettializ Thus, there could be an un-
wanted match. For instance, thed: : st ri ng class of the C++ standard library is an alias for a
type that matches the type pattern of sets.

std:: basic_string< char, std::char_traits<char>, std::allocator<char> >

The first two issues presented in the introduction of thei@ediave been illustrated here.
They could be addressed with concepts:

(i) "Similar" types could model a common concept, and a speeition for this concept could
be defined. Thus, "similar" types with different type pattecould share a common specialization.

(i) Concepts could avoid false specialization: with stagpecialization controlled by con-
cepts, any template parameter could be associated withcggrand only types that model this
concept could instantiate the parameter. This way, onl\iythes that satisfy the requirements of
a specialization could be considered.

7777777777777777777 « concept »
« refines » STLSequence
« concept » « concept » ‘ + push_back(:value_type)
SingleObject ComplexObject :
VAN VAN o
' ' i« models »
| « models » N
,,,,,,,,,,,,,,,,,,,,
— «refines » . std::vector -7~ ‘ std::list ‘"TJ
‘ char ‘ ‘ int ‘ ‘ float ‘
«concept» |\ 4 « concept »
STLContainer « refines » STLAssociative
Nested t -+ type value_type + insert(:value_type)
ested types -=-{-+ fype iterator -

+ begin() : iterator | ol
+ end() : iterator i « models »

+ insert(:iterator,:value_type)

Figure 1:Taxonomy of concepts for the serialization example.

For the example of serialization discussed here, Figur@figses concepts and their relation-
ships. TheSi ngl eObj ect andSTLCont ai ner concepts are defined to provide two specializa-
tions forSeri al i zer : one based on bitwise copy, and another one based on the cosuhset of
operations shared by all STL containers, respectively. 9itieCont ai ner concept is refined into
the STLSequence and STLAssoci ati ve concepts to provide specializations $dri al i zer
using specific operations of sequence containers and aigeaontainers respectively.

2.2 Existing Solutions Based on Concepts

Existing solutions for concept-based specialization iF@H2, 11] are discussed here. They
use concepts to guide the specialization of templates, aadle addressing the two first issues
presented in the introduction of the section. However, abwithird issue, i.e., to find the most
appropriate specialization when there are several camedidthe solutions presented here are not
fully satisfactory.
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2.2.1 Concept-Based Dispatch

A first solution [12] implements concepts with "static irffteres” in C++, and proposes a
"dispatch” mechanism to control static specializationhwdbncepts. The solution is based on
the St ati cl sA template that provides some concept checkiggat i cl sA<T, C>::validis
true if T models concept. Let us assume tha&t at i cl sA answers accordingly to the taxonomy
of concepts of Figure 1 (see the source code for details).e ifean example of the dispatch
mechanism for the specialization of tBeri al i zer generic class.

enum { 1S _SINGLE_OBJECT, 1S _STL_CONTAINER |S STL_SEQUENCE,
|'S_STL_ASSOCI ATl VE, UNSPECI FI ED };

tenpl ate <class T> struct Dispatcher {
static const int which
= Staticl sA<T, STLAssoci ative>::valid
: StaticlsA<T, STLSequence>::valid
Staticl sA<T, STLCont ai ner>::valid
Staticl sA<T, Singl e(hject>::valid
UNSPECI FI ED;

| S_STL_ASSOCI ATI VE
| S_STL_SEQUENCE
|'S_STL_CONTAI NER
|'S_SI NGLE_OBJECT

NN N )

1
tenpl ate <class T> struct ErrorSpecializationNot Found;

tenplate <class T, int = Dispatcher<T>::which>
class Serializer : ErrorSpecializationNot Found<T> {};

tenpl ate <class T> class Serializer<T,|S SINGLE OBJECT> { [
tenpl ate <class T> class Serializer<T, STL_CONTAI NER> {r[...
tenpl ate <class T> cl ass Serializer<T, STL_SEQUENCE> {1
tenpl ate <class T> class Serializer<T, STL_ASSOCI ATI VE> { [

1

1

[ —
(SN

The Di spat cher template goes through all the concepts (in a well-define@rdrdntil its
parametem models a concept. The symbolic constant associated wittotimel concept is stored
in thewhi ch attribute ofDi spat cher. For instanceDi spat cher < vect or <i nt > >: : whi ch
is equal to S_STL_SEQUENCE.

