
HAL Id: hal-00640978
https://hal.science/hal-00640978v1

Submitted on 29 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementing collection of sets with trie: a stepping
stone for performances ?

Simon Bachelard, Olivier Raynaud, Yoan Renaud

To cite this version:
Simon Bachelard, Olivier Raynaud, Yoan Renaud. Implementing collection of sets with trie: a stepping
stone for performances ?. 2006. �hal-00640978�

https://hal.science/hal-00640978v1
https://hal.archives-ouvertes.fr

Implementing collection of sets with
trie :

a stepping stone for performances?

Simon Bachelard and Olivier Raynaud1 and
Yoan Renaud 2

Research Report LIMOS/RR-06-06

7 juin 2006

1raynaud@isima.fr
2renaud@isima.fr

Abstract

Main operations of the Set Collection Abstract Data Type are insertion, re-
search and deletion. A well known option to implement these operations is to
use hashtable. Although hashtable does not admit good time complexities in
the worst case, the practical time complexities are efficient. Another option
is to use the data structure known as the trie. The trie is useful for two main
reasons. Firstly, with such a data structure, mentionned operations admit
very good theoretical time complexities. Secondly a trie can be seen as a
compact representation of a collection of sets since some parts of them are
merged together. Aim of this article is to evaluate performances of the trie
data structure.
The Java language proposes an abstract class corresponding to the Set Col-
lection A.D.T. operations .We propose in this article three different imple-
mentations of this abstract class. All of them are variations of the way to
manage the sons of nodes. Theoretical complexities are then evaluated. Af-
ter that, comparison with performances of hashtable are made in different
contexts depending of the collection density, the set size and the ground set
size. Finally we analyze our results and conclude in which cases the trie
structure outperforms others structures.

Keywords: trie data structure, collection set abstract data type, perfor-
mances comparison

1

1 Introduction

The concept notion as representation of knowledge comes from a real
world modelisation. This modelisation supposes a world compounded by ob-
ject sets having properties (or elements having attributs). The description of
a concept summarizes the properties shared by a set of objects. The whole
structure gathering and describing a set of concepts of a binary relation (ob-
jects/attributes) is known as the Galois lattice of the input relation. This
Galois connection has been introduced in the sixties ([1]). Formal Concept
Analysis, as a generalization of the Galois connection, focuses on the ma-
thematization of concept and conceptual hierarchy. The Galois connection
corresponding to a binary relation is then seen as a concept lattice of a
context where meaning is given to concepts. Mathematical foundations of
Formal Concept Analysis can be found in [2].

In a general point of view, the concept notion could be seen as a couple of
sets (intention/extension). By this way the set of concepts is a collection of
sets. In the same manner the context itself is a collection of sets. Finally, clas-
sical algorithms of lattices construction, of minimal basis or association rules
generation manage some set collections. The natural operations to manage
such a collection are insertion, research and deletion. By moving together a
kind of objects and a set of operations we are able to define an Abstract
Data Type (A.D.T.) :

Abstract Data Type : Set Collection ;
Object : a set collection C = {C1, C2, ..., Cm} on a ground set X ;
Operation :

– creation() : creates and returns a new empty collection ;
– insertion(C, C) : inserts in the collection C the set C ;
– research(C, C) : returns ”true” if and only if ∃i ∈ [1..m] such that

Ci = C ;
– deletion(C, C) : removes the set C from the collection C ;
Let us see in an example how to use this abstract data type. We consider

the following generation problem which corresponds to the computation of
the closure under union operator of a given collection.

Problem 1 Closure under union operator
Data input : a set collection M = {M1,M2, ..., Mm} on a ground set X =
{1, 2, ..., n} such that ∀i ∈ [1..m], Mi ⊆ X ;
Result : a set collection CM = {⋃M∈I | I ⊆M}.

