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Abstract

In generic programming, software components are parainetbon types (and sometimes static values, as
in C++) rather than dynamic values. When available, a ssgigcialization mechanism allows building, for
a given set of parameters, a more suitable version of a geo@mponent than its primary version. The
normal C++ template specialization mechanism is basedetyfie pattern (or sometimes the static value)
of parameters, which may not be accurate enough and may deahlviguities or false specializations.
This is mainly due to the fact that some relationships betvigges, which can be considered as similar in
some ways, are missing. Thus, it is not always possible &roféhe an ordering of the specializations of a
generic component.

Concepts can be used to introduce relationships betwesnildsl types: a concept represents a set
of requirements for a component that among others refes timtierface and its behavior. This report de-
scribes generic programming techniques in C++ for dedgzoncepts, "modeling” relationships (between
a type and a concept) and "refinement” relationships (betwee concepts), and for controlling template
specializations based on a taxonomy of concepts. Thisa@meties on a metaprogram that finds the most
specialized concept for a type involved in the specialimafirocess of a given generic component.

The solution presented here is open for retroactive exdanst any time, a new concept or a hew
modeling/refinement relationship can be declared, or a aewlate specialization can be defined; and this
new statement will be picked up by the specialization meismanThe control is also improved by avoiding
false specializations and many ambiguities during theiapeation process.

Keywords: generic programming, template specialization, conceget overloading/specialization, meta-
programming.

Résumé

En programmation générique, les composants logicielspamimeétrés sur des types (et parfois des valeurs
statiques, comme en C++) plut6t que sur des valeurs dynasiquand il est disponible, un mécanisme
de spécialisation statique permet de construire, pourwdgeparamétres donné, une version plus adaptée
d’'un composant générique que sa version initiale. Le méoamnormal de spécialisation d’tamplate en

C++ repose sur le patron de type (ou parfois la valeur stafida paramétres, ce qui n’est parfois pas assez
précis et peut conduire a des ambiguités ou a de fausseslsgagmins. Ceci est principalement di au fait
gue certaines relations entre types, qui peuvent étre dé@rés comme similaires d’une certaine maniére,
sont manquantes. Ainsi, il n’est pas toujours possibleathl&tun ordre des spécialisations d’un composant
générique.

Les concepts peuvent étre utilisés pour introduire desioeentre types "similaires" : un concept
représente un ensemble de spécifications pour un compasggwyent, entre autres, faire référence a son
interface et a son comportement. Ce rapport décrit des ipobs de programmation générique en C++
pour déclarer des concepts, des relations de "modélisdeatre un type et un concept) et des relations
de "raffinement" (entre deux concepts), et pour controlersigécialisations deemplates a partir d’'une
taxonomie de concepts. Ce contrdle repose sur un métapnoggaui trouve le concept le plus spécialisé
pour un type impliqué dans le processus de spécialisatiom@dmposant générique donné.

La solution présentée ici est ouverte a une extension i@ivea a tout moment, un nouveau concept
ou une nouvelle relation de modélisation/raffinement p&etd@clarée, ou une nouvelle spécialisation de
template peut étre définie ; et cette nouvelle déclaration sera pnisempte par le mécanisme de spécialisa-
tion. Le contrdle est également amélioré en évitant lesstesispécialisations et de nombreuses ambiguités
au cours du processus de spécialisation.

Mots clés : programmation générique, spécialisationteleplate, surcharge/spécialisation basée concept,
métaprogrammation.



Abstract

In generic programming, software components are paraipetbon types (and sometimes
static values, as in C++) rather than dynamic values. Whailadole, a static specialization
mechanism allows building, for a given set of parameterspeerauitable version of a generic
component than its primary version. The normal C++ tempdatecialization mechanism
is based on the type pattern (or sometimes the static vafygrameters, which may not be
accurate enough and may lead to ambiguities or false sjzatiahs. This is mainly due to the
fact that some relationships between types, which can badered as similar in some ways,
are missing. Thus, it is not always possible to determinerdaring of the specializations of
a generic component.

Concepts can be used to introduce relationships betwemmildsl types: a concept rep-
resents a set of requirements for a component that amongsatfer to its interface and its
behavior. This report describes generic programming tgcies in C++ for declaring con-
cepts, "modeling" relationships (between a type and a qhaad "refinement" relationships
(between two concepts), and for controlling template spizeitions based on a taxonomy of
concepts. This control relies on a metaprogram that findsnibst specialized concept for a
type involved in the specialization process of a given gier@mponent.

The solution presented here is open for retroactive exaensit any time, a new concept
or a new modeling/refinement relationship can be declanea new template specialization
can be defined; and this new statement will be picked up bygkeialization mechanism.
The control is also improved by avoiding false specialmadi and many ambiguities during
the specialization process.

1 Introduction

Through the notion of generic component (i.e. a componetit parameters that are types
or static values, and not only dynamic values as in functionsnethods), generic program-
ming aims at providing components (mainly algorithms ana d&ructures) as general as possible
and broadly adaptable and interoperable, without loosifigiency (when the language supports
generics without run-time overhead) [8].

