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Abstract

In generic programming, software components are parameterized on types (and sometimes static values, as
in C++) rather than dynamic values. When available, a staticspecialization mechanism allows building, for
a given set of parameters, a more suitable version of a generic component than its primary version. The
normal C++ template specialization mechanism is based on the type pattern (or sometimes the static value)
of parameters, which may not be accurate enough and may lead to ambiguities or false specializations. This
is mainly due to the fact that some relationships between types, which can be considered as similar in some
ways, are missing. Thus, it is not always possible to determine an order of the specializations of a generic
component.

Concepts can be used to introduce relationships between "similar" types: a concept represents a set of
requirements for a component that among others refer to its interface and its behavior. This paper describes
generic programming techniques in C++ for declaring concepts, "modeling" relationships (between a type
and a concept) and "refinement" relationships (between two concepts), and for controlling template special-
izations based on a taxonomy of concepts. This control relies on a metaprogram that determines, in a given
static specialization context, the most specialized concept of any type instantiating a template parameter.

The solution presented here is open for retroactive extension: at any time, a new concept or a new
modeling/refinement relationship can be declared, or a new template specialization can be defined; and this
new statement will be picked up by the specialization mechanism. The control is also improved by avoiding
false specializations and many ambiguities during the specialization process.

Keywords: generic programming, template specialization, concept-based overloading/specialization, meta-
programming.

Résumé

En programmation générique, les composants logiciels sontparamétrés sur des types (et parfois des valeurs
statiques, comme en C++) plutôt que sur des valeurs dynamiques. Quand il est disponible, un mécanisme
de spécialisation statique permet de construire, pour un jeu de paramètres donné, une version plus adaptée
d’un composant générique que sa version initiale. Le mécanisme normal de spécialisation d’untemplateen
C++ repose sur le patron de type (ou parfois la valeur statique) de paramètres, ce qui n’est parfois pas assez
précis et peut conduire à des ambiguïtés ou à de fausses spécialisations. Ceci est principalement dû au fait
que certaines relations entre types, qui peuvent être considérés comme similaires d’une certaine manière,
sont manquantes. Ainsi, il n’est pas toujours possible d’établir un ordre des spécialisations d’un composant
générique.

Les concepts peuvent être utilisés pour introduire des relations entre types "similaires" : un concept
représente un ensemble de spécifications pour un composant qui peuvent, entre autres, faire référence à son
interface et à son comportement. Ce rapport décrit des techniques de programmation générique en C++
pour déclarer des concepts, des relations de "modélisation" (entre un type et un concept) et des relations
de "raffinement" (entre deux concepts), et pour contrôler les spécialisations detemplatesà partir d’une
taxonomie de concepts. Ce contrôle repose sur un métaprogramme qui détermine, dans un contexte de
spécialisation statique donné, le concept le plus spécialisé de tout type instanciant un paramètretemplate.

La solution présentée ici est ouverte à une extension rétroactive : à tout moment, un nouveau concept
ou une nouvelle relation de modélisation/raffinement peut être déclarée, ou une nouvelle spécialisation de
templatepeut être définie ; et cette nouvelle déclaration sera prise en compte par le mécanisme de spécialisa-
tion. Le contrôle est également amélioré en évitant les fausses spécialisations et de nombreuses ambiguïtés
au cours du processus de spécialisation.

Mots clés :programmation générique, spécialisation detemplate, surcharge/spécialisation basée concept,
métaprogrammation.
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Abstract
In generic programming, software components are parameterized on types (and sometimes

static values, as in C++) rather than dynamic values. When available, a static specialization
mechanism allows building, for a given set of parameters, a more suitable version of a generic
component than its primary version. The normal C++ templatespecialization mechanism is
based on the type pattern (or sometimes the static value) of parameters, which may not be
accurate enough and may lead to ambiguities or false specializations. This is mainly due to
the fact that some relationships between types, which can beconsidered as similar in some
ways, are missing. Thus, it is not always possible to determine an order of the specializations
of a generic component.

Concepts can be used to introduce relationships between "similar" types: a concept rep-
resents a set of requirements for a component that among others refer to its interface and
its behavior. This paper describes generic programming techniques in C++ for declaring con-
cepts, "modeling" relationships (between a type and a concept) and "refinement" relationships
(between two concepts), and for controlling template specializations based on a taxonomy of
concepts. This control relies on a metaprogram that determines, in a given static specialization
context, the most specialized concept of any type instantiating a template parameter.

The solution presented here is open for retroactive extension: at any time, a new concept
or a new modeling/refinement relationship can be declared, or a new template specialization
can be defined; and this new statement will be picked up by the specialization mechanism.
The control is also improved by avoiding false specializations and many ambiguities during
the specialization process.

1 Introduction

Generic programming aims at providing software components, mainly algorithms and data
structures, as general as possible and broadly adaptable and interoperable [8], with no loss of
efficiency when the language supports generics without run-time overhead. Generic programming
relies on the notion of a generic component that is a component (class, function, or method) with
parameters that are types or static values, instead of dynamic values as the usual parameters of
functions and methods.

