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Given a global nonlinear state feedback which stabilizebaly an equilibrium, the aim of this paper is to modify ttoedl
behavior of the trajectories in order to get local optinyaliith respect to a given quadratic cost. A sufficient conditis given
in terms of Linear Matrix Inequalities (LMI) to design a ldigaoptimal and globally stabilizing control law. This amarch is
illustrated on an academic inverted pendulum model in aistabilize its upper equilibrium point. An extension oétimain
result is then given to address the problematic cases.

Moreover, the cases in which the previous LMI conditionefdito be satisfied is addressed and a new sufficient condition i
then given (which is not anymore linear).

Keywords: Nonlinear controllers, Lyapunov stabilization, Optimahtrol, LMI.

1 Introduction

The design of global asymptotic stabilizers for systemsidiesd by nonlinear differential equations
has received many attention from the control community dkerpast three decades. Depending on
the structure of the model, some techniques are now avaitabdlesign a control law which globally
stabilizes an equilibrium. For instance the backsteppseg Krstic et al. (1995) and references therein),
the forwarding (see Mazenc and Praly (1996), Jankovic €18D6)), and some other approaches (see
Kokotovi€¢ and Arcak (2001)) have been widely studied.

Despite the fact that the stabilization of an equilibriunm ¢ achieved, it is difficult to guarantee a
certain performance for the closed loop system. On anotdwed ,hwhen the first order approximations
of a nonlinear model is considered, performances issue edmhdled by employing linear optimal
control designs (for instance LQ or robust controllers).réfwer, with this optimal linear controller,
stabilization of an equilibrium point can also be obtained dnly locally. This leads to the idea of
designing a new controller which unites a local linear (ot controller and a global one.

This uniting controller problem has already been addreissin literature in Prieur (2001), Teel et al.
(1997), Teel and Kapoor (1997), Efimov (2006) by employinmsdybrid (and discontinuous) feed-
backs. In the present paper, a sufficient condition is gieerdésigning a continuous controller which
unites a linear static local stabilizer and a nonlinear glaime. The theory behind these developments is
inspired from recent results in Andrieu and Prieur (2010)rich a continuous uniting of two control
Lyapunov functions has allowed to continuously unite a lstabilizer and a non-local one (see also
recent results in Clarke (2010)).

In that paper, based on the results of Andrieu and PrieutQ2&ie continuous uniting control problem
is investigated and some of these results are extended pattieular case in which the local controller
is linear and the non-local one is global. More preciselggia global nonlinear control which stabilizes
globally asymptotically an equilibrium, the first resulttbe paper gives a sufficient condition to blend
this controller with a local optimal controller. This sufiat condition is given in terms of Linear Matrix
Inequality (LMI). This approach is then exploited to modtfye local behavior of a controller which
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has been developed in Mazenc and Praly (1996) to asymptpttabilize an inverted pendulum to its
upper position.

Motivated by the fact that in some cases, the sufficient cmrddoesn’t apply for some static linear
controllers, a more general sufficient condition is givese(section 5). However, this one is not anymore
in terms of linear matrix inequalities. With simple relawat procedures, it is shown that this strategy
addresses successfully the uniting problem for a large eunitocal stabilizers. Indeed, it is shown that
statistically all local controllers can be merged with thebgl one on this specific inverted pendulum
example.

The paper is organized as follows. In section 2, the probledeuconsideration is formalized. More-
over in the same section a first result which gives a suffictentdition in terms of LMI to solve the
problem mentioned above is formulated in Theorem 2.3. Thefpf this Theorem is given in Section
3. Section 4 is devoted to illustrate the proposed approaemanverted pendulum system. Some further
developments and a more general sufficient condition isygiveection 5. Finally section 6 contains the
conclusion.

Notations:

e The transpose of a matrRis denoted'.

e For arbitrary square matricéB, Q) we writeP > Qif P— Q> 0; i.e.,P— Qs a positive semi-definite
matrix. Similarly we defing®> > Qif P—Q > 0; i.e.,P — Qs positive definite.

e CX(E;F): We denoteCX(E;F) or simplyC¥ when this is no ambiguity on the sets, the set of functions
from E to F which is of clas<CX.

e Given a functionV in C?>(R™R), H(V)(x) denotes the Hessian matrix evaluateckah R", i.e.

(HV)(X)ij = 52 (%) -

2 Problem statement and main result

2.1 Problem formulation

Throughout this paper, the following controlled nonlinegstem, affine in the input is considered:
x=fx)+gxu ,  x0)=x, @
wherex in R" is the state vectoy in RP is the control input, and : R" — R" is aC? function such that
f(0) = 0 andg : R" — R™P is aC? function.
The functionsf being smooth, we can introduce the two matriCEgG) in R™" x R™P with F =

%(0) andG = g(0) describing the first order approximation of system (1).
All along this paper, it is assumed that the system (1) sasisfie following two assumptions:

Assumption 2.1Global Stabilization: There exists a positive definite, proper &fdfunctionV,, : R" —
R, and a locally Lipschitz functiog., : R" — RP such that:

aai:(x) f(x) +g(x)(pm(x)} <0,Vx#£0. 2

Assumption 2.First order Controllability: The pair of matricegF, G) is controllable.

Under assumptions 2.1 and 2.2, the problem under consinleiatastabilization with prescribed
local behavior problem. It can be formulated as follows:

Under Assumptions 2.1 and 2.2, given a linear (possiblynag)i local controller u= Kgx such that the
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matrix F+ GKy is Hurwitz, find a continuous control lag, : R" — RP such that the origin of the system

x=f(x) +9(X)Pp(X) ,
is globally asymptotically stable and such that :

99y

20 =Ko ©

When the two functiong f,g) are such that the system is in backstepping form (see Krsat e
(1995)), this problem has been solved in Pan et al. (2001\eder, when no structure restriction are
imposed on the coupld, g) and based on the theory developed in Andrieu and Prieur {2850 fficient
condition can be given in terms of linear matrix inequadit{eMI) which allows to solve the previous
problem.

Theorem 2.3LMI sufficient condition: Assume the system (1) is such that there exist two functions
Ve, @ Satisfying assumption 2.1 and such that the pair of matri€e6) satisfies assumption 2.2. Given
Py a positive definite symmetric matrix RI™" and Ky a matrix inR"*P such that:

Po(F 4+ GKp) + (F +GKo) TPy < 0, (4)
if there exists a matrix }gin R™P satisfying the following matrix inequalities

Po(F 4+ GKm) + (F+GKm) TPy < 0 5)
Po(F + GKm) + (F +GKpy) TP, < 0

where, R = H (V%) (0) then, there exists a proper, positive definite afd@ction \, : R" — R, and a
locally Lipschitz functionp, : R" — RP such that:

oV,
S200[ £ +g09)| <0,¥x7#0. ®)
and there exists a positive real numbersuch thatg,(x) = Kox and \,(x) = xX'Pox for all x verifying
Voo (X) < Feo.

It can be checked that Theorem 2.3 gives a sufficient comditicsolve thestabilization with pre-
scribed local behavior problenindeed, with Equation (4), the matti is such thaF + GKj is Hurwitz
and moreover the functiop, satisfies (3) (since the functidf, is positive definite, it yieldgy(x) = Kox
in a neighborhood of the origin). The proof of Theorem 2.3i&g in section 3.

Since Theorem 2.3 gives a sufficient condition in terms oédinmatrix inequalities, it allows to
employ the efficient LMI solvers to check wether or not this Lddndition is satisfied. These tools are
used in section 4 to employ Theorem 2.3 and to modify the Ibehkvior of a global controller on a
inverted pendulum. However, as shown in Remaiif Section 4.4, for some linear local controllers,
this sufficient condition doesn't hold. In section 5, an esien of Theorem 2.3 is given which allows to
overcome this difficulty.

2.2 Discussion

It can be noticed that Assumption 2.1 is a strong assumgtiowever, depending on the structure of the
functionsf andg some tools are now available allowing the design of the diplstabilizing controller
@, and its associated Lyapunov function (backstepping, fatimg, feedback linearization, passivation,
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...). Note that in Mazenc and Praly (1996), employing forwagdiechniques a global controller for the
model of an inverted pendulum is given. This one is studieskirtion 4.

Considering Assumption 2.2, a local controller ensurir@@l@symptotic stabilization of the origin of
system (1) can be designed. Among the controls which proagyenptotic stabilization of the origin,
the problem of guaranteeing a certain performance can bresskt.

One interesting aspect of this uniting methodology is the myarding théi., robust control design.

Indeed, assume that the nonlinear system given in equdijaos &ffected by some external disturbances
as:

x= 1(x)+g(x)u+h(xd. (7)

whereh: R" — R™™Mis a locally Lipschitz function and in Co(R;R™) is an unknown external distur-
bance. In this case, following tht,, design methodology (see Basar and Bernhard (1995)) theaton
law must satisfy two distinct objectives:

i) The firstis to guarantee the asymptotic stability of thigiorwhen the disturbance vanishes.

ii) The second is to guarantee a given attenuation level afadratic functional of the state and
control in the£? framework. More precisely, given a positive definite ma@in R™", a posi-
tive semi-definite matriR in RP*P and a positive real numbgithe attenuation level) we want
to find a stabilizing control feedback law= @y(x) such that the following inequality is satisfied
foralltin R:

[ X5/ Qta(s) + sy RuSIas< ¥ [ [a(s)s. ®

wherex,w(-) denotes the solution of system (7) initialized to the origin

Solving this problem relies on the construction of a solutio a nonlinear Hamilton Jacobi Bellman
equality* which can be difficult (or impossible) to solve. However, &focuss on the linear approxima-
tion of system (7), then this problem can be solved localhe Tirst order approximation of system (7)
is a linear system defined as,

X = Fx+ Gu+Hd (9)

with H = h(0). In this case, the Hamilton Jacobi Bellman equality is aelatgic equation defined as:
1
P0F+F’PO+WPOHH’P0—POGF\HG’POJrQ:0, (10)

where the solutiorP, is a definite positive matrix ifR™", and a robust linear control for system (9)
solving the disturbance attenuation as defined by inegu@ljtis given as

u=@(x) = —R1GPyx. (11)

1Following the nonlinear robust control design methodo]@gway to solve this problem is to find a positive definite arappr smooth function
Vo : R" — R, satisfying the Hamilton Jacobi Bellman equation

o100+ g e on0a (5000) — 5 GeaR ' (G2

!
(x)> +XQx=0
In this case, the solution to the control problem is simply
oLl (Vo
w9 =57 1909’ (5o00)

However, the computation of the solution to the Hamiltonoba®&ellman equality is difficult in practice when dealingtivhonlinear systems.
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In section 4, this type of local controller is united with @lgal controller obtained by forwarding for
the model of an inverted pendulum.

As seen from the LMI sufficient condition (i.e. inequaliti&s), we are interested in finding a common
controller for two different lyapunov functions. This issome aspect a dual problem from a usual prob-
lem in robust control design in which a unique lyapunov fiortis associated to different controllers
(see Boyd et al. (1994) for further details).

Note also that givey a locally stabilizing (possibly optimal) controller, mamatricesP, are solu-
tion to the Lyapunov inequality (4). Among the solutions héstLyapunov inequality, we need to find
one such that inequalities (5) are satisfied.

Finally, it has to be noticed that inequalities (5) implieaittlocallyV., is a strict control Lyapunov
function. This implies that this approach may fail when adesng globally stabilizing controller which
associated Lyapunov functions are not strict. This is fetance the case with most of the global con-
troller obtained using some passivation arguments.

3 Proof of Theorem 2.3

The proof of Theorem 2.3 is based on the tools developed irridnénd Prieur (2010). Consequently,
in a first step we review the result obtained in that paper.

3.1 Continuously uniting local and non-local controller

In Andrieu and Prieur (2010), a sufficient condition is giwterallow the construction of a continuous
control law which unites a local and a non-local one and puesahe global stability of the closed loop
systems. This approach is based on the uniting of two Cohyrpunov Functions. One of the result
obtained in that paper can be summarized as follows:

Theorem 3.1Given in Andrieu and Prieur (2010) Letq: R" — RP and@. : R" — RP be two locally
Lipschitz functions, : R" — R, and \{, : R" — R be two C positive definite and proper functions,
Ry and r,, be two positive real numbers such that the following holds.

i) Local stabilizability: For all x in{x : 0 < Vp(X) < Ry},

6V0 aVO .
S X + =2 (X)X @(x) < O (12)

ii) Non-local stabilizability: For all X in{x : Ve (X) > re}

Ve Ve .
T KOO+ == ()900) @e(x) < O (13)
iif) Covering assumption:
{X:Ve(X) > re} U{X:Vo(X) < Ro} =R"; (14)
iv) Uniting CLF assumption: For all X i{X : V(X) > e, Vo(X) < Ro} there exists yin RP such
that:
Mo Vo Vo Voo
-0 - il -2 15
aX (X) f(X) + ax (X)g(X) uX < O 1 ax (X) f(X) + ax (X)g(X) uX < 0 . ( )

Then, there exists a locally Lipschitz functigy: R" — RP and a positive definite and propef @inction
V,p : R" — R which solves the uniting controller problem, i.e. such that
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i) Local property:@p(X) = @o(X) and \p(X) = Vo(x) for all x such that (x) <r ;
ii) Non-local property:@,(X) = @.(x) and \j(x) = Ve (X) for all x such that W(x) > Ry ;
iil) Global stabilizability:

oV
S2(x) [f (X) + g(x)cpp(x)} <0,Vx£0. (16)

This result is not presented in this way in Andrieu and Pr{@01.0) but can be easily obtained from
(Andrieu and Prieur 2010, Theorem 3.1) and (Andrieu anduP@2610, Proposition 2.2).

The idea of the proof in Andrieu and Prieur (2010) is to desigrontroller which is a continuous
path going fromgy(x) for x small toward@.(x) for larger values of the state. The global asymptotic
stability of the origin is ensured by adding a sufficientlggiaterm which depends on thaeiting control
Lyapunov functiorconstructed fronvp andV.,,. More precisely, the functiog, : R" — RP obtained from
Theorem 3.1 and which is a solution to the uniting contrglieblem is defined as

Po(X) = H(x) — kc(x) <%(x)g(x)> ,Vx € R, a7)

whereV, : R" — R, is the united control Lyapunov function constructed emipigythe result in (An-
drieu and Prieur 2010, Theorem 2.1). To be precise, thistimeinites the local and nonlocal control
Lyapunov functiond/y andV,, and is given for alk in R" by

Vo) = Ro [90(Vo(X)) + §(Vea()) | Ve (X) + Ter |1 = B0(Vo(X)) — bx(Veu2)) | Vo () .~ (28)

wheredy: R, — [0,1] and¢., : R — [0, 1] are two continuously differentiable non-decreasing fiomst

satisfying:

=0 Vs<rg =0 Vs<r,
do(s) { >0 VIp<sS<Ry , Pu(s){ >0 VIb<S<R. , (21)
=1 Vs>R =3 Vs>Re

and whereg = max., (x) <r..} Vo(X), andRe = MiNgey ) > Ry} Veo (X). IN (17) the functior? continuously
interpolates the two controllers and@, and is given as

H(X) = V() @(X) + [1—0(X)]@(X)
whereu is any continuous functidrsuch that

1ifVi(x) <
vl = {o Vo) = Ro.

1For instancedo and¢. can be defined as:

do(s) = g(Rso—_r?O){ <F§O__r?0>3 . S€ [ro,Ro] , (19)
Poo(8) = g (Ri*_':"w>2— (RZ*_':"M>37 S€ [Foos Re] - (20)

2For instance, givingg andd. defined in (21), a possible choice igx) = 1 — do(Vo(X)) — deo (Veo (X)) - (22
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Also, in (17) the functiore is any continuous function such tRat

=0 ifVo(X) > Ry 0rVu(X) < re,
o ){>0 if Vg(x) < Ry andVe(X) > re, (24)

andk is a positive real number sufficiently large to ensure Yhais a Lyapunov function of the closed-
loop system. The existenceloifs obtained employing compactness arguments (see anaagguments
in (Andrieu et al. 2008, Lemma 2.13)).

3.2 Proof of Theorem 2.3

The idea of the proof is to show that with matrix inequalit{g$ the four points of Theorem 3.1 are
satisfied and consequently the controller (17) is a solutiothe stabilization with prescribed local
behavior problem.

Proof of Theorem 2.3ConsideN,(x) = X" Pox. Along the trajectories of System (1) with= Kox, the
functionV, satisfies:

\m = X" Sox+ Lo(X)
whereS is matrix inR™" defined as
S = Po(F + GKo) + (F +GKo) Py,
and where’\y : R" — R is aC? function defined as,
Do(x) = 2 Ro[(F(x) — FxX) + (9(X) — G)Kox] .

It can be checked that inequality (4) implies ti&gtis a symmetric negative definite matrix. Moreover,
the function/\q satisfies,

20

No(0)=0, 3

(0)=0,H(Ag)(0)=0.

Hence, it yields:
No(X) = o([x?) .

Consequentlyyy(x) < 0 along the trajectories of the System (1) witk= Kox for all sufficiently small
x. Hence Item 1 of Theorem 3.1 is satisfied wiRfsmall enough.

On another hand, with Assumption 2.1, Iltem 2 of Theorem 3ttinglly satisfied for allr,, > 0.
The functionsvp andV., being proper and definite positive, Item 3 is satisfied predid, is selected
sufficiently small.

Now, along the trajectories of System (1) with= K%, it yields,

m: 2XT P, (f(X) + g(X)KnX) + <aai):’(x) —2xTPw> (f(X) +9(X)KmX) -

3For instance, a possible choicecis) = max{0, (Ry — Vo(X)) (Ve (X) — o) } (23)
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Which can be rewritten,

m = X" SoX+ La(X)
whereS, is matrix inR"™" defined as
So = Pu(F + GKpn) + (F + GKq) TP
and where\, : R" — R is aC? function defined as,

Do (X) = 2XT Py [f(X) — FX+ (g(X) — G)KnX] + (aai)?(x) — 2xTPw> (f(X) +9g(X)KnX) .

Note that with (5)S. is a symmetric negative definite matrix. Moreover sirce satisfies

0

Aoo(o) :O,W

(0)=0,H(A=)(0)=0,
it yields
D (X) = o([x[?) .

Consequently, along the trajectories of System (1) withKx for all x small

Ve (X) < 0. (25)

It can be checked that the same conclusion holds with thditm,. In other word, along the trajec-
tories of System (1) withn = Kx for all x small

Vo(x) < 0. (26)

Inequalities (25) and (26) implies that the control law: K,,x makes strictly negative the time deriva-
tive of the two function¥y andV,, for x small enough. Hence, Item 4 of Theorem 3.1 is satisfied pealvid
Ry andr., are small enough.

With Theorem 3.1, it yields that there exists a continuouscfion @, (for instance the one defined
in (17)) which makes the origin of the system="f(x) + g(x)@,(x) globally asymptotically stable with
associated Lyapunov functidf defined in (18) and for alk such thai.,(x) < r. then@(x) = Kox and
Vp(X) = X'Pox. This ends the proof of Theorem 2.3.

4 Application to the inverted pendulum

The inverted pendulum is a classical example in controlhelhe goal is to apply control torque to
stabilize the inverted pendulum and raise it to its uppeilibgiwm position while the displacement of
the carriage is brought to zero.

In our context, the control law has to ensure the overallilgiabf the system and a local disturbance
attenuation level for a given quadratic cost with respesbime external disturbances on the model.
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4.1 Dynamical model

Consider the inverted pendulum constituted of a movablgatgr in translation on a horizontal axis.
The pendulum, while being fixed on the carriage is free tateotd/e consider the rigid rod of negligible
mass, and we defird the mass of the carriage (in grammm)the mass of the pendulum (in grammle),

the length of the rod (in metery,the position of the carriage from origin (in mete@)the angle between

the pendulum and the vertical (in rad).

Using the equation of Euler-Lagrange, we get the followiragel given in terms of differential equa-
tions:

{j’(cos(e)+le—gsin(9) =0, 27

(M +m) ¥ +mlcog8)6 — misin(6)62 = F +d,

whereF is the horizontal acceleration acting on the cart and is &monn disturbance (which can be
related to friction). This model can be rewritten in stataspform as

. u-+d-+mlé?sin(8) — mgsin(8) cog®)

= M -+ msin(6)?

6= Isin(@) — L coge) |49+ MIO*sin(6) — mgsin(8) cog6)
! ! M -+ msin(8)°

I

(28)

where the state = (X,X,0,6) isin R x R x (—,7) x R and the control inpu = F is in R.

The physical data taken for our experiments are the follgwin

| =0.26m, M =600y, m=100g, g=9.81.

4.2 Globally stabilizing control law using forwarding

We are interested in this paragraph in the control law giveMibzenc and Praly using the technique
of forwarding or adding integrators (see Mazenc and Prd96)). In this subsection we don't consider
the external disturbances.

Following Mazenc and Praly (1996), the differential eqoias of inverted pendulum (27) are rewritten

in new coordinates witd = O:
X X -
= — R V= — , e frd e , W= e -, 29
P=1 Val \ﬁ (29)

and with a new control variable given by:

L lut ml62sin(8) — mgsin(8) cog8)
>y M + msin(8)?

t::t\/lg.

Consequently, the following equations are obtained (Mazem Praly (1996)):

: (30)

and, finally with a new time variable

P=V,V=U, =0, =sin(B) — u,cogd) , (31)
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with (p,v,w) in R3 and we restric to be in(—3, 7). From a practical point of view, this means that the
position of the mass is set above the fixation point of the Tae. forwarding approach of Mazenc and
Praly consists in 3 steps :

i) stabilize the subsystef®,w);
ii) stabilize the subsysterfv, 8, w) by adding a first integration;
iii) stabilize the complete system by adding a final inteigrat

To obtain a non bounded domain (i.e &1), the following change of coordinate is considered in
Mazenc and Praly (1996):

pr=p,Vvi=V, ty=tan®), r = (1+t?)w.
In this case, (31) is rewritten as following:

o 2tlr12
o 1+t12

Pr=Vi,Vi=Up,ty=r1, 1 FtVIHt2 U/ 1442, (32)

The forwarding approach consists on using a change of coatel to each new addition of integra-
tion obtained by computing a solution to a partial diffeiahequation and to perform a Lyapunov
design at each step. With this approach the authors in MaaeddPraly (1996) gave a control law
Uz = @(p1,Va,t1,r1) which stabilizes the system globally asymptotically asofeing:

O(P1,V1,t1,1) = @1(te,r1) + @(Va,t1,r1) + @3(P3, Vo, t1,11) (33)
. |'12
with: @(ty,r1) =2t ( 1+ —— ri,
IGHEY 1( +(1+t12)3>+ !
1
@(V2,t1,r1) = 10" V2:V1+2\/;l+—tf +1t1, (34)
; 1 10ps
Pa(P3; V2, t2, 12) = 2[2r1 + ]V 1+ 12+ 2v | 10+ 5|ve| +sz,
3

r
Vit

The associated control Lyapunov functién R* — R, is given as:

andps = p; + 2log (t1+ 1+tf> +10vo+Vvy + (35)

1
V(p1,V1,t1,r1) = 2r2+ 2 ((1+t12)3 - 1) + 29ty + 10v2 + é\vz\3 +v/14+ps2—1,  (36)
where the functions, andps are given in (34) and (35).

With these data, it is shown in Mazenc and Praly (1996)Vhatefined in (36) satisfies along the tra-
jectories of system (32) with, = @(py,V1,t1,r1), the controller defined in (33), the following inequality

/+\
V(p1,Va,t,r1) <0, V(p1,Vi,t1,r1) #0.

Consequently, Assumption 2.1 is satisfied for System (32).
Going back to the coordinates of system (28), it yields a by functionV,, defined as,

Vao(X) =V <>I(—,§,tar(e),(1+tar(e)2)é\g> ,
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and a control lawa = @, (X) with

@ (X) = g(M +msin(8)?) @ (IK’ é,tan(e), (1+ tar(e)z)'e\/g> —mlf?sin(8) + mgsin(8) cog6), (37)

which satisfies Assumption 2.1 for the model (27) with the lkmadification that the state space is not
R*bUutR xR x (-5, 0) xR,

4.3 Locally robust stabilizing control law

No we consider the disturbandéanvolved in the model (28) and we design a robust control lavhe
first order approximation of the model. The matrices of th& firder approximation of system (28) are

given as
01 0 O 0
00 -™ 0 L
— M — M _
F= 00 o 1 , G= 0 ,H=G. (38)
m
007+790 -

Assumption 2.2 is satisfied for system (32). Consequentiyear local stabilizing controller can be
obtained. Among the possible linear local controllers \Wwheémsure local stabilization one may select
one which ensures a particular attenuation level as definég).

As an example, in (8) the matri@ and the real numbd® are chosen as:
Q=Diag {0.1,0.2,0.3,0.4} , R=5.10"°. (39)

Solving the associated Riccati equation (see equatior) 0&mploying the routinec@re) of Matlab
with the attenuation level= 0.045, the matrix

0.20 011 026 003
0.11 019 050 005

P~ 1026 050 198 013 (40)
0.03 005 013 001
is obtained. It yields that the control law (11) is given as:
@(x) =[1416 2898 13388 364x (41)

This controller guarantees an attenuation level for thediization of the model in the sense of in-
equality (8). However when considering the nonlinear m@82}), only local asymptotic stability can be
achieved with this control law.

4.4 Synthesis of optimal control law locally and globally stabl

The aim of this subsection is to employ Theorem 2.3 to unigeldlsal optimal controller (41) and the
globally stabilizing controller (33). The matrR, = H(V.,)(0) is given as:

740 1325 2308 657
1325 2764 4759 1381
P 23.08 4759 85 2393 (42)

6.57 1381 2393 696
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Using (42) and Theorem 2.3, the existence of a vel§psolution of LMI (5) withF, G given in (38)
has to be verified. Employing théalmippackage (Lofberg (2004)) iMatlab in combination with the
solvet Sedum{Sturm (1999)), it is shown that a vectié, doesn't exist with these data.

However, the following matri@,

0.64 028 062 007
0.28 062 089 016
0.62 081 294 021
0.07 016 021 004

Po= (43)

is also solution to the Lyapunov inequality (26) with the saoontrol gainky. In this case we get the
existence oK, which satisfies (5) and is given i, = [5249 11152 19487 567.JFrom Theorem
2.3, it yields that the control law given in (17) is a globalsitizer with the prescribed local behavior.

Performances of the proposed controller are evaluatedrialation wherd is modeled as a centered
gaussian noise with a standard deviation equal to 4. Fursgi§ ¢.,, U andc are respectively defined in
(19), (20), (22) and (24) with parametd&s= 46.2,r,, = 0.2702,ro = 24.914,R,, = 0.5017 anck = 10.
The initial condition considered is:

x(0) =10, x(0)=0.1, 6(0) = 1.3, 6(0) =0.8.

15 20
e Locally Robust|| @ Locally Robust
=t 10 Forwarding £ Forwarding
i) S 10
5 3
2 5 #
() [
o @ 0
£ 0 £ lf Y
< 5
©) ®)

-5 -10

0 10 20 30 0 10 20 30
Time (s) Time (s)
2 @ 20

'g Locally Robust }3 Locally Robust
5 1 Forwarding g A Forwarding
& g 0
c o
© 0 oSS o)
= >
2 £ 20
< -1 =
S S
o c
o [}

-2 o -40

0 10 20 30 0 10 20 30
Time (s) Time (s)

Figure 1. Evolution of the state variables when considetfiregforwarding controller and the locally robust one.

LAll Matlab files can be downloaded from the websitattps://sites.google.com/site/vincentandrieu/
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Feedback used (in logarithmic scale)

-3t Interpolation domain i
_4 - .
_5 1 1 1 1 1
0 5 10 15 20 25 30
Time

Figure 2. Comparison of the functiok®x, @, (x) and@p(x) along the solution of the closed loop system.

The evolution of the state variables are depicted in Figurkslit can be seen the use of the locally
robust controller ensures a faster convergence rate. Mereas seen in Figure 3 its robustness with
respect to the measurement noise seems to be improved.

As can be seen in Figure 2 at the momiesat3.95(seq, the control law of the modified Forwarding
leaves the usual forwarding control law up to titne 10.68(seg where it reaches the locally optimal
control law.

As seen on Figure 4, in the interpolation domain the cordmelihcrease due to the high gain parameter
K.

Remark 1: There are locally optimal or robust control laws for whitle tmatrix inequality (5) does
not have a solution. To evaluate the frequency of these enodic cases, a statistical study on the
frequency of solvability of th&MI condition given in Theorem 5.1 is done using the data obtHiirzen
the inverted pendulum studied previously in the next Sactio

4.5 Statistical study

In this paragraph, we make a statistical study of the sdialiiequency of the sufficient condition
given in terms ofLMI in the Theorem 5.1 with the data obtained from the invertatdplim studied
previously.

To numerically estimate the frequency of the problematizsan which there is no solution to the LMI
sufficient condition (5), we develop a statistical approahdo this, we restrict ourselves to consider
the set of local optimal LQ controllens = —G'Pyx where eact, is solution to the algebraic Riccati
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Locally Robust |
Forwarding

0.08

0.06

0.04

0.02

-0.02

-0.04 7

Carriage speed (m/s)

-0.06 .

-0.08 n

-0.1

26 262 264 266 268 27 272 274 276 278
Time (s)

Figure 3. Comparison of the steady-state response of thegaispeed when using the forwarding or the locally robastrol law.

equation parameterized by a matfixn R**# and given a§
F/Po + PoF — POGG/PO+ rMN-=0.

To perform a statistical study, on this set of controllefspreents ofl are given by uncorrelated uni-
formly distributed random variables i0, 1], and we have simulated a number of draws. For each of
these draws, we solve the corresponding Riccati equatidmenobtain a local LQ controllek, and
its associated Lyapunov functiofPyx. With Py we check the correspondirigv| condition in (5) em-
ploying theYalmippackage (Lofberg (2004)) inlatlabin combination with the solvérSedum{Sturm
(1999)).

We set the number of draws to 10000. For each of these drassnatrix ™ is obtained using the
routine ¢and) of Matlab. We repeated this manipulation to test the pertae of our approach. The
values given in the following tabular are the percentageasts for which we have obtained a solution
to the LMI test (5):

INote that compare to usual) approaches, we are not losing any generality by seRirgl since we can normalize the cost
LAll Matlab files can be downloaded from the websitettps://sites.google.com/site/vincentandrieu/
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Figure 4. Comparison of the controlled input in the undiséal case.

Test Percentage of success
36,32%
36,14%
36,87%
35,64%
35,97%
36,20%
36,72%
36,55%
35,92%
10 36,10%

The mean of these percentage isZ38%6 and the standard deviation id3 (which is relatively low).
Thus, we conclude that the frequency of 28% appears to be representative of the mathematical ex-
pectation of the solvability of our sufficient condition ihet case of the inverted pendulum for LQ
controllers.

O©CoO~NOORWNLE

5 Extension of theorem 2.3

To apply our approach and design a globally stabilizing adtaw and locally optimal, we have to solve
the LMI test (5). However, as we have seen in the statisticalyais, in most cases, this is not possible.
A solution to the problem where the local optimal control slaet solve the LMI test is to use a transient
Lyapunov function. Indeed, we have the following result.
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Theorem 5.1Extension Under Assumptions 2.1 and 2.2, giveyaPsymmetric definite positive matrix
in R™" and Ky a matrix inR"™P such that:

Po(F +GKo) + (F +GKo) 'Ry < 0. (44)

If there are two matrices K; and Ky2 in R"*P, By, a definite positive matrix ifR™" such that the
following matrix inequalities are satisfied:

Po(F + GKm1) + (F + GKn1) TPy < 0
Pm(F 4+ GKm1) + (F + GKn1) "Pn < 0 45
Pn(F + GKmz) + (F + GKmz) TP < 0 (45)
Poo(F 4+ GKmy2) + (F + GKm2) TP, < 0

where the matrix £ = H(V.)(0) then, there exists a continuous functign: R" — RP such that the
origin of the system = f(x) + g(X)@p(X) is globally asymptotically stable, and there exists a pesit
sufficiently small real numbet.rsuch thatp,(x) = Kox for all x verifying Vn(X) < .

Proof : The proof of Theorem 5.1 is a direct consequence of Theor8niritleed, if the two last matrix
inequalities in (45) are satisfied, we can apply Theorem@dbtain a locally Lipschitz control lawpy,

a proper and definite positiv@* functionVim1, and a positive real numbeg n, sufficiently small such
that

ox

(0] F(9 +90@n(x)] < 0,7 x#0, 46)
and such that for akt such thaW,(X) < e mthen
Pn(X) = Km1X, Vin1(X) = XPmX..

With the two first inequalities in (45), we can use anotheetifleorem 2.3 to obtain a functiqn, a
realr., small enough such that the origin of the system: f(x) 4+ g(X)@,(x) is globally asymptotically
stable, and for alk such thaw/(X) < r. then@,(x) = Kox. O

It has to be noticed that this result does not come in the fdraenlimear matrix inequality. Therefore,
it is not possible to employ the usual LMI resolution tool twedtly solve this sufficient condition.
However, by randomly selecting the matiy, inequalities (45) become linear in the unknows:,
Km2.

Consequently, giveK, the local controller and its associated Lyapunov funcBgnve can employ
the following algorithm:

While the matrix inequalities (45) is not satisfied

i) Select randomly a positive definite matrix Qm in R™N,

i) Solve the associated Riccati equation F'Py+ PoF — Ph.GGPy + Qn = 0 to get a
P, matrix in  R™" which defines a CLF.

iif) Check if the matrix inequalities (45) is satisfied.

Employing this simple algorithm, we have shown numerictilt with 10000 differenPy andKo, in
all cases it was possible to findPg such that the matrix inequalities (45) was satisfied. Noa, thith
this algorithm the maximal number of transient CBEthat has to be tested was 22.

Consequently, it seems that with Theorem 5.1, it is possibtkesign a globally stabilizing controller
such that its first order approximation can be solution gba#isible optimal (LQ) or robusH,) problem
on this specific example.
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6 Conclusion

A method to obtain a globally stabilizing control law with eepselected local behavior (robustness or
optimality) is presented in that paper. This approach ishas the use of a technique recently developed
in Andrieu and Prieur (2010). A sufficient condition in terimLMI is first given. This approach is
illustrated in an academic problem of stabilizing an inedppendulum to its upper equilibrium position.
We modify the local behavior of the globally stabilizing ¢ law obtained by forwarding in Mazenc
and Praly (1996) in order to get a locally robust control Isl@reover, it is shown numerically that nearly
36.24% of LQ controllers can be reproduced locally with thismggh. By extending this approach and
using a transitional Lyapunov function, it is shown numaltic that 100% of LQ controller can be
combined with the global control law. The results show theaathge of this technique to change the
local behavior of a controlled nonlinear system which incgice is difficult to tune.
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