1.1 Static Specialization

Similar to inheritance in object-oriented programming,ichhallows the specialization of
classes, some languages provide a mechanism to speciatieeiggcomponents. The decision
to select a specialized version of a generic component i:rmadhe compiler based on the type
signature (or static value) of parameters during instdatia Here is a C++ example of a generic
classArr ayConpar at or, that allows to compare two arrays of lengithind containing elements
of type T. A specialization fofT = char, presumably more efficient than the general version, is

proposed.

tenplate <class T, int N> class ArrayConparator {
public: static int run(const T * a, const T » b) {
int i =0;
while (i<N && a[i]==b[i]) ++i;
return (i==N? 0 : (al[i]<b[i] ? -1 : 1));
}
b

tenpl ate <int N> class ArrayConparator<char, N> {
public: static int run(const char * a, const char * b)
{ return nmenmcnp(a, b,N); }

b
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1.2 Concepts

With generic programming, the assembling of components gfu®ugh the instantiation of
the parameter types of a generic component, which arisesomoerns: (i) to ensure that an
instantiated type fulfills the requirements to be used bygi@eric component (e.d. must pro-
vide the< and == operators in thedr r ayConpar at or class); (ii) to find the best static spe-
cialization of the generic component for an instantiatgaetye.g. forT = char, specialization
Ar r ayConpar at or <char, N> must be selected).

To gain expressiveness and earliest checking in the prof@ssembling components, the no-
tion of "concept” has been introduced [3]. When specifyirigpe as parameter of a generic com-
ponent, it must follow a set of requirements called a "coticyat can be related to its interface
(e.g. existence of a method), its behavior (e.g. complefity method) or anything else relevant
to its use by the generic component. When a type fulfills tiggirements of a concept, it is said
that the type "models" the concept. The notion of specitdinebetween concepts is possible, and
is referred to as "refinement": a concept "refines" a morenjenencept. For instance, the type
i nt models the concepint egr al , and the conceptnt egr al refines the concepluneri cal .

1.3 Challenges

The concerns expressed in Section 1.2 about generic pragrgcan be addressed using
concepts.

Concern (i) is referred to as "concept checking” [14], amdgival is to detect, as soon as
possible during the compilation process, the types thad doemodel the concepts required by a
generic component. A concept acts like a contract betwesnighrs and the author of a generic
component: the author specifies requirements on the pagatgpes with concepts, and the users
must provide types that fulfill these requirements, i.eetythat model the specified concepts, to
be allowed to instantiate the generic component.

With C++, concepts can not be defined explicitly, and theyustgally only indicated in the
documentation (e.gandard Template Library [5]), which leads to late error detections, and thus
to cryptic error messages [14]. With Java, constraints eaexpressed on the parameter types of
a generic component, in the following form: parameter typaust be a "subtype” df (T is a
subtype ofu whetherT inherits clasdJ, or T implements interfac®, or T is typeU) [4]. Concepts
are thus reduced to interfaces in Java.

Concern (i) is referred to as "concept-based overloadid'but in this article, we propose to
use the term "concept-based specialization" to emphasiteve consider class as well as function
specialization. Its goal is to control the specializatiégeneric components with concepts instead
of type signatures (by signature, we mean a type or a formpef like T, or a "template template"
parameter [15]), which can lead to ambiguities (the comgida not decide between two possible
specializations) or false specializations (the compitdects the wrong specialization), as it will
be presented in Section 2.

Several attempts have been made to represent concepthwi@it language. [12, 14] pro-
pose C++ implementations for concept checking, mainly suesinterface conformance of the
instantiated types. On the other hand, [11] proposes a Cplementation for concept-based spe-
cialization. In this article, the specialization is basedbwth the SFINAE gubstitution failure is
not an error) principle [2] and a mechanism to answer to the questdmes type T model concept
C ?" (through theenabl e_i f template), but this solution may lead to ambiguifies

6. See the documentationehabl e_i f at: http://www.boost.org/doc/libs/release/libs/ugilenable_if.html
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More recently, an attempt has been initiated to define amsixte of the C++ language itself to
support concepts [6, 13], which may be added to the C++ Stdrdh and is yet available within
the experimental compiler ConceptGCC [6, 10]. In the meamtithere seems to be no satisfying
solution for concept-based specialization that avoidsiguiiles and false specializations.

1.4 Proposal

In this article, we propose a C++ implementation that fosuze the concept-based special-
ization aspect. In this solution, concepts can be definedl passibly refined, and types can be
declared as modeling one or more concepts. Then these d¢sraepbe used to specify special-
izations of generic components.

Even if this proposal does not detect directly concept mishes to provide more under-
standable errors, it needs to perform concept checkingrnitradhe specialization process. The
checking is only based on "named conformance" [12] (i.ecklo® whether a candidate has been
declared as modeling a given concept), and eludes "stalcoinformance” (i.e. check on whether
a candidate has the right interface). However, it could tesibée to add structural conformance,
as proposed in [12]. One can notice that named conformanmcbeceelated to the "concept map"
notion of [6], in the sense that the user is free to declareahgpe models a concept (without a
direct compiler checking), in order to increase the pobtés of using any generic component.

In order to follow the key ideas of generic programming [8a{nly to express components
with minimal assumptions, and to allow that the most sped| and thus presumably the most
efficient, form of a generic component is chosen), our prapakows (i) any new concept to be
modeled by a type (which can not be done with Java for instaactass must list all its interfaces
when defined, and afterward, a new interface, i.e. a new pbncan not be added); (ii) a new
specialization of a generic component to be added at any (iinreenew concept is defined, a
specialization of any generic component can be added fectricept).

Section 2 explains several issues encountered with staiciaization, and justifies the use
of concepts to bypass them. Section 3 proposes a C++ imptatimenfor concept-based special-
ization, and presents examples using this proposal. $ettahows compilation performances of
the solution depending on the number of concepts and refdtips among them in a whole code.
Full source code of all the examples and our proposal isaaitfor download.