1.1 Static Specialization

Similar to inheritance in object-oriented programming, which allows the specialization of
classes, C++ provides a mechanism to specialize generic components (calledtemplates). The
decision to select a specialized version of a template is made by the compiler based on the type
pattern (or static value) of parameters during instantiation. Here is a C++ example of a generic
class,ArrayComparator, that allows comparing two arrays of lengthN and containing elements
of typeT. A specialization forT = char, presumably more efficient than the primary version, is
proposed.

template <class T, int N> class ArrayComparator {
public:
static int run(const T * a, const T * b) {
int i = 0;
while (i<N && a[i]==b[i]) ++i;
return (i==N ? 0 : (a[i]<b[i] ? -1 : 1));

}
};

template <int N> class ArrayComparator<char,N> {
public:
static int run(const char * a, const char * b) { return memcmp(a,b,N); }

};
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1.2 Concepts

In generic programming, the instantiation of the parameters of a generic component raises two
concerns:(i) how to ensure that a type instantiating a parameter fulfills the requirements to be
properly used by the generic component (e.g., any type instantiating T must provide the< and
== operators in theArrayComparator class);(ii) how to find the best static specialization of
the generic component for a given instantiation of the parameters (e.g., if typechar instantiates
parameterT, then specializationArrayComparator<char,N>must be selected).

To specify requirements for a type, the notion of a "concept"has been introduced [3]. When
a type instantiates a parameter of a generic component, it must follow a set of requirements rep-
resented by a "concept". Among others, these requirements refer to the interface of the type (e.g.,
the existence of a method) and its behavior (e.g., the complexity of a method). When a type ful-
fills the requirements of a concept, it is said that the type "models" the concept. The notion of
specialization between concepts is possible and is called "refinement": a concept "refines" a more
general concept.

For instance, let us define the conceptIntegral that models the requirements of an inte-
gral number, and the conceptNumerical that models the requirements of any kind of number.
One can state that typeint models conceptIntegral, and conceptIntegral refines concept
Numerical.

1.3 Challenges

Concern (i) of Section 1.2 is referred to as "concept checking" [14], and its goal is to identify at
compile time which types do not model the concepts required by a generic component. A concept
acts like a contract between the users and the author of a generic component: the author specifies
requirements on the parameters using concepts, and the users must instantiate the parameters with
types that fulfill these requirements, i.e., with types thatmodel the specified concepts.

In C++, concepts can not be defined explicitly and they are only documentation (e.g.,Standard
Template Library). This leads to late error detections, and thus to cryptic error messages [14]: for
instance, let us declare the instantiationArrayComparator<x,10>, if type x has no< operator,
the error will be detected in methodrun, and not at the instantiation declaration. Some langages,
such as Java, rely on interfaces to express requirements on parameter types. Constraints can be
expressed on the parameters of a generic component in the following form: parameterT must be
a "subtype" ofU, whereT is a subtype ofU if T inherits from classU, or T implements interfaceU,
or T andU are the same type [4].

Concern (ii) of Section 1.2 is referred to as "concept-basedoverloading" [9], but in this article,
we propose to use the term "concept-based specialization" as we will focus more on class spe-
cialization than function overloading. The goal of concept-based specialization is to control the
specialization of generic components with concepts ratherthan type patterns. By pattern, we mean
a type or a parameterized type (e.g.,T* or vector<T>), or a "template template" parameter [16]
(e.g.,template <class> class U). Specialization based on type patterns can lead to ambi-
guities (the compiler cannot decide between two possible specializations) or false specializations
(the compiler selects the wrong specialization), as it willbe presented in Section 2.

Several attempts have been made to represent concepts in C++. On one hand, implementations
for concept checking have been proposed, mainly to ensure interface conformance of types instan-
tiating template parameters [12, 14]. On the other hand, an implementation for concept-based
specialization has been proposed [11]. In this solution, the specialization is based on both the SFI-
NAE (substitution failure is not an error) principle [2] and a mechanism to answer the question
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"does type T model concept C ?"(through theenable_if template). However this approach may
lead to ambiguities6.

More recently, an attempt has been initiated to define an extension of the C++ language to sup-
port concepts [6, 13] that may be added to the C++ Standard [7]. This extension is available within
the experimental compiler ConceptGCC [6, 10], and is implemented as ConceptClang in Clang, a
C language family front-end for the LLVM compiler [15]. In the meantime, there seems to be no
satisfactory solution directly available in standard C++ compilers for concept-based specialization
that avoids ambiguities and false specializations.

1.4 Proposal

We propose here a C++ library that focuses on the concept-based specialization aspect only.
Due to portability concerns, our goal was to provide a solution that could be used with any standard
C++ compiler, with no need of an additional tool such as a preprocessor. Our solution enables
declaring concepts, modeling relationships, and refinement relationships. Once a taxonomy of
concepts has been declared, it can be used to control the specialization of generic components:
to define a specialization, concepts are used instead of typepatterns to constrain parameters. At
instantiation time, the selection of the best specialization relies on a metaprogram that determines,
in the context of a given static specialization, the most specialized concept of any type instantiating
a parameter of a generic component.

Even if this proposal does not detect directly concept mismatches to provide more understand-
able errors, it needs to perform some checking on concepts tocontrol the specialization process.
The checking is only based on "named conformance" [12] (i.e., check on whether a type has
been declared as modeling a given concept), and avoids "structural conformance" (i.e., check on
whether a type implements a given interface).

Following the key ideas of generic programming [8], mainly to express components with min-
imal assumptions, and to enable that the most specialized, and thus presumably the most efficient,
form of a generic component is chosen, our proposal is open for retroactive extension:

– A new concept or new relationships (modeling and refinement) can be declared at any time.
To declare such relationships is not tightly related to the definition of types or concepts,
contrary to inheritance relationships, for instance, thatmust be declared at the definition of
classes.

– A new specialization of a generic component can be defined atany time. For instance, if a
new concept is defined, the specialization of any generic component can be defined for this
concept.

Section 2 discusses several issues encountered with staticspecialization, and shows how con-
cepts can be used to bypass most of them. Section 3 presents our C++ library for concept-based
specialization, and an example using this solution. Section 4 shows compilation performances of
the library depending on the number of concepts and the number of relationships (modeling and
refinement) in a program. The full source code of the library and the examples is available for
download7.

