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THE p-MEDIAN POLYTOPE OF RESTRICTED Y-GRAPHS

MOURAD BAÏOU AND FRANCISCO BARAHONA

Abstract. We further study the effect of odd cycle inequalities in the description of
the polytopes associated with the p-median and uncapacitated facility location prob-
lems. We show that the obvious integer linear programming formulation together with
the odd cycle inequalities completely describe these polytopes for the class of restricted

Y-graphs. This extends our results for the class of Y-free graphs. We also obtain a
characterization of both polytopes for a bidirected path.

1. Introduction

Let G = (V,A) be a directed graph, not necessarily connected, where each arc (u, v) ∈
A has an associated cost c(u, v). The p-median problem (pMP) consists of selecting p
nodes, usually called centers, and then assign each nonselected node to a selected node.
The goal is to select p nodes that minimize the sum of the costs yield by the assignment
of the nonselected nodes. This problem has several applications such as location of bank
accounts [6], placement of web proxies in a computer network [12], semistructured data
bases [11, 10]. When the number of centers is not specified and each opened center
induces a given cost, this is called the uncapacitated facility location problem (UFLP).

The facets of p-median polytope have been studied in [1] and [8]. The facets of the
uncapacitated facility location polytope have been studied in [9], [7], [4], [5], [3]. In [2] we
studied the effect of odd cycle inequalities in the description of the polytopes associated
with the pMP and the UFLP for the class of Y -free graphs. In this paper we further
study these inequalities, namely we show that the obvious integer linear programming
formulation together with the odd cycle inequalities completely describe these polytopes
for the class of restricted Y-graphs.

Let G = (V,A) be a directed graph. We are going to use variables y associated with
the nodes in V , and variables x associated with the arcs in A. For a directed cycle

C = v1, (v1, v2), v2, (v2, v3), . . . , vk−1, (vk−1, vk), vk, (vk, v1), v1,

we denote by A(C) the set of arcs in C. We say that C is odd if k is odd. We plan to
study the following linear system:

Date: February 28, 2006.
Key words and phrases. p-median problem, uncapacitated facility location problem, odd cycle

inequalities.

1
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∑

v∈V

y(v) = p,(1)

∑

v:(u,v)∈A

x(u, v) = 1− y(u) ∀u ∈ V,(2)

x(u, v) ≤ y(v) ∀(u, v) ∈ A,(3)

0 ≤ y(v) ≤ 1 ∀v ∈ V,(4)

x(u, v) ≥ 0 ∀(u, v) ∈ A,(5)
∑

a∈A(C)

x(a) ≤
|A(C)| − 1

2
for each odd directed cycle C.(6)

Inequalities (1)-(5) give a linear programming relaxation of the pMP, by adding in-
equalities (6) we obtain a stronger relaxation. Analogously (2)-(5) give a linear program-
ming relaxation of the UFLP and adding inequalities (6) yields a stronger relaxation.

Denote by Pp(G) the polytope defined by (1)-(5), let PCp(G) be the polytope defined

by (1)-(6), and let pMP (G) be the convex hull of Pp(G) ∩ {0, 1}|V |+|A|. In general we
have

pMP (G) ⊆ PCp(G) ⊆ Pp(G).

Also let P (G) be the polytope defined by (2)-(5), let PC(G) be the polytope defined by
(2)-(6), and let UFLP (G) be the convex hull of P (G) ∩ {0, 1}|V |+|A|. We have

UFLP (G) ⊆ PC(G) ⊆ P (G).

For a undirected graph G = (V,E) we denote by
←→
G = (V,A) the directed graph

obtained from G by replacing each edge uv ∈ E by two arcs (u, v) and (v, u). A directed
graph G = (V,A) is called 1-directed if (u, v) ∈ A ⇒ (v, u) /∈ A. A directed graph
G = (V,A), not necessarily connected, is called Y -free if it is 1-directed and it does not
contain as induced subgraph the graph of Figure 1. In [2] we proved the following.

Theorem 1. If G is a Y -free graph then pMP (G) = PCp(G) and UFLP (G) = PC(G).
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Figure 1. The graph Y .

In Figure 2 we show three graphs, that are not Y -free, and for each of them a fractional
extreme point of Pp(G). The numbers near the nodes correspond to the variables y and
the numbers near the arcs correspond to the variables x. In this paper we study graphs
for which these three configurations are forbidden.