Compared to the version of thgeri al i zer template based on type patterns, there is an
additional parameter with a default value that is the ansvfehe dispatcher for paramet@&r
This value is used rather than the type patterim t§ define the specializations 6éri al i zer .
This way, it is possible to provide a specialization for aoyneept. For instance&eri al i zer <
vect or <i nt > > instantiates in facSeri al i zer < vector<int>, IS STL_SEQUENCE > and
matches the specialization for tB&LSequence concept.

Notice that the primary version of the template inheritsrfra class that is only declared, the
aim being that this version could not be instantiated. Thag,weompilation errors related to the
fact thatT has been instantiated with a wrong type appears at the tragtan of Seri al i zer,
rather than inside the code 6kri al i zer where it tries to call invalid operations on This
solution avoids usual error messages that could be cryqtithé user [14].

In this solution, a dispatcher (and dispatch rules) mustdfimeld for each context of special-
ization, i.e., for each generic component that is spe@édlizvhich can quickly become tedious.
A solution where the dispatch rules are automatically dedufor each context of specialization,
from the modeling and refinement relationships of the takonof concepts should be provided.

2.2.2 Concept-Based Overloading

The second solution [11] relies on theabl e_i f template, which can be found in the Boost
Library [1], and the SFINAE gubstitution failure is not an errdrprinciple [2] to provide some
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control on static specialization with concepts. The de€inibf enabl e_i f is as follows.

tenpl ate <bool B, class T = void>
struct enable_if_c { typedef T type; };

tenpl ate <class T> struct enable_if_c<fal se, T> {};

tenpl ate <class COND, class T = voi d>
struct enable_if : enable_if_c<COND: :val ue, T> {};

The idea is that iB is true, there is a nested typgpe insideenabl e_i f _c, and thus inside
enabl e_i f if its parametelCOND has an attributeal ue set to true. Let us assume that, for each
conceptC of the taxonomy of Figure 1, a template_C<T> is defined sd s_C<T>: : val ue is
true if T models concep€ (see the source code for details). Here is an example of thefus
enabl e_i f for the specialization of th8eri al i zer generic class.

tenpl ate <class T, class = void>
class Serializer : ErrorSpecializationNot Found<T> {};

tenpl ate <class T>
class Serializer<T, typenanme enable_if< is_Singl elbject<T> > :type>

{01}

tenpl ate <class T>
class Serializer<T, typenanme enable_if< is_STLContai ner<T> >.:type>

{1}

tenpl ate <class T>
class Serializer<T, typenane enable_if< is_STLSequence<T> >::type>

{1}

tenpl ate <class T>
class Serializer<T, typename enable_if< is_STLAssoci ative<T> >::type>

{01}

The SFINAE principle is: if an invalid parameter is formedidg the instantiation of a tem-
plate, this instantiation is ignored. For instance, théaimiationSeri al i zer <vect or <i nt > >
implies instantiating the specializati@eri al i zer <vect or<i nt >, typenanme enable_if<
i s_Singl etbj ect < vector<int>> > :type>8 and becausenabl e_i f has no member
t ype in this situation, the specialization for conc&ptnhgl eObj ect is not considered.

This way, only the specializations associated with a conoegeled by the instantiation of
parameterT are considered. If more than one specialization remainctimpiler has to deal
with an ambiguity: for instanceyject or <i nt > models botlsTLCont ai ner andSTLSequence
concepts. This ambiguity should be avoided: con@&fitSequence is more specialized than
conceptSTLCont ai ner , so the specialization f@TLSequence should be selected.

2.2.3 Conclusion

In this section, solutions have been presented to conttt fpecialization. Concept-based
dispatch allows considering refinement relationships tteiselection of the specialization is not
automatic and requires some specific code for each contespatfialization. At the opposite,
concept-based overloading allows an automatic selecfidheospecialization, but is not able to
deal with ambiguities that could be avoided consideringhegfient relationships.