Algorithm 1 which solves the previous problem was proposed in [5] to
compute maximal rectangles of a binary relation. Author of [6] have shown

2

how to use it to compute the Hasse diagramm of the lattice of ideals, of the
Galois lattice or of the completed Mac Neill lattice of the given relation. The
fact is that by using an efficient A.D.T., the algorithm becomes very simple
and the implementation trivial.

Algorithm 1: Union closure()

Data : a set collection M on a ground set X

Result: a set collection CM (CM is closed under union operator.)

begin
CM = creation() ;
for (M ∈M) do

for (C ∈ CM) do
if (not research(CM, C ∪M) then

insertion(CM, C ∪M) ;

return CM ;

end

One question is then to evaluate the efficiency of the implementation of
the operations. We think the efficiency should be supported by three crite-
rions :

– need for memory ;
– theoritical time complexity in the worst case ;
– practical time complexity ;
The need for memory seems to be noticeable in a F.C.A. context for which

the size of set collections could be huge. Moreover the practical studies in
[3] has shown once again that a good theoritical complexity does not always
lead to practical performances. In particular, this last point was highlighted
with the implementation of the Nourine and Raynaud’s algorithm ([6]) whose
practical performance was disappointing.

The aim of this article is to evaluate the previous three criterions for the
data structure known as the trie. The trie is useful for two main reasons.
Firstly, with such a data structure, the Set Collection A.D.T. operations
admits very good worst case theoritical time complexities. In particular the
research operation can be done in a time complexity which does not depend
on the collection size. Moreover, these time complexities are easy to compute.
Secondly, a trie could be seen as a set collection compact representation
since some parts of them are merged together. We will see that this point
is measurable. Another well known option to implemente these operations is
to use hashtable. Although hashtable does not admit good worst case time

3

complexities, the practical time complexities are efficient. For this reason the
practical time complexities evaluation of our three trie implementations will
be made by comparison whith hashtable performances. We choose the Java
language since this language proposes an abstract class corresponding to the
Set Collection A.D.T. operations. Tests will consist only in changing code of
the called methods (the program being the same) and measuring the different
operations execution time

This article is then organized as follows. In the next section we show
that the Set Collection A.D.T. is compatible with the abstract class Map
of Java language. Then we describe the trie properties and propose three
different implementations. In the third section we describe the protocol of
comparison test between the different implementations. We then give global
results in different tabs depending of the collection density, the sets size and
the ground set size. Finally, we conclude our report by listing cases in which
the trie structure outperforms others structures.

2 Abstract Data Type : Map

To simulate the Set Collection A.D.T. we can use a Map A.D.T. similar
to the Map interface of Java language. This Map A.D.T. maps keys to values.
In case of set collection, the keys are the collection sets. The Map A.D.T.
supplies the following operators :

– new() operator : creates a Map object and returns an empty map.
– get(e) operator : returns the value associated to the key e if this key

maps a value, otherwise returns Nil.
– put(e,value) operator : inserts set e in the map and associates value

to it.
– remove(e) operator : removes set e in the map.
There is a natural equivalence between the previous operators and opera-

tors of the Set Collection A.D.T. Main difference is that a value is associated
to each set. Even if this value seems useless in general, one has to notice that
usually some additional informations are associated to a set : an extention to
an intention, a support to a set, a closure to a set... Java language defines an
abstract class Map (or Interface) and proposes two main implementations.
The first one uses a binary tree (TreeMap) and the other one uses hashtables
(HashMap), the key being of any type (the only constraint being existence
of a comparison operator). In the following of this article, we propose three
new abstract class Map implementations. Each of them take advantage of
the fact the key is a set. For this reason these implementations are variations
of the tree structure known as the trie. Before describing the different imple-

4

mentations, let us see some formal results about trie (i.d. lexicographic tree).

