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DECIDABILITY OF THE HD0L ULTIMATE PERIODICITY

PROBLEM

FABIEN DURAND

Abstract. In this paper we prove the decidability of the HD0L ultimate pe-
riodicity problem.

1. Introduction

1.1. The HD0L ultimate periodicity problem. In this paper we prove the
decidability of the following problem :

Input: Two finite alphabets, a substitution σ : A∗ → A∗ prolongable on the letter
a, a morphism φ : A∗ → B∗.
Question: Do there exist two words u and v such that the morphic sequence
φ(σω(a)) is equal to uvω (i.e., is ultimately periodic)?

We will refer to it as the HD0L ultimate periodicity problem.

Theorem 1. The HD0L ultimate periodicity problem is decidable.

This result was announced in [Durand preprint 2011]. While we were ending the
redaction of this paper, I. Mitrofanov put on Arxiv [Mitrofanov preprint 2011] an-
other solution of this problem.
This problem was open for about 30 years.
In 1986, positive answers were given independently for D0L systems (or purely
substitutive sequences) in both [Harju and Linna 1986] and [Pansiot 1986], and,
for automatic sequences (which are particular HD0L sequences) in [Honkala 1986].
Other proofs have been given for the D0L case in [Honkala 2008] and for automatic
sequences in [Allouche, Rampersad and Shallit 2009].
Recently in [Durand preprint 2011] the primitive case has been solved.
In [Honkala and Rigo 2004] is given an equivalent statement of the HD0L ulti-
mate periodicity problem in terms of recognizable sets of integers and abstract
numeration systems. In fact, J. Honkala already gave a positive answer to this
question in [Honkala 1986] but in the restricted case of the usual integer bases,
i.e., for k-automatic sequences or constant length substitutive sequences. Recently,
in [Bell, Charlier, Fraenkel, and Rigo 2009], a positive answer has been given for a
(large) class of numeration systems including for instance the Fibonacci numeration
system.
Let us point out that the characterization of recognizable sets of integers for ab-
stract numeration systems in terms of substitutions given in [Maes and Rigo 2002]
(see also [Lecomte and Rigo 2010]), together with Theorem 1, provides a decision
procedure to test whether a recognizable set of integers in some abstract numeration
system is a finite union of arithmetic progressions.
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1.2. Organization of the paper. In Section 2 are the classical definitions. The
proof of the HD0L ultimate periodicity problem is in Section 3. It could be sketched
as follows. First we recall some primitivity arguments about matrices and substitu-
tions. The ”best or easiest situation”is when we deal with growing substitutions and
codings (letter-to-letter morphisms). It is known that we can always consider we are
working with codings (see [Cobham 1968, Pansiot 1983, Allouche and Shallit 2003,
Cassaigne and Nicolas 2003, Honkala 2009]). But from these proofs it is not clear
that this could be algorithmically done. Thus we provide an algorithm using the
proof of [Cassaigne and Nicolas 2003] where we replace some (non-algorithmic) ar-
guments (Lemma 2, Lemma 3 and Lemme 4 of this paper) by algorithmic ones.
Then we show with simple and algorithmic arguments that we can suppose we are
working with non-erasing substitutions.
We treat separately growing and non-growing substitutions. For growing substi-
tutions we look at their primitive components and we use the decidability result
established in [Durand preprint 2011] about periodicity for primitive substitutions.
Indeed, these primitive components should generate periodic sequences. Hence, we
check it is the case (if not, then the sequence is not ultimately periodic). From
there, Lemma 11 allows us to conclude.
For the non-growing case we use a result of Pansiot [Pansiot 1984] saying that we
can either consider we are in the growing case or there are longer and longer periodic
words with the same period in the sequence. From there, we again conclude with
Lemma 11.

1.3. Questions and comments. We did not compute the complexity of the algo-
rithm provided by our proof of the HD0L ultimate periodicity problem. Looking at
Proposition 4 and the results in [Durand preprint 2011] we use here, our approach
provides a high complexity.
Our result is for one-dimensional sequences. What can be said about multidimen-
sional sequences generated by substitution rules ? or self-similar tilings ? It seems
hopeless to generalize our method to tilings, although the main and key result
we use to solve the HD0L ultimate periodicity problem (that is, the main result
in [Durand 1998], see [Durand preprint 2011]) has been generalized to higher di-
mensions by N. Priebe in [Priebe 2000] (see also [Priebe and Solomyak 2001]). But
observe that in [Leroux 2005] the author gives a polynomial time algorithm to know
whether or not a Number Decision Diagram defines a Presburger definable set (see
also [Muchnik 2003] where it was first proven but with a much higher complex-
ity). From this result and [Cerný and Gruska 1986a, Salon 1986, Salon 1987] it is
decidable to know whether a multidimensional automatic sequence (or fixed point
of a multidimensional ”uniform” substitution) has certain type of periodicity (see
[Leroux 2005, Muchnik 2003]). From [Durand and Rigo preprint 2011] this type of
periodicity is equivalent to a block complexity condition.