2 Issues with Static Specialization

This section presents several issues that may occur with static specialization based on type
patterns, and how most of these issues can be addressed with concepts:

6. See the documentation aboutenable_if at: http://www.boost.org/doc/libs/release/libs/utility/enable_if.html
7. Source code is available at: http://forge.clermont-universite.fr/projects/show/cpp-concepts.
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(i) Some types that can be considered somehow similar (e.g.,with a common subset of oper-
ations in their interface) may have the same specialization, but because of different type patterns,
they have different specializations.

(ii) A specialization based on type patterns may lead to false specialization, because a type
pattern is not often related to the interface of the matchingtypes.

Existing solutions that use concepts to control static specialization in C++ are discussed. It
appears that refinement relationships are also necessary toaddress the following issue:

(iii) A type may have several suitable specializations. As there is no clear ordering between
these specializations, it is not possible to choose one particularly.

2.1 Specialization Based on Type Patterns

As an example, we propose to develop a generic class,Serializer, to store the state of an
object into an array of bytes (the "deflate" action), or to restore the state of an object from an array
of bytes (the "inflate" action). The primary version of the template, which makes a bitwise copy
of the bytes of an object in memory, is as follows.

template <class T> class Serializer {
public:
static int deflate(char * copy, const T & object);
static int inflate(T & object, const char * copy);

};

This version should not be used for complex objects, such as containers, where the internal
state may have pointers that should not be stored (because these versions of the deflate and inflate
actions would lead to memory inconsistency after restoring). If we consider "sequence containers"
of the STL (Standard Template Library), such as vectors and lists, we can provide a specialized
version ofSerializer.

template <class T, class ALLOC, template <class,class> class CONTAINER>
class Serializer< CONTAINER<T,ALLOC> > {
public:
static int deflate(char * copy, const CONTAINER<T,ALLOC> & container);
static int inflate(CONTAINER<T,ALLOC> & container, const char * copy);

};

This specialization is based on the type pattern of the STL sequence containers: they are
generic classes with two parameters, the typeT of the elements to be stored, and the typeALLOC

of the object used to allocate elements.

Now, let us consider "associative containers" of the STL, such as sets and maps. Their type
pattern is different from the one of sequence containers (they have at least one more parameter
COMP to compare elements), whereas sequence and associative containers have a common sub-
set of operations in their interface that should ideally allow defining a common specialization of
Serializer. However, as specialization is based on type pattern for now, another specialization
of Serializer is necessary.

template <class T, class COMP, class ALLOC,
template <class,class,class> class CONTAINER>

class Serializer< CONTAINER<T,COMP,ALLOC> > { [...] };

Notice that this specialization ofSerializer is only suitable for sets, and not for maps,
because their type pattern is different: maps have an additional parameterK for the type of the keys
associated with the elements of the container. The specializationSerializer< CONTAINER<K,
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T, COMP, ALLOC> > is necessary for maps, whereas maps and sets have a common subset of
operations in their interface and could ideally share the same specialization.

The specialization for sets has been written having only STLassociative containers in mind,
but any type with the same type pattern matches the specialization. Thus, there could be an un-
wanted match. For instance, thestd::string class of the C++ standard library is an alias for a
type that matches the type pattern of sets.

std::basic_string< char, std::char_traits<char>, std::allocator<char> >

The first two issues presented in the introduction of the section have been illustrated here.
They could be addressed with concepts:

(i) "Similar" types could model a common concept, and a specialization for this concept could
be defined. Thus, "similar" types with different type patterns could share a common specialization.

(ii) Concepts could avoid false specialization: with static specialization controlled by con-
cepts, any template parameter could be associated with a concept, and only types that model this
concept could instantiate the parameter. This way, only thetypes that satisfy the requirements of
a specialization could be considered.

Figure 1:Taxonomy of concepts for the serialization example.

For the example of serialization discussed here, Figure 1 proposes concepts and their relation-
ships. TheSingleObject andSTLContainer concepts are defined to provide two specializa-
tions forSerializer: one based on bitwise copy, and another one based on the common subset of
operations shared by all STL containers, respectively. TheSTLContainer concept is refined into
the STLSequence andSTLAssociative concepts to provide specializations ofSerializer

using specific operations of sequence containers and associative containers respectively.

2.2 Existing Solutions Based on Concepts

Existing solutions for concept-based specialization in C++ [12, 11] are discussed here. They
use concepts to guide the specialization of templates, and enable addressing the two first issues
presented in the introduction of the section. However, about the third issue, i.e., to find the most
appropriate specialization when there are several candidates, the solutions presented here are not
fully satisfactory.
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2.2.1 Concept-Based Dispatch

A first solution [12] implements concepts with "static interfaces" in C++, and proposes a
"dispatch" mechanism to control static specialization with concepts. The solution is based on
the StaticIsA template that provides some concept checking:StaticIsA<T,C>::valid is
true if T models conceptC. Let us assume thatStaticIsA answers accordingly to the taxonomy
of concepts of Figure 1 (see the source code for details). Here is an example of the dispatch
mechanism for the specialization of theSerializer generic class.

enum { IS_SINGLE_OBJECT, IS_STL_CONTAINER, IS_STL_SEQUENCE,
IS_STL_ASSOCIATIVE, UNSPECIFIED };

template <class T> struct Dispatcher {
static const int which
= StaticIsA<T,STLAssociative>::valid ? IS_STL_ASSOCIATIVE

: StaticIsA<T,STLSequence>::valid ? IS_STL_SEQUENCE
: StaticIsA<T,STLContainer>::valid ? IS_STL_CONTAINER
: StaticIsA<T,SingleObject>::valid ? IS_SINGLE_OBJECT
: UNSPECIFIED;