2 Issues with Static Specialization

We present several issues that may occur during the protstgtio specialization: (i) several
types may have the same interface, and should have the satialigation; (ii) specialization
based on type signature may lead to false specializationa (iype may match several special-
izations, hence to avoid any ambiguity, a relationship ketwthe specializations is necessary.
First, these issues are illustrated with an example thaingits to provide serialization of objects.
Then, existing solutions for concept-based specialinagi® briefly recalled and discussed, using
a simpler and academic example.

7. Full source code available at: http://forge.clermomitsersite.fr/projects/show/cpp-concepts.
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2.1 Specialization Based on Type Signatures

We propose to develop a generic claSsyi al i zer, to store the state of an object into an
array of bytes (the "deflate” action), or to restore the stétn object from an array of bytes (the
"inflate" action). A general version of the class, that makeaw copy of the bytes of an object in
memory, can be proposed.

tenpl ate <class T> class Serializer {
public: static int deflate(char * copy, const T & obj);
public: static int inflate(T & obj, const char * copy);

b

This version may not be adapted for complex objects, likaainars, where the internal state
may have pointers that should not be stored (because thiggadito memory inconsistency after
restoring). If we consider "sequence containers" of the &andard Template Library [5]) like
vectors, lists..., we can provide a specialized versiogeof al i zer .

tenpl ate <class T, class ALLOC, tenplate <cl ass, cl ass> cl ass CONTAI NER>
class Serializer< CONTAI NER<T, ALLOC> > {

public: static int deflate(char * copy, const CONTAI NER<T, ALLOC> & cont);
public: static int inflate(CONTAI NER<T, ALLOC> & cont, const char * copy);

b

This specialization is based on the type signature of the &Xjuence containers: they are
generic classes with two parameters, the typéthe elements to be stored, and the typeOC of
the object used to allocate elements. Let us consider nosetsoontainers" of the STL, like sets
and maps. They have a type signature different from the oseqience containers (e.g. sets have
one more parameter to compare elements), whereas they bawenaon interface for elementary
operations, which should ideally allow to define the sameigpeation ofSeri al i zer for both
sequence and sorted containers. However, as specializabiased here on type signature, another
specialization oBeri al i zer is necessary.

tenpl ate <class T, class COW, class ALLCC,
tenpl ate <cl ass, cl ass, cl ass> cl ass CONTAI NER>
cl ass Serializer< CONTAI NER<T, COWP, ALLOC> > { ... };

Notice that with some compilers (e.g. Embarcadero — foryrigdrland — C++ 6.20 and GNU
GCC 3.4.5), this specialization is ambiguous with the onesémuence containers, presumably
due to default types for some parameters. Moreover, anywyhethis signature matches the
specialization. For instance, thed: : st ri ng class of the C++ standard library is an alias for a
type that matches the signature of sets.

std:: basic_string<char, std::char_traits<char>, std::allocator<char> >

Finally, if we consider STL maps, the signature is also d#ffe, and a specialization must be
provided forSeri al i zer < CONTAI NER<K, T, COVP, ALLOC> >, whereas maps and sets have
similar interfaces (the main difference is that sets stanglas elements and maps pairs of ele-
ments), which should ideally allow to define the same spieai@bn.
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ZaS

| « models »

Nested types

+ begin() : iterator
+ end() : iterator
+ insert(:iterator,:value_type)

Figure 1:Example of concepts for serialization.

At the beginning of the section we expressed three issu¢stiéd be addressed with con-
cepts: (i) several types with the same interface can modetrsrmn concept, and a specialization
for this concept should be provided; (ii) concepts avoiddaspecialization: if a type models a
concept, that means it has the associated requiremeintsi; &itype matches several specializa-
tions, that means it models the concepts for these spettialis, either there is no relationship
between the concepts and any specialization can be chasenga@oncept is more specialized
(through refinement) than the others, and its specializatiast be selected.

Figure 1 proposes concepts and their relationships forstample discussed in this section.
TheSi ngl e(oj ect andSTLCont ai ner concepts will allow to provide the two specializations
for Seri al i zer discussed previously: one based on raw copy, and anothérasee on the com-
mon interface of all STL containers. More specialized \@rsiofSeri al i zer will be possible
for the STLSequence andSTLSor t ed concepts, using more specific interfaces.

2.2 Existing Solutions Based on Concepts

Several solutions have already been proposed to contrtid sgzecialization with concepts.
To briefly illustrate their mechanism, we chose an exampéet@n three conceptsuneri cal ,
I nt egral andFl oati ng. Each one respectively represents requirements for noatemlues,
integral values, and floating-point values. Herio&, models botiNuneri cal andl nt egral ,
and doubl e models bothNuneri cal andFl oati ng. Moreover,| nt egral andFl oati ng
refineNuner i cal , and thus should be chosen abowsrer i cal during specialization.