8. t ypenan® is necessary in C++ to declare that the menthgoe is actually a type and not a value.
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3 A C++ Library for Concept-Based Specialization

Concepts appear to be better suited than type patterns tmketatic specialization, but to
our knowledge, there is no solution that addresses all fuessbrought up in the previous section.
We propose here a C++ library that enables expressing adexpiof concepts, and using this
taxonomy to automatically select the most appropriateigpeation of a template.

Two main goals have guided our choices for this implemesratio provide a fully portable
C++ code (without any additional tool such as a preprocgssmd to be open for retroactive
extension (at any time, a new concept or a new modeling/mefné relationship can be declared,
or a new template specialization can be defined).

3.1 Example

Let us consider the example of tigeri al i zer generic class with our library. In a first
step, the taxonomy of concepts of Figure 1 is defined: coecapd relationships (modeling and
refinement) are declared. Then, theri al i zer template is defined: first its primary version,
and then its specializations for each concept. The libmbased on template metaprogramming,
and the details of its implementation are presented aftekwa

Concepts Declaration

gnx_decl are_concept ( Si ngl ebj ect) ;
gnx_decl are_concept ( Conpl ex(hj ect) ;
gnx_decl are_concept ( STLCont ai ner) ;
gnx_decl are_concept ( STLSequence) ;
gnx_decl are_concept (STLAssoci ati ve);

Modeling and Refinement Relationships

tenpl ate <> struct gnx_nobdel s_concept <char, Si ngl eCbj ect> : gnx_true {};
tenpl ate <> struct gnx_nodel s_concept<int, Singl eCbject> : gnx_true {};
tenpl ate <> struct gnx_nodel s_concept <fl oat, Si ngl eObj ect> : gnx_true {};

tenpl ate <class T>
struct gnx_nodel s_concept <std::vector<T>, STLSequence> : gnx_true {};

tenpl ate <class T>
struct gnx_nodel s_concept<std::|ist<T> STLSequence> : gnx_true {};

tenpl ate <class T>
struct gnx_nodel s_concept <std::set<T>, STLAssociative> : gnx_true {};

tenpl ate <class K, class T>
struct gnx_nodel s_concept <std:: map<K, T>, STLAssoci ative> : gnx_true {};

tenpl ate <>
struct gnx_nodel s_concept <STLCont ai ner, Conpl exCbj ect> : gnx_true {};

tenpl ate <>
struct gnx_nodel s_concept <STLSequence, STLCont ai ner > : gnx_true {};

tenpl ate <>
struct gnx_nodel s_concept <STLAssoci ati ve, STLCont ai ner> : gnx_true {};

Template Primary Version
struct SerializerContext;

tenpl ate <class T,class = gnx_best_concept(SerializerContext, T)>
class Serializer : ErrorSpecializationNot Found<T> {};
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Template Specialized Versions

tenpl ate <>
struct gnx_uses_concept <Seri alizerContext, Si ngl eCbject>: gnx_true {};

tenpl ate <class T> class Serializer<T,SingleOject>{ [...] }:

tenpl ate <>
struct gnx_uses_concept<Seri al i zer Cont ext, STLCont ai ner> : gnx_true {};

tenpl ate <class T> class Serializer<T,STLContainer> { [...] };

tenpl ate <>
struct gnx_uses_concept<Seri al i zer Cont ext, STLSequence> : gnx_true {};

tenpl ate <class T> class Serializer<T, STLSequence> { [...] };

tenpl ate <>
struct gnx_uses_concept<Seri al i zer Cont ext, STLAssoci ative> : gnx_true {};

tenpl ate <class T> class Serializer<T, STLAssociative> { [...] };

Concepts are declared using magrox_decl are_concept . The modeling and refinement
relationships are equally declared using metafunctjorn_nodel s_concept. To control the
specialization, a "specialization context" must be deddgeri al i zer Cont ext in our exam-
ple). Each specialization &keri al i zer based on a concept must be declared and associated with
the specialization contegeri al i zer Cont ext , using metafunctiognx_uses_concept . The
most appropriate concept for any instantiation of paramete automatically determined by the
gnx_best concept macro and stored in an additional parameter of3tuei al i zer template,
enabling static specialization based on this parameter.

