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In this paper, we focuses on stability, asymptotical stability and finite-time stability for a class of differential inclusions governed by a nonconvex superpotential. This problem is known by "differential inclusions with Clarke subdifferential" or "evolution hemivariational inequalities". After proposing an existence result of solutions, we give the stability results in terms of smooth Lyapunov functions subjected to some conditions described in terms of the orbital derivatives.

Introduction

The origin of stability theory comes from the mechanics and specially from the study of motion of particles. Today, stability theory plays a dominant role in the study of mechanical, electrical and economical models, control theory and many branches of sciences. The most important stability concept is stability in the sense of Lyapunov. Lyapunov proposes two methods in order to solve the stability problem. These methods are known by first and second Lyapunov methods. In this work, we are concerned by the second one, which is based on the study of the behaviour of special functions called Lyapunov's function. The second Lyapunov method avoids the calculation of an explicite solution of the problem. But, it requires to find a good Lyapunov candidates functions compatible with the problem, which can be a difficult task.

The aim of this paper is the study the stability of the dynamics of nonsmooth dynamical systems. The motivation of our study comes from mechanical systems subject to unilateral constraints or dry friction. Electrical circuits containing diodes and transistors, which ideally described by a nonsmooth system.

We will mainly focus on the stability of differential inclusions governed by a Clarke subdifferential. Such problem is known by evolution hemivariational inequalities. The nonsmoothness of these dynamical systems comes from the fact that there motion is subject to velocity jumps or/and discontinuous forces. The notion of hemivariational inequalities was introduced by P.D. Panagionotopoulos (see. [START_REF] Panagionotopoulos | Nonconvex Superpotentlals in the Sense of F.H. Clarke and Appllcations[END_REF], [START_REF] Panagionotopoulos | Inequality Problems in Mechanics ans Applications[END_REF]) with the help of the generalized Clarke gradient, and we say that the nonconvex constraints derive from a nonconvex superpotentials. In [START_REF] Adly | A Stability Theory for Second-Order Nonsmooth Dynamical Systems with Application to Friction Problems[END_REF], [START_REF] Goeleven | On the Stability of Stationary Solutions of First Order Evolution Variational Inequalities[END_REF] and [START_REF] Addi | Finite-Time Stability for Evolution Unilateral Problems[END_REF], the authors give stability results (stability, asmptotical stability, LaSalle's invariance and finite time stability) for nonsmooth dynamical system governed by a convex superpotential.

So, our main interest is the study of the stability of differential inclusions with a nonconvex constraints. The stability results are given in terms of smooth Lyapunov functions. To get our goal, we use the concept of orbital derivatives introduced by Filippov in [START_REF] Filippov | Differential equations with discontinuous right-hand sides[END_REF]. The concept of orbital derivatives is also used in the study of finite time stability. Where, it seems difficult to give a condition which is at the same time necessary and sufficient condition to prove it. In the case where the Lyapunov functions considered are nonsmooth, the literature is vast and we can find several researchers interested by the study of this case(see. [START_REF] Bhat | Finite Time Stability of Continuous Autonomous Systems[END_REF], [START_REF] Ceragioli | Discontinuous Ordinary Differential Equations and Stabilization[END_REF], [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF], [START_REF] Shevitz | Lyapunov Stability Theory of Nonsmooth systems[END_REF], [START_REF] Bacciotti | Liapunov Functions and Stability in Control Theory[END_REF]).

The contents of the paper are as follows. In Section 2, we establish definitions, notations and review some basic results from nonsmooth analysis. In addition, we briefly formulate our problem in terms of differential inclusions and give an existence result. In Section 3, we introduce the notion of orbital derivatives in order to develop a Lyapunov like theorem for stability and asymptotical stability for differential inclusions with Clarke subdifferential. Section 4 is dedicated for the study of finite time stability. Instead, we propose a sufficient and a necessary conditions given in terms of Lyapunov functions and there orbital derivatives.

Definitions and Notations

The goal of this section is to formulate differential inclusions with Clarke subdifferential (or first-order evolution hemivariational inequalities) and to give an existence result of solutions to such problems. We start from giving some notations and definitions which are used in the sequel. Specifically, we denote by • the norm of R n associated to the usual inner product •, • . For ρ > 0 and x ∈ R n , we denote by B ρ and B ρ (x), the closed balls of radius ρ, centered at the origin and at the point x respectively.