2. Words, morphisms, substitutive and HD0L sequences

In this section we recall classical definitions and notation. Observe that the notion
of substitution we use below could be slightly different from other definitions in the
litterature.

2.1. Words and sequences. An alphabet A is a finite set of elements called letters.
Its cardinality is |A|. A word over A is an element of the free monoid generated
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by A, denoted by A∗. Let x = x0x1 · · ·xn−1 (with xi ∈ A, 0 ≤ i ≤ n − 1) be a
word, its length is n and is denoted by |x|. The empty word is denoted by ǫ, |ǫ| = 0.
The set of non-empty words over A is denoted by A+. The elements of AN are
called sequences. If x = x0x1 · · · is a sequence (with xi ∈ A, i ∈ N) and I = [k, l]
an interval of N we set xI = xkxk+1 · · ·xl and we say that xI is a factor of x. If
k = 0, we say that xI is a prefix of x. The set of factors of length n of x is written
Ln(x) and the set of factors of x, or the language of x, is denoted by L(x). The
occurrences in x of a word u are the integers i such that x[i,i+|u|−1] = u. If u has
an occurrence in x, we also say that u appears in x. When x is a word, we use the
same terminology with similar definitions.
The sequence x is ultimately periodic if there exist a word u and a non-empty word
v such that x = uvω, where vω = vvv · · · . In this case v is called a word period and
|v| is called a length period of x. It is periodic if u is the empty word. A word u is
recurrent in x if it appears in x infinitely many times.

2.2. Morphisms and matrices. Let A and B be two alphabets. Let σ be a
morphism from A∗ to B∗. When σ(A) = B, we say σ is a coding. We say σ is
erasing if there exists b ∈ A such that σ(b) is the empty word. Such a letter is
called erasing letter. If σ(A) is included in B+, it induces by concatenation a map
from AN to BN. This map is also denoted by σ. With the morphism σ is naturally
associated its incidence matrix Mσ = (mi,j)i∈B,j∈A where mi,j is the number of
occurrences of i in the word σ(j).
Let σ be an endomorphism. We say it is primitive whenever its incidence matrix is
primitive (i.e., when it has a power with positive coefficients). We denote by L(σ)
the set of words having an occurrence in some image of σn for some n ∈ N.

2.3. Substitutions and substitutive sequences. We say that an endomorphism
σ : A∗ → A∗ is prolongable on a ∈ A if there exists a word u ∈ A+ such that
σ(a) = au and moreover, if limn→+∞ |σn(a)| = +∞. Prolongable endomorphisms
are called substitutions.
We say a letter b ∈ A is growing (w.r.t. σ) if limn→+∞ |σn(b)| = +∞. We say σ is
growing whenever all letters of A are growing.
Since for all n ∈ N, σn(a) is a prefix of σn+1(a) and because |σn(a)| tends to infinity
with n, the sequence (σn(aaa · · · ))n≥0 converges (for the usual product topology
on AN) to a sequence denoted by σω(a). The endomorphism σ being continuous for
the product topology, σω(a) is a fixed point of σ: σ(σω(a)) = σω(a). A sequence
obtained in this way (by iterating a prolongable substitution) is said to be purely
substitutive (w.r.t. σ). If x ∈ AN is purely substitutive and φ : A∗ → B∗ is a
morphism then the sequence y = φ(x) is said to be a morphic sequence (w.r.t.
(σ, φ)). When φ is a coding, we say y is substitutive (w.r.t. (σ, φ)).
The language of σ : A∗ → A∗, denoted by L(σ), is the set of words having an
occurrence in σn(b) for some n ∈ N and b ∈ A.

2.4. D0L and HD0L sequences. A D0L system is a triple G = (A, h, u) where
A is a finite alphabet, σ : A∗ → A∗ is an endomorphism and u is a word in A∗. A
HD0L system is a 5-tuple G = (A,B, σ, φ, u) where (A, h, u) is a D0L system, B is
a finite alphabet and φ : A∗ → B∗ is a morphism.
If the sequence (σn(uuu · · · ))n (resp. (φ(σn(uuu · · · )) converges in AN (resp. BN),
we denote its limit by w(G). It is not difficult to prove that w(G) is a morphic
sequence and that this can be algorithmically shown.
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It is important to note that it is decidable to know whether w(G) exists. This is
left as an exercise. Thus, the HD0L ultimate periodicity problem also holds for the
sequences w(G) where G is a HD0L system.