2.1 Lexicographic tree definition

In litterature we often find the structure of trie (i.d. lexicographic tree) to
store a set collection M on a ground set X. One constraint of the trie struc-
ture is to define an order on elements of X. This structure allows a precise
evaluation of insertion, deletion and research operations time complexities.
We used these evaluations to proove some complexity results in [4] and [6]
or [7].

Let us give a formal definition of a lexicographic tree corresponding to a
set collection.

Definition 1 Let M be a set collection defined over X, with a total order
on X denoted by <X . A unique lexicographic tree is associated to M such
that :

– Each edge of the tree is labeled with an element of X ;
– To each marked node of the tree corresponds a set of M ;
– To each set m of M correspond a unique path in the tree (starting from

root and ending with a marked node) such that the union of labels in
this path corresponds exactly to the set m.

– For any path from the root to any node, the order of the successive
labels respects the order defined by <X ;

– The order of edges leaving a node respects the order defined by <X .
Figure 1 gives an example of collection and its associated lexicographic

tree.
A boolean can be associated to a node of the tree in order to indicate if

the node is marked (i.e. corresponds to a set of the collection and thus to
a key) or not. Any field type can be associated to the node for storing the
value associated to the key (on marked nodes only).

2.2 Lexicographic tree implementation

To test the lexicographic tree performances, we propose three different
implementations of the abstract Java class Map. Each of them use the trie
structure. The variations concern the choice made to store the children set of
each node. Let us now describe the three structures and give the representa-
tions corresponding to the collection {abc, ad, bcde} with X = {a, b, c, d, e}.

– ADT MappingList (class ADT L, cf. figure 2) : In that case the
children set of a given node is implemented with lists. Each node of the

5

��

�� �� ��

��

��
��

��

��

��

��

��

��
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
����� ���

���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
�� ���

���
���
���
���
���
���

���
���
���
���
���
���
���

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

b

a e

d

c

c

d e

{a,b,c}

{b,c,d,e}

{c,d,e}

{a,d}
{c,d}

c

{e}

e

b

d

Fig. 1 – Lexicographic tree corresponding to the collection
{abc, ad, bcde, cd, cde, e}, with X = {a, b, c, d, e} and <X being the al-
phabetical order. Circled nodes are the marked nodes corresponding to the
collection sets.

tree contains an element of the ground set X and a list of references to
the children nodes of this node. The references are sorted in alphabetical
order of elements corresponding to the children nodes refered in list.
When a node has an empty list, there is a mapping value stored in this
node corresponding to the mapping object of the set defined by the
path for this node. Notice that some nodes could have both a mapping
value and a list of children.
Proposition 1 If the children set of a given node is implemented with
Lists then :
– The put(m,value) operator as an O(|X|) time complexity ;
– The get(m) operator as an O(|X|) time complexity ;
– The remove(e) operator as an O(|X|) time complexity ;
Access complexity is due to the fact that an element of X appears only
once in a set. Cost of a node creation is done in constant time.

– ADT MappingTable (class ADT T, cf. figure 3) : In that case the
children set of a given node is implemented with an array. Each node
of the tree contains an element of X and an array which is indexed
by the labels. The entries contain either NIL, if the node has no child
corresponding to the label, or reference to the child. For each node, the
array size is equal to the X size minus the position of label stored in the
node. When a node has an array which all entrie contains NIL, there
is a mapping value stored in this node corresponding to the mapping
object of the set defined by the path. It is more restricting than the
others because of the array fixed size but we will see that this structure
gives a better efficiency for the different operators.

6

a b

−1

b d c

c d

e

k1

k3

k2

Fig. 2 – Exemple of a lexicographic tree whith the ADT MappingList. The
k1, k2, k3 values are the mapping objects corresponding to the set defined
by the path in the tree.

Proposition 2 If the children set of a given node is implemented with
Arrays then :
– The put(m,value) operator as an O(|m| × θ) time complexity ;
– The get(m) operator as an O(|m|) time complexity ;
– The remove(e) operator as an O(|m|) time complexity ;
Acces complexity is due to the fact that we have direct access to a
child labeled by a given element of X. In that case θ corresponds to
the allocation time plus the initialization time of a tab in the given
language.