A directed graph G = (V,A), not necessarily connected, is called a Y -graph if it is
1-directed and it does not contain as induced subgraphs the graphs H1, H2 and H3 of
Figure 2. For a directed graph G = (V,A) and a set W ⊂ V , we denote by δ+(W ) the
set of arcs (u, v) ∈ A, with u ∈ W and v ∈ V \W . Also we denote by δ−(W ) the set of
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Figure 2

arcs (u, v), with v ∈ W and u ∈ V \W . We write δ+(v) and δ−(v) instead of δ+({v})
and δ−({v}), respectively. If there is a risk of confusion we use δ+

G and δ−G . A node u
with δ+(u) = ∅ is called a pendent node.

Remark 2. Remark that for any arc (v, w) with w not a pendent node, |δ−(v)| ≤ 1. Thus

in such graphs the only nodes v different from a pendent node that may have |δ−(v)| = 2
have the property: if (v, u) ∈ A then u is a pendent node. Call such a node a Y-node

and denote by YG the set of Y -nodes in G.

A simple cycle C is an ordered sequence

v0, a0, v1, a1, . . . , ap−1, vp,

where

• vi, 0 ≤ i ≤ p− 1, are distinct nodes,
• ai, 0 ≤ i ≤ p− 1, are distinct arcs,
• either vi is the tail of ai and vi+1 is the head of ai, or vi is the head of ai and

vi+1 is the tail of ai, for 0 ≤ i ≤ p− 1, and
• v0 = vp.

By setting ap = a0, we associate with C three more sets as below.

• We denote by Ĉ the set of nodes vi, such that vi is the head of ai−1 and also the
head of ai, 1 ≤ i ≤ p.
• We denote by Ċ the set of nodes vi, such that vi is the tail of ai−1 and also the

tail of ai, 1 ≤ i ≤ p.
• We denote by C̃ the set of nodes vi, such that either vi is the head of ai−1 and

also the tail of ai, or vi is the tail of ai−1 and also the head of ai, 1 ≤ i ≤ p.

Notice that |Ĉ| = |Ċ|. A cycle will be called odd if |C̃| + |Ĉ| is odd, otherwise it will

be called even. A cycle C with C = C̃ is a directed cycle. A cycle C is called a Y -cycle

if all the nodes in Ĉ are Y -nodes. Remark that when Ĉ = ∅ then C is a directed cycle
and also a Y -cycle.

A polyhedron is called integral if all its extreme points are integral. A restricted Y -

graph is a Y -graph that does not contain an odd Y -cycle C with Ĉ 6= ∅. A restricted
Y -graph may have directed odd cycles, and it may contain odd cycles such that some of
the nodes in Ĉ are pendent nodes. In this paper we prove that Theorem 1 also holds for
restricted Y -graphs. We obtain as a corollary that if G is a 1-directed graph with no odd
Y -cycle, then Pp(G) is integral if and only if G does not contain any of the graphs H1,
H2 and H3 as induced subgraphs. Also we obtain as a corollary that for an undirected
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graph G the polytope Pp(
←→
G ) is integral if and only if G is a path. Other than the classes

mentioned here, we do not know of any other classes of graphs for which the polytopes
of the pMP or the UFLP have been characterized.

For simplicity, in what follows we use z to denote the vector (x, y), i. e. z(u) = y(u)
and z(u, v) = x(u, v).

This paper is organized as follows. In Section 2 we give some polyhedral preliminaries.
In Section 3 we prove our main result. Section 4 is devoted to bidirected paths.

2. Some basic polyhedral facts

Consider a polyhedron P defined by

P = {x ∈ R
n |Ax ≤ b}.

Denote by A=x ≤ b= a maximal subsystem of Ax ≤ b such that A=x = b= for all x ∈ P .
Then the dimension of P is

n− rank(A=).

A face F of P is obtained by setting into equation some of the inequalities defining P .
Clearly F is a polyhedron. An extreme point of P is a face of dimension 0.

Lemma 3. Let P be a polyhedron defined by

P = {x ∈ R
n |Ax ≤ b},

whose extreme points are all 0− 1 vectors. Let P ′ be defined by

P ′ = {x ∈ P | cx = d}.

If x̂ is an extreme point of P ′ then all its components are in

{0, 1, α, 1 − α},

for some number α ∈ [0, 1].