3. Ultimate periodicity of HD0L sequences

In the sequel σ : A∗ → A∗ is a substitution prolongable on a, φ : A∗ → B∗ is
a morphism, y = σω(a) and x = φ(y) is a sequence of BN. We have to find an
algorithm telling if x is ultimately periodic or not.

3.1. Primitiveness assumption and sub-substitutions. We recall that the
HD0L ultimate periodicity problem is already known in the primitive case.

Theorem 2. [Durand preprint 2011] The HD0L ultimate periodicity problem is
decidable in the context of primitive substitutions. Moreover, a word period can be
explicitly computed.

Proof. The first part is Theorem 26 in [Durand preprint 2011]. The second part
can be easily deduced from the proof of this theorem. �

The following lemma shows that is is decidable to check that a nonnegative matrix
is primitive.

Lemma 3. [Horn and Johnson 1990] The n×n nonnegative matrix M is primitive

if and only if Mn2−2n+2 has positive entries.

From Lemma 3, Section 4.4 and Section 4.5 in [Lind and Marcus 1995] we deduce
following proposition.

Proposition 4. Let M = (mi,j)i,j∈A be a matrix with non-negative coefficients.
There exists three positive integer p 6= 0, q, l, where q ≤ l − 1, and a partition
{Ai; 1 ≤ i ≤ l} of A such that

Mp =





























A1 A2 · · · Aq Aq+1 Aq+2 · · · Al

A1 M1 0 · · · 0 0 0 · · · 0
A2 M1,2 M2 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
...

Aq M1,q M2,q · · · Mq 0 0 · · · 0
Aq+1 M1,q+1 M2,q+1 · · · Mq,q+1 Mq+1 0 · · · 0
Aq+2 M1,q+2 M2,q+2 · · · Mq,q+2 0 Mq+2 · · · 0
...

...
...

. . .
...

...
...

. . .
...

Al M1,l M2,l · · · Mq,l 0 0 · · · Ml





























,

where the matrices Mi have only positive entries or are equal to zero. Moreover,
the partition and p can be algorithmically computed.

Thus we have the following corollary whose proof can be given without to use this
proposition.

Corollary 5. One can decide whether a substitution has erasing letters and non-
growing letters.

The following corollary will be helpful to change the representation of x (in terms
of (σ, φ)) to a more convenient representation.
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Corollary 6. Let τ : A∗ → A∗ be an endomorphism whose incidence matrix has
the form of Mp in Proposition 4. Then for all b ∈ A and all j ≥ 1 the letters having

an occurrence in
(

σ|A|
)j

(b) or
(

σ|A|
)j+1

(b) are the same.

In what follows we keep the notation of Proposition 4. We will say that {Ai; 1 ≤
i ≤ l} is a primitive component partition of A (with respect to M), the Ai being
the primitive components. If i belongs to {q + 1, · · · , l} we will say that Ai is a
principal primitive component of A (with respect to M).
Let τ : A∗ → A∗ be a substitution whose incidence matrix has the form of Mp in
Proposition 4. Let i ∈ {q + 1, · · · , l}. We denote τi the restriction τ/Ai

: A∗
i →

A∗ of τ to A∗
i . Because τi(Ai) is included in A∗

i we can consider that τi is an
endomorphism of A∗

i whose incidence matrix is Mi. When it defines a substitution,
we say it is a sub-substitution of τ . Moreover the matrixMi has positive coefficients
which implies that the substitution τi is primitive.
A non-trivial primitive endomorphism always has some power that is a substitution.
For non-primitive endomorphisms we have the following corollary.

Corollary 7. Let τ : A∗ → A∗ be an endomorphism whose incidence matrix has
the form of Mp in Proposition 4. Then, with the notation of Proposition 4, there
exists k ≤ |A||A| satisfying : for all i ≥ q + 1 such that Mi is neither a null matrix
nor the 1×1 matrix [1], the endomorphism τki is a (primitive) substitution for some
letter in Ai.

The following lemma is easy to establish.

Lemma 8. Let x = φ(σω(a)). If x = uvω, where v is not the empty word, then
each sub-substitution σ′ of σ such that L(σ′) ⊂ L(σω(a)) verifies φ(L(σ′)) = L(vω).