3.2 Metafunctions

Some fundamental "metafunctions" are necessary to impleow library. These generic
classes are common in metaprogramming libraries (e.gherBbost Library). A metafunction
acts similarly to an ordinary function, but instead of maréging dynamic values, it deals with
"metadata’, i.e., entities that can be handled at compile in C++: mainly types and static integer
values [1]. In order to manipulate equally types and stadioes in metafunctions, metadata are
embedded inside classes, as folldws

tenpl ate <class TYPE> struct gnx_type { typedef TYPE type; };

tenpl ate <cl ass TYPE, TYPE VALUE>
struct gnx_value { static const TYPE value = VALUE, };

t ypedef gnx_val ue<bool ,true> gnx_true;
t ypedef gnx_val ue<bool, fal se> gnx_fal se;

Templategnx_t ype<T> represents a type and provides a type menlygre that isT it-
self. The same way, templatgx_val ue<T, V> represents a static value and provides an at-
tributeval ue that is the valué/ of type T. Based on templatgnx_val ue, typesgnx_t r ue and
gnx_f al se are defined to represent the boolean values.

The parameters of a metafunction, which are the parametéinge template representing the
metafunction, are assumed to be metadata, i.e., to be shagtbea membet ype orval ue. The

9. We chose to prefix all the metafunctions and macros of buary with ‘gnx_".
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"return value" of a metafunction is implemented with inkenmice: the metafunction inherits from a
class representing a metadata. This way the metafuncsielf litas a membetrype orval ue, and
can be a parameter of another metafunction. Here are metafus necessary for the discussion
of this section.

tenpl ate <class TYPEL, class TYPE2> struct gnx_sane : gnx_false {};
tenpl ate <class TYPE> struct gnx_same<TYPE, TYPE> : gnx_true {};

tenpl ate <class TEST, class IF, class ELSE, bool = TEST::val ue>
struct gnx_if : ELSE {};

tenpl ate <class TEST, class IF, class ELSE>
struct gnx_if<TEST,|F, ELSE, true> : |F {};

Metafunctions usually need static specialization to fuityplement their behavior. Meta-
function gnx_same determines whether two types are identicghx_sane<T1, T2> inherits
from gnx_true if T1 and T2 are the same type, or fromnx_f al se otherwise. Thus, the
value returned by metafunctiagnx_sane<T1, T2> is stored in itsval ue attribute. Metafunc-
tion gnx_i f acts similarly to the commonf instruction: gnx_i f <T, A, B> inherits fromA if
T: : val ue is true, or fromB otherwise. IfA andB represent metadata, thgnx_i f <T, A, B>
inherits the member nested Aor B.

3.3 Declaring Concepts

Concepts must be identified in C++. In our solution, magr@_decl ar e_concept defines
an empty structure to represent a concept. For instangejct STLCont ai ner {}; declares
conceptSTLCont ai ner .

3.3.1 Typelists

Concepts also need to be stored in a container, in order toapépoiated by metafunctions,
e.g., to determine the most specialized concept for a $p#cialization. Notably, the "typelist”
technique [5, 2], based on metaprogramming, allows bugldistatic linked list to store types, and
can be defined as follows.

tenpl ate <cl ass CONTENT, class NEXT> struct gnx_list {
typedef CONTENT content;
typedef NEXT next ;

b

struct gnx_nil {};

Typegnx_ni | models "no type"\oi d is not used, as it could be a valid type to be stored
in a list), and is used to indicate the end of a list. For instario store thesTLSequence and
STLAssoci at i ve concepts in a list:

t ypedef gnx_list< STLSequence,
gnx_l i st<STLAssoci ative,gnx_nil> > nylistl;

Common operations on linked lists can be defined on typg¢i$t$-or instance, to add concept
STLCont ai ner in the previous list:

t ypedef gnx_list<STLCont ai ner, nylistl> nylist2;
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However, typelists are too static for the needs of our ljaran the previous example, list
nyl i st 1 cannot be modified to add a type, so a new ttigt i st 2 has to be created instead.
In the following section, a solution is proposed to build s bf concepts that can be modified
at compile time to add new concepts, without changing thatifier of the list. Typelists will
nevertheless be useful in our library for several metafonstwhere operations for merging and
searching typelists are necessary.