Proof. Let A=x ≤ b= be a maximal subsystem of Ax ≤ b such that A=x̂ = b=. If
rank(A=) = n then x̂ is an extreme point of P and it is a 0−1 vector. If rank(A=) = n−1
then

F = {x ∈ P |A=x = b=}

is a face of P of dimension 1. Therefore x̂ is a convex combination of two extreme points
of P . �

3. Characterization of pMP (G) and UFLP (G) when G is a restricted

Y -graph

In this section we show that if G is a restricted Y -graph then pMP (G) is defined by
(1)-(6), and UFLP (G) is defined by (2)-(6). First we need several lemmas.

Lemma 4. Let G be a restricted Y -graph. Let C be an even Y -cycle, then there is no

intersection between the arc set of C and the arc set of any odd directed cycle.
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Proof. Let C = v0, a0, . . . , ap−1, vp = v0 and let C ′ = v′0, a
′
0, . . . , a

′
k−1, v

′
k = v′0 be an odd

directed cycle. If C ′ intersects C and C is a directed cycle, then we would have the
configuration H1 or H3. So we should assume that C is not a directed even cycle.

Suppose that A(C) ∩ A(C ′) 6= ∅. We must have |Ċ ∩ V (C ′)| ≥ 1, otherwise the
configuration H1, H2 or H3 is present.

If |Ċ ∩ V (C ′)| = 1, then we can assume that Ċ ∩ V (C ′) = {v0}, A(C) ∩ A(C ′) =
{a0, . . . , ar}, v0 = v′0, and a0 = a′0, . . . , ar = a′r. Let C ′′ be the cycle whose arc set is
A(C)4 A(C ′) (the symmetric difference between A(C) and A(C ′)). Then the parity of
|A(C ′′)| is different from the parity of |A(C)|. Because G is a Y -graph we have that none

of v1, . . . , vr+1 is in Ĉ, thus Ĉ = Ĉ ′′. Thus C ′′ is an odd Y -cycle, we have a contradiction.

Now we use induction, so we assume that A(C)∩A(D) = ∅ when D is an odd directed

cycle and |Ċ ∩ V (D)| ≤ m.

Consider now a directed odd cycle C ′ with |Ċ ∩ V (C ′)| = m + 1 ≥ 2. Consider a

maximal directed path contained in A(C) ∩A(C ′) going from u to v. So u ∈ Ċ ∩ V (C ′)

and v ∈
(

C̃∩V (C ′)
)

, otherwise we have the configuration H1 or H3. Since |Ċ∩V (C ′)| ≥ 2

there is a node w ∈ Ċ ∩ V (C ′), w 6= u, such that the directed path in C ′ from v
to w does not contain the node u. Denote by C ′v

w this path. We can assume that
V (C ′v

w ) ∩ V (C) = {v, w}. Consider the path in C from v to w that does not contain u,
denote it by Cv

w. The junction of C ′v
w and Cv

w is a cycle C ′′. It contains at least one

Y -node, because Cv
w contains at least one Y -node. Also notice that all the nodes in Ĉ ′′

are Y -nodes, since these nodes are in V (C). Thus C ′′ is a Y -cycle with Ĉ ′′ 6= ∅. Since G

is a restricted Y -graph C ′′ is even. Notice that now w /∈ Ċ ′′, v ∈ Ċ ′′ and u /∈ C ′′. Thus
|Ċ ′′ ∩ V (C ′)| ≤ m. This implies A(C ′′) ∩A(C ′) = ∅, which is impossible. �

Now we study a vector z assuming that it is a fractional extreme point of PC(G) or
PCp(G), we plan to arrive to a contradiction. We denote by Gz = (Vz, Az) the graph
induced by the arcs (u, v) ∈ A such that 0 < z(u, v) < 1. Below we state several
properties of Gz.

Lemma 5. We may assume that |δ−Gz
(v)| = 1 for every pendent node v in Gz.

Proof. If v is a pendent node in Gz and δ−Gz
(v) = {(u1, v), . . . , (uk, v)}, we can split v into

k pendent nodes {v1, . . . , vk} and replace every arc (ui, v) with (ui, vi). Then we define
z′ such that z′(ui, vi) = z(ui, v) , z′(vi) = 1, for all i, and z′(u) = z(u), z′(u,w) = z(u,w)
for all other nodes and arcs. Let G′ be this new graph. We have that the constraints that
are tight for z are also tight for z ′, so z′ is a fractional extreme point of PCp+k−1(G

′). �

The lemma above implies that we can assume that every cycle is a Y -cycle.

Lemma 6. Gz does not contain an even cycle.

Proof. Let C = v0, a0, v1, a1, . . . , ap−1, vp be an even cycle in Gz, that is |C|+ |Ĉ| is even.