2.2.1 Concept-Based Dispatch

[12] implements concepts with "static interfaces" in C+rd @roposes a dispatch mechanism
to control static specialization with concepts. The solutis based on thét at i cl sAtemplate
that provides concept checkingt ati cl sA<T, C>: : val i d is true if T models concepC. Here
is an overview of how concepts can be used to dispatch sgediahs.
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enum { 1S NUVERI CAL, |S_INTEGRAL, |S FLOATING UNSPEC FIED };

tenpl ate <class T> struct Dispatcher {
static const int which = StaticlsA<T,Floating>::valid ? | S_FLOATI NG
StaticlsA<T,Integral>::valid ? | S_| NTEGRAL
StaticlsA<T, Numerical >::valid ? | S_NUVERI CAL
UNSPECI FI ED;

b
tenpl ate <class T> struct ErrorSpecializationNot Found;

tenplate <class T, int = Dispatcher<T>::which>
struct Exanple : ErrorSpecializati onNot Found<T> {};

tenpl ate <class T> struct Exanpl e<T,|S_NUMERI CAL> { ... };
tenpl ate <class T> struct Exanpl e<T,IS FLOATING { ... };
tenpl ate <class T> struct Exanpl e<T,|S_I NTEGRAL> { ... };

A dispatcher must be defined for each generic componenttbpecialized, which can rapidly
be tedious. A more automatic solution should be providege&ally for the selection of the best
concept in the dispatch. Notice that the general versiom@fgeneric inherits a class that is not
defined, the aim being to detect, as soon as possible, thpeaan not be used for instantiation:
usually, the error appears using the instantiated comporaen the messages of the compiler
could be cryptic for the user [14], whereas with this solutithe error appears at instantiation and
the messages should be clearer for the user.

2.2.2 Concept-Based Overloading

[11] provides thesnabl e_i f template to control static specialization with concepts defi-
nition, provided in the Boost Library [1], is as follows.

tenpl ate <bool B, class T = void>
struct enable_if_c { typedef T type; };

tenpl ate <class T> struct enable_if_c<fal se, T> {};

tenpl ate <class COND, class T = voi d>
struct enable_if : enable_if_c<COND: :val ue, T> {};

The idea is that ifB is true, there is a nested type insideabl e_i f _c¢ and thus inside
enabl e_i f. Combined with the SFINAE principle [2}gnabl e_i f allows some control on
static specialization. Here is an example that tries togparfthe same specialization presented
previously with the dispatch technique.

tenpl ate <class T, class = void>
class Exanpl e : ErrorSpecializationNot Found<T> {};

tenpl ate <class T>
struct Exanpl e<T, typenane enable_if< is_nunerical <T> > :type>{ ... };

tenpl ate <class T>
struct Exanpl e<T, typenane enable_if< is_integral <T> >::type>{ ... };

tenpl ate <class T>
struct Exanpl e<T, typenane enable_if< is_floating<T> > :type>{ ... };

In this examplej s_C<T> is a generic class that is specializedi 0 C<T>: : val ue is true
if T models concepC. The SFINAE principle is: if an invalid parameter is formedritchg an
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instantiation, this instantiation is ignored. For ins@anthe instantiatioreExanpl e<i nt > in-
duces an attempt to instantigg@anpl e<i nt, t ypenane enabl e_i f< is_fl oati ng<i nt>

> : type>28, and becausenabl e i f< i s_fl oating<i nt> >has no membetrype, this spe-
cialization is not considered. If there is only one validamgiation, it is selected for specialization.
However, there remains two possible instantiationsBanpl e<i nt >, which leads to an ambi-
guity in the specialization processnt models both nt egr al andNuner i cal . This ambiguity
should ideally be avoidedt nt egr al is more specific thamureri cal , so the specialization
for I nt egr al should be chosen. A refinement relationship betwegregr al andNuner i cal
should be expressed and used to avoid this ambiguity.

3 C++ Proposal for Concept-Based Specialization

It appears that concepts are better suited to control stpécialization than type signatures,
but to our knowledge, there is no solution that addressdbeaiksues brought up in the previous
section. We propose now a C++ implementation that atteropckle these issues, while waiting
for changes in the C++ language specification. As conceptaatrpart of the C++ language yet,
a solution is first introduced to declare concepts and prlatiips (modeling and refinement) be-
tween concepts. Then, a mechanism based on concepts istpaetecontrol static specialization.

3.1 Metafunctions

To implement concept-based specialization, some fundiaignetafunctions” are necessary.
These generic classes are usual in metaprogramming ébr@aig. in the Boost Library). A meta-
function acts similarly to an ordinary function, but indez manipulating dynamic values, it deals
with "metadata”, i.e. entities that can be handled at camipite in C++: mainly types and static
integer values [1]. In order to manipulate indifferenthpégs and static values in metafunctions,
metadata are embedded inside classes, as follows

tenpl ate <class TYPE> struct gnx_type { typedef TYPE type; };

tenpl ate <cl ass TYPE, TYPE VALUE>
struct gnx_value { static const TYPE value = VALUE, };

t ypedef gnx_val ue<bool ,true> gnx_true;
t ypedef gnx_val ue<bool, fal se> gnx_fal se;

Classgnx_t ype<T> represents a type and provides a type membpee that isT itself. The
same way, clasgnx_val ue<T, V> represents a static value and provides an attribataie that
is the valuev of type T. Based on this class, the typgsx_t r ue andgnx_f al se are defined to
represent the boolean values.

The parameters of a metafunction (which are the paramefi¢ne generic class representing
the metafunction) are assumed to represent metadata (iey. ate classes with an embedded
membert ype or val ue). The "return" of a metafunction is implemented with inkence: the
metafunction inherits a class representing a metadata.vildy the metafunction itself can become
a parameter of another metafunction. Here are metafursctienessary in this section.