3.3.2 Indexing Concepts

To design a list where concepts can be added at any time, aameoh for indexing the
concepts is proposed. The metafunctiprx_concept is defined: it has one parameter that is an
integer value, and it returns the concept associated wigmtimber. Adding a concept to the list
is performed by the specialization of the metafunction.

tenplate <int ID> struct gnx_concept : gnx_type<gnx_nil> {};

tenpl ate <> struct gnx_concept<1> : gnx_type<STLContai ner> {};
tenpl ate <> struct gnx_concept<2> : gnx_type<STLSequence> {};

[...]

Indexing the concepts by hand is not acceptable, so a soltdiget the number of concepts
already in the list is needed. For this purpose, a prelingizvarsion of thegnx_nb_concept
metafunction is proposed. It goes through all the conceptisd list by increasing an index until
findinggnx_ni | .

tenplate <int N = 0> struct gnx_nb_concept

gnx_i f < gnx_sane<typename gnx_concept <N+1>::type, gnx_nil >,
gnx_val ue<i nt, N>,
gnx_nb_concept <N+1>

>{}

For an automatic indexing of the concepts, one would usedherr value of metafunction
gnx_nb_concept to determine the next index to assign to a new concept.

tenpl ate <> struct gnx_concept <gnx_nb_concept <>:: val ue+1>
gnx_t ype<STLCont ai ner> {};

tenpl ate <> struct gnx_concept <gnx_nb_concept <>:: val ue+1>
gnx_t ype<STLSequence> {};

[...]

However, this solution is not working as is, because usging_nb_concept <> infers that
gnx_concept is instantiated fromgnx_concept <0> to gnx_concept <N+1>, whereN is the
number of indexed concepts. Due to this fact, specializing_concept for STLCont ai ner
and STLSequence in the previous example is not possible, becayise concept <N+1> has
already been instantiated based on the primary versigmxofconcept . To eliminate this flaw,
an additional parameter, called here "observer", is adddabth metafunctiongnx_concept
andgnx_nb_concept.

tenplate <int ID, class OBS = gnx_nil>
struct gnx_concept : gnx_type<gnx_nil> {};

tenplate <class OBS, int N = 0> struct gnx_nb_concept
gnx_i f < gnx_sane<typename gnx_concept <N+1, OBS>::type, gnx_nil >,
gnx_val ue<i nt, N>,
gnx_nb_concept <OBS, N+1>
> {};
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The idea is to provide a different observer each time the ejotscneed to be counted to
determine the next index to assign to a new concept: the newept itself will be the ob-
server. With this solution, counting the concepts with obse0BS induces the instantiation of
gnx_concept <N+1, OBS>, S0 any specialization for index+1 with an observer other thatBS
is still possible. Finally, concepts are indexed as follows

tenpl ate <cl ass OBS>
struct gnx_concept <gnx_nb_concept <STLCont ai ner >: : val ue+1, 0OBS>
gnx_t ype<STLCont ai ner> {};

tenpl ate <cl ass OBS>
struct gnx_concept <gnx_nb_concept <STLSequence>: : val ue+l, OBS>
gnx_t ype<STLSequence> {};

[...]

To declare a concept in a single and easy instruction, aemexs in the example at the start
of the section, thgnx_decl are_concept macro is defined.

#defi ne gnx_decl are_concept ( CONCEPT)
struct CONCEPT {};

tenmpl ate <cl ass OBS>
struct gnx_concept <gnx_nb_concept < CONCEPT >::val ue+l, OBS>
gnhx_type< CONCEPT > {}

\
\
\
\
\

To conclude, thenx_nb_concept metafunction require®(n) operations, where is the
number of concepts already in the program. Hence, indexingncepts require® (> | i) =
O(n?) operations at compile time.