3.2. Reduction of the problem. It may happen, as for σ defined by a 7→ ab,
b 7→ a, c 7→ c, that some letter of the alphabet, here the alphabet is {a, b, c}, does
not appear in σω(a). It is preferable to avoid this situation. Corollary 6 enables us
to avoid this algorithmically. Indeed, from Proposition 4, taking a power of σ (that
can be algorithmically found) if needed, we can suppose

(P1) the incidence matrix of σ has the form of Mp in Proposition 4.

Then, consider σ|A| instead of σ. Hence, σ will continue to satisfy (P1) and, from
Corollary, 6 we have

(P2) for all b ∈ A and all j ≥ 1 the letters having an occurrence in σj(b) or
σj+1(b) are the same.

Let A′ be the set of letters appearing in σω(a). From (P2) it can be checked that
σ(A′) is included in A′∗ and that the set of letters appearing in σ(a) is A′. Thus
σ′, the restriction of σ to A′, defines a substitution prolongable on a satisfying
σ′ω(a) = σω(a) such that all letters of A′ have an occurrence in σ′ω(a) and all
letters of A′ occur in σ′(a).
When we work with morphic sequences it is much simpler to handle non-erasing
substitutions and even better to suppose that φ is a coding. Such a reduction is
possible as shown in [Cassaigne and Nicolas 2003].

Theorem 9. Let x be a morphic sequence. Then, x is substitutive with respect to
a non-erasing substitution.

This result was previously proven in [Cobham 1968] and [Pansiot 1983] (see also
[Allouche and Shallit 2003] and [Honkala 2009]). But here as we are interested in
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decidable issues, we need more. The proof of J. Cassaigne and F. Nicolas is short and
inspired by [Durand 1998]. This is the second part of this proof that corresponds to
[Durand 1998]. It is clearly algorithmic. Whereas the first part (Lemma 2, Lemma
3 and Lemma 4 of [Cassaigne and Nicolas 2003]) is not because it uses the fact that
from any sequence of integers, we can extract a subsequence that is either constant
or strictly increasing. They use these lemmas to show the key point of their proof :
we can always suppose that φ and σ fulfill the following :

(3.1) |φ(σ(a))| > |φ(a)| > 0 and |φ(σ(b))| ≥ |φ(b)| for all b ∈ A.

Below we show that this can be algorithmically realized. This provides an algorithm
for Theorem 9.
First let us show that σ can be supposed to be non-erasing.
As σ satisfies (P2), each letter e is either erasing or, for all l, σl(e) is not the empty-
word. Let A′ be the set of non-erasing letters and A′′ the set of erasing letters. Let
ψ be the morphism that sends the elements of A′′ to the empty word and that is
the identity for the other letters. Then we define σ′ to be the unique endomor-
phism defined on A′ satisfying ψσ = σ′ψ. Observe that σ′ is easily algorithmically
definable and prolongable on a. Moreover we have σψ = σ. Let z = σ′ω(a). Then,
ψ(y) = z and σ(z) = y.
If σ′ is non-erasing (which can be checked using Proposition 4) then we are done.
Otherwise, we proceed in the same way with σ′. As the cardinality of the alphabet
strictly decreases we will end, in at least |A| steps of the procedure, with a morphism

ϕ and a non-erasing substitution τ : Ã∗ → Ã∗ prolongable on a such that x = ϕ(t)
where t = τω(a).
Note that τ keeps properties (P1) and (P2) σ already had. Thus we can also
consider

(P3) σ is non-erasing.

Consequently, from (P2), |φ ◦ σ(σ(a))| > |φ(σ(a))| > |φ(a)|, otherwise τω(a) would
not be an infinite sequence, and |φ ◦ σ(σ(b))| ≥ |φ(σ(b))| for all b ∈ A. Incidently,
it implies that |φ(σ(a))| > 0. Hence changing φ by φ ◦ σ if needed, we can suppose
the following inequalities holds :

|φ(σ(a))| > |φ(a)| > 0 and |ϕ(τ(b))| ≥ |ϕ(b)| for all b ∈ A.

Hence, together with the argument of the proof of Theorem 9 we obtain the algo-
rithm we are looking for. This is summarized in the following theorem.

Theorem 10. There exists an algorithm that given φ and σ compute a coding
ϕ and a non-erasing substitution τ , prolongable on a, such that x = ϕ(z) where
z = τω(a).

Thus, in the sequel we suppose φ is a coding and σ is a non-erasing substitution.
We end this section with a technical lemma checking the ultimate periodicity.