8. t ypenan® is necessary in C++ to confirm that the membgpe is actually a type and not a value.
9. We chose to add the prefigrix_" to all the metafunctions and macrocommands of our solution
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tenpl ate <class TYPEl, class TYPE2> struct gnx_sane : gnx_false {};
tenpl ate <class TYPE> struct gnx_same<TYPE, TYPE> : gnx_true {};

tenpl ate <class TEST, class IF, class ELSE, bool = TEST::val ue>
struct gnx_if : ELSE {};

tenpl ate <class TEST, class IF, class ELSE>
struct gnx_if<TEST,|F, ELSE, true> : |F {};

Metafunctions usually need static specialization to firliyplement their behavior. Metafunc-
tion gnx_sane returns whether two types are identicaix_sanme<T1, T2>inheritsgnx_t r ue if
T1 andT2 are identical, ognx_f al se otherwise. Thusgnx_same<T1, T2>: : val ue contains
the return of the function. Metafunctiognx_i f acts similarly to the commonf instruction:
gnx_i f <T, A, B> inheritsA if T: : val ue is true, orB otherwise. IfA andB represent metadata,
thengnx_i f <T, A, B> inherits the member nested Aor B.

3.2 Declaring Concepts

Concepts need to be identified so they can be used for stawatipation. We propose to
represent them as types. For instance, conseépCont ai ner of the example of Section 2 is
simply declared as followsst ruct STLCont ai ner {};

3.2.1 Typelists

To be manipulated during specialization, concepts neee &idred in a list. [2] provides the
"typelist" technique that allows to store types into a lidHist.

tenpl ate <cl ass CONTENT, class NEXT> struct gnx_list {
typedef CONTENT content;
typedef NEXT next ;

b

struct gnx_nil {};

Typegnx_ni | models "no type" (we chose to avoid usivgi d, as it could be a valid type to
be stored in a list), and is used to indicate the end of a I@tirfstance, to storent anddoubl e
in a list can be declared as follows.

typedef gnx_list< int,gnx_list<double,gnx_nil> > nylistl;

Operations can be defined on typelists [2], like adding a tgfmea list.

typedef gnx_list<long, nmylistl> nylist2;

However, this solution is too static: a typelist can not balified, instead a new list is created.
We need a solution where the list can be modified at compile tovadd a new concept, without
changing the identifier of the list. Typelists will neverngs be useful during the specialization
process, and operations to merge and to search lists wikbessary.
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3.2.2 Numbering Concepts

To provide a list where concepts can be added at any time, epope to design an indexed list
with a metafunction: adding a concept into the list is paried by specializing the metafunction.

tenplate <int ID> struct gnx_concept : gnx_type<gnx_nil> {};

tenpl ate <> struct gnx_concept<1> : gnx_type<STLContai ner> {};
tenpl ate <> struct gnx_concept<2> : gnx_type<STLSequence> {};

To number the concepts by hand is not acceptable, so a sokatiget the number of concepts
already indexed is necessary.

tenplate <int N = 0> struct gnx_nb_concept
gnx_i f < gnx_sane<typename gnx_concept <N+1>::type, gnx_nil >,
gnx_val ue<i nt, N>,
gnx_nb_concept <N+1>

>{}

tenpl ate <> struct gnx_concept <gnx_nb_concept <>:: val ue+1>
gnx_t ype<STLCont ai ner> {};

tenpl ate <> struct gnx_concept <gnx_nb_concept <>:: val ue+1>
gnx_t ype<STLSequence> {};

However, this solution is not working as is, because each d¢inx_nb_concept <> is used,
all the instantiations ofinx_concept , from gnx_concept <0> to gnx_concept <N+1> where
N is the number of concepts, are performed. Hence the sptiahs forSTLCont ai ner and
STLSequence can not be done, because instantiation_concept <N+1> has already been per-
formed (with the general version ghx_concept). To cope this phenomena, the counting is
parameterized with an "observer": each time the concepad t® be counted, a new observer
must be provided. Thus, to get the next available number favaconcept, this concept is used
as observer for counting.

tenplate <int ID, class OBS = gnx_nil>
struct gnx_concept : gnx_type<gnx_nil> {};

tenplate <class OBS, int N = 0> struct gnx_nb_concept
gnx_i f < gnx_sane<t ypename gnx_concept <N+1, OBS>: :type, gnx_nil >,
gnx_val ue<i nt, N>,
gnx_nb_concept <OBS, N+1>
> {};

tenpl ate <cl ass OBS>
struct gnx_concept <gnx_nb_concept <STLCont ai ner >: : val ue+1, OBS>
gnx_t ype<STLCont ai ner> {};

tenpl ate <cl ass OBS>
struct gnx_concept <gnx_nb_concept <STLSequence>: : val ue+1, OBS>
gnx_t ype<STLSequence> {};

Thegnx_nb_concept metafunction require®(n) operations, where is the number of con-
cepts already in the code. Hence, numberirgpncepts require® (Y7, i) = O(n?) operations.

#defi ne gnx_decl ar e_concept ( CONCEPT)
struct CONCEPT {};

tenpl ate <cl ass OBS>
struct gnx_concept <gnx_nb_concept < CONCEPT >::val ue+l1, OBS>
gnx_t ype< CONCEPT > {}

\
\
\
\
\
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The macrocommangdnx_decl are_concept is defined to declare concepts with a single
instruction. For the example of Section 2 (cf. Figure 1),aapts are declared as follows.

gnx_decl are_concept ( Si ngl eCbj ect) ;
gnx_decl are_concept ( Conpl ex(bj ect) ;
gnx_decl are_concept ( STLCont ai ner) ;
gnx_decl are_concept ( STLSequence) ;
gnx_decl are_concept ( STLSort ed) ;

3.3 Modeling Concepts and Refinement

The "models" relationship between types and concepts issepted with a metafunction that
answers whether a typemodels a conceft.

tenpl ate <cl ass TYPE, cl ass CONCEPT>
struct gnx_nodel s_concept : gnx_false {};

By default, the metafunction returns false, and specitdina allow to declare new relation-
ships by returning true. The refinement relationship betvwoemcepts will also be defined through
this metafunction. For the example of Section 2 (cf. Figurete following relationships are de-
clared.

tenpl ate <> struct gnx_nobdel s_concept <char, Si ngl eCbj ect> : gnx_true {};

tenpl ate <> struct gnx_nodel s_concept<int, Singl eCbject> : gnx_true {};
tenpl ate <> struct gnx_nodel s_concept <fl oat, Si ngl eGbj ect> : gnx_true {};

tenpl ate <class T>
struct gnx_nodel s_concept <std::vector<T>, STLSequence> : gnx_true {};

tenpl ate <class T>
struct gnx_nodel s_concept<std::|ist<T> STLSequence> : gnx_true {};

tenpl ate <class T>
struct gnx_nodel s_concept <std::set<T> STLSorted> : gnx_true {};

tenpl ate <class K, class T>
struct gnx_nodel s_concept <std:: map<K, T>, STLSorted> : gnx_true {};

tenpl ate <>
struct gnx_nodel s_concept <STLCont ai ner, Conpl exChj ect> : gnx_true {};

tenpl ate <>
struct gnx_nodel s_concept <STLSequence, STLCont ai ner> : gnx_true {};

tenpl ate <>
struct gnx_nodel s_concept <STLSort ed, STLCont ai ner> : gnx_true {};

Notice thatgnx_nodel s_concept provides an answer for direct relationship only. If a tfpe
models a concepil that refines a concefpR, this metafunction will return false for a relationship
betweenT andC2. Additional metafunctions, necessary to find any relatigmbetween a type
and a concept, are briefly introduced below (their completieds available for downloaf).

— gnx_di rect _concept s<T> provides a list (using the typelist technique [2]) of all the
concepts directly related to type (or concept)t goes through all the concepts using their
number, and checks wheth&models each concept usimx_nodel s_concept. As-
suming that retrieving a concept from its number (i.e. atoadinx_concept ) is a constant
time operation, metafunctiognx_di r ect _concept s requiresO(n) operations, where
is the number of concepts in the whole code.
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— gnx_mat chi ng_concept s<T> provides a list of all the concepts that a type (or a concept)
T models, even the concepts associated by refinement. Igugesli r ect _concept s to
list the concepts directly related 1 and recursively gets all the concepts related to each
one of the direct concepts. This metafunction requidés® + rn) operations, where is
the number of relationships between concepts in the whale:cat worst, all the: concepts
are asked for their direct concepts (i.e. a cajbx_di r ect _concept s), which requires
O(n?) operations; to build the final list, at worst all theelationships are considered, and
each time the list of the currently found concepts is mergeh tle list of the newly found
concepts, which require®(rn) operations (at worskn operations are necessary for the
merging, as it avoids duplicates).

— gnx_mat ches_concept <T, C> returns whether a type (or a conceptinodels a concept
C, directly or indirectly. This metafunction searchesin the list of concepts provided by
gnx_mat chi ng_concept s and require)(n? + rn) operations:O(n? + rn) operations
to build the list, and)(n) for the search.

From now on, we will make a difference between the terms "nsdend "matches”: T
modelsC' meansT is directly related taC, whereas T matchesC' meansT is directly or indirectly
related toC.

3.4 Specialization Based on Concepts
3.4.1 Declaring Specializations

Our goal is to provide specializations for a generic compof@sed on concepts. For the
example of Section 2 (cf. Figure 1), we would like to provigeeaalizations ofSeri al i zer
for Si ngl eQbj ect andSTLCont ai ner concepts. We also propose to define a specialization for
STLSor t ed that should be selected when a type matches 8otiCont ai ner andSTLSor t ed,
the latter being more specific. Here is the code ofdaei al i zer generic class with our proposal.

tenpl ate <class T, class = gnx_best_concept(SerializerContext, T)>
class Serializer : public ErrorSpecializationNot Found<T> {};

tenpl ate <class T> class Serializer<T, SingleCject>{ ... };
tenpl ate <class T> class Serializer<T, STLContainer> { ... };
tenpl ate <class T> class Serializer<T,STLSorted> { ... };

An additional parameter is provided to the generic compbiiesi is the best concept of
type T for the specialization oBeri al i zer. This best concept is automatically provided by
gnx_best _concept, which is a macrocommand to lighten the syntax for callingafusction
ghx_cont ext ual _concept .