3.4 Modeling and Refinement Relationships

The modeling relationships between a type and a conceptthencefinement relationships
between two concepts are declared equally in our librari thiegnx_nodel s_concept meta-
function.

tenpl ate <cl ass TYPE_OR_CONCEPT, cl ass CONCEPT>
struct gnx_nodel s_concept : gnx_false {};

The primary version of the template returns false, and ttaioaships are declared through
specializations of the template: if typemodels concept (or concepiX refines concept), then
specializatiorgnx_nodel s_concept <X, C> must return true.

tenpl ate <> struct gnx_nodel s_concept<X,C : gnx_true {};

Notice thatgnx_nodel s_concept provides an answer for a direct relationship only. If a type
T models a conceptl that refines a conceg@r, this metafunction returns false for a relationship
betweenT andC2. Additional metafunctions, necessary in our library to fanty relationship
between a type and a concept (or between two concepts), iefty presented below (see the
source code for details).

— Metafunctiongnx_di r ect _concept s<X> provides a list (using the typelist technique) of
all the concepts directly associated with a type (or a cancept goes through all the con-
cepts using their index, and checks whetk@nodels (or refines) each concept using meta-
functiongnx_nodel s_concept . Assuming that to retrieve a concept from its index (i.e.,
to call metafunctiomynx_concept ) is a constant time operatiognx_di r ect _concept s
requiresO(n) operations, where is the number of concepts in the program.
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— Metafunctiongnx_al | _concept s<X> provides a list of all the concepts directly or indi-
rectly associated with a type (or a concept)t calls gnx_di rect _concept s to list the
concepts directly related % and recursively gets all the concepts related to each ot of
direct concepts. This metafunction requi@g:>+rn) operations, whereis the number of
modeling and refinement relationships declared in the progat worst, all the: concepts
are asked for their direct concepts (i.e., a call to metafongnx_di r ect _concept s),
which requiresO(n?) operations; to build the final list, at worst all theelationships are
considered, and each time the list of the currently foundccepts is merged with the list
of the newly found concepts, which requir@$rn) operations (at worstn operations are
necessary for the merging, as it avoids duplicates).

— Metafunctiongnx_nat ches_concept <X, C>returns whether a type (or a conceytnod-
els (or refines) a conceg directly or indirectly. This metafunction searches in the
list of concepts provided by metafunctigmx_al | _concept s and require€) (n? + rn)
operationsiO(n? + rn) operations to build the list, and(n) for the search.

3.5 Specialization Based on Concepts
3.5.1 Declaring Specializations

With our library, controlling the specialization of a geieclass based on the concept of
one of its template parameter implies an additional tereptetrameter. In the example, class
Seri al i zer has initially one parameter that is used to control the specialization: based on
different concepts that might model, several specializations®#ri al i zer are provided. For
this purpose, an additional parameter is addesktd al i zer .

tenpl ate <class T, class = gnx_best_concept(SerializerContext, T)>
class Serializer : ErrorSpecializationNot Found<T> {};

This additional parameter is the most specialized condegt type T models and that is
of interest for the specialization ®&eri al i zer. This "best" concept is obtained using the
gnx_best concept macro, which eases the call to metafunctiprx_cont ext ual _concept .

#defi ne gnx_best _concept ( CONTEXT, TYPE) \
typenane gnx_cont ext ual _concept <CONTEXT, TYPE>: : t ype

Notice that metafunctiognx_cont ext ual _concept requires a "context", which is a type
that represents the context of a given specialization. Eaciplate that uses static specialization
based on concepts requires its own context.

There are two main reasons for this notion of a context: (8esn previously, metafunction
gnx_nb_concept , called by many metafunctions, requires an observer tmpar€orrectly and
to allow defining new concepts at any time, and this obser#ebwthe context of the specializa-
tion; (ii) we want our solution to be portable on any stand@sgr compiler, meaning we do not
want to modify the C++ language itself, nor to provide a pogpssor, so to know which concepts
are of interest for a given context of specialization, eaoh af these concepts must be associated
with the context using thgnx_uses_concept metafunction.

tenpl ate <>
struct gnx_uses_concept<Seri al i zer Cont ext, STLCont ai ner> : gnx_true {};

In our example, theSeri al i zer Cont ext context has been declared for the specialization
of Seri al i zer. Among others, conce@TLCont ai ner is used to control a specialization of
Serial i zer, sognx_uses_concept is specialized (the same way@sx_nodel s_concept)
to specify that conce@TLCont ai ner is used in theSeri al i zer Cont ext context.
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3.5.2 Selecting the Best Specialization

Based on the list of concepts declared in a specializatiotegg and a taxonomy of concepts,
metafunctiongnx_cont ext ual _concept determines the "best" concept for a typemeaning
the most specialized concept tHatodels and that is of interest for the context of specidbpat
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Figure 2:Example of best concept selection.

