
HAL Id: hal-00641006
https://hal.science/hal-00641006v1

Submitted on 29 Nov 2011 (v1), last revised 21 Dec 2012 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generic Programming: Controlling Static Specialization
with Concepts in C++

Bruno Bachelet, Antoine Mahul, Loïc Yon

To cite this version:
Bruno Bachelet, Antoine Mahul, Loïc Yon. Generic Programming: Controlling Static Specialization
with Concepts in C++. 2010. �hal-00641006v1�

https://hal.science/hal-00641006v1
https://hal.archives-ouvertes.fr

Generic Programming: Controlling Static
Specialization with Concepts in C++

Bruno Bachelet1,4, Antoine Mahul2,5

and Loïc Yon3,4

Research ReportLIMOS/RR-10-18

December 7, 2010

1. bruno.bachelet@isima.fr - http://frog.isima.fr/bruno
2. antoine.mahul@clermont-universite.fr
3. loic.yon@isima.fr - http://www.isima.fr/˜loic
4. LIMOS, UMR 6158-CNRS, Université Blaise Pascal, BP 10125, 63173 Aubière, France.
5. CRRI, Clermont Université, BP 80026, 63177 Aubière, France.

Abstract

In generic programming, software components are parameterized on types (and sometimes static values, as
in C++) rather than dynamic values. When available, a staticspecialization mechanism allows building, for
a given set of parameters, a more suitable version of a generic component than its primary version. The
normal C++ template specialization mechanism is based on the type pattern (or sometimes the static value)
of parameters, which may not be accurate enough and may lead to ambiguities or false specializations.
This is mainly due to the fact that some relationships between types, which can be considered as similar in
some ways, are missing. Thus, it is not always possible to determine an ordering of the specializations of a
generic component.

Concepts can be used to introduce relationships between "similar" types: a concept represents a set
of requirements for a component that among others refer to its interface and its behavior. This report de-
scribes generic programming techniques in C++ for declaring concepts, "modeling" relationships (between
a type and a concept) and "refinement" relationships (between two concepts), and for controlling template
specializations based on a taxonomy of concepts. This control relies on a metaprogram that finds the most
specialized concept for a type involved in the specialization process of a given generic component.

The solution presented here is open for retroactive extension: at any time, a new concept or a new
modeling/refinement relationship can be declared, or a new template specialization can be defined; and this
new statement will be picked up by the specialization mechanism. The control is also improved by avoiding
false specializations and many ambiguities during the specialization process.

Keywords: generic programming, template specialization, concept-based overloading/specialization, meta-
programming.

Résumé

En programmation générique, les composants logiciels sontparamétrés sur des types (et parfois des valeurs
statiques, comme en C++) plutôt que sur des valeurs dynamiques. Quand il est disponible, un mécanisme
de spécialisation statique permet de construire, pour un jeu de paramètres donné, une version plus adaptée
d’un composant générique que sa version initiale. Le mécanisme normal de spécialisation d’untemplate en
C++ repose sur le patron de type (ou parfois la valeur statique) de paramètres, ce qui n’est parfois pas assez
précis et peut conduire à des ambiguïtés ou à de fausses spécialisations. Ceci est principalement dû au fait
que certaines relations entre types, qui peuvent être considérés comme similaires d’une certaine manière,
sont manquantes. Ainsi, il n’est pas toujours possible d’établir un ordre des spécialisations d’un composant
générique.

Les concepts peuvent être utilisés pour introduire des relations entre types "similaires" : un concept
représente un ensemble de spécifications pour un composant qui peuvent, entre autres, faire référence à son
interface et à son comportement. Ce rapport décrit des techniques de programmation générique en C++
pour déclarer des concepts, des relations de "modélisation" (entre un type et un concept) et des relations
de "raffinement" (entre deux concepts), et pour contrôler les spécialisations detemplates à partir d’une
taxonomie de concepts. Ce contrôle repose sur un métaprogramme qui trouve le concept le plus spécialisé
pour un type impliqué dans le processus de spécialisation d’un composant générique donné.

La solution présentée ici est ouverte à une extension rétroactive : à tout moment, un nouveau concept
ou une nouvelle relation de modélisation/raffinement peut être déclarée, ou une nouvelle spécialisation de
template peut être définie ; et cette nouvelle déclaration sera prise en compte par le mécanisme de spécialisa-
tion. Le contrôle est également amélioré en évitant les fausses spécialisations et de nombreuses ambiguïtés
au cours du processus de spécialisation.

Mots clés :programmation générique, spécialisation detemplate, surcharge/spécialisation basée concept,
métaprogrammation.

1

Abstract

In generic programming, software components are parameterized on types (and sometimes
static values, as in C++) rather than dynamic values. When available, a static specialization
mechanism allows building, for a given set of parameters, a more suitable version of a generic
component than its primary version. The normal C++ templatespecialization mechanism
is based on the type pattern (or sometimes the static value) of parameters, which may not be
accurate enough and may lead to ambiguities or false specializations. This is mainly due to the
fact that some relationships between types, which can be considered as similar in some ways,
are missing. Thus, it is not always possible to determine an ordering of the specializations of
a generic component.

Concepts can be used to introduce relationships between "similar" types: a concept rep-
resents a set of requirements for a component that among others refer to its interface and its
behavior. This report describes generic programming techniques in C++ for declaring con-
cepts, "modeling" relationships (between a type and a concept) and "refinement" relationships
(between two concepts), and for controlling template specializations based on a taxonomy of
concepts. This control relies on a metaprogram that finds themost specialized concept for a
type involved in the specialization process of a given generic component.