#defi ne gnx_best _concept ( CONTEXT, TYPE) \
typenane gnx_cont ext ual _concept <CONTEXT, TYPE>: : t ype

The metafunction requires a "context", which is a type te@resents the context of a spe-
cialization: each generic component that uses static alition based on concepts requires a
different context. There are two reasons for defining thitsonoof context: (i) as seen previously,
metafunctiongnx_nb_concept, called by many other metafunctions, requires an obsenover t
perform correctly and to allow defining new concepts at amefiand this observer will be the
context of the specialization; (ii) our proposal does notifyothe C++ language itself, and we
need a mechanism to know which concepts have to be consifteracgpecific specialization.
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Back to our example, we need to explicitly indicate which aats must be considered to
specializeSeri al i zer . For that purpose, conteser i al i zer Cont ext is defined and the con-
cepts it needs are associated by the metafungtion uses_concept , whose use is similar to
gnx_nodel s_concept : it has to be specialized to indicate that a contegtovides a specializa-
tion for a concept.

struct SerializerContext {};

tenpl ate <>
struct gnx_uses_concept<Seri al i zer Cont ext, Si ngl eCbj ect> : gnx_true {};

tenpl ate <>
struct gnx_uses_concept<Seri al i zer Cont ext, STLCont ai ner> : gnx_true {};

tenpl ate <>
struct gnx_uses_concept<Seri alizerContext, STLSorted> : gnx_true {};

3.4.2 Selecting the Best Specialization

Based on the list of concepts to be considered in a spedializaontext, and the relation-
ships between concepts and types, metafungion cont ext ual _concept provides the best
concept for specialization of a given type.

If we consider the fictitious example of relationships betwéypes and concepts of Figure
2, and a contexX that provides specializations for concefts C2 andCs in this example, the
following best concepts should be selected.

For classA: conceptC2, candidates ar€l andC2, butC2 is more specific.

For classB: no concept, there is no candidate in the context’sdisk_ni | is returned.

For classC: conceptCs, it is the only choice.

For clas®D: conceptsCl or C5, both concepts are valid(matches both), and there is no re-
lationship between them to make a deterministic choice.ohteeselected for specialization
depends on the implementation (with ours, the concept Wwelntghest number is selected).
To force the selection, one can specialigex_cont ext ual _concept .

_ T~
- ~

/ \
[ « concept » |
\ C1 /
. /
« refines » AJ
— ™o
/ \
[ « concept » | « concept »
\ C2 / Cé6
. /
A e
«remes»}g T TS
: ) . N
« concept » « concept » [ « concept » |
C3 C4 \ C5s /o
. J/ !« models »
i - Rl
: « models » « models » | :

« models » | r--mmmmmmmemmeeeeeeeaan . P ——

I S R s

Figure 2:Example of best concept selection.
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Metafunctiongnx_cont ext ual _concept <X, T> goes through the list of all the concepts
matched by typd (provided bygnx_mat chi ng_concept s<T>), and selects the one that does
not match any other concept in the list (usiigx_nmat ches_concept ) and is associated with
contextX. This metafunction require®(n? + rn) operations:O(n? + rn) operations to build
the list, andO(n) to select the best candidate (becagse_nat chi ng_concept s has already
performed all the necessagyx_nmat ches_concept instantiations).

3.5 Full Example

Two examples have been presented all along this section.caneerning serialization of
objects, and the other, more fictitious and with more compédationships between concepts.
To conclude, we propose to illustrate our solution on themgda about numbers introduced in
Section 2.2.

gnx_decl are_concept (Nurreri cal ) ;
gnx_decl are_concept (I ntegral);
gnx_decl are_concept (Fl oati ng};

tenpl ate <> struct gnx_nodel s_concept<Integral, Nunerical > : gnx_true {};
tenpl ate <> struct gnx_nobdel s_concept <Fl oati ng, Nunerical > : gnx_true {};

tenpl ate <> struct gnx_nodel s_concept<int, I ntegral > : gnx_true {};
tenpl ate <> struct gnx_nodel s_concept <fl oat, Fl oati ng> ©ognx_true {};
tenpl ate <> struct gnx_nodel s_concept <MyNunber, Nunerical > : gnx_true {};

struct Exanpl eCont ext ;

tenpl ate <class T, class = gnx_best_concept (Exanpl eCont ext, T) >
struct Exanple : ErrorSpecializationNot Found<T> {};

tenpl ate <> struct gnx_uses_concept <Exanpl eCont ext, Nunerical > : gnx_true{};

tenpl ate <class T> struct Exanpl e<T, Nunerical> { ... };

tenpl ate <> struct gnx_uses_concept <Exanpl eContext, I ntegral > : gnx_true{};
tenpl ate <class T> struct Exanple<T,Integral>{ ... };

tenpl ate <> struct gnx_uses_concept <Exanpl eCont ext, Fl oati ng> : gnx_true{};
tenpl ate <class T> struct Exanpl e<T,Floating> { ... };

3.6 Conclusion

Several steps are necessary for concept-based spealizath our proposal: (i) declar-
ing concepts and defining modeling and refinement relatipasiii) declaring a specialization
context by enumerating the concepts that will be used. ThiegEs are not monolithic, and new
concepts and specializations can be defined at any timer@idfirst instantiation of the affected
generic component), which provides high flexibility withmmal assumptions about components.

The selection of the best specialization is fully automatid safe as long as the modeling and
refinement relationships are correct. Notice that thossioglships, declared manually with our
solution, can be automated using for instance3that i cl sAtemplate proposed in [12].

tenpl ate <class TYPE, class CONTEXT> struct gnx_nodel s_concept
gnx_val ue<bool , Stati cl sA<TYPE, CONCEPT>: : val i d> {};
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However, a few issues arise from our solution. First, it rfiedithe signature of the generic
components: for each classic parameter, an additionaf@dea providing its best concept may be
necessary. For instance, tBeri al i zer generic class is seen by users with a single parameter,
whereas it actually has two. Secondly, the instantiati@iem ofgnx_nb_concept (cf. Section
3.2.2) has been almost bypassed with observers, but therear specific situations where the
issue remains. For instance, the following specializati@y be troublesome.

