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Abstract. It is known that the space of convex polygons in the Euclidean plane with fixed normals, up to homotheties and translations, endowed
with the area form, is isometric to a hyperbolic polyhedron. In this note we show a class of convex polygons in the Lorentzian plane such that their
moduli space, if the normals are fixed and endowed with a suitable area, is isometric to a spherical polyhedron. These polygons have an infinite
number of vertices, are space-like, contained in the future cone of the origin, and setwise invariant under the action of a linear isometry.

1. Introduction

It was proved in [Bavard and Ghys, 1992] that the space of convex polygons in the Euclidean plane, up to homotheties and transla-
tions, with fixed outward normals to the edges, endowed with the area form, is isometric to a hyperbolic polyhedron. It was an applica-
tion of [Thurston, 1998] to the case of polygons. It was noted in [Fillastre, 2011a] that the construction of [Bavard and Ghys, 1992] can
be seen as an application of the mixed-volume theory. (See [Fillastre, 2011a] for other related references.) Here we adapt the mixed-
volume theory to a particular class of convex polygons in the Lorentzian plane (volume will be called area in this dimension). Despite
the fact that the definition of the polygons in the present case could seem more intricate than in the Euclidean case, the theory appears
to be simpler. The generalization to all dimension and to objects more general than polyhedral ones is the subject of [Fillastre, 2011b].

2. Equivariant convex polygons in the Lorentzian plane

The Lorentzian plane is R2 endowed with the bilinear form ①x, y②1 ✏ x1y1 ✁ x2y2. A vector x is called space-like (resp. time-like)
if ①x, x②1 is positive (resp. negative). In this paper, a future vector is a time-like vector whose first coordinate is positive. The angle

between two non-collinear future vectors x and y is the unique ϕ → 0 such that [Ratcliffe, 2006, (3.1.7)]

(1) coshϕ ✏ ✁
①x, y②1❛

①x, x②1①y, y②1

.

The set of future vectors

F :✏ tx P R2⑤①x, x②1 ➔ 0, x1 → 0✉

is a convex cone. If a is a vector,

a❑ :✏ tx P R2⑤①x, a②1 ✏ ①a, a②1✉

is the affine hyperplane over the vector hyperplane orthogonal for ①☎, ☎②1 to a, and passing through a.
In F , the hyperbolic line

H :✏ tx P R2⑤①x, x②1 ✏ ✁1, x1 → 0✉

is the set of unitary future vectors. It will play the role of the unit circle in the Euclidean plane. H is globally invariant under the action
of the linear isometries of the Lorentzian plane called hyperbolic translations:

Ht :✏

✂
cosh t sinh t

sinh t cosh t

✡
, t P R.

Definition 2.1. Let ♣η1, . . . , ηnq, n ➙ 1, be pairwise non-collinear future vectors in the Lorentzian plane, and let t → 0. A t-convex
polygon is the intersection of the half-planes bounded by the lines

♣Hk
t ηiq

❑,❅k P Z,❅i ✏ 1, . . . , n.

The half-planes are chosen such that the vectors ηi are inward pointing.
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2 POLYGONS OF THE LORENTZIAN PLANE AND SPHERICAL POLYHEDRA

Figure 1. A piece of the
sinh✁1♣1q-convex polygon
made from the vector ♣0, 1q. All
the edges have the same length
for the induced metric.
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Figure 2. Notations
for a t-convex
polygon.

Let us consider a t-convex polygon made from a single future vector η (see Figure 1). Without loss of generality, consider that
η P H. Let u, v be two different vectors in the orbit of η, and let x be the intersection between u❑ and v❑. As ①x, u②1 ✏ ①x, v②1 ✏ ✁1,
x is orthogonal to u ✁ v, which is a space-like vector (compute its norm with the help of (1)). Hence x is time-like, and as u❑ and v❑

never meet the past cone, x is future. It is easy to deduce that the t-convex polygon is contained in F . As any t-convex polygon is the
intersection of a finite number of t-convex polygons made of a single orbit, it is contained in F .

Let P be a t-convex polygon and let ηi be the inward unit normal of the edge ei of P. The edge at the left (resp. right) of ei is
denoted by ei✁1 (resp. ei�1). Let pi be the foot of the perpendicular from the origin to the line containing ei. The positive number
hi ✏

❛
✁①pi, pi②1 is a support number of P. In particular, pi ✏ hiηi. Let pii�1 be the vertex between ei and ei�1. We denote by hii�1

the signed distance from pi to pii�1: it is non negative if pi is in the same side of ei�1 than P. The angle between ηi and ηi�1 is denoted
by ϕi. See Figure 2.

Lemma 2.2. With the notations introduced above,

(2) hii�1 ✏
hi coshϕi ✁ hi�1

sinhϕi

, hii✁1 ✏
hi coshϕi✁1 ✁ hi✁1

sinhϕi✁1
.

Proof. By definition, hii�1 is non negative when ①pi ✁ pi�1, ηi�1②1 ↕ 0, i.e. ✁♣hi�1 ✁ hi coshϕiq ➙ 0. Hence

hii�1 ✏ ✁
hi�1 ✁ hi coshϕi

⑤hi�1 ✁ hi coshϕi⑤

❜
①pii�1 ✁ pi, pii�1 ✁ pi②1.

Up to an orientation and time orientation preserving linear isometry, one can take ηi ✏
�

0
1

✟
. In particular pi ✏

✁
0
hi

✠
and ♣pii�1q2 ✏ hi

hence ①pii�1✁pi, pii�1✁pi②1 ✏ ♣pii�1q
2
1. We also have ηi�1 ✏

✁
sinhϕi

coshϕi

✠
, and as ①pii�1, ηi�1②1 ✏ ✁hi�1 we get ♣pii�1q1 ✏

✁hi�1�hi coshϕi

sinhϕi
.

The proof for hii✁1 is similar, considering ηi✁1 ✏
✁
✁ sinhϕi

coshϕi

✠
. �

3. Area of t-convex polygons

Let P be a convex t polygon. Choose an edge and denote its inward unit normal by η1. We denote the inward unit normal of the
edge on the right by η2, and so on until ηn�1 ✏ Ht♣η1q. The edges with normals η1, . . . , ηn are the fundamental edges of P. The number
hi♣Pq is the support number of the edge with normal ηi. If ϕi is the angle between ηi and ηi�1 we have

(3) ϕ1 � ϕ2 � ☎ ☎ ☎ � ϕn ✏ t.

The area of P is

A♣Pq ✏
1
2

n➳
i✏1

hi♣Pqℓi♣Pq

where the sum is on the fundamental edges, and ℓi♣Pq ✏ hii✁1♣Pq � hii�1♣Pq is the length of the ith fundamental edge (hence positive).
A♣Pq is the area (in the sense of the Lebesgue measure) in a fundamental domain for the action of Ht of the complement of P in F .
Formula (2) allow us to extend formally the definition of A to any vector h P Rn:
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A♣hq ✏
1
2

n➳
i✏1

hi

hi coshϕi✁1 ✁ hi✁1

sinhϕi✁1
� hi

hi coshϕi ✁ hi�1

sinhϕi

.

In other words, we identify P with the support numbers of its fundamental edges, and the vectors η1, . . . , ηn are in bijection with the
standard basis of Rn. Of course P is then uniquely determined by the vector made of its support numbers.

If n ✏ 1, there is only one angle between the unit inward normal η and its image under Ht, which is equal to t, and A♣hq ✏ h2 cosh t✁1
sinh t

.

If n ➙ 2, we introduce the mixed-area

A♣h, kq ✏
1
2

n➳
i✏1

hi

ki coshϕi✁1 ✁ ki✁1

sinhϕi✁1
� hi

ki coshϕi ✁ ki�1

sinhϕi

,

which is the polarization of A. Effectively, it is clearly a bilinear form, and

(4) A♣ηk, η jq ✏

✩✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✪

0 if 2 ↕ ⑤ j ✁ k⑤ ↕ n � 1

✁
1
2

1
sinhϕk✁1

if j ✏ k ✁ 1

✁
1
2

1
sinhϕk

if j ✏ k � 1

1
2

✂
coshϕk✁1

sinhϕk✁1
�

coshϕk

sinhϕk

✡
if j ✏ k

(ηi is identified with the ith vector of the standard basis of Rn) so A is symmetric. We also obtain the following key result, which is
analog to a fundamental result of Brunn–Minkowski theory for convex Euclidean polygons.

Proposition 3.1. The symmetric bilinear form A is positive definite. The Cauchy–Schwarz inequality applied to t-convex polygons

gives the reversed Minkowski inequality:

A♣P,Qq2 ↕ A♣PqA♣Qq,

with equality if and only if P and Q are homothetic.

Proof. As coshϕk → 1, the matrix ♣A♣uk, u jqqk j is strictly diagonally dominant, and symmetric with positive diagonal entries, hence
positive definite, see for example [Varga, 2000, 1.22]. �

4. Spherical orthoschemes

For a given t → 0, we consider the set of convex t-polygons with a given set of inward normals (i.e. the set of convex t-polygons
with parallel edges), up to global isometries of the Lorentzian plane. Note that this set is known if and only if one knows the angles
ϕ1, ϕ2, . . . , ϕn between the inward normals of the fundamental edges. The t-convex polygons are identified with their support numbers,
so we are looking at a subset of Rn. It is made of polygons with fundamental edges of positive length. From (2) the length is a linear
function of the support vectors, so P is a convex polyhedral cone in Rn, with n facets.

If Rn is endowed with the mixed-area form, and if we look only at polygons of area 1, we get a simplex of the n ✁ 1 dimensional
sphere, denoted by P♣ϕ1, . . . , ϕnq, or P. Note that such a space can be constructed from any positive numbers ϕi with t satisfying (3).
Note also that if s is a cyclic permutation, then P♣ϕs♣1q, . . . , ϕs♣nqq is the same as P♣ϕ1, . . . , ϕnq.

If n ✏ 1, P is a point on a line, so until now we consider that n → 1. Let P P P. Because 2A♣ηi, Pq ✏ ℓi♣Pq, ηi (as the ith vector of
the canonical basis of Rn) is an inward normal vector to the facet of P defined by ℓi ✏ 0. When n ✏ 2, P is an arc on the unit circle
with length θ satisfying

cos θ ✏
sinhϕ2

sinh♣ϕ1 � ϕ2q
.

When n ✏ 3, P is a spherical triangle with acute inner angles, whose cosines are given by:

(5) ✁
A♣ηk, ηk�1q❛

A♣ηk, ηkq
❛

A♣ηk�1, ηk�1q
✏

❞
sinhϕk✁1 sinhϕk�1

sinh♣ϕk✁1 � ϕkq sinh♣ϕk � ϕk�1q
.

When n ➙ 3, from (4) we see that each facet has an acute interior dihedral angle with exactly two other facets, and is orthogonal to the
other facets. Such spherical simplices are called spherical orthoschemes, see [Debrunner, 1990, 5] for the history and main properties
of these very particular simplices.

Configuration spaces of Euclidean polygons allow to construct the hyperbolic orthoschemes which are of Coxeter type (acute
angles of the form π④k, k P N③t0, 1, 2✉) [Bavard and Ghys, 1992]. In our case the problem is empty as there is no spherical Coxeter
orthoscheme (the Coxeter diagram of a spherical orthoscheme must be a cycle, and there is no cycle in the list of Coxeter diagrams of
spherical Coxeter simplices. The list can be found for example in [Ratcliffe, 2006]).
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5. Spherical cone-manifolds

Let n → 2 and consider the orthoscheme P ✏ P♣ϕ1, . . . , ϕnq. A facet of P is isometric to the space of t-convex polygons with
η1, . . . , η̂i, . . . , ηn (η̂i means that ηi is deleted from the list) as normals to the fundamental edges. The angles between the normals are
ϕ1, . . . , ϕi✁2, ϕi✁1 � ϕi, ϕi�1, . . . , ϕn. This orthoscheme is also isometric to a facet of the orthoscheme P✶ obtained by permuting ϕi✁1

and ϕi in the list of angles. Hence we can glue P and P✶ isometrically along this common facet. We denote by C♣ϕ1, . . . , ϕnq the
♣n✁ 1q-dimensional spherical cone-manifold obtained by gluing in this way all the ♣n✁ 1q! orthoschemes obtained by permutations of
the list ϕ1, . . . , ϕn, up to cyclic permutations.

When n ✏ 3, C♣ϕ1, ϕ2, ϕ3q is isometric to a spherical cone-metric on the sphere with three conical singularities, with cone-angles
➔ π, obtained by gluing two isometric spherical triangles along corresponding edges.

Let n ➙ 4. Around the codimension 2 face of C isometric to

N :✏ C♣ϕ1, . . . , ϕk � ϕk�1, . . . , ϕ j � ϕ j�1, . . . , ϕn�3q

are glued four orthoschemes, corresponding to the four ways of ordering ♣ϕk, ϕk�1q and ♣ϕ j, ϕ j�1q. As the dihedral angle of each
orthoscheme at such codimension 2 face is π④2, the total angle around N in C is 2π. Hence metrically N is actually not a singular set.
Around the codimension 2 face of C isometric to

S :✏ C♣ϕ1, . . . , ϕk � ϕk�1 � ϕk�2, . . . , ϕn�3q

are glued six orthoschemes corresponding to the six ways of ordering ♣ϕk, ϕk�1, ϕk�2q. Let Θ be the cone-angle around S . It is the sum
of the dihedral angles of the six orthoschemes glued around it. As formula (5) is symmetric for two variables, Θ is two times the sum
of three different dihedral angles. A direct computation gives (k ✏ 1 in the formula)

cos♣Θ④2q ✏
sinhϕ1 sinhϕ2 sinhϕ3 ✁ sinh♣ϕ1 � ϕ2 � ϕ3q♣sinhϕ1 sinhϕ2 � sinhϕ2 sinhϕ3 � sinhϕ3 sinhϕ1q

sinh♣ϕ1 � ϕ2q sinh♣ϕ2 � ϕ3q sinh♣ϕ3 � ϕ1q
.

During the computation we used that

sinh♣a � bq sinh♣b � cq ✁ sinh a sinh c ✏ sinh b sinh♣a � b � cq

which can be checked with 1
2 ♣cosh♣x � yq ✁ cosh♣x ✁ yqq ✏ sinh x sinh y. The analog formula in the Euclidean convex polygons case

was obtained in [Kojima et al., 1999].
For example when ϕi ✏ ϕ❅i, we have

cos♣Θ④2q ✏ ✁
2 cosh♣ϕq2 � sinh♣ϕq2

2 cosh♣ϕq3
.

The function on the right-hand side is a bijection from the positive numbers to s ✁ 1, 0r, hence all the Θ Ps2π, 3πr (the dihedral angle
θ Psπ④3, π④2r) are uniquely reached. In particular C is not an orbifold.

The cone-manifold C comes with an isometric involution which consists of reversing the order of the angles ♣ϕ1, . . . , ϕnq.
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