The solution presented here is open for retroactive extension: at any time, a new concept
or a new modeling/refinement relationship can be declared, or a new template specialization
can be defined; and this new statement will be picked up by the specialization mechanism.
The control is also improved by avoiding false specializations and many ambiguities during
the specialization process.

1 Introduction

Through the notion of generic component (i.e. a component with parameters that are types
or static values, and not only dynamic values as in functionsor methods), generic program-
ming aims at providing components (mainly algorithms and data structures) as general as possible
and broadly adaptable and interoperable, without loosing efficiency (when the language supports
generics without run-time overhead) [8].

1.1 Static Specialization

Similar to inheritance in object-oriented programming, which allows the specialization of
classes, some languages provide a mechanism to specialize generic components. The decision
to select a specialized version of a generic component is made by the compiler based on the type
signature (or static value) of parameters during instantiation. Here is a C++ example of a generic
class,ArrayComparator, that allows to compare two arrays of lengthN and containing elements
of typeT. A specialization forT = char, presumably more efficient than the general version, is
proposed.

template <class T, int N> class ArrayComparator {
public: static int run(const T * a, const T * b) {
int i = 0;
while (i<N && a[i]==b[i]) ++i;
return (i==N ? 0 : (a[i]<b[i] ? -1 : 1));

}
};

template <int N> class ArrayComparator<char,N> {
public: static int run(const char * a, const char * b)
{ return memcmp(a,b,N); }

};

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

2

1.2 Concepts

With generic programming, the assembling of components goes through the instantiation of
the parameter types of a generic component, which arises twoconcerns:(i) to ensure that an
instantiated type fulfills the requirements to be used by thegeneric component (e.g.T must pro-
vide the< and == operators in theArrayComparator class); (ii) to find the best static spe-
cialization of the generic component for an instantiated type (e.g. forT = char, specialization
ArrayComparator<char,N>must be selected).

To gain expressiveness and earliest checking in the processof assembling components, the no-
tion of "concept" has been introduced [3]. When specifying atype as parameter of a generic com-
ponent, it must follow a set of requirements called a "concept" that can be related to its interface
(e.g. existence of a method), its behavior (e.g. complexityof a method) or anything else relevant
to its use by the generic component. When a type fulfills the requirements of a concept, it is said
that the type "models" the concept. The notion of specialization between concepts is possible, and
is referred to as "refinement": a concept "refines" a more generic concept. For instance, the type
int models the conceptIntegral, and the conceptIntegral refines the conceptNumerical.

1.3 Challenges

The concerns expressed in Section 1.2 about generic programming can be addressed using
concepts.

Concern (i) is referred to as "concept checking" [14], and its goal is to detect, as soon as
possible during the compilation process, the types that does not model the concepts required by a
generic component. A concept acts like a contract between the users and the author of a generic
component: the author specifies requirements on the parameter types with concepts, and the users
must provide types that fulfill these requirements, i.e. types that model the specified concepts, to
be allowed to instantiate the generic component.

With C++, concepts can not be defined explicitly, and they areusually only indicated in the
documentation (e.g.Standard Template Library [5]), which leads to late error detections, and thus
to cryptic error messages [14]. With Java, constraints can be expressed on the parameter types of
a generic component, in the following form: parameter typeT must be a "subtype" ofU (T is a
subtype ofU whetherT inherits classU, or T implements interfaceU, or T is typeU) [4]. Concepts
are thus reduced to interfaces in Java.

Concern (ii) is referred to as "concept-based overloading"[9], but in this article, we propose to
use the term "concept-based specialization" to emphasize that we consider class as well as function
specialization. Its goal is to control the specialization of generic components with concepts instead
of type signatures (by signature, we mean a type or a form of type likeT*, or a "template template"
parameter [15]), which can lead to ambiguities (the compiler can not decide between two possible
specializations) or false specializations (the compiler selects the wrong specialization), as it will
be presented in Section 2.

Several attempts have been made to represent concepts with the C++ language. [12, 14] pro-
pose C++ implementations for concept checking, mainly to ensure interface conformance of the
instantiated types. On the other hand, [11] proposes a C++ implementation for concept-based spe-
cialization. In this article, the specialization is based on both the SFINAE (substitution failure is
not an error) principle [2] and a mechanism to answer to the question"does type T model concept
C ?" (through theenable_if template), but this solution may lead to ambiguities6.

6. See the documentation ofenable_if at: http://www.boost.org/doc/libs/release/libs/utility/enable_if.html

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

3

More recently, an attempt has been initiated to define an extension of the C++ language itself to
support concepts [6, 13], which may be added to the C++ Standard [7], and is yet available within
the experimental compiler ConceptGCC [6, 10]. In the meantime, there seems to be no satisfying
solution for concept-based specialization that avoids ambiguities and false specializations.

1.4 Proposal

In this article, we propose a C++ implementation that focuses on the concept-based special-
ization aspect. In this solution, concepts can be defined, and possibly refined, and types can be
declared as modeling one or more concepts. Then these concepts can be used to specify special-
izations of generic components.

Even if this proposal does not detect directly concept mismatches to provide more under-
standable errors, it needs to perform concept checking to control the specialization process. The
checking is only based on "named conformance" [12] (i.e. check on whether a candidate has been
declared as modeling a given concept), and eludes "structural conformance" (i.e. check on whether
a candidate has the right interface). However, it could be possible to add structural conformance,
as proposed in [12]. One can notice that named conformance can be related to the "concept map"
notion of [6], in the sense that the user is free to declare that a type models a concept (without a
direct compiler checking), in order to increase the possibilities of using any generic component.