};

template <class T> struct ErrorSpecializationNotFound;

template <class T, int = Dispatcher<T>::which>
class Serializer : ErrorSpecializationNotFound<T> {};

template <class T> class Serializer<T,IS_SINGLE_OBJECT> { [...] };
template <class T> class Serializer<T,STL_CONTAINER> { [...] };
template <class T> class Serializer<T,STL_SEQUENCE> { [...] };
template <class T> class Serializer<T,STL_ASSOCIATIVE> { [...] };

TheDispatcher template goes through all the concepts (in a specific order) until its param-
eterT models a concept. The symbolic constant associated with thefound concept is stored in
thewhich attribute ofDispatcher. For instance,Dispatcher< vector<int> >::which is
equal toIS_STL_SEQUENCE.

Compared to the version of theSerializer template based on type patterns, there is an
additional parameter with a default value that is the answerof the dispatcher for parameterT.
This value is used rather than the type pattern ofT to define the specializations ofSerializer.
This way, it is possible to provide a specialization for any concept. For instance, the instantia-
tion Serializer< vector<int> > is in fact the instantiationSerializer< vector<int>,

IS_STL_SEQUENCE >, and matches the specialization for theSTLSequence concept.

Notice that the primary version of the template inherits from a class that is only declared, the
aim being that this version could not be instantiated. This way, compilation errors related to the
fact thatT has been instantiated with a wrong type appears at the instantiation of Serializer,
rather than inside the code ofSerializer where it tries to apply invalid operations onT. This
solution avoids usual error messages that could be cryptic for the user [14].

In this solution, a dispatcher (and dispatch rules) must be defined for each context of special-
ization, i.e., for each generic component that is specialized, which can quickly become tedious.
A solution where the dispatch rules are automatically deduced, for each context of specialization,
from the modeling and refinement relationships of the taxonomy of concepts should be provided.

2.2.2 Concept-Based Overloading

The second solution [11] relies on theenable_if template, which can be found in the Boost
Library [1], and the SFINAE principle [2] to provide some control on static specialization with

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.



7

concepts. The definition ofenable_if is as follows.

template <bool B, class T = void>
struct enable_if_c { typedef T type; };

template <class T> struct enable_if_c<false,T> {};

template <class COND, class T = void>
struct enable_if : enable_if_c<COND::value,T> {};

The idea is that ifB is true, there is a nested typetype insideenable_if_c, and thus inside
enable_if if its parameterCOND has an attributevalue set to true. Let us assume that, for each
conceptC of the taxonomy of Figure 1, a templateis_C<T> is defined sois_C<T>::value is
true if T models conceptC (see the source code for details). Here is an example of the use of
enable_if for the specialization of theSerializer generic class.

template <class T, class = void>
class Serializer : ErrorSpecializationNotFound<T> {};

template <class T>
class Serializer<T, typename enable_if< is_SingleObject<T> >::type>
{ [...] };

template <class T>
class Serializer<T, typename enable_if< is_STLContainer<T> >::type>
{ [...] };

template <class T>
class Serializer<T, typename enable_if< is_STLSequence<T> >::type>
{ [...] };

template <class T>
class Serializer<T, typename enable_if< is_STLAssociative<T> >::type>
{ [...] };

The SFINAE principle is: if an invalid parameter is formed during the instantiation of a tem-
plate, this instantiation is ignored. For instance, the instantiationSerializer< vector<int> >
implies instantiating the specializationSerializer< vector<int>, typename enable_if<

is_SingleObject< vector<int> > >::type> 8, and becauseenable_if has no member
type in this situation, the specialization for conceptSingleObject is not considered.

This way, only the specializations associated with a concept modeled by the instantiation of
parameterT are considered. If there remains more than one specialization, the compiler has to deal
with an ambiguity: for instance,vector<int> models bothSTLContainer andSTLSequence
concepts. This ambiguity should be avoided: conceptSTLSequence is more specialized than
conceptSTLContainer, so the specialization forSTLSequence should be selected.

2.2.3 Conclusion

In this section, solutions have been presented to control static specialization. Concept-based
dispatch allows considering refinement relationships, butthe selection of the specialization is not
automatic and requires some specific code for each context ofspecialization. At the opposite,
concept-based overloading allows an automatic selection of the specialization, but is not able to
deal with ambiguities that could be avoided considering refinement relationships.

8. typename is necessary in C++ to declare that the membertype is actually a type and not a value.
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3 C++ Library for Concept-Based Specialization

Concepts appear to be better suited than type patterns to control static specialization, but to
our knowledge, there is no solution that addresses all the issues brought up in the previous section.
We propose here a C++ library that enables expressing a taxonomy of concepts, and using this
taxonomy to automatically select the most appropriate specialization of a template.

Two main goals have guided our choices for this implementation: to provide a fully portable
C++ code (without any additional tool such as a preprocessor), and to be open for retroactive
extension (at any time, a new concept or a new modeling/refinement relationship can be declared,
or a new template specialization can be defined).

3.1 Example

Let us consider the example of theSerializer generic class with our library. In a first
step, the taxonomy of concepts of Figure 1 is defined: concepts and relationships (modeling and
refinement) are declared. Then, theSerializer template is defined: first its primary version,
and then its specializations for each concept. The library is based on template metaprogramming,
and the details of its implementation are presented afterward.