If we consider the taxonomy of concepts of Figure 2, and asxa@itthat provides specializa-
tions for concept£l, C2 andCs in this example, the following best concepts should be sadiec

— For typeA: conceptC2, candidates ar€l andC2, butC2 is more specialized.

— For typeB: no concept, there is no candidate in the context'sdisk_ni | is returned.

— For typeC:. conceptCs, it is the only choice.

— For typeD: conceptsCl or C5, both concepts are valid (becausenodels both), and there

is no relationship between them to determine that one is sppeeialized than the other.
The selected one depends on the implementatigm®f cont ext ual _concept . In our
library, the concept with the highest index is selected. tBuUbrce the selection, one can
specializegnx_cont ext ual _concept .

Metafunctiongnx_cont ext ual _concept <X, T> goes through the list of all the concepts
modeled directly or indirectly by typ€ (provided bygnx_al | _concept s<T>), and selects the
one that does not refines directly or indirectly any othercemn in the list (using metafunction
gnx_mat ches_concept ) and that is declared in context This metafunction require®(n? +
rn) operations:O(n? + rn) operations to build the list, an@(n) to select the best candidate
(becausgynx_al | _concept s has already achieved all the necessgiry_mat ches_concept
instantiations).

3.6 Conclusion

Several steps are necessary for concept-based spealizdth our library: (i) to declare
concepts and modeling/refinement relationships in ordetefme a taxonomy of concepts; (ii)
for each context of specialization, to declare the conctiyatsare used to control the specializa-
tion. These steps are not monolithic, and new concepts awadzations can be defined at any
time (but before the first instantiation of the affected geneomponent), which provides high
flexibility with minimal assumptions about components.
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The selection of the best specialization is fully automatic safe as long as the modeling
and refinement relationships are correct. Notice that thelséionships, declared manually with
our solution, could be automated using a mechanism to chaeitgral conformance, such as the
St ati cl sAtemplate (cf. Section 2.2.1) for instance.

tenpl ate <class TYPE, class CONCEPT> struct gnx_nodel s_concept
gnx_val ue<bool , Staticl sA<TYPE, CONCEPT>: :val id> {};

However, a few issues appear with our solution. First, tipe fyattern of any template whose
specialization is controlled by concepts is altered: fahdaitial template parameter, an additional
"hidden" parameter may be added to get its best conceptnBtanice, users of tteeri al i zer
generic class could think that this template has only onarpater, whereas it actually has two.

Secondly, the notion of an observer, which is totally hidétem the user of the generic com-
ponent, has been introduced to bypass an instantiatiorgonolith gnx_nb_concept (cf. Sec-
tion 3.3.2). However there are very specific situations whke issue remains. For instance, the
following specialization may be troublesome.

tenplate <> class Serializer<int>{ [...] };

It induces the full instantiation dderi al i zer that forces the default value of the "hidden”
parameter to be instantiated, i.gnx_cont ext ual _concept <Seri al i zer Cont ext, i nt >,
which itself forcesgnx_nb_concept to be instantiated for observeeri al i zer Cont ext . If
concepts are added after this code, another call to metadangnx_cont ext ual _concept
with contextSeri al i zer Cont ext will ignore the new concepts. Hence, one should avoid to
instantiategnx_cont ext ual _concept before the final use of the affected generic component.
In our example, the full instantiation can be avoided aofed.

tenpl ate <cl ass CONCEPT> cl ass Serializer<int, CONCEPT> { [...] };

4 Compilation Performance

The theoretical performance of the metafunctions of ouatiphas been studied in this paper.
We assumed some operations of the compiler to be constamtginit is important to confirm the
theoretical performance with practical experiments. ikl implementation of the library, that
is presented in this paper, is meant for understanding amot isptimized for compilation. Thus,
a second version of the library has been designed to optithzeompilation time. How to use
the library remains unchanged with this new version.