Lemma 11. Let t ∈ AN, ϕ be a coding defined on A∗, z = ϕ(t), and, u and v be
non-empty words. Then, z = uvω iff and only if

(1) for all recurrent words B = b1b2 · · · b2|v| ∈ L(t), where the bi’s are letters,
ϕ(B) = sBv

rBpB where rB is a positive integer, sB is a suffix of v and pB
a prefix of v;
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(2) for all recurrent words BB′ ∈ L(t), where B and B′ are words of length
2|v|, pBsB′ = v.

Proof. The proof is left to the reader. �

3.3. The case of substitutive sequences with respect to growing substi-

tutions. In the sequel we suppose σ is a growing substitution. From Corollary 5
it is decidable to know whether we are in this situation.
We recall that from the previous section we can suppose φ is a coding and that σ
satisfies (P1), (P2) and (P3).

Lemma 12. Let u and v be two words. It is decidable to check whether or not
L(uω) is equal to L(vω).

Theorem 13. The HD0L ultimate periodicity problem is decidable for substitutive
sequences w.r.t. growing substitutions.

Proof. Let us use the notation of Proposition 4. From Corollary 7, taking a power
of σ (less that |A||A|) if needed, we can suppose that for all i ≥ q + 1 such that
Mi is neither a null matrix nor the 1 × 1 matrix [1], the endomorphism τi defines
a primitive sub-substitution. For such i, we denote by σi the sub-substitution
corresponding to Ai.
Observe that for all i ≥ q + 1 and b ∈ Ai, the word σn(b) = σn

i (b) is recurrent in
σω(a). Thus, to check the periodicity of x, we start checking with Theorem 2 that
the languages φ(L(σ′)), where σ′ is a sub-substitution of σ, are periodic (i.e., equal
to some L(w(σ′)ω) where w(σ′) is a word period). We point out that when the
language is periodic then w(σ′) can be computed. If for some σ′ its language is not
periodic then x is not ultimately periodic. Then, we check that all these periodic
languages are equal using Lemma 12. From Lemma 8, if this checking fails, then x
is not periodic.
Hence we suppose it is the case : There exists a word v that is algorithmically
given by Theorem 2 such that φ(L(σ′)) = L(vω) for all sub-substitution σ′ of σ.
Consequently, we should check whether there exists u such that x = uvω.
We note that for all n the words of length n can be algorithmically enumerated,
using for example the substitution on the words of length n in [Queffèlec 1987]. We
conclude using Lemma 11. �

3.4. The case of substitutive sequences with respect to non-growing sub-

stitutions. In the sequel we suppose that σ is a non-growing substitution. From
Corollary 5 it is decidable to know whether we are in this situation. We recall that
from the previous section we can suppose φ is a coding and that σ satisfies (P1),
(P2) and (P3).

Lemma 14. [Pansiot 1984, Théorème 4.1] The substitution σ satisfied exactly one
one the following two statements.

(1) The length of words (occurring in σω(a)) consisting of non-growing letters
is bounded.

(2) There exists a growing letter b ∈ A, occurring in σω(a), such that σ(b) = vbu

(or ubv) with u ∈ C∗ \ {ǫ} where C is the set of non-growing letters.

Moreover, in the situation (1) the sequence σω(a) can be algorithmically defined as
a substitutive sequence w.r.t. a growing substitution.
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Lemma 15. It is decidable to know whether σ satisfies (1) or (2) of Lemma 14.

Proof. It can be easily algorithmically checked whether we are in the situation (2)
of Lemma 14. Thus it is decidable to know whether we are in situation (1) of
Lemma 14. �

Theorem 16. The HD0L ultimate periodicity problem is decidable for substitutive
sequences w.r.t. non-erasing substitutions.

Proof. From Theorem 13, Lemma 14 and Lemma 15 it remains to consider that σ
satisfies (2) in Lemma 14 : Let b be a letter occurring in σω such that σ(b) = vbu

(or ubv) with u ∈ C∗ \{ǫ} where C is the set of non-growing letters. Then L(uω) ⊂
L(σ). We conclude using Lemma 11. �

This ends the proof of Theorem 1.
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Théor. App. 20 (1986), 47–54.

[Honkala 1986]
J. Honkala. A decision method for the recognizability of sets defined by number systems.
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sellations. Geom. Dedicata 79 (2000), 239–265.

[Priebe and Solomyak 2001]
N. Priebe and B. Solomyak. Characterization of planar pseudo-self-similar tilings. Discrete
Comput. Geom. 26 (2001), 289–306.
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Bordeaux, pp. 4.01–4.27, 1986-1987.

[Salon 1987]
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