In order to follow the key ideas of generic programming [8] (mainly to express components
with minimal assumptions, and to allow that the most specialized, and thus presumably the most
efficient, form of a generic component is chosen), our proposal allows (i) any new concept to be
modeled by a type (which can not be done with Java for instance: a class must list all its interfaces
when defined, and afterward, a new interface, i.e. a new concept, can not be added); (ii) a new
specialization of a generic component to be added at any time(if a new concept is defined, a
specialization of any generic component can be added for this concept).

Section 2 explains several issues encountered with static specialization, and justifies the use
of concepts to bypass them. Section 3 proposes a C++ implementation for concept-based special-
ization, and presents examples using this proposal. Section 4 shows compilation performances of
the solution depending on the number of concepts and relationships among them in a whole code.
Full source code of all the examples and our proposal is available for download7.

2 Issues with Static Specialization

We present several issues that may occur during the process of static specialization: (i) several
types may have the same interface, and should have the same specialization; (ii) specialization
based on type signature may lead to false specialization; (iii) a type may match several special-
izations, hence to avoid any ambiguity, a relationship between the specializations is necessary.
First, these issues are illustrated with an example that attempts to provide serialization of objects.
Then, existing solutions for concept-based specialization are briefly recalled and discussed, using
a simpler and academic example.

7. Full source code available at: http://forge.clermont-universite.fr/projects/show/cpp-concepts.

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

4

2.1 Specialization Based on Type Signatures

We propose to develop a generic class,Serializer, to store the state of an object into an
array of bytes (the "deflate" action), or to restore the stateof an object from an array of bytes (the
"inflate" action). A general version of the class, that makesa raw copy of the bytes of an object in
memory, can be proposed.

template <class T> class Serializer {
public: static int deflate(char * copy, const T & obj);
public: static int inflate(T & obj, const char * copy);

};

This version may not be adapted for complex objects, like containers, where the internal state
may have pointers that should not be stored (because they will lead to memory inconsistency after
restoring). If we consider "sequence containers" of the STL(Standard Template Library [5]) like
vectors, lists..., we can provide a specialized version ofSerializer.

template <class T, class ALLOC, template <class,class> class CONTAINER>
class Serializer< CONTAINER<T,ALLOC> > {
public: static int deflate(char * copy, const CONTAINER<T,ALLOC> & cont);
public: static int inflate(CONTAINER<T,ALLOC> & cont, const char * copy);

};

This specialization is based on the type signature of the STLsequence containers: they are
generic classes with two parameters, the typeT of the elements to be stored, and the typeALLOC of
the object used to allocate elements. Let us consider now "sorted containers" of the STL, like sets
and maps. They have a type signature different from the one ofsequence containers (e.g. sets have
one more parameter to compare elements), whereas they have acommon interface for elementary
operations, which should ideally allow to define the same specialization ofSerializer for both
sequence and sorted containers. However, as specialization is based here on type signature, another
specialization ofSerializer is necessary.

template <class T, class COMP, class ALLOC,
template <class,class,class> class CONTAINER>

class Serializer< CONTAINER<T,COMP,ALLOC> > { ... };

Notice that with some compilers (e.g. Embarcadero – formerly Borland – C++ 6.20 and GNU
GCC 3.4.5), this specialization is ambiguous with the one for sequence containers, presumably
due to default types for some parameters. Moreover, any typewith this signature matches the
specialization. For instance, thestd::string class of the C++ standard library is an alias for a
type that matches the signature of sets.

std::basic_string<char, std::char_traits<char>, std::allocator<char> >

Finally, if we consider STL maps, the signature is also different, and a specialization must be
provided forSerializer< CONTAINER<K,T,COMP,ALLOC> >, whereas maps and sets have
similar interfaces (the main difference is that sets store single elements and maps pairs of ele-
ments), which should ideally allow to define the same specialization.

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

5

Figure 1:Example of concepts for serialization.

At the beginning of the section we expressed three issues that could be addressed with con-
cepts: (i) several types with the same interface can model a common concept, and a specialization
for this concept should be provided; (ii) concepts avoid false specialization: if a type models a
concept, that means it has the associated requirements; (iii) if a type matches several specializa-
tions, that means it models the concepts for these specializations, either there is no relationship
between the concepts and any specialization can be chosen, or one concept is more specialized
(through refinement) than the others, and its specialization must be selected.

Figure 1 proposes concepts and their relationships for the example discussed in this section.
TheSingleObject andSTLContainer concepts will allow to provide the two specializations
for Serializer discussed previously: one based on raw copy, and another onebased on the com-
mon interface of all STL containers. More specialized versions ofSerializer will be possible
for theSTLSequence andSTLSorted concepts, using more specific interfaces.

2.2 Existing Solutions Based on Concepts

Several solutions have already been proposed to control static specialization with concepts.
To briefly illustrate their mechanism, we chose an example based on three concepts:Numerical,
Integral andFloating. Each one respectively represents requirements for numerical values,
integral values, and floating-point values. Hence,int models bothNumerical andIntegral,
and double models bothNumerical and Floating. Moreover,Integral and Floating
refineNumerical, and thus should be chosen aboveNumerical during specialization.

2.2.1 Concept-Based Dispatch

[12] implements concepts with "static interfaces" in C++, and proposes a dispatch mechanism
to control static specialization with concepts. The solution is based on theStaticIsA template
that provides concept checking:StaticIsA<T,C>::valid is true if T models conceptC. Here
is an overview of how concepts can be used to dispatch specializations.