The tests presented here have been performed with the mptinviersiort® of the library
on an Intel Core 2 Duo T8100 2.1 GHz with 3 GB of memory, and gisBNU G++ 4.3.4 (its
template recursion limit set to 1024). Instances with ddfé numbers: of concepts ana of
modeling/relationships in the whole program have beenaaryl generated (see the source code
for details). Each compilation time presented here is esga@ in seconds and is the mean of
compilations of 10 different instances.

Figure 3 shows the compilation time, dependingrgrfor indexing concepts. As predicted
by the theoretical performance analysis, there is a quadiapendence on (confirmed by a
quadratic regression with a correlation coefficieni = 0.997).

10. Optimized version 2011-08-25 was used for the expettisnen
11. R = Pearson’s correlation coefficient; the closet tthe more the regression fits the curve.
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Figure 4:Compilation time forgnx_di r ect _concept s (50 instantiationsy = 100).

Figure 4 shows the compilation time, dependingrqrof 50 instantiations of metafunction
gnx_di rect _concept s (which lists the concepts that a given type or concept diranbdels
or refines respectively). The theoretical performanceyasimpredicted a linear dependencergn
but the practical results show otherwise, which we thinlelated to our assumption that accessing
a concept through its index (i.e., a callgox_concept ) was constant time. It seems that to find
a specialization of a template, the compiler may requireratrar of operations dependent on the
total number of specializations for this template. Howetleis non-linear dependence is not so
significant, as the linear regression shows a correlatiefficeent R = 0.986 in the range of our
experiments, and the instantiationsgefx_di r ect _concept s are only one step of the whole
compilation process.

Figures 5 and 6 show the compilation time, depending resgdcion n andr, of 50 instan-
tiations ofgnx_cont ext ual _concept (which determines the best concept of a given type in a
given specialization context). The performance of eagrméediate metafunction is not shown, as
it is similar. As predicted by the theoretical performanoalgsis, there is a quadratic dependence
onn (confirmed withR = 1), and a linear dependence oiiconfirmed withR = 0.989).
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Our library has been tested successfully on several cormpi&ENU GCC from 3.4.5 to 4.4.3,
Microsoft Visual C++ 10, and Embarcadero C++ 6.20. Figuraad 8 show the time of the whole
compilation process for those compilers, from indexing ¢bacepts to finding the best concept
for types in specialization contexts, dependingrcandr. Notice that we were not able to test all
the instances with Embarcadero’s compiler, due to a haritkliion of 256 levels in the template
recursion.
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Figure 8:Whole compilation time (with 50 instantiations gfix_cont ext ual _concept ,n = 50).

5 Conclusion

This paper describes a C++ library that enables controtliegspecialization of generic com-
ponents with concepts. As concepts are not part of the C-gubage yet, a solution is provided to
declare concepts and modeling/refinement relationshipsdier to define a taxonomy of concepts.
It relies on an automatic indexing of the concepts that alawetroactive extension: at any time,
new concepts and modeling/refinement relationships cartlared.

The library also provides a mechanism to automaticallycselee most appropriate special-
ization of a template based on concepts. Specializatiomsganeric component can be defined
based on the modeling of concepts, rather than the matchityp® patterns, of its parameters.
At instantiation time, a metafunction determines the mpstilized concept of any type instan-
tiating a template parameter, and thus guides the selecfitite specialization of the template.
Our solution is a bit invasive because a default parametest i1 added to the template to be
specialized, but after the definition of the primary versadrihe template, specializations based
on concepts can be added non intrusively and retroactively.

The retroactive extension enabled by the library providgs flexibility with minimal as-
sumptions about the components: the coupling between aigemenponent and the types that
will instantiate its parameters is minimized. However, asgoal was to provide a standard C++
code (without any additional tool such as a preprocessa )were not able to automate the iden-
tification of the concepts used to control the specializatiba given template. So the notion of a
"context of specialization” is necessary and requires phi@iy declare each concept involved in
the control of a specialization.

To conclude, a theoretical performance analysis and tHempgance of practical experiments
have been presented to show the compilation time overheadrdfolution. Even if a quadratic
dependence on the number of concepts has been identifieohritg@lation time is reasonable for
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many applications: compiling 50 specializations with 5@@epts and 250 modeling/refinement
relationships on an average computer requires less thazobde
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