Let F : R n → 2 R n be a set valued map. In this paper, we assume that F satifies the following hypotheses:

(h 1 ) For all x ∈ R n , F (x) is a nonempty compact convex set.

(h 2 ) The growth condition: For some positive constant c F and for all x ∈ R n ,

v ∈ F (x) =⇒ v ≤ c F (1 + x ).
(h 3 ) F is upper semi-continuous at every point x ∈ R n ; that means for every ε > 0, there is a ρ > 0 such that for y ∈ B ρ (x)

F (y) ⊆ F (x) + B ε .
Let j : R n → R be a locally Lipschitz function; that is, at every x ∈ R n there exist two positive constants k and ρ such that, for all y, z ∈ B ρ (x)

j(y) -j(z) ≤ k y -z .
For the function j, we denote by j • (x; d) the generalized directionnal derivative of j at a point

x ∈ R n in the direction d ∈ R n , j • (x; d) := lim sup w→x,τ →0 + j(w + τ d) -j(w) τ ,
provided the limit exists in R n . Finally, for a locally Lipschitz function j : R n → R, we say that a vector ξ is a Clarke subgradient of

j at x ∈ R if, for all d ∈ R n j • (x; d) ≥ ξ, d .
The set of such ξ is called Clarke subdifferential and denoted by ∂ c j(x). Denote that, the Clarke subdifferential is a nonempty compact convex set. Moreover, the set valued map ∂ c j(x) is upper semi-continuous (see. [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]).

Consider the standard differential inclusions given by

(D.I.) ẋ(t) ∈ F (x(t)), t ∈ [0, T ], x(0) = x 0
An existence result for (D.I.) can be found in [START_REF] Filippov | Differential equations with discontinuous right-hand sides[END_REF], [START_REF] Górniewicz | Topological Approach to Differential Inclusions[END_REF] and recalled in the following theorem.

Theorem 2.1 Let F (x) be a set valued map which fulfills the hypotheses (h 1 ), (h 2 ) and (h 3 ). Then, for each x 0 ∈ R n there exists at least a function x(t) : [0, T ] → R n satisfying (D.I.).

The aim of this paper is the study of the stability (in the sense of Lyapunov) of the first-order differential inclusions with a Clarke subdifferential defined as follows:

(P ) -ẋ(t) ∈ ∂ c j(x(t)) + F (x(t)), a.e. t ≥ 0, x(0) = x 0 .
As a Consequence of Theorem 2.1, the following theorem give an existence result of the solution of the problem (P ).

Theorem 2.2 Let j be a locally Lipschitz function and F be a continuous set valued map satisfying the hypotheses (h 1 ), (h 2 ) and (h 3 ). Suppose also j and F satisfy the problem (P ). Furthermore, suppose that the set valued map ∂ c j(x) satifies also a growth condition i.e. there exists a positive constant c j such that for all

x ∈ R n , v ∈ ∂ c j(x) =⇒ v ≤ c j (1 + x ).
Then, for each u 0 ∈ R n , there exists at least a solution for the problem (P ).

Proof. For T > 0 fixed, we set F := -F -∂ c j. Obviously, the set valued map F verifies the hypotheses (h 1 ), (h 2 ) and (h 3 ). Then, there exists a positive constant c := c F + c j such that:

v ∈ F(x) =⇒ v ≤ c(1 + x ).
Thus, by Theorem 2.1 and for each x 0 ∈ R n , the problem represented by

ẋ(t) ∈ F(x(t)), t ∈ [0, T ],
has at least a solution. Thus, for T choosen arbitrary, we deduce the existence of a solution of the problem (P ).

Note that, using the definition of ∂ c j, we can see that the problem (P ) is equivalent to the evolution hemivariational inequality defined as follows:

   Find x ∈ C 0 ([0, +∞); R n ) and ẋ(t) ∈ L 1 ([0, +∞); R n ) such that ẋ(t) + F (x(t)), v + j • (x(t); v) ≥ 0, ∀v ∈ R n , a.e. t ≥ 0 x(0) = x 0 .
In literature, there is many results concerning the studying the existence and the uniqueness of solutions of the hemivariational inequalities and the evolution hemivariational inequalities goverened by different natures of the operator F .

During this paper, we suppose that the hypotheses of Theorem 2.2 hold. Furthermore, we assume that the following condition

F (0) ∈ -∂ c j(0), (1) 
holds. Condition (1) means that 0 is a solution of problem (P ). In addition, for x 0 ∈ R n , we denote by x(t) and S(x 0 , F, j) the solution and the set of solutions of the problem (P ).

Finally, we introduce the sets of class K and K ∞ respectively defined by

K := g : [0, ρ] → R + continuous | g is strictly increasing on [0, ρ] with g(0) = 0 , K ∞ := g : R + → R + continuous | g is strictly increasing on R + and lim x→+∞ g(x) = +∞ .

Stability Results

In this section, we develop a stabiliy and asymptotic stability result for problem (P ). To attain this aim, we start by recalling the definitions of the stability and the asymptotical stability of the problem (P ) (in the sense of Lyapunov). Then, we introduce the notion of orbital derivative of a function V ∈ C 1 (R n , R).

Definition 3.1 We say that the trivial solution of (P ) is 1. Stable, if for every ε > 0, there exists δ = δ(ε) > 0 such that for each x 0 ∈ B δ and for all x(t) ∈ S(x 0 , F, j), we have x(t) ∈ B ε , for all t ≥ 0.

2. Attractive, if there exists δ > 0 such that for each x 0 ∈ B δ and for all x(t) ∈ S(x 0 , F, j), we have lim t→+∞ x(t) = 0.

3.

Asymptotically stable, if it is stable and attractive.

4.

Unstable, if it is not stable.

Remark that, the set of stationnary points S associated to the problem (P ) is given by:

S = {x ∈ R n | F (x) ∈ -∂ c j(x)} .
Then, condition [START_REF] Addi | Finite-Time Stability for Evolution Unilateral Problems[END_REF] shows that 0 ∈ S.

Let us now recall the notion of orbital derivative which will be used during the study of the stability. This notion was introduced by Filippov in [START_REF] Filippov | Differential equations with discontinuous right-hand sides[END_REF].

Definition 3.2 For a function V ∈ C 1 (R n ; R) and for a function x ∈ S(x 0 , F, j), the set

V (x) := {ζ ∈ R | ∃v ∈ ∂ c j(x), ζ = -∇V (x), F (x) + v } .
is called the set of orbital derivatives associated to V and x.

As the set ∂ c j(x) is convex and compact, we can deduce that V (x) is a convex, closed and bounded set. Thus, V (x) can be considered as a closed interval of R and represented as follows V (x) := Vinf (x), V sup (x) .

The values Vinf (x) and V sup (x) are called respectivelly the upper and the lower orbital derivatives of V and they are defined as

Vinf (x) := inf v∈∂cj(x) -∇V (x), F (x) + v ; V sup (x) := sup v∈∂cj(x)
-∇V (x), F (x) + v .

Remark 3.1 Let x(t) be a solution of problem (P ) and let V ∈ C 1 (R n ; R). Consider the function t → W (t) := V (x(t)). By definition of the function W , it is easy to remark that

∇W (t) = d dt V (x(t)) ∈ V (x(t)), a.e. t ≥ 0.
Now, we can give a version of Lyapunov's stability theorem for problem (P ).

Theorem 3.1 Assume that the hypotheses of Theorem 2.2 hold and suppose that there exist ρ > 0 and a definite positive function

V ∈ C 1 (B ρ , R) such that V sup (x) ≤ 0, ∀x ∈ B ρ . (2) 
Then, the trivial solution of problem (P ) is stable. The function V is called Lyapunov function for probel (P )

Proof. As the function V is C 1 (B ρ , R) and is definite positive, then there exists a function

ψ : [0, ρ] → R + with ψ ∈ K such that V (x) ≥ ψ( x ), ∀x ∈ B ρ . (3) 
Let ε ∈]0, ρ[. Using the continuity of V and the fact that V (0) = 0, there exists δ = δ(ε) > 0 such that, for any

x 0 ∈ B δ , we have |V (x 0 )| < ψ(ε).
Furthermore, let η = η(ε) with 0 < η < min(ε, δ). We would like to show that, for any x 0 ∈ B η and for all x ∈ S(x 0 , F, j), we have

x(t) < ε, ∀t ≥ 0.
Let us prove it by contradiction. First, suppose that there exist x ∈ S(x 0 , F, j) and τ > 0 such that x(τ ) ≥ ε. As x(0) = x 0 < ε, there exists t such that, for all t ∈ [0, t[, x(t) < ε and x( t) = ε (Using the continuity of x(t)).

Consider now the function W (t) as defined in Remark 3.1. W (t) is strictly decreasing on [0, t]. In fact, the function W is absolutly continuous on [0, t], then it is differentiable almost everywhere on [0, t] and we have

∇W (t) = d dt V (x(t)) ∈ V (x(t)) a.e. t ∈ [0, t].
Further, using hypothesis (2), we obtain that

V (x(t)) ⊂] -∞, 0] a.e. t ∈ [0, t],
and we have ∇W (t) ≤ 0 a.e. t ∈ [0, t[. Second, by combining the fact that x( t) = ε and condition (3), we get

W ( t) = V (x( t)) ≥ ψ(ε),
and so,

W (t) ≤ W (0) = V (x 0 ) < ψ(ε), ∀t ∈ [0, t[. (4) 
Finally, when t goes to t in (4), we get

W ( t) ≤ W (0) < ψ(ε),
which contradicts (3). Thus, the trivial solution of (P ) is stable.

Example 3.1 Consider the problem (P ) with F = 0 and j : R 2 → R defined by j(

x 1 , x 2 ) = |x 1 | + |x 2 |.
The Clarke subdifferential of j is given by

∂ c j(x 1 , x 2 ) = (SGN (x 1 ), SGN (x 2 )) if (x 1 , x 2 ) = (0, 0) co {(-1, -1); (-1, 1), (1, -1); (1, 1)} if (x 1 , x 2 ) = (0, 0) Where SGN (x) =    1 if x > 0 [-1, 1] if x = 0 -1 if x < 0 . Consider now the function V (x 1 , x 2 ) = 1 2 x 2 1 + 1 2 x 2 2 . We have V (x 1 , x 2 ) = {-|x 1 | -|x 2 |} if (x 1 , x 2 ) = (0, 0) {0} if (x 1 , x 2 ) = (0, 0).
So that, V (x 1 , x 2 ) ⊂] -∞, 0], for all (x 1 , x 2 ) ∈ R 2 . Thus, by Theorem 3.1, the trivial solution is stable.

Let us introduce an asymptotical stability result for problem (P ) by the following theorem:

Theorem 3.2 Assume that the hypotheses of Theorem 2.2 hold and suppose that there exist ρ > 0, λ > 0 and a definite positive function

V ∈ C 1 (B ρ , R) such that, for all x ∈ B ρ V sup (x) ≤ -λV (u). (5) 
Then, the trivial solution of problem (P ) is asymptotically stable.

Proof. First, it is easy to see that, the stability follows from Theorem 3.1. We still have to prove that, the solution of problem (P ) is attracted by the origin.

Let W (t) be the function defined in Remark 3.1. Condition (5) means that V (x) ⊂] -∞, -λV (x)], and we have

∇W (t) ≤ -λW (t), a.e. t ≥ 0. (6) 
By integrating (6), we get W (t) ≤ W (0)e -λt , t ≥ 0.

As the function V ∈ C 1 (B ρ , R) is definite positive then there exists a function ψ : [0, ρ] → R + such that ψ ∈ K and verifies 3 in proof of Theorem 3.1. Then, we obtain that

0 < ψ( x(t) ) ≤ W (0)e -λt , t ≥ 0. (7) 
Finally, by definition the function ψ and by tending t → +∞ in [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF], we get lim t→+∞ x(t) = 0, which means that the solution u(t) is attracted by the equilibrium of problem (P ).

Remark 3.2 For x ∈ B ρ and for all v ∈ R n , we have

ξ ∈ ∂ c j(x) ⇐⇒ j • (x; v) ≥ ξ, v .
Replacing v by ∇V (x), we obtain that ξ, ∇V (x) ≥ -j • (x; ∇V (x)). ( 8)

By adding ∇V (x), F (x) in both sides of (8), we get

∇V (x), F (x) + ∇V (x), ξ ≥ ∇V (x), F (x) -j • (x; ∇V (x)).
Thus, -∇V (x), F (x) + ξ ≤ -∇V (x), F (x) + j • (x; ∇V (x)).

We deduce that V sup (x) ≤ -∇V (x), F (x) + j • (x; ∇V (x)) ≤ 0.

The previous Remark shows that and in some cases during the study of the stability of the trivial solution of problem (P ), it is efficient to prove that the following condition -∇V (x), F (x) + j • (x; ∇V (x)) ≤ 0 holds. Especially, in the case where the computation of the upper orbital derivative V sup (x) of V , is complicated.

Finite-Time Stability

By the asymptotical stability of Theorem 3.2, we showed that the solution of problem (P ) is attracted by the equilibrium point (the origin). But, this concept lacks of informations concerning the time of convergence. For this, let us introduce the notion of Finite-Time Stability, as follows:

Definition 4.1 For all x 0 ∈ R n , we denote by S :=

x 0 ∈R n S(x 0 , F, j). We say that the trivial solution of problem (P ) is finite-time Stable if, it is 1. stable, and 2. For all x 0 ∈ R n , there exists a function T sys f : S → R + such that x(t) = 0 for all t ≥ T sys f . The function T sys f is called the settling-time function of problem (P ). Note that, if T sys f exists and is continuous, then for all x 0 ∈ R n , we introduce the settlingtime with respect to initial conditions of problem (P ), defined as

T f (x 0 ) := sup x(t)∈S(x 0 ,F,j)
T sys f (x(t)) < +∞.

Sufficient Condition

Theorem 4.1 Assume that the hypotheses of Theorem 2.2 hold and suppose that there exist ρ > 0 and a definite positive function V ∈ C 1 (B ρ , R). If there exists a function g ∈ K ∞ such that, for all ε > 0, ε 0 dz g(z) < +∞ and for all x ∈ B ρ ,

V sup (x) ≤ -g(V (x)). (9) 
Then, the trivial solution of problem (P ) is finite-time stable.

Proof. From condition (9), we deduce that the trivial solution of (P ) is asymptotically stable (see Theorem 3.2). Then, for a x(t) ∈ S(x 0 , F, j), we have x(t) is attracted by the origin with the settling-time T sys f (x(t)) ∈ [0, +∞].

Let us show that T sys f (x(t)) < +∞. First, consider now the function W (t) defined in Remark 3.1. From the proof of Theorem 3.1, the function W (t) is strictly decreasing for t > 0.

Second, consider the substitution [0, T sys f (u(t))] → [0, W (0)] given by z = W (t). Then,

0 W (0) dz -g(z) = T sys f (x(t)) 0 ∇W (t) -g(W (t)) dt. (10) 
From condition (9), we get V (x) ⊂] -∞, -g(V (x))] and as ∇W (t) ∈ V (x(t)) almost everywhere t ≥ 0 (see Remark 3.1), we obtain that

∇W (t) ≤ -g(W (t)), a.e. t ≥ 0. (11) 
By combining ( 10) and ( 11), we get

T sys f (x(t)) = T sys f (x(t)) 0 dt ≤ T sys f (x(t)) 0 ∇W (x(t)) -g(W (x(t))) dt = W (x 0 ) 0 dz g(z) < +∞.
Furthermore, as

W (x 0 ) 0 dz g(z)
is x(t)-independent, we can deduce that the settling time with respect to the initial conditions T f (x 0 ) is finite. Thus, the trivial solution of (P ) is finite time stable.

Necessary Condition

Theorem 4.2 Assume that the hypotheses of Theorem 2.2 hold and suppose that there exist ρ > 0 and a definite positive function V ∈ C 1 (B ρ , R). If the trivial solution of problem (P ) is finite-time stable and if there exists a function g ∈ K ∞ such that Vinf (u) ≥ -g(V (u)). ( 12)

Then, for all ε > 0, we get 

By [START_REF] Górniewicz | Topological Approach to Differential Inclusions[END_REF], we have V (x) ⊂ [-g(V (u)), 0] and by the fact that ∇W (t) ∈ V (x(t)) almost everywhere t ≥ 0, we obtain that ∇W (t) ≥ -g(W (t)), a.e. t ≥ 0.

Combining ( 13), ( 14) and as the trivial solution is finite time stable, we deduce that This condition is used in several references as [START_REF] Bacciotti | Liapunov Functions and Stability in Control Theory[END_REF], [START_REF] Bhat | Finite Time Stability of Continuous Autonomous Systems[END_REF]. In practice also, the function g(x) is usually choosen equals to x α with α ∈]0, 1[ to ensure the fact that ε 0 dz g(z) converges.

  Consider the function W (t) defined in Remark 3.1 and consider the sustitution introduced in the proof of Theorem 4.1, we get: -g(W (t))dt.

Remark 4 . 1

 41 W (x(t))) dt ≤ T sys f (u(t)) < +∞. Note that in Theorem 4.1, we can replace the function g by the function x α , for α ∈]0, 1[. Then, condition (9) can be reformulated as, for some c > 0, V sup (x) ≤ -c(V (x)) α .