Concepts Declaration
gnx_declare_concept(SingleObject);
gnx_declare_concept(ComplexObject);
gnx_declare_concept(STLContainer);
gnx_declare_concept(STLSequence);
gnx_declare_concept(STLAssociative);

Modeling and Refinement Relationships
template <> struct gnx_models_concept<char,SingleObject> : gnx_true {};
template <> struct gnx_models_concept<int,SingleObject> : gnx_true {};
template <> struct gnx_models_concept<float,SingleObject> : gnx_true {};

template <class T>
struct gnx_models_concept<std::vector<T>,STLSequence> : gnx_true {};

template <class T>
struct gnx_models_concept<std::list<T>,STLSequence> : gnx_true {};

template <class T>
struct gnx_models_concept<std::set<T>,STLAssociative> : gnx_true {};

template <class K, class T>
struct gnx_models_concept<std::map<K,T>,STLAssociative> : gnx_true {};

template <>
struct gnx_models_concept<STLContainer,ComplexObject> : gnx_true {};

template <>
struct gnx_models_concept<STLSequence,STLContainer> : gnx_true {};

template <>
struct gnx_models_concept<STLAssociative,STLContainer> : gnx_true {};

Template Primary Version
struct SerializerContext;

template <class T,class = gnx_best_concept(SerializerContext,T)>
class Serializer : ErrorSpecializationNotFound<T> {};

Research Report LIMOS/RR-10-18
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Template Specialized Versions

template <>
struct gnx_uses_concept<SerializerContext,SingleObject> : gnx_true {};

template <class T> class Serializer<T,SingleObject> { [...] };

template <>
struct gnx_uses_concept<SerializerContext,STLContainer> : gnx_true {};

template <class T> class Serializer<T,STLContainer> { [...] };

template <>
struct gnx_uses_concept<SerializerContext,STLSequence> : gnx_true {};

template <class T> class Serializer<T,STLSequence> { [...] };

template <>
struct gnx_uses_concept<SerializerContext,STLAssociative> : gnx_true {};

template <class T> class Serializer<T,STLAssociative> { [...] };

Concepts are declared using the macrognx_declare_concept. The modeling and re-
finement relationships are equally declared using the metafunctiongnx_models_concept. To
control the specialization, a "specialization context" must be declared (SerializerContext
in our example). Each specialization ofSerializer based on a concept must be declared
and associated with the specialization contextSerializerContext, using the metafunction
gnx_uses_concept. Automatically, the most appropriate concept for any instantiation of pa-
rameterT is determined by thegnx_best_concept macro and stored in an additional parameter
of theSerializer template, enabling static specialization based on this parameter.

3.2 Metafunctions

Some fundamental "metafunctions" are necessary to implement our library. These generic
classes are common in metaprogramming libraries (e.g., in the Boost Library). A metafunction
acts similarly to an ordinary function, but instead of manipulating dynamic values, it deals with
"metadata", i.e., entities that can be handled at compile time in C++: mainly types and static integer
values [1]. In order to manipulate equally types and static values in metafunctions, metadata are
embedded inside classes, as follows9.

template <class TYPE> struct gnx_type { typedef TYPE type; };

template <class TYPE, TYPE VALUE>
struct gnx_value { static const TYPE value = VALUE; };

typedef gnx_value<bool,true> gnx_true;
typedef gnx_value<bool,false> gnx_false;

Templategnx_type<T> represents a type and provides a type membertype that isT itself.
The same way, templategnx_value<T,V> represents a static value and provides an attribute
value that is the valueV of type T. Based on templategnx_value, the typesgnx_true and
gnx_false are defined to represent the boolean values.

The parameters of a metafunction, which are the parameters of the template representing the
metafunction, are assumed to be metadata, i.e., to be classes with a membertype or value. The

9. We chose to add the prefix "gnx_" to all the metafunctions and macros of our library.
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"return" of a metafunction is implemented with inheritance: the metafunction inherits from a class
representing a metadata. This way the metafunction itself has a membertype or value, and can
be a parameter of another metafunction. Here are metafunctions necessary for the discussion of
this section.

template <class TYPE1, class TYPE2> struct gnx_same : gnx_false {};

template <class TYPE> struct gnx_same<TYPE,TYPE> : gnx_true {};

template <class TEST, class IF, class ELSE, bool = TEST::value>
struct gnx_if : ELSE {};

template <class TEST, class IF, class ELSE>
struct gnx_if<TEST,IF,ELSE,true> : IF {};

Metafunctions usually need static specialization to fullyimplement their behavior. Meta-
function gnx_same determines whether two types are identical:gnx_same<T1,T2> inherits
from gnx_true if T1 and T2 are the same type, or fromgnx_false otherwise. Thus, the
value returned by metafunctiongnx_same<T1,T2> is stored in itsvalue attribute. Metafunc-
tion gnx_if acts similarly to the commonif instruction: gnx_if<T,A,B> inherits fromA if
T::value is true, or fromB otherwise. IfA andB represent metadata, thengnx_if<T,A,B>
inherits the member nested inA or B.

3.3 Declaring Concepts

Concepts need to be identified in C++. In our solution, macrognx_declare_concept de-
fines an empty structure to represent a concept. For instance, to declare conceptSTLContainer,
the following structure is defined:struct STLContainer {};

3.3.1 Typelists

To be manipulated by metafunctions, e.g., to determine the most specialized concept for a
static specialization, concepts need to be stored in a container. Notably, the "typelist" technique
[5, 2], based on metaprogramming, allows building a static linked list to store types, and can be
defined as follows.

template <class CONTENT, class NEXT> struct gnx_list {
typedef CONTENT content;
typedef NEXT next;

};

struct gnx_nil {};

Typegnx_nil models "no type" (void is not used, as it could be a valid type to be stored
in a list), and is used to indicate the end of a list. For instance, to store theSTLSequence and
STLAssociative concepts in a list:

typedef gnx_list< STLSequence,
gnx_list<STLAssociative,gnx_nil> > mylist1;

Common operations on linked list can be defined on typelists [2]. For instance, to add concept
STLContainer in the previous list:

typedef gnx_list<STLContainer,mylist1> mylist2;
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However, typelists are too static for the needs of our library: in the previous example, list
mylist1 cannot be modified to add a type, so a new listmylist2 has to be created instead.
In the following section, a solution is proposed to build a list of concepts that can be modified
at compile time to add new concepts, without changing the identifier of the list. Typelists will
nevertheless be useful in our library for several metafunctions where operations to merge and to
search typelists are necessary.