tenplate <> class Serializer<int>{ ... };

Itimplies a full instantiation oBer i al i zer that forces the default value of the hidden param-
eter to be instantiated, i.egnx_cont ext ual _concept <Seri al i zer Cont ext , i nt >, which
itself forcesgnx_nb_concept to be instantiated for observ&eri al i zer Cont ext . If con-
cepts are added after this code, another call to metafungtia_cont ext ual _concept with
contextSeri al i zer Cont ext will ignore the new concepts. One should avoid to instamtiat
gnx_cont ext ual _concept before final use of the affected generic component. In thasrex
ple, the solution is to avoid full instantiation:

tenpl ate <cl ass CONCEPT> cl ass Serializer<int, CONCEPT> { ... };

4 Compilation Performances

Theoretical performances have been established for thafumetions of our solution. We
assumed some operations of the compiler to be constant $inié seems important to compare
these performances with practical ones. The metafunctanpresented in this paper, are not
optimized for compilation, and some template structurey head to unacceptable compilation
times. Thus, we propose an optimized version of our impleat®m ’, whose code is much less
readable, but gives better compilation times.

The tests presented here have been performed on an IntePTame T8100 2.1 GHz with
3 GB of memory, and using GNU G++ 4.3.4 (its template recur$imit set to 1024). Concepts
and relationships between them have been randomly geddamfgovide different instances to
compile. Each compilation time presented here is expregsedconds and is the mean of 10
compilations of different instances.
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Figure 3:Time for numbering concepts, dependingrotr = 100).
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Figure 3 shows the compilation time for numbering the cotgefepending on the number
of concepts in the whole code. As predicted, there is a qtiadtependence on (confirmed by
a quadratic regression with a correlation coeffict€n® = 0.997).
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Figure 4:Time for 50 instantiations ajnx_di r ect _concept s, depending om (r = 100).

Figure 4 shows the compilation time, dependingrgrfor 50 instantiations of metafunction
gnx_di rect _concepts (which finds the direct concepts of a given type or concept)hab
been predicted to be linearly dependenimgibut practical performances seem to show otherwise,
which we think is related to our assumption that retrievirmpacept from its number (i.e. a call to
gnx_concept ) was a constant time operation. It seems that to access ial&s®mn of a generic,
the compiler may require a number of operations dependetiteototal number of specializations
for the generic. However, this non linear dependence ismsignificant, as the linear regression
shows a correlation coefficiedit = 0.986 in the range of our experiment, and the instantiations
of gnx_di rect _concept s are only a single step in the whole compilation process.
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Figure 5:Time for 50 instantiations ajnx_cont ext ual _concept , depending om (r = 300).

10. R = Pearson’s correlation coefficient; the closet t¢he more the regression fits the curve.
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Figures 5 and 6 show the compilation time, depending resedcbn n andr, for 50 instanti-
ations ofgnx_cont ext ual _concept (which gets the best concept for specialization of a given
type). The performances of the intermediate metafunctiwasiot shown, as they are similar. As
predicted, there is a quadratic dependence ¢confirmed withR = 1), and a linear dependence
onr (confirmed withR = 0.989).
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Figure 6:Time for 50 instantiations ajnx_cont ext ual _concept , depending om (n = 80).

Our proposal for concept-based specialization has beegdteaccessfully on several recent
compilers: GNU GCC from 3.4.5 to 4.4.3, Embarcadero C++ @v6rosoft Visual C++ 10. Fig-
ures 7 and 8 show the time of the whole compilation procesthme compilers, from numbering
the concepts to finding the best concept for specializatiepending om andr. We were not
able to test all the instances with Embarcadero’s complle,to a hard limitation of 256 levels of
template recursion.
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Figure 7:Whole compilation time, 30 instantiations @fix_cont ext ual _concept , depending om (r = 100).
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Figure 8:Whole compilation time, 50 instantiations @fix_cont ext ual _concept , depending om (n = 50).

5 Conclusion

An implementation for the C++ language has been proposedrttral the specialization of
generic components with concepts. As concepts are not ptre €++ language yet, a solution
has first been proposed to declare concepts and relatienghipdeling and refinement) between
concepts. It is based on an automatic nhumbering of the ctsmcegich allows a flexible way
to declare new concepts and relationships: at any time, oawepts can be declared, and types
can be specified to model a concept. This ensures that if a aeeept is needed to control the
specialization of a generic component, any already defyeldan be related to this new concept.

Then, our solution proposes a mechanism based on concepisittol static specialization.
Specializations of a generic component are defined for §pecincepts, and during instantiation,
the best concept for a type in the context of a given speeat#ha is automatically found. Our
proposal is a bit invasive because a default parameter neuatitbed to the generic to specialize.
However, after the first definition of a generic, speciai@ad can be added non intrusively: at
any time, a specialization can be defined for any concepts @isures that if a specialization is
necessary for new types, it can be defined.

To perform correctly, our solution needs to identify the agmis used to define the specializa-
tions of a given generic component. As we limited our appndacexisting C++ functionalities,
we were not able to automate this aspect, and the notion afégti has to be added, and requires
to explicitly identify the concepts involved in the spe@ation of a generic component.

To conclude, theoretical and practical performances haea Ipresented to show the compi-
lation time overhead our solution may induce. Even if a qatididependence on the number of
concepts has been identified, the compilation time seemnssmahle for many applications: com-

piling 50 specializations with 50 concepts and 250 relatgps on an average computer requires
less than 5 seconds.
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