−1

a b

b d c

c d

e

k1

k3

k2

Fig. 3 – Exemple of a lexicographic tree whith the ADT MappingTable. The
k1, k2, k3 values are the mapping objects corresponding to the set defined
by the path in the tree.

– ADT MappingMap (class ADT M, cf. figure 4) : In this last case
the children set of a given node is implemented using the Java class

7

HashTable. Each node of the tree contains an element of X and an
HashMap. HashMap entries contain either NIL, if the node has no child
corresponding to the key value of the map, or the reference to a child.
The HashMap size is defined by Java and the colisions are managed
to have a good efficiency. This class gives no guarantees concerning
the map order. In particular, it does not guarantee that the order will
remain constant over time. When a HashMap contained on a node is
empty, there is a mapping value stored in this node corresponding to
the mapping object of the set defined by the path for this node.
Proposition 3 If the children set of a given node is implemented with
Maps then :
– The put(m,value) operator as an O(|m| × θ′) time complexity ;
– The get(m) operator as an O(|m|) time complexity ;
– The remove(e) operator as an O(|m|) time complexity ;
θ′ corresponds to the time needed for the Map allocation (or realloca-
tion) in a new node. One has to notice that the last proposition results
do not correspond to worst case time complexity but to practical time
complexity.

−1

a

b

b

d

c

c

e

d

Fig. 4 – Exemple of a lexicographic tree using the ADT MappingMap to
store node children. The k1, k2, k3 values are the mapping objects corres-
ponding to the set defined by the path in the tree

For this study, we have limited the implementation of the three classes
(ADT MappingList/Table/Map) to main operators new(), get(), put() and
remove(). A next work will allow to complete these implementations. Use of
our classes can be done in the same manner as any other mapping library
in Java. Netherveless, the new() operator of the ADT MappingTable admits
a different specification. Indeed, each node creation needs to define a tab

8

which size has to be given as parameter. This size depends of the ground set
size. For more information, source code and documentation can be found at
www.isima.fr/raynaud/.

3 Experimental evaluation

3.1 Protocol

Evaluation of our three Map A.D.T. implementations and the two Java
Map A.D.T. (TreeMap and HashMap) are carried out on a 2.4GHz Pentium
III PC with 2 Go RAM running Red Hat Linux distribution. All Map A.D.T
are evaluated on integer set collections (example files) :

– Full collection (Full(n)) : the collection of all sets on ground set X={1,2,...,n}
without the empty set. The size of this collection is equal to 2n.

– Short collection (Short(n,p)) : A collection of 10p sets on ground set
X={1,2,..,n} where the size of all sets is short. This size is determined
by a probabilistic law. The file is randomly generated.

– Large collection (Large(n,p)) : A collection of 10p sets on ground set
X={1,2,..,n} where the size of all sets is long. This size is determined
by a probabilistic law. The file is randomly generated.

In each example file, sets are generated in alphabetical order and there
is no test for set unicity in the collection. The only restriction is the size of
the sets. In the following we evaluate time (in millisecond) and memory (in
megabytes) performances for the get(), the put() and the remove() operators.
The put() operation consists in reading an example file and inserts in a trie
each set of the corresponding collection. Note that the CPU time evaluated
for this operation takes into account the loading time of the example file.
The get and the remove operations are carried out on 10 000 sets randomly
chosen without obligation to belong to the tested collection.

3.2 ”Need for memory” comparison

We made numerous ”need for memory” evaluation to compare the dif-
ferent A.D.T. Map implementations. We decide to put in light the most
significant of them.

1. In figure 1 we compare the need for memory of each implementation in
a Full context. The ground set size is between 15 and 20 and then the
size collection is between 215 and 220.

9

2. In figure 2 we compare the need for memory of each implementation
for Short collections. In that case, n belongs to [3, 6] interval and X
size is fixed to be equal to 99.

3. Figure 3 and 4 compare the need for memory with X size fixed to be
equal to 499 for Short collection and Large collection.

Fig 1 : Need for memory
in case of Full collection with
|X| = n.

Fig 2 : Need for memory
in case of Short collection
with |X| = 99.

All test results concerning Java HashMap and TreeMap are merged since
they are similar. One has to notice that all measures are taken when the
whole collection is inserted into the structure. A first observation shows that
the trie efficiency is proven (with a list or array implementation) in a Full
context. A second observation shows that a trie implementation (with list
or array) is very competitive in a Short context. But greater is the X size,
less the array implementation is efficient. A third observation concerns the
case of Large context and of a X size value equal to 499. In that case, for n
values smaller than 5 the Java HashTable Map is the more efficient. With n
greater than 5 the Java virtual machine has not enough memory to execute
the test with our three new implementations.

10

Figure 3 : Need for memory
in case of Short collection with
|X| = 499.

Figure 4 : Need for memory
in case of Large collection with
|X| = 499.

3.3 CPU time executions comparison

We made different tests on CPU time execution for put(), get() and re-
move() operation to compare the different A.D.T Map implementations. In
Tables 1 and 2, we compare CPU times execution for HashMap and TreeMap
and Tables 3 and 4 show CPU times execution for implementations ADT L,
ADT M and ADT T. In Tables 1 and 3, time measures are carried out on
Full collections when the collection size is between 212 and 220. For Tables
2 and 4, time measures are carried out on Short collections and Large col-
lections. Other tests were made for this study but we only show the most
significant one in these Tables.

CPU times (milliseconds)
HashMap TreeMap

Full(n) put get remove put get remove
12 78 101 90 274 90 28
13 134 149 155 639 51 30
14 265 138 157 792 42 33
15 484 94 96 981 45 38
16 1197 67 42 1275 87 71
17 2366 67 39 2251 91 74
18 5251 66 41 5692 41 65
19 12139 66 38 14928 47 52
20 35770 100 195 34078 65 65

Tab. 1 – Experimental evaluation on Full examples using HashMap and TreeMap

11

CPU times (milliseconds)
HashMap TreeMap

Short(n,p) put get remove put get remove
(3,99) 88 196 141 43 178 25
(4,99) 215 69 40 281 154 86
(5,99) 924 127 127 1835 77 80
(6,99) 8045 137 138 14312 96 106
(3,499) 44 202 161 72 246 182
(4,499) 349 94 56 279 78 71
(5,499) 1131 73 49 1783 97 107
(6,499) 14836 96 53 21301 112 124

Large(n,p) put get remove put get remove
(3,99) 57 288 193 87 127 36
(4,99) 698 69 42 379 156 48
(5,99) 3876 178 192 6054 42 30
(3,499) 324 81 47 236 43 28
(4,499) 1864 123 128 2293 119 26
(5,499) 26317 131 132 28972 101 28

Tab. 2 – Experimental evaluation on Short and Large examples using HashMap and
TreeMap

CPU times (milliseconds)
ADT L ADT M ADT T

Full(n) put get remove put get remove put get remove
12 103 71 56 142 27 30 33 9 16
13 338 45 47 281 10 25 69 9 24
14 384 35 109 351 11 21 116 9 19
15 474 34 38 568 11 21 255 11 29
16 755 28 38 868 11 23 535 11 29
17 1771 38 47 1480 13 27 1132 12 40
18 5251 66 41 5692 41 65 3191 28 40
19 7240 29 49 7407 13 30 6083 12 19
20 15212 40 41 16310 14 32 12965 11 20

Tab. 3 – Experimental evaluation on Full examples using ADT MappingList,
ADT MappingMap and ADT MappingTable