If v ∈ Ĉ then v is not a pendent node in Gz, since |δ−Gz
(v)| > 1. Hence v must be a

Y -node in Gz .

Also, for every node v ∈ C̃, |δ−Gz
(v)| = 1, otherwise the configuration H1 is present.

Thus the unique arc directed into v belongs to C.

Assume v0 ∈ Ċ. Assign labels to the nodes and arcs of C as follows:

• l(v0)← 0; l(a0)← 1.
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• For i = 1 to p− 1 do the following:
– If vi is the head of ai−1 and is the tail of ai, then l(vi) ← l(ai−1), l(ai) ←
−l(vi).

– If vi is the head of ai−1 and is the head of ai, then l(vi) ← l(ai−1), l(ai)←
l(vi).

– If vi is the tail of ai−1 and is the head of ai, then l(vi)← −l(ai−1), l(ai)←
l(vi).

– If vi is the tail of ai−1 and is the tail of ai, then l(vi)← 0, l(ai)← −l(ai−1).

Now define z∗ as follows. For every arc ai of C, i = 0, . . . , p− 1, let z∗(ai) = z(ai) +
l(ai)ε. For every node vi, i = 0, . . . , p − 1, let z∗(vi) = z(vi) + l(vi)ε. Also for every

node u ∈ Ĉ, pick an arc (u, v) ∈ δ+
Gz

(u) and let z∗(u, v) = z(u, v) − l(u)ε. Finally let
z∗(u) = z(u), z∗(u, v) = z(u, v) for all other nodes and arcs of G.

It should be clear that z∗ satisfies constraints (2) for every node v 6= v0, and that every
constraint (3) that is tight for z is also tight for z∗. In order to show that constraint (2)
with respect to v0 is satisfied by z∗, and that equation (1) is also satisfied by z∗, we
have to discuss some properties of the labeling. Let vj(0), vj(1), . . . , vj(k) be the ordered

sequence of nodes in Ċ, with vj(0) = vj(k). A path in C

vj(i), aj(i), . . . , aj(i+1)−1, vj(i+1)

from vj(i) to vj(i+1) will be called a segment and denoted by Si. A segment is odd (resp.
even) if it contains and odd (resp. even) number of arcs. Let

l(Si) =
∑

v∈Si∩V

l(v).

Let r be the number of even segments and t the number of odd segments. We have that
r + t = |Ċ|, and since the parity of |C| is equal to the parity of t, we have that t + |Ċ| is
even. Therefore r = |Ċ| − t is also even. The labeling has the following properties:

a) If the segment is odd then l(aj(i)) = −l(aj(i+1)−1).
b) If the segment is even then l(aj(i)) = l(aj(i+1)−1).
c) If Si is odd then l(Si) = 0.
d) If Si is even then l(Si) = l(aj(i)).
e) Let S1, . . . , Sr be the ordered sequence of even segments in C. Then

l(Si) = −l(Si+1), for i = 1, . . . , r − 1.

Properties a) and b) imply that l(ap−1) = −l(a0). It follows that constraints (2) are
satisfied by z∗.

Properties c), d) and e) imply that equation (1) is satisfied by z∗.

It follows from the remarks above and Lemma 4 that any constraint among (1)-(6)
that was tight for z remains tight for z∗. This contradicts the fact that z is an extreme
point of PCp(G) or PC(G). �

Lemma 7. The graph Gz must contain at least one Y -node.

Proof. Suppose that z is an extreme point of PCp(G). Suppose that Gz is Y -free. Let
G′ be the graph obtained by adding to Gz all arcs (u, v) with z(u, v) = 1, and all nodes u

with z(u) = 1. It is easy to see that G′ is also Y -free. Let zG′

be the restriction of z to G′.

Theorem 1 implies that PCp(G
′) is an integral polytope. Clearly zG′

∈ PCp(G
′). Since

zG′

is fractional, we have that zG′

= 1/2z1 +1/2z2 with z1, z2 ∈ PCp(G
′), z1 6= z2. Let z̄1
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(resp. z̄2) be the vector obtained by adding zeros to z1 (resp. z2) for all (u, v) ∈ G\G′. We
have to see that these two new vectors belong to PCp(G). For that we study constraints
(6), it is easy to see that the other constraints are satisfied. Suppose that we add a zero
component associated with the arc (u, v). Consider the odd cycle C with

A(C) = {(wi, wi+1) | i = 1, . . . , 2l} ∪ {(u, v)},

where u = w2l+1 and v = w1. We have that

z1(w2i−1, w2i) + z1(w2i, w2i+1) ≤ 1, for i = 1, . . . , l.