3.3.2 Indexing Concepts

To design a list where concepts can be added at any time, a mechanism for indexing the
concepts is proposed. The metafunctiongnx_concept is defined: it has one parameter that is an
integer value, and it returns the concept associated with this number. To add a concept to the list
is performed by the specialization of the metafunction.

template <int ID> struct gnx_concept : gnx_type<gnx_nil> {};

template <> struct gnx_concept<1> : gnx_type<STLContainer> {};
template <> struct gnx_concept<2> : gnx_type<STLSequence> {};
[...]

To index the concepts by hand is not acceptable, so a solutionto get the number of concepts
already in the list is necessary. For this purpose, a preliminary version of thegnx_nb_concept
metafunction is proposed. It goes through all the concepts in the list by increasing an index until
findinggnx_nil.

template <int N = 0> struct gnx_nb_concept
: gnx_if< gnx_same<typename gnx_concept<N+1>::type, gnx_nil>,

gnx_value<int,N>,
gnx_nb_concept<N+1>

> {};

For an automatic indexing of the concepts, one would use the return of thegnx_nb_concept
metafunction to determine the next index to assign to a new concept.

template <> struct gnx_concept<gnx_nb_concept<>::value+1>
: gnx_type<STLContainer> {};

template <> struct gnx_concept<gnx_nb_concept<>::value+1>
: gnx_type<STLSequence> {};

[...]

However, this solution is not working as is, because each time gnx_nb_concept<> is used,
all the instantiations ofgnx_concept, from gnx_concept<0> to gnx_concept<N+1>, where
N is the number of indexed concepts, are achieved. Hence the specializations ofgnx_concept for
STLContainer andSTLSequence in the previous example are not possible, because instantia-
tiongnx_concept<N+1>has already been achieved (with the primary version ofgnx_concept).
To eliminate this flaw, an additional parameter, called here"observer", is added to both metafunc-
tionsgnx_concept andgnx_nb_concept.

template <int ID, class OBS = gnx_nil>
struct gnx_concept : gnx_type<gnx_nil> {};

template <class OBS, int N = 0> struct gnx_nb_concept
: gnx_if< gnx_same<typename gnx_concept<N+1,OBS>::type, gnx_nil>,

gnx_value<int,N>,
gnx_nb_concept<OBS,N+1>

> {};
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The idea is to provide a different observer each time the concepts need to be counted to
determine the next index to assign to a new concept: the new concept itself will be the ob-
server. With this solution, counting the concepts with observer OBS induces the instantiation of
gnx_concept<N+1,OBS>, so any specialization for indexN+1 with an observer other thanOBS
is still possible. Finally, concepts are indexed as follows.

template <class OBS>
struct gnx_concept<gnx_nb_concept<STLContainer>::value+1, OBS>
: gnx_type<STLContainer> {};

template <class OBS>
struct gnx_concept<gnx_nb_concept<STLSequence>::value+1, OBS>
: gnx_type<STLSequence> {};

[...]

To declare a concept in a single and easy instruction, as presented in the example at the start
of the section, the macrognx_declare_concept is defined.

#define gnx_declare_concept(CONCEPT) \
struct CONCEPT {}; \

\
template <class OBS> \
struct gnx_concept<gnx_nb_concept< CONCEPT >::value+1, OBS> \
: gnx_type< CONCEPT > {}

To conclude, thegnx_nb_concept metafunction requiresO(n) operations, wheren is the
number of concepts already in the program. Hence, indexingn concepts requiresO(

∑n
i=1

i) =
O(n2) operations at compile time.

3.4 Modeling and Refinement Relationships

The modeling relationships between a type and a concept, andthe refinement relationships
between two concepts are declared equally in our library with thegnx_models_concept meta-
function.

template <class TYPE_OR_CONCEPT, class CONCEPT>
struct gnx_models_concept : gnx_false {};

The primary version of the template returns false, and the relationships are declared through
specializations of the template: if typeX models conceptC (or conceptX refines conceptC), then
specializationgnx_models_concept<X,C> must return true.

template <> struct gnx_models_concept<X,C> : gnx_true {};

Notice thatgnx_models_concept provides an answer for a direct relationship only. If a type
T models a conceptC1 that refines a conceptC2, this metafunction returns false for a relationship
betweenT andC2. Additional metafunctions, necessary in our library to findany relationship
between a type and a concept (or between two concepts), are briefly presented below (see the
source code for details).

– Metafunctiongnx_direct_concepts<X> provides a list (using the typelist technique) of
all the concepts directly associated with a type (or a concept) X. It goes through all the con-
cepts using their index, and checks whetherX models (or refines) each concept using meta-
functiongnx_models_concept. Assuming that to retrieve a concept from its index (i.e.,
to call metafunctiongnx_concept) is a constant time operation,gnx_direct_concepts
requiresO(n) operations, wheren is the number of concepts in the program.
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– Metafunctiongnx_all_concepts<X> provides a list of all the concepts directly or indi-
rectly associated with a type (or a concept)X. It callsgnx_direct_concepts to list the
concepts directly related toX, and recursively gets all the concepts related to each one ofthe
direct concepts. This metafunction requiresO(n2+rn) operations, wherer is the number of
modeling and refinement relationships declared in the program: at worst, all then concepts
are asked for their direct concepts (i.e., a call to metafunction gnx_direct_concepts),
which requiresO(n2) operations; to build the final list, at worst all ther relationships are
considered, and each time the list of the currently found concepts is merged with the list
of the newly found concepts, which requiresO(rn) operations (at worst2n operations are
necessary for the merging, as it avoids duplicates).

– Metafunctiongnx_matches_concept<X,C> returns whether a type (or a concept)Xmod-
els (or refines) a conceptC, directly or indirectly. This metafunction searches forC in the
list of concepts provided by metafunctiongnx_all_concepts and requiresO(n2 + rn)
operations:O(n2 + rn) operations to build the list, andO(n) for the search.

3.5 Specialization Based on Concepts

3.5.1 Declaring Specializations

To control the specialization of a generic class with our library, an additional template param-
eter is necessary for each initial template parameter of useto control the specialization. In our
example, classSerializer has initially one parameterT that is used to control the specializa-
tion: based on different concepts thatT might model, several specializations ofSerializer are
provided. For this purpose, an additional parameter is added toSerializer.

template <class T, class = gnx_best_concept(SerializerContext,T)>
class Serializer : ErrorSpecializationNotFound<T> {};

This additional parameter is the most specialized concept that typeT models and that is
of interest for the specialization ofSerializer. This "best" concept is obtained using the
gnx_best_conceptmacro, which eases the call to metafunctiongnx_contextual_concept.

#define gnx_best_concept(CONTEXT,TYPE) \
typename gnx_contextual_concept<CONTEXT,TYPE>::type

Notice that metafunctiongnx_contextual_concept requires a "context", which is a type
that represents the context of a given specialization. Eachtemplate that uses static specialization
based on concepts requires its own context.

There are two main reasons for this notion of a context: (i) asseen previously, metafunction
gnx_nb_concept, called by many metafunctions, requires an observer to perform correctly and
to allow defining new concepts at any time, and this observer will be the context of the specializa-
tion; (ii) we want our solution to be portable on any standardC++ compiler, meaning we do not
want to modify the C++ language itself, nor to provide a preprocessor, so to know which concepts
are of interest for a given context of specialization, each one of these concepts must be associated
with the context using thegnx_uses_concept metafunction.

template <>
struct gnx_uses_concept<SerializerContext,STLContainer> : gnx_true {};

In our example, the contextSerializerContext has been declared for the specialization
of Serializer. Among others, conceptSTLContainer is used to control a specialization of
Serializer, sognx_uses_concept is specialized (the same way asgnx_models_concept)
to specify that conceptSTLContainer is used in the contextSerializerContext.
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3.5.2 Selecting the Best Specialization

Based on the list of concepts declared in a specialization context, and a taxonomy of concepts,
metafunctiongnx_contextual_concept determines the "best" concept for a typeT, meaning
the most specialized concept thatT models and that is of interest for the context of specialization.

Figure 2:Example of best concept selection.

If we consider the taxonomy of concepts of Figure 2, and a contextX that provides specializa-
tions for conceptsC1, C2 andC5 in this example, the following best concepts should be selected.

– For typeA: conceptC2, candidates areC1 andC2, butC2 is more specialized.
– For typeB: no concept, there is no candidate in the context’s list,gnx_nil is returned.
– For typeC: conceptC5, it is the only choice.
– For typeD: conceptsC1 or C5, both concepts are valid (becauseD models both), and there

is no relationship between them to determine that one is morespecialized than the other.
The selected one depends on the implementation ofgnx_contextual_concept. In our
library, the concept with the highest index is selected. Butto force the selection, one can
specializegnx_contextual_concept.

Metafunctiongnx_contextual_concept<X,T> goes through the list of all the concepts
modeled directly or indirectly by typeT (provided bygnx_all_concepts<T>), and selects the
one that does not refines directly or indirectly any other concept in the list (using metafunction
gnx_matches_concept) and that is declared in contextX. This metafunction requiresO(n2 +
rn) operations:O(n2 + rn) operations to build the list, andO(n) to select the best candidate
(becausegnx_all_concepts has already achieved all the necessarygnx_matches_concept

instantiations).

3.6 Conclusion

Several steps are necessary for concept-based specialization with our library: (i) to declare
concepts and modeling/refinement relationships in order todefine a taxonomy of concepts; (ii) for
each context of specialization, to declare the concepts that are used to control the specialization.
These steps are not monolithic, and new concepts and specializations can be defined at any time
(before the first instantiation of the affected generic component), which provides high flexibility
with minimal assumptions about components.
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The selection of the best specialization is fully automaticand safe as long as the modeling
and refinement relationships are correct. Notice that thoserelationships, declared manually with
our solution, could be automated using a mechanism to check structural conformance, such as the
StaticIsA template [12] for instance.

template <class TYPE, class CONCEPT> struct gnx_models_concept
: gnx_value<bool, StaticIsA<TYPE,CONCEPT>::valid> {};

However, a few issues appear with our solution. First, the type pattern of any template whose
specialization is controlled by concepts is altered: for each initial template parameter, an additional
"hidden" parameter may be added to get its best concept. For instance, users of theSerializer
generic class could think that this template has only one parameter, whereas it actually has two.