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

6

enum { IS_NUMERICAL, IS_INTEGRAL, IS_FLOATING, UNSPECIFIED };

template <class T> struct Dispatcher {
static const int which = StaticIsA<T,Floating>::valid ? IS_FLOATING

: StaticIsA<T,Integral>::valid ? IS_INTEGRAL
: StaticIsA<T,Numerical>::valid ? IS_NUMERICAL
: UNSPECIFIED;

};

template <class T> struct ErrorSpecializationNotFound;

template <class T, int = Dispatcher<T>::which>
struct Example : ErrorSpecializationNotFound<T> {};

template <class T> struct Example<T,IS_NUMERICAL> { ... };
template <class T> struct Example<T,IS_FLOATING> { ... };
template <class T> struct Example<T,IS_INTEGRAL> { ... };

A dispatcher must be defined for each generic component that is specialized, which can rapidly
be tedious. A more automatic solution should be provided, especially for the selection of the best
concept in the dispatch. Notice that the general version of the generic inherits a class that is not
defined, the aim being to detect, as soon as possible, that a type can not be used for instantiation:
usually, the error appears using the instantiated component, and the messages of the compiler
could be cryptic for the user [14], whereas with this solution, the error appears at instantiation and
the messages should be clearer for the user.

2.2.2 Concept-Based Overloading

[11] provides theenable_if template to control static specialization with concepts. Its defi-
nition, provided in the Boost Library [1], is as follows.

template <bool B, class T = void>
struct enable_if_c { typedef T type; };

template <class T> struct enable_if_c<false,T> {};

template <class COND, class T = void>
struct enable_if : enable_if_c<COND::value,T> {};

The idea is that ifB is true, there is a nested type insideenable_if_c and thus inside
enable_if. Combined with the SFINAE principle [2],enable_if allows some control on
static specialization. Here is an example that tries to perform the same specialization presented
previously with the dispatch technique.

template <class T, class = void>
class Example : ErrorSpecializationNotFound<T> {};

template <class T>
struct Example<T, typename enable_if< is_numerical<T> >::type> { ... };

template <class T>
struct Example<T, typename enable_if< is_integral<T> >::type> { ... };

template <class T>
struct Example<T, typename enable_if< is_floating<T> >::type> { ... };

In this example,is_C<T> is a generic class that is specialized sois_C<T>::value is true
if T models conceptC. The SFINAE principle is: if an invalid parameter is formed during an

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

7

instantiation, this instantiation is ignored. For instance, the instantiationExample<int> in-
duces an attempt to instantiateExample<int,typename enable_if< is_floating<int>

>::type> 8, and becauseenable_if< is_floating<int> > has no membertype, this spe-
cialization is not considered. If there is only one valid instantiation, it is selected for specialization.
However, there remains two possible instantiations forExample<int>, which leads to an ambi-
guity in the specialization process:int models bothIntegral andNumerical. This ambiguity
should ideally be avoided:Integral is more specific thanNumerical, so the specialization
for Integral should be chosen. A refinement relationship betweenIntegral andNumerical
should be expressed and used to avoid this ambiguity.

3 C++ Proposal for Concept-Based Specialization

It appears that concepts are better suited to control staticspecialization than type signatures,
but to our knowledge, there is no solution that addresses allthe issues brought up in the previous
section. We propose now a C++ implementation that attempts to tackle these issues, while waiting
for changes in the C++ language specification. As concepts are not part of the C++ language yet,
a solution is first introduced to declare concepts and relationships (modeling and refinement) be-
tween concepts. Then, a mechanism based on concepts is presented to control static specialization.

3.1 Metafunctions

To implement concept-based specialization, some fundamental "metafunctions" are necessary.
These generic classes are usual in metaprogramming libraries (e.g. in the Boost Library). A meta-
function acts similarly to an ordinary function, but instead of manipulating dynamic values, it deals
with "metadata", i.e. entities that can be handled at compile time in C++: mainly types and static
integer values [1]. In order to manipulate indifferently types and static values in metafunctions,
metadata are embedded inside classes, as follows9.

template <class TYPE> struct gnx_type { typedef TYPE type; };

template <class TYPE, TYPE VALUE>
struct gnx_value { static const TYPE value = VALUE; };

typedef gnx_value<bool,true> gnx_true;
typedef gnx_value<bool,false> gnx_false;

Classgnx_type<T> represents a type and provides a type membertype that isT itself. The
same way, classgnx_value<T,V> represents a static value and provides an attributevalue that
is the valueV of typeT. Based on this class, the typesgnx_true andgnx_false are defined to
represent the boolean values.

The parameters of a metafunction (which are the parameters of the generic class representing
the metafunction) are assumed to represent metadata (i.e. they are classes with an embedded
membertype or value). The "return" of a metafunction is implemented with inheritance: the
metafunction inherits a class representing a metadata. This way the metafunction itself can become
a parameter of another metafunction. Here are metafunctions necessary in this section.

8. typename is necessary in C++ to confirm that the membertype is actually a type and not a value.
9. We chose to add the prefix "gnx_" to all the metafunctions and macrocommands of our solution.

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

8

template <class TYPE1, class TYPE2> struct gnx_same : gnx_false {};

template <class TYPE> struct gnx_same<TYPE,TYPE> : gnx_true {};

template <class TEST, class IF, class ELSE, bool = TEST::value>
struct gnx_if : ELSE {};

template <class TEST, class IF, class ELSE>
struct gnx_if<TEST,IF,ELSE,true> : IF {};

Metafunctions usually need static specialization to fullyimplement their behavior. Metafunc-
tiongnx_same returns whether two types are identical:gnx_same<T1,T2> inheritsgnx_true if
T1 andT2 are identical, orgnx_false otherwise. Thus,gnx_same<T1,T2>::value contains
the return of the function. Metafunctiongnx_if acts similarly to the commonif instruction:
gnx_if<T,A,B> inheritsA if T::value is true, orB otherwise. IfA andB represent metadata,
thengnx_if<T,A,B> inherits the member nested inA or B.