This implies
∑

a∈A(C) z̄1(a) ≤ l. The same is true for z̄2. Therefore z̄1 and z̄2 are in

PCp(G).

Since z = 1/2z̄1 + 1/2z̄2 we have a contradiction. The same proof holds when z is an
extreme point of PC(G). �

Lemma 8. There is a Y -node t in G such that:

• The arcs (u1, t), (u2, t), (t, w) are in A.

• V can be partitioned into W1 and W2 so that {u1, t, w} ⊆W1 and u2 ∈W2.

• The unique arc in Gz between W1 and W2 is (u2, t).
• Any arc in G between W1 and W2 does not belong to an odd directed cycle. In

other words, all directed odd cycles have all their arcs either in A(W1) or in

A(W2). See Figure 3.

Proof. Any Y -node in Gz is also a Y -node in G. Let t be a Y -node in Gz, Lemma 7 shows
that such a node exists. The node t is incident to a pendent node w and there are exactly
two arcs (u1, t) and (u2, t) directed into t. Let G1 = (S1, A1), . . . , Gr = (Sr, Ar) be the
connected components of Gz. Set Sr+1 = V \ Vz. Let G1 be the connected component
that contains t. It follows from lemmas 5 and 6 and from the definition of a restricted
Y -graph that t does not belong to any cycle in Gz. Hence if we remove t from Gz then
we disconnect G1 into two connected components. Let S ′

1 and S′
2 be the node sets of

these two components, containing u1 and u2 respectively. Define S0 = S′
1 ∪ {t, w} and

redefine S1 = S′
2. The unique arc of Gz that may have one endnode in Si and the other

endnode in Sj , i 6= j, is (u2, t). Define two sets W1 and W2 as follows.

Step 0. W1 ← S0, W2 ← S1.
Step 1. If there is a set Si 6⊂ W1 such that there is an arc in G of an odd

directed cycle having one endnode in W1 and the other endnode in
Si, then set W1 ←W1 ∪ Si.

Step 2. If there is a set Si 6⊂ W2 such that there is an arc in G of an odd
directed cycle having one endnode in W2 and the other endnode in
Si, then set W2 ←W2 ∪ Si. Go to Step 1.

Step 3. For every set Si not included in W1 ∪W2 include Si in W2.

By definition we have W1 ∪W2 = ∪r+1
i=0Si. We have to see that W1 ∩W2 = ∅. For

that suppose Sj ∈ W1 ∩W2. Notice that a directed cycle cannot go through w because
we would have the configuration H1 or H3. Then there is a cycle C in G containing
a node in Sj, the node u1, the node u2 and t. Because G is a restricted Y -graph this
cycle should be even. The cycle C contains arcs of odd directed cycles, this contradicts
Lemma 4. �

Based on this last lemma, we define the graphs G1 and G2 as follows. Let A(W1) and
A(W2) be the set of arcs in G having their both endnodes in W1 and W2, respectively.
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Figure 3

Let G1 = (W1, A(W1)) and G2 = (W2∪{t
′, v′, w′}, A(W2)∪{(u2, t

′), (t′, v′), (v′, w′)}), see
Figure 4. Now we can prove the following.
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W1 W2

G1 G2

Figure 4

Theorem 9. If G is a restricted Y -graph then PC(G) is an integral polytope.

Proof. The proof is by induction on the number of Y -nodes. If the graph is Y -free the
result follows from Theorem 1. Then we assume that the result is true for any restricted
Y -graph G′ with |YG′ | < |YG|.

Let z1 be the restriction of z to G1. Clearly z1 ∈ PC(G1). Define z2 ∈ PC(G2)
as follows: z2(u2, t

′) = z(u2, t), z2(t
′) = z(t), z2(t

′, v′) = 1 − z(t′), z2(v
′) = 1 − z(t′),

z2(v
′, w′) = z(t′), z2(w

′) = 1 and z2(u) = z(u), z2(u, v) = z(u, v) for all other nodes and
arcs of G2. We have that z2 ∈ PC(G2).

Notice that G1 and G2 are both restricted Y -graphs. Also |YG1 | < |YG| and |YG2 | <
|YG|. Since z1 and z2 are both fractional, by the induction hypothesis they are not
extreme points of PC(G1) and PC(G2), respectively. Thus there must exist a 0-1 vector
z′1 ∈ PC(G1) