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Main operations of the Set Collection Abstract Data Type are insertion, research and deletion. A well known option to implement these operations is to use hashtable. Although hashtable does not admit good time complexities in the worst case, the practical time complexities are efficient. Another option is to use the data structure known as the trie. The trie is useful for two main reasons. Firstly, with such a data structure, mentionned operations admit very good theoretical time complexities. Secondly a trie can be seen as a compact representation of a collection of sets since some parts of them are merged together. Aim of this article is to evaluate performances of the trie data structure. The Java language proposes an abstract class corresponding to the Set Collection A.D.T. operations .We propose in this article three different implementations of this abstract class. All of them are variations of the way to manage the sons of nodes. Theoretical complexities are then evaluated. After that, comparison with performances of hashtable are made in different contexts depending of the collection density, the set size and the ground set size. Finally we analyze our results and conclude in which cases the trie structure outperforms others structures.

Introduction

The concept notion as representation of knowledge comes from a real world modelisation. This modelisation supposes a world compounded by object sets having properties (or elements having attributs). The description of a concept summarizes the properties shared by a set of objects. The whole structure gathering and describing a set of concepts of a binary relation (objects/attributes) is known as the Galois lattice of the input relation. This Galois connection has been introduced in the sixties ( [START_REF] Barbut | Ordre et classification[END_REF]). Formal Concept Analysis, as a generalization of the Galois connection, focuses on the mathematization of concept and conceptual hierarchy. The Galois connection corresponding to a binary relation is then seen as a concept lattice of a context where meaning is given to concepts. Mathematical foundations of Formal Concept Analysis can be found in [START_REF] Ganter | Formal concept analysis[END_REF].

In a general point of view, the concept notion could be seen as a couple of sets (intention/extension). By this way the set of concepts is a collection of sets. In the same manner the context itself is a collection of sets. Finally, classical algorithms of lattices construction, of minimal basis or association rules generation manage some set collections. The natural operations to manage such a collection are insertion, research and deletion. By moving together a kind of objects and a set of operations we are able to define an Abstract Data Type (A.D.T.) : 

Abstract
a set collection M = {M 1 , M 2 , ..., M m } on a ground set X = {1, 2, ..., n} such that ∀i ∈ [1..m], M i ⊆ X ; Result : a set collection C M = { M ∈I | I ⊆ M}.
Algorithm 1 which solves the previous problem was proposed in [START_REF] Norris | An algorithm for computing the maximal rectangles of a binary relation[END_REF] to compute maximal rectangles of a binary relation. Author of [START_REF] Nourine | A fast algorithm for building lattices[END_REF] have shown how to use it to compute the Hasse diagramm of the lattice of ideals, of the Galois lattice or of the completed Mac Neill lattice of the given relation. The fact is that by using an efficient A.D.T., the algorithm becomes very simple and the implementation trivial.

Algorithm 1: Union closure() Data : a set collection M on a ground set X Result: a set collection C M (C M is closed under union operator.) begin C M = creation() ; for (M ∈ M) do for (C ∈ C M ) do if (not research(C M , C ∪ M ) then insertion(C M , C ∪ M ) ; return C M ; end
One question is then to evaluate the efficiency of the implementation of the operations. We think the efficiency should be supported by three criterions :

-need for memory ; -theoritical time complexity in the worst case ; -practical time complexity ;

The need for memory seems to be noticeable in a F.C.A. context for which the size of set collections could be huge. Moreover the practical studies in [START_REF] Kuznetsov | Comparing performance of algorithms for generating concept lattices[END_REF] has shown once again that a good theoritical complexity does not always lead to practical performances. In particular, this last point was highlighted with the implementation of the Nourine and Raynaud's algorithm ( [START_REF] Nourine | A fast algorithm for building lattices[END_REF]) whose practical performance was disappointing.

The aim of this article is to evaluate the previous three criterions for the data structure known as the trie. The trie is useful for two main reasons. Firstly, with such a data structure, the Set Collection A.D.T. operations admits very good worst case theoritical time complexities. In particular the research operation can be done in a time complexity which does not depend on the collection size. Moreover, these time complexities are easy to compute. Secondly, a trie could be seen as a set collection compact representation since some parts of them are merged together. We will see that this point is measurable. Another well known option to implemente these operations is to use hashtable. Although hashtable does not admit good worst case time complexities, the practical time complexities are efficient. For this reason the practical time complexities evaluation of our three trie implementations will be made by comparison whith hashtable performances. We choose the Java language since this language proposes an abstract class corresponding to the Set Collection A.D.T. operations. Tests will consist only in changing code of the called methods (the program being the same) and measuring the different operations execution time This article is then organized as follows. In the next section we show that the Set Collection A.D.T. is compatible with the abstract class Map of Java language. Then we describe the trie properties and propose three different implementations. In the third section we describe the protocol of comparison test between the different implementations. We then give global results in different tabs depending of the collection density, the sets size and the ground set size. Finally, we conclude our report by listing cases in which the trie structure outperforms others structures.

Abstract Data Type : Map

To simulate the Set Collection A.D.T. we can use a Map A.D.T. similar to the Map interface of Java language. This Map A.D.T. maps keys to values. In case of set collection, the keys are the collection sets. The Map A.D.T. supplies the following operators :

-new() operator : creates a Map object and returns an empty map.

-get(e) operator : returns the value associated to the key e if this key maps a value, otherwise returns Nil. -put(e,value) operator : inserts set e in the map and associates value to it. -remove(e) operator : removes set e in the map. There is a natural equivalence between the previous operators and operators of the Set Collection A.D.T. Main difference is that a value is associated to each set. Even if this value seems useless in general, one has to notice that usually some additional informations are associated to a set : an extention to an intention, a support to a set, a closure to a set... Java language defines an abstract class Map (or Interface) and proposes two main implementations. The first one uses a binary tree (TreeMap) and the other one uses hashtables (HashMap), the key being of any type (the only constraint being existence of a comparison operator). In the following of this article, we propose three new abstract class Map implementations. Each of them take advantage of the fact the key is a set. For this reason these implementations are variations of the tree structure known as the trie. Before describing the different imple-mentations, let us see some formal results about trie (i.d. lexicographic tree).

Lexicographic tree definition

In litterature we often find the structure of trie (i.d. lexicographic tree) to store a set collection M on a ground set X. One constraint of the trie structure is to define an order on elements of X. This structure allows a precise evaluation of insertion, deletion and research operations time complexities. We used these evaluations to proove some complexity results in [START_REF] Medina | Efficient algorithms for clone items detection[END_REF] and [START_REF] Nourine | A fast algorithm for building lattices[END_REF] or [START_REF] Nourine | A fast incremental algorithm for building lattices[END_REF].

Let us give a formal definition of a lexicographic tree corresponding to a set collection.

Definition 1 Let M be a set collection defined over X, with a total order on X denoted by < X . A unique lexicographic tree is associated to M such that :

-Each edge of the tree is labeled with an element of X ; -To each marked node of the tree corresponds a set of M ; -To each set m of M correspond a unique path in the tree (starting from root and ending with a marked node) such that the union of labels in this path corresponds exactly to the set m. -For any path from the root to any node, the order of the successive labels respects the order defined by < X ; -The order of edges leaving a node respects the order defined by < X . Figure 1 gives an example of collection and its associated lexicographic tree.

A boolean can be associated to a node of the tree in order to indicate if the node is marked (i.e. corresponds to a set of the collection and thus to a key) or not. Any field type can be associated to the node for storing the value associated to the key (on marked nodes only).

Lexicographic tree implementation

To test the lexicographic tree performances, we propose three different implementations of the abstract Java class Map. Each of them use the trie structure. The variations concern the choice made to store the children set of each node. Let us now describe the three structures and give the representations corresponding to the collection {abc, ad, bcde} with X = {a, b, c, d, e}.

-ADT MappingList (class ADT L, cf. figure 2) : In that case the children set of a given node is implemented with lists. Each node of the tree contains an element of the ground set X and a list of references to the children nodes of this node. The references are sorted in alphabetical order of elements corresponding to the children nodes refered in list.

When a node has an empty list, there is a mapping value stored in this node corresponding to the mapping object of the set defined by the path for this node. Notice that some nodes could have both a mapping value and a list of children.

Proposition 1 If the children set of a given node is implemented with Lists then : -The put(m,value) operator as an O(|X|) time complexity ; -The get(m) operator as an O(|X|) time complexity ; -The remove(e) operator as an O(|X|) time complexity ;

Access complexity is due to the fact that an element of X appears only once in a set. Cost of a node creation is done in constant time. -ADT MappingTable (class ADT T, cf. figure 3) : In that case the children set of a given node is implemented with an array. Each node of the tree contains an element of X and an array which is indexed by the labels. The entries contain either NIL, if the node has no child corresponding to the label, or reference to the child. For each node, the array size is equal to the X size minus the position of label stored in the node. When a node has an array which all entrie contains NIL, there is a mapping value stored in this node corresponding to the mapping object of the set defined by the path. It is more restricting than the others because of the array fixed size but we will see that this structure gives a better efficiency for the different operators. -ADT MappingMap (class ADT M, cf. figure 4) : In this last case the children set of a given node is implemented using the Java class HashTable. Each node of the tree contains an element of X and an HashMap. HashMap entries contain either NIL, if the node has no child corresponding to the key value of the map, or the reference to a child. The HashMap size is defined by Java and the colisions are managed to have a good efficiency. This class gives no guarantees concerning the map order. In particular, it does not guarantee that the order will remain constant over time. When a HashMap contained on a node is empty, there is a mapping value stored in this node corresponding to the mapping object of the set defined by the path for this node. For this study, we have limited the implementation of the three classes (ADT MappingList/Table/Map) to main operators new(), get(), put( ) and remove( ). A next work will allow to complete these implementations. Use of our classes can be done in the same manner as any other mapping library in Java. Netherveless, the new() operator of the ADT MappingTable admits a different specification. Indeed, each node creation needs to define a tab 2. In figure 2 we compare the need for memory of each implementation for Short collections. In that case, n belongs to [START_REF] Kuznetsov | Comparing performance of algorithms for generating concept lattices[END_REF][START_REF] Nourine | A fast algorithm for building lattices[END_REF] interval and X size is fixed to be equal to 99.

3. Figure 3 and 4 compare the need for memory with X size fixed to be equal to 499 for Short collection and Large collection. All test results concerning Java HashMap and TreeMap are merged since they are similar. One has to notice that all measures are taken when the whole collection is inserted into the structure. A first observation shows that the trie efficiency is proven (with a list or array implementation) in a Full context. A second observation shows that a trie implementation (with list or array) is very competitive in a Short context. But greater is the X size, less the array implementation is efficient. A third observation concerns the case of Large context and of a X size value equal to 499. In that case, for n values smaller than 5 the Java HashTable Map is the more efficient. With n greater than 5 the Java virtual machine has not enough memory to execute the test with our three new implementations. 

CPU time executions comparison

We made different tests on CPU time execution for put(), get() and remove() operation to compare the different A.D.T Map implementations. In Tables 1 and2, we compare CPU times execution for HashMap and TreeMap and Tables 3 and4 show CPU times execution for implementations ADT L, ADT M and ADT T. In Tables 1 and3, time measures are carried out on Full collections when the collection size is between 2 12 and 2 20 . For Tables 2 and4, time measures are carried out on Short collections and Large collections. Other tests were made for this study but we only show the most significant one in these Tables. A first look on tables 1 and 2 results shows that, in general, HashMap has better performances than TreeMap for the operation put without taking into account the chosen collections. On Full collections (Table 1), on one hand there is a significant variation of performances on collections with |X| ≤ 15. On the other hand, efficiency variation is not significant for get and remove operations. Then, if we consider the Table 3 and 4 results, we notice that ADT T has appreciably better times than the two others. Nevertheless, the performance of ADT T decreases when the collection sizes or the ground set size grows up. Considering example of Large(5,99) collection in Table 4, we see that put() operator time execution for ADT T is longer than those of ADT L and ADT M. As the same than before, efficiency variation is not significant for get() and remove() operations. Finally, if we consider all results, we observe that CPU time execution for the put() operation depends on the treated collection size. But it doesn't seem to be the same for get and remove operations. This result confirms theoretical evaluation complexity which shows that these operations complexities do not depends of the collection size. But, we do not see significant dependancies of these operations with the ground set size contrary to theoretical evaluations. Times being small and, as a fact, not really significant, we cannot make definitive conclusion on this point.

CPU times (milliseconds)

Conclusion

In this article we have proposed three trie structure implementations. We have evaluated their performances for the Map A.D.T. operations. Theoritical time complexities results make the trie structure the most efficient. Our practical memory measure shows that the ADT MappingTable is very efficient in a dense context. But it becomes unusable when the ground set size grows to 500, the collections sets being large too. Let us note that in that case the ADT MappingList stays competitive. CPU time measures show that in general the ADT MappingTable is the most efficient for the put() operation. Measures for the get() and remove() operations seems to be not significant.

Problem 1

 1 Data Type : Set Collection ; Object : a set collection C = {C 1 , C 2 , ..., C m } on a ground set X ; Operation : -creation() : creates and returns a new empty collection ; -insertion(C, C) : inserts in the collection C the set C ; -research(C, C) : returns "true" if and only if ∃i ∈ [1..m] such that C i = C ; -deletion(C, C) : removes the set C from the collection C ; Let us see in an example how to use this abstract data type. We consider the following generation problem which corresponds to the computation of the closure under union operator of a given collection. Closure under union operator Data input :
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 1 Fig.1-Lexicographic tree corresponding to the collection {abc, ad, bcde, cd, cde, e}, with X = {a, b, c, d, e} and < X being the alphabetical order. Circled nodes are the marked nodes corresponding to the collection sets.
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 223 Fig.2-Exemple of a lexicographic tree whith the ADT MappingList. The k1, k2, k3 values are the mapping objects corresponding to the set defined by the path in the tree.
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 4 Fig.4-Exemple of a lexicographic tree using the ADT MappingMap to store node children. The k1, k2, k3 values are the mapping objects corresponding to the set defined by the path in the tree
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 1 Fig 1 : Need for memory in case of Full collection with |X| = n.
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 2 Fig 2 : Need for memory in case of Short collection with |X| = 99.
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 3 Figure 3 : Need for memory in case of Short collection with |X| = 499.
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 4 Figure 4 : Need for memory in case of Large collection with |X| = 499.

  Proposition 3 If the children set of a given node is implemented with Maps then :

-The put(m,value) operator as an O(|m| × θ ) time complexity ; -The get(m) operator as an O(|m|) time complexity ; -The remove(e) operator as an O(|m|) time complexity ; θ corresponds to the time needed for the Map allocation (or reallocation) in a new node. One has to notice that the last proposition results do not correspond to worst case time complexity but to practical time complexity.

  Experimental evaluation on Full examples using HashMap and TreeMap Tab. 2 -Experimental evaluation on Short and Large examples using HashMap and

					CPU times (milliseconds)			
			ADT L			ADT M			ADT T	
	Short(n,p)	put	get remove put	get remove put	get remove
	(3,99)	37	117	92	24	105	124	14	50	25
	(4,99)	147	66	68	231	63	44	97	20	35
	(5,99)	961	185	197	1196	73	35	543	30	35
	(6,99)	10533 164	184	8493	48	40	5823	18	36
	(3,499)	62	290	99	40	32	33	15	25	28
	(4,499)	178	89	105	236	61	68	297	61	71
	(5,499)	1547	132	135	1557	52	39	1183	17	28
	(6,499)	27878 271	237	15873	65	52	14099	40	29
	Large(n,p)	put	get remove put	get remove put	get remove
	(3,99)	91	87	99	82	72		92	80	38
	(4,99)	366	35	39	707	35	17	437	11	20
	(5,99)	5978	72	71	6211	19	24	7467	12	22
	(3,499)	267	79	60	487	57	32	1288	36	24
	(4,499)	2659	223	144	3967	28	24	none none	none
	(5,499)	none none	none	none none	none	none none	none
	TreeMap get remove put get remove 101 90 274 90 28 134 149 put 78 155 639 51 30 265 138 157 792 42 33 484 94 96 981 45 38 1197 67 42 1275 87 71 2366 67 39 2251 91 74 5251 66 41 5692 41 65 12139 66 38 14928 47 52 35770 100 195 34078 65 65 CPU times (milliseconds) ADT L Full(n) 12 13 14 15 16 17 18 19 20 ADT M ADT T put get remove put get remove put get remove 103 71 56 142 27 30 33 9 16 338 45 47 281 10 25 69 9 24 384 35 109 351 11 21 116 9 19 474 34 38 568 11 21 255 11 29 755 28 38 868 11 23 535 11 29 1771 38 47 1480 13 27 1132 12 40 5251 66 41 5692 41 65 3191 28 40 7240 29 49 7407 13 30 6083 12 19 15212 40 41 16310 14 32 12965 11 20 Tab. 3 -Experimental evaluation on Full examples using ADT MappingList, Full(n) 12 13 14 15 16 17 18 19 20 Tab. 1 -TreeMap ADT MappingMap and ADT MappingTable	

Tab. 4 -Experimental evaluation on Short and Large examples using ADT MappingList, ADT MappingMap and ADT MappingTable

which size has to be given as parameter. This size depends of the ground set size. For more information, source code and documentation can be found at www.isima.fr/raynaud/.

3 Experimental evaluation -Full collection (Full(n)) : the collection of all sets on ground set X={1,2,...,n} without the empty set. The size of this collection is equal to 2 n . -Short collection (Short(n,p)) : A collection of 10 p sets on ground set X={1,2,..,n} where the size of all sets is short. This size is determined by a probabilistic law. The file is randomly generated. -Large collection (Large(n,p)) : A collection of 10 p sets on ground set X={1,2,..,n} where the size of all sets is long. This size is determined by a probabilistic law. The file is randomly generated. In each example file, sets are generated in alphabetical order and there is no test for set unicity in the collection. The only restriction is the size of the sets. In the following we evaluate time (in millisecond) and memory (in megabytes) performances for the get(), the put() and the remove() operators. The put() operation consists in reading an example file and inserts in a trie each set of the corresponding collection. Note that the CPU time evaluated for this operation takes into account the loading time of the example file. The get and the remove operations are carried out on 10 000 sets randomly chosen without obligation to belong to the tested collection.

"Need for memory" comparison

We made numerous "need for memory" evaluation to compare the different A.D.T. Map implementations. We decide to put in light the most significant of them.

1. In figure 1