3.2 Declaring Concepts

Concepts need to be identified so they can be used for static specialization. We propose to
represent them as types. For instance, conceptSTLContainer of the example of Section 2 is
simply declared as follows:struct STLContainer {};

3.2.1 Typelists

To be manipulated during specialization, concepts need to be stored in a list. [2] provides the
"typelist" technique that allows to store types into a linked list.

template <class CONTENT, class NEXT> struct gnx_list {
typedef CONTENT content;
typedef NEXT next;

};

struct gnx_nil {};

Typegnx_nil models "no type" (we chose to avoid usingvoid, as it could be a valid type to
be stored in a list), and is used to indicate the end of a list. For instance, to storeint anddouble
in a list can be declared as follows.

typedef gnx_list< int,gnx_list<double,gnx_nil> > mylist1;

Operations can be defined on typelists [2], like adding a typeinto a list.

typedef gnx_list<long,mylist1> mylist2;

However, this solution is too static: a typelist can not be modified, instead a new list is created.
We need a solution where the list can be modified at compile time to add a new concept, without
changing the identifier of the list. Typelists will nevertheless be useful during the specialization
process, and operations to merge and to search lists will be necessary.

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

9

3.2.2 Numbering Concepts

To provide a list where concepts can be added at any time, we propose to design an indexed list
with a metafunction: adding a concept into the list is performed by specializing the metafunction.

template <int ID> struct gnx_concept : gnx_type<gnx_nil> {};

template <> struct gnx_concept<1> : gnx_type<STLContainer> {};
template <> struct gnx_concept<2> : gnx_type<STLSequence> {};

To number the concepts by hand is not acceptable, so a solution to get the number of concepts
already indexed is necessary.

template <int N = 0> struct gnx_nb_concept
: gnx_if< gnx_same<typename gnx_concept<N+1>::type,gnx_nil>,

gnx_value<int,N>,
gnx_nb_concept<N+1>

> {};

template <> struct gnx_concept<gnx_nb_concept<>::value+1>
: gnx_type<STLContainer> {};

template <> struct gnx_concept<gnx_nb_concept<>::value+1>
: gnx_type<STLSequence> {};

However, this solution is not working as is, because each time gnx_nb_concept<> is used,
all the instantiations ofgnx_concept, from gnx_concept<0> to gnx_concept<N+1> where
N is the number of concepts, are performed. Hence the specializations forSTLContainer and
STLSequence can not be done, because instantiationgnx_concept<N+1> has already been per-
formed (with the general version ofgnx_concept). To cope this phenomena, the counting is
parameterized with an "observer": each time the concepts need to be counted, a new observer
must be provided. Thus, to get the next available number for anew concept, this concept is used
as observer for counting.

template <int ID, class OBS = gnx_nil>
struct gnx_concept : gnx_type<gnx_nil> {};

template <class OBS, int N = 0> struct gnx_nb_concept
: gnx_if< gnx_same<typename gnx_concept<N+1,OBS>::type,gnx_nil>,

gnx_value<int,N>,
gnx_nb_concept<OBS,N+1>

> {};

template <class OBS>
struct gnx_concept<gnx_nb_concept<STLContainer>::value+1,OBS>
: gnx_type<STLContainer> {};

template <class OBS>
struct gnx_concept<gnx_nb_concept<STLSequence>::value+1,OBS>
: gnx_type<STLSequence> {};

Thegnx_nb_conceptmetafunction requiresO(n) operations, wheren is the number of con-
cepts already in the code. Hence, numberingn concepts requiresO(

∑n
i=1

i) = O(n2) operations.

#define gnx_declare_concept(CONCEPT) \
struct CONCEPT {}; \

\
template <class OBS> \
struct gnx_concept<gnx_nb_concept< CONCEPT >::value+1,OBS> \
: gnx_type< CONCEPT > {}

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

10

The macrocommandgnx_declare_concept is defined to declare concepts with a single
instruction. For the example of Section 2 (cf. Figure 1), concepts are declared as follows.

gnx_declare_concept(SingleObject);
gnx_declare_concept(ComplexObject);
gnx_declare_concept(STLContainer);
gnx_declare_concept(STLSequence);
gnx_declare_concept(STLSorted);

3.3 Modeling Concepts and Refinement

The "models" relationship between types and concepts is represented with a metafunction that
answers whether a typeT models a conceptC.

template <class TYPE, class CONCEPT>
struct gnx_models_concept : gnx_false {};

By default, the metafunction returns false, and specializations allow to declare new relation-
ships by returning true. The refinement relationship between concepts will also be defined through
this metafunction. For the example of Section 2 (cf. Figure 1), the following relationships are de-
clared.

template <> struct gnx_models_concept<char,SingleObject> : gnx_true {};
template <> struct gnx_models_concept<int,SingleObject> : gnx_true {};
template <> struct gnx_models_concept<float,SingleObject> : gnx_true {};

template <class T>
struct gnx_models_concept<std::vector<T>,STLSequence> : gnx_true {};

template <class T>
struct gnx_models_concept<std::list<T>,STLSequence> : gnx_true {};

template <class T>
struct gnx_models_concept<std::set<T>,STLSorted> : gnx_true {};

template <class K,class T>
struct gnx_models_concept<std::map<K,T>,STLSorted> : gnx_true {};

template <>
struct gnx_models_concept<STLContainer,ComplexObject> : gnx_true {};

template <>
struct gnx_models_concept<STLSequence,STLContainer> : gnx_true {};

template <>
struct gnx_models_concept<STLSorted,STLContainer> : gnx_true {};

Notice thatgnx_models_conceptprovides an answer for direct relationship only. If a typeT

models a conceptC1 that refines a conceptC2, this metafunction will return false for a relationship
betweenT andC2. Additional metafunctions, necessary to find any relationship between a type
and a concept, are briefly introduced below (their complete code is available for download7).