Secondly, the notion of an observer, which is totally hiddenfrom the user of the generic com-
ponent, has been introduced to bypass an instantiation problem withgnx_nb_concept (cf. Sec-
tion 3.3.2). However there are very specific situations where the issue remains. For instance, the
following specialization may be troublesome.

template <> class Serializer<int> { [...] };

It induces the full instantiation ofSerializer that forces the default value of the "hidden"
parameter to be instantiated, i.e.,gnx_contextual_concept<SerializerContext,int>,
which itself forcesgnx_nb_concept to be instantiated for observerSerializerContext. If
concepts are added after this code, another call to metafunction gnx_contextual_concept

with contextSerializerContext will ignore the new concepts. Hence, one should avoid to
instantiategnx_contextual_concept before the final use of the affected generic component.
In our example, the full instantiation can be avoided as follows.

template <class CONCEPT> class Serializer<int,CONCEPT> { [...] };

4 Compilation Performance

The theoretical performance of the metafunctions of our library has been studied in this paper.
We assumed some operations of the compiler to be constant time, so it is important to confirm the
theoretical performance with practical experiments. The initial implementation of the library, that
is presented in this paper, is meant for understanding and isnot optimized for compilation. Thus,
a second version of the library has been designed to optimizethe compilation time. How to use
the library remains unchanged with this new version.

The tests presented here have been performed with the optimized version of the library on an
Intel Core 2 Duo T8100 2.1 GHz with 3 GB of memory, and using GNUG++ 4.3.4 (its template
recursion limit set to 1024). Instances with different number n of concepts and numberr of
modeling/relationships in the whole program have been randomly generated (see the source code
for details). Each compilation time presented here is expressed in seconds and is the mean of
compilations of 10 different instances.

Figure 3 shows the compilation time, depending onn, for indexing concepts. As predicted
by the theoretical performance analysis, there is a quadratic dependence onn (confirmed by a
quadratic regression with a correlation coefficient10 R = 0.997).

10. R = Pearson’s correlation coefficient; the closer to1, the more the regression fits the curve.
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Figure 3:Compilation time for indexing concepts (r = 100).
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Figure 4:Compilation time forgnx_direct_concepts (50 instantiations,r = 100).

Figure 4 shows the compilation time, depending onn, of 50 instantiations of metafunction
gnx_direct_concepts (which lists the concepts that a given type, or a given concept, directly
models, or refines respectively). The theoretical performance analysis predicted a linear depen-
dence onn, but the practical results show otherwise, which we think isrelated to our assumption
that accessing a concept through its index (i.e., a call tognx_concept) was constant time. It
seems that to find a specialization of a generic, the compilermay require a number of operations
dependent on the total number of specializations for this generic. However, this non-linear depen-
dence is not so significant, as the linear regression shows a correlation coefficientR = 0.986 in
the range of our experiments, and the instantiations ofgnx_direct_concepts are only one step
of the whole compilation process.

Figures 5 and 6 show the compilation time, depending respectively onn andr, of 50 instan-
tiations ofgnx_contextual_concept (which determines the best concept of a given type in a
given specialization context). The performance of each intermediate metafunction is not shown, as
it is similar. As predicted by the theoretical performance analysis, there is a quadratic dependence
onn (confirmed withR = 1), and a linear dependence onr (confirmed withR = 0.989).
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Figure 5:Compilation time forgnx_contextual_concept (50 instantiations,r = 300).
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Figure 6:Compilation time forgnx_contextual_concept (50 instantiations,n = 80).
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Figure 7:Whole compilation time (with 30 instantiations ofgnx_contextual_concept, r = 100).
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Our library has been tested successfully on several compilers: GNU GCC from 3.4.5 to 4.4.3,
Microsoft Visual C++ 10, and Embarcadero C++ 6.20. Figures 7and 8 show the time of the whole
compilation process for those compilers, from indexing theconcepts to finding the best concept
for types in specialization contexts, depending onn andr. Notice that we were not able to test all
the instances with Embarcadero’s compiler, due to a hard limitation of 256 levels in the template
recursion.
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Figure 8:Whole compilation time (with 50 instantiations ofgnx_contextual_concept,n = 50).

5 Conclusion

This paper describes a C++ library that enables controllingthe specialization of generic com-
ponents with concepts. As concepts are not part of the C++ language yet, a solution is provided to
declare concepts and modeling/refinement relationships inorder to define a taxonomy of concepts.
It relies on an automatic indexing of the concepts that allows a retroactive extension: at any time,
new concepts and modeling/refinement relationships can be declared.

The library also provides a mechanism to automatically select the most appropriate special-
ization of a template based on concepts. Specializations ofa generic component can be defined
based on the modeling of concepts, rather than the matching of type patterns, of its parameters.
At instantiation time, a metafunction determines the most specialized concept of any type instan-
tiating a template parameter, and thus guides the selectionof the specialization of the template.
Our solution is a bit invasive because a default parameter must be added to the template to be
specialized, but after the definition of the primary versionof the template, specializations based
on concepts can be added non intrusively and retroactively.

The retroactive extension enabled by the library provides high flexibility with minimal as-
sumptions about the components: the coupling between a generic component and the types that
will instantiate its parameters is minimized. However, as our goal was to provide a standard C++
code (without any additional tool such as a preprocessor), we were not able to make the identi-
fication of the concepts used to control the specialization of a given template automatic. So the
notion of a "context of specialization" is necessary and requires to explicitly declare each concept
involved in the control of a specialization.

To conclude, a theoretical performance analysis and the performance of practical experiments
have been presented to show the compilation time overhead ofour solution. Even if a quadratic
dependence on the number of concepts has been identified, thecompilation time is reasonable for
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many applications: compiling 50 specializations with 50 concepts and 250 modeling/refinement
relationships on an average computer requires less than 5 seconds.
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