12

CPU times (milliseconds)
ADT L ADT M ADT T

Short(n,p) put get remove put get remove put get remove
(3,99) 37 117 92 24 105 124 14 50 25
(4,99) 147 66 68 231 63 44 97 20 35
(5,99) 961 185 197 1196 73 35 543 30 35
(6,99) 10533 164 184 8493 48 40 5823 18 36
(3,499) 62 290 99 40 32 33 15 25 28
(4,499) 178 89 105 236 61 68 297 61 71
(5,499) 1547 132 135 1557 52 39 1183 17 28
(6,499) 27878 271 237 15873 65 52 14099 40 29

Large(n,p) put get remove put get remove put get remove
(3,99) 91 87 99 82 72 28 92 80 38
(4,99) 366 35 39 707 35 17 437 11 20
(5,99) 5978 72 71 6211 19 24 7467 12 22
(3,499) 267 79 60 487 57 32 1288 36 24
(4,499) 2659 223 144 3967 28 24 none none none
(5,499) none none none none none none none none none

Tab. 4 – Experimental evaluation on Short and Large examples using
ADT MappingList, ADT MappingMap and ADT MappingTable

A first look on tables 1 and 2 results shows that, in general, HashMap
has better performances than TreeMap for the operation put without taking
into account the chosen collections. On Full collections (Table 1), on one
hand there is a significant variation of performances on collections with |X|
≤ 15. On the other hand, efficiency variation is not significant for get and
remove operations. Then, if we consider the Table 3 and 4 results, we notice
that ADT T has appreciably better times than the two others. Neverthe-
less, the performance of ADT T decreases when the collection sizes or the
ground set size grows up. Considering example of Large(5,99) collection in
Table 4, we see that put() operator time execution for ADT T is longer than
those of ADT L and ADT M. As the same than before, efficiency variation
is not significant for get() and remove() operations. Finally, if we consider
all results, we observe that CPU time execution for the put() operation de-
pends on the treated collection size. But it doesn’t seem to be the same for
get and remove operations. This result confirms theoretical evaluation com-
plexity which shows that these operations complexities do not depends of
the collection size. But, we do not see significant dependancies of these ope-
rations with the ground set size contrary to theoretical evaluations. Times

13

being small and, as a fact, not really significant, we cannot make definitive
conclusion on this point.

4 Conclusion

In this article we have proposed three trie structure implementations. We
have evaluated their performances for the Map A.D.T. operations. Theoriti-
cal time complexities results make the trie structure the most efficient. Our
practical memory measure shows that the ADT MappingTable is very effi-
cient in a dense context. But it becomes unusable when the ground set size
grows to 500, the collections sets being large too. Let us note that in that case
the ADT MappingList stays competitive. CPU time measures show that in
general the ADT MappingTable is the most efficient for the put() operation.
Measures for the get() and remove() operations seems to be not significant.

Références

[1] M. Barbut and B. Monjardet. Ordre et classification. Hachette, 1970.

[2] B. Ganter and R. Wille. Formal concept analysis. In Mathematical
foundation. Berlin-Heidelberg-NewYork :Springer, 1999.

[3] S. Kuznetsov and S. Obedkov. Comparing performance of algorithms for
generating concept lattices. In 1th International Workshop on Concept
Lattices-based KDD, 2003.

[4] R. Medina, C. Noyer, and O. Raynaud. Efficient algorithms for clone
items detection. In CLA’05, pages 70–81, 2005.

[5] E. M. Norris. An algorithm for computing the maximal rectangles of a
binary relation. Journal of ACM, 21 :356–366, 1974.

[6] L. Nourine and O. Raynaud. A fast algorithm for building lattices.
Information Processing Letters, volume 71 :199–204, 1999.

[7] L. Nourine and O. Raynaud. A fast incremental algorithm for building
lattices. Journal of Experimental and Theoritical Artificial Intelligence,
14 :217–227, 2002.

14