– gnx_direct_concepts<T> provides a list (using the typelist technique [2]) of all the
concepts directly related to type (or concept)T. It goes through all the concepts using their
number, and checks whetherT models each concept usinggnx_models_concept. As-
suming that retrieving a concept from its number (i.e. a callto gnx_concept) is a constant
time operation, metafunctiongnx_direct_concepts requiresO(n) operations, wheren
is the number of concepts in the whole code.

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

11

– gnx_matching_concepts<T> provides a list of all the concepts that a type (or a concept)
T models, even the concepts associated by refinement. It usesgnx_direct_concepts to
list the concepts directly related toT, and recursively gets all the concepts related to each
one of the direct concepts. This metafunction requiresO(n2 + rn) operations, wherer is
the number of relationships between concepts in the whole code: at worst, all then concepts
are asked for their direct concepts (i.e. a call tognx_direct_concepts), which requires
O(n2) operations; to build the final list, at worst all ther relationships are considered, and
each time the list of the currently found concepts is merged with the list of the newly found
concepts, which requiresO(rn) operations (at worst2n operations are necessary for the
merging, as it avoids duplicates).

– gnx_matches_concept<T,C> returns whether a type (or a concept)T models a concept
C, directly or indirectly. This metafunction searches forC in the list of concepts provided by
gnx_matching_concepts and requiresO(n2 + rn) operations:O(n2 + rn) operations
to build the list, andO(n) for the search.

From now on, we will make a difference between the terms "models" and "matches": "T
modelsC" meansT is directly related toC, whereas "T matchesC" meansT is directly or indirectly
related toC.

3.4 Specialization Based on Concepts

3.4.1 Declaring Specializations

Our goal is to provide specializations for a generic component based on concepts. For the
example of Section 2 (cf. Figure 1), we would like to provide specializations ofSerializer
for SingleObject andSTLContainer concepts. We also propose to define a specialization for
STLSorted that should be selected when a type matches bothSTLContainer andSTLSorted,
the latter being more specific. Here is the code of theSerializer generic class with our proposal.

template <class T, class = gnx_best_concept(SerializerContext,T)>
class Serializer : public ErrorSpecializationNotFound<T> {};

template <class T> class Serializer<T,SingleObject> { ... };

template <class T> class Serializer<T,STLContainer> { ... };

template <class T> class Serializer<T,STLSorted> { ... };

An additional parameter is provided to the generic component that is the best concept of
type T for the specialization ofSerializer. This best concept is automatically provided by
gnx_best_concept, which is a macrocommand to lighten the syntax for calling metafunction
gnx_contextual_concept.

#define gnx_best_concept(CONTEXT,TYPE) \
typename gnx_contextual_concept<CONTEXT,TYPE>::type

The metafunction requires a "context", which is a type that represents the context of a spe-
cialization: each generic component that uses static specialization based on concepts requires a
different context. There are two reasons for defining this notion of context: (i) as seen previously,
metafunctiongnx_nb_concept, called by many other metafunctions, requires an observer to
perform correctly and to allow defining new concepts at any time, and this observer will be the
context of the specialization; (ii) our proposal does not modify the C++ language itself, and we
need a mechanism to know which concepts have to be consideredfor a specific specialization.

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

12

Back to our example, we need to explicitly indicate which concepts must be considered to
specializeSerializer. For that purpose, contextSerializerContext is defined and the con-
cepts it needs are associated by the metafunctiongnx_uses_concept, whose use is similar to
gnx_models_concept: it has to be specialized to indicate that a contextX provides a specializa-
tion for a conceptC.

struct SerializerContext {};

template <>
struct gnx_uses_concept<SerializerContext,SingleObject> : gnx_true {};

template <>
struct gnx_uses_concept<SerializerContext,STLContainer> : gnx_true {};

template <>
struct gnx_uses_concept<SerializerContext,STLSorted> : gnx_true {};

3.4.2 Selecting the Best Specialization

Based on the list of concepts to be considered in a specialization context, and the relation-
ships between concepts and types, metafunctiongnx_contextual_concept provides the best
concept for specialization of a given type.

If we consider the fictitious example of relationships between types and concepts of Figure
2, and a contextX that provides specializations for conceptsC1, C2 andC5 in this example, the
following best concepts should be selected.

– For classA: conceptC2, candidates areC1 andC2, butC2 is more specific.
– For classB: no concept, there is no candidate in the context’s list,gnx_nil is returned.
– For classC: conceptC5, it is the only choice.
– For classD: conceptsC1 or C5, both concepts are valid (D matches both), and there is no re-

lationship between them to make a deterministic choice. Theone selected for specialization
depends on the implementation (with ours, the concept with the highest number is selected).
To force the selection, one can specializegnx_contextual_concept.

Figure 2:Example of best concept selection.

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

13

Metafunctiongnx_contextual_concept<X,T> goes through the list of all the concepts
matched by typeT (provided bygnx_matching_concepts<T>), and selects the one that does
not match any other concept in the list (usinggnx_matches_concept) and is associated with
contextX. This metafunction requiresO(n2 + rn) operations:O(n2 + rn) operations to build
the list, andO(n) to select the best candidate (becausegnx_matching_concepts has already
performed all the necessarygnx_matches_concept instantiations).

3.5 Full Example

Two examples have been presented all along this section: oneconcerning serialization of
objects, and the other, more fictitious and with more complexrelationships between concepts.
To conclude, we propose to illustrate our solution on the example about numbers introduced in
Section 2.2.

gnx_declare_concept(Numerical);
gnx_declare_concept(Integral);
gnx_declare_concept(Floating};

template <> struct gnx_models_concept<Integral,Numerical> : gnx_true {};
template <> struct gnx_models_concept<Floating,Numerical> : gnx_true {};

template <> struct gnx_models_concept<int,Integral> : gnx_true {};
template <> struct gnx_models_concept<float,Floating> : gnx_true {};
template <> struct gnx_models_concept<MyNumber,Numerical> : gnx_true {};

struct ExampleContext;

template <class T,class = gnx_best_concept(ExampleContext,T)>
struct Example : ErrorSpecializationNotFound<T> {};

template <> struct gnx_uses_concept<ExampleContext,Numerical> : gnx_true{};

template <class T> struct Example<T,Numerical> { ... };

template <> struct gnx_uses_concept<ExampleContext,Integral> : gnx_true{};

template <class T> struct Example<T,Integral> { ... };

template <> struct gnx_uses_concept<ExampleContext,Floating> : gnx_true{};

template <class T> struct Example<T,Floating> { ... };

3.6 Conclusion

Several steps are necessary for concept-based specialization with our proposal: (i) declar-
ing concepts and defining modeling and refinement relationships; (ii) declaring a specialization
context by enumerating the concepts that will be used. Thesesteps are not monolithic, and new
concepts and specializations can be defined at any time (before the first instantiation of the affected
generic component), which provides high flexibility with minimal assumptions about components.

The selection of the best specialization is fully automaticand safe as long as the modeling and
refinement relationships are correct. Notice that those relationships, declared manually with our
solution, can be automated using for instance theStaticIsA template proposed in [12].

template <class TYPE, class CONTEXT> struct gnx_models_concept
: gnx_value<bool,StaticIsA<TYPE,CONCEPT>::valid> {};

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

14

However, a few issues arise from our solution. First, it modifies the signature of the generic
components: for each classic parameter, an additional parameter providing its best concept may be
necessary. For instance, theSerializer generic class is seen by users with a single parameter,
whereas it actually has two. Secondly, the instantiation problem ofgnx_nb_concept (cf. Section
3.2.2) has been almost bypassed with observers, but there are very specific situations where the
issue remains. For instance, the following specializationmay be troublesome.

template <> class Serializer<int> { ... };

It implies a full instantiation ofSerializer that forces the default value of the hidden param-
eter to be instantiated, i.e.gnx_contextual_concept<SerializerContext,int>, which
itself forcesgnx_nb_concept to be instantiated for observerSerializerContext. If con-
cepts are added after this code, another call to metafunction gnx_contextual_concept with
contextSerializerContext will ignore the new concepts. One should avoid to instantiate
gnx_contextual_concept before final use of the affected generic component. In this exam-
ple, the solution is to avoid full instantiation:

template <class CONCEPT> class Serializer<int,CONCEPT> { ... };

4 Compilation Performances

Theoretical performances have been established for the metafunctions of our solution. We
assumed some operations of the compiler to be constant time,so it seems important to compare
these performances with practical ones. The metafunctions, as presented in this paper, are not
optimized for compilation, and some template structures may lead to unacceptable compilation
times. Thus, we propose an optimized version of our implementation 7, whose code is much less
readable, but gives better compilation times.

The tests presented here have been performed on an Intel Core2 Duo T8100 2.1 GHz with
3 GB of memory, and using GNU G++ 4.3.4 (its template recursion limit set to 1024). Concepts
and relationships between them have been randomly generated to provide different instances to
compile. Each compilation time presented here is expressedin seconds and is the mean of 10
compilations of different instances.

−20

 0

 20

 40

 60

 80

 100

 120

 140

 40 60 80 100 120 140 160 180 200

C
om

pi
la

tio
n

T
im

e
(s

)

Number of Concepts

Measure
Quadratic Regression (R=0.997)

Figure 3:Time for numbering concepts, depending onn (r = 100).

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

15

Figure 3 shows the compilation time for numbering the concepts, depending on the numbern
of concepts in the whole code. As predicted, there is a quadratic dependence onn (confirmed by
a quadratic regression with a correlation coefficient10 R = 0.997).

−10

 0

 10

 20

 30

 40

 50

 40 60 80 100 120 140 160 180 200

C
om

pi
la

tio
n

T
im

e
(s

)

Number of Concepts

Measure
Linear Regression (R=0.986)

Figure 4:Time for 50 instantiations ofgnx_direct_concepts, depending onn (r = 100).

Figure 4 shows the compilation time, depending onn, for 50 instantiations of metafunction
gnx_direct_concepts (which finds the direct concepts of a given type or concept). It has
been predicted to be linearly dependent onn, but practical performances seem to show otherwise,
which we think is related to our assumption that retrieving aconcept from its number (i.e. a call to
gnx_concept) was a constant time operation. It seems that to access a specialization of a generic,
the compiler may require a number of operations dependent onthe total number of specializations
for the generic. However, this non linear dependence is not so significant, as the linear regression
shows a correlation coefficientR = 0.986 in the range of our experiment, and the instantiations
of gnx_direct_concepts are only a single step in the whole compilation process.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 50 60 70 80 90 100 110 120 130 140

C
om

pi
la

tio
n

T
im

e
(s

)

Number of Concepts

Measure
Quadratic Regression (R=1)

Figure 5:Time for 50 instantiations ofgnx_contextual_concept, depending onn (r = 300).

10. R = Pearson’s correlation coefficient; the closer to1, the more the regression fits the curve.

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

16

Figures 5 and 6 show the compilation time, depending respectively onn andr, for 50 instanti-
ations ofgnx_contextual_concept (which gets the best concept for specialization of a given
type). The performances of the intermediate metafunctionsare not shown, as they are similar. As
predicted, there is a quadratic dependence onn (confirmed withR = 1), and a linear dependence
on r (confirmed withR = 0.989).

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600 700 800

C
om

pi
la

tio
n

T
im

e
(s

)

Number of Relationships

Measure
Linear Regression (R=0.989)

Figure 6:Time for 50 instantiations ofgnx_contextual_concept, depending onr (n = 80).

Our proposal for concept-based specialization has been tested successfully on several recent
compilers: GNU GCC from 3.4.5 to 4.4.3, Embarcadero C++ 6.20, Microsoft Visual C++ 10. Fig-
ures 7 and 8 show the time of the whole compilation process forthose compilers, from numbering
the concepts to finding the best concept for specialization,depending onn andr. We were not
able to test all the instances with Embarcadero’s compiler,due to a hard limitation of 256 levels of
template recursion.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 30 40 50 60 70 80 90 100

C
om

pi
la

tio
n

T
im

e
(s

)

Number of Concepts

GCC
Visual

Embarcadero

Figure 7:Whole compilation time, 30 instantiations ofgnx_contextual_concept, depending onn (r = 100).

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

17

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500

C
om

pi
la

tio
n

T
im

e
(s

)

Number of Relationships

GCC
Visual

Embarcadero

Figure 8:Whole compilation time, 50 instantiations ofgnx_contextual_concept, depending onr (n = 50).

5 Conclusion

An implementation for the C++ language has been proposed to control the specialization of
generic components with concepts. As concepts are not part of the C++ language yet, a solution
has first been proposed to declare concepts and relationships (modeling and refinement) between
concepts. It is based on an automatic numbering of the concepts, which allows a flexible way
to declare new concepts and relationships: at any time, new concepts can be declared, and types
can be specified to model a concept. This ensures that if a new concept is needed to control the
specialization of a generic component, any already defined type can be related to this new concept.

Then, our solution proposes a mechanism based on concepts tocontrol static specialization.
Specializations of a generic component are defined for specific concepts, and during instantiation,
the best concept for a type in the context of a given specialization is automatically found. Our
proposal is a bit invasive because a default parameter must be added to the generic to specialize.
However, after the first definition of a generic, specializations can be added non intrusively: at
any time, a specialization can be defined for any concept. This ensures that if a specialization is
necessary for new types, it can be defined.

To perform correctly, our solution needs to identify the concepts used to define the specializa-
tions of a given generic component. As we limited our approach to existing C++ functionalities,
we were not able to automate this aspect, and the notion of "context" has to be added, and requires
to explicitly identify the concepts involved in the specialization of a generic component.

To conclude, theoretical and practical performances have been presented to show the compi-
lation time overhead our solution may induce. Even if a quadratic dependence on the number of
concepts has been identified, the compilation time seems reasonable for many applications: com-
piling 50 specializations with 50 concepts and 250 relationships on an average computer requires
less than 5 seconds.

References

[1] David Abrahams and Aleksey Gurtovoy.C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond. Addison-Wesley, 2004.

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

18

[2] Andrei Alexandrescu.Modern C++ Design: Generic Programming and Design Patterns
Applied. Addison-Wesley, 2001.

[3] Matthew H. Austern. Generic Programming and the STL: Using and Extending the C++
Standard Template Library. Addison-Wesley, 1999.

[4] Gilad Bracha. Generics in the Java Programming Language. Technical report, Sun Microsys-
tems, 2004.

[5] Silicon Graphics. Standard Template Library Programmer’s Guide. Web site.
http://www.sgi.com/tech/stl/.

[6] Douglas Gregor, Jaakko Järvi, Jeremy Siek, Bjarne Stroustrup, Gabriel Dos Reis, and An-
drew Lumsdaine. Concepts: Linguistic Support for Generic Programming in C++. InPro-
ceedings of OOPSLA’06, pages 291–310, 2006.

[7] Douglas Gregor, Bjarne Stroustrup, Jeremy Siek, and James Widman. Proposed Wording for
Concepts (Revision 3). Technical report, N2421=07-0281, ISO/IEC JTC 1, 2007.

[8] Mehdi Jazayeri, Rüdiger Loos, David Musser, and Alexander Stepanov. Generic Program-
ming. InReport of the Dagstuhl Seminar on Generic Programming, 1998.

[9] Jaakko Järvi, Douglas Gregor, Jeremiah Willcock, Andrew Lumsdaine, and Jeremy G. Siek.
Algorithm Specialization in Generic Programming: Challenges of Constrained Generics in
C++. In Proceedings of PLDI’06. ACM Press, 2006.

[10] Jaakko Järvi, Mat Marcus, and Jacob N. Smith. Programming with C++ Concepts. InScience
of Computer Programming, volume 75, pages 596–614. Elsevier, 2010.

[11] Jaakko Järvi, Jeremiah Willcock, and Andrew Lumsdaine. Concept-Controlled Polymor-
phism. In Lecture Notes in Computer Science, volume 2830, pages 228–244. Springer-
Verlag, 2003.

[12] Brian McNamara and Yannis Smaragdakis. Static Interfaces in C++. InFirst Workshop on
C++ Template Programming, 2000.

[13] Gabriel Dos Reis and Bjarne Stroustrup. Specifying C++Concepts. InProceedings of
POPL’06, pages 295–308. ACM Press, 2006.

[14] Jeremy G. Siek and Andrew Lumsdaine. Concept Checking:Binding Parametric Polymor-
phism in C++. InFirst Workshop on C++ Template Programming, 2000.

[15] Roland Weiss and Volker Simonis. Exploring Template Template Parameters. InLecture
Notes in Computer Science, volume 2244, pages 500–510. Springer-Verlag, 2001.

Research Report LIMOS/RR-10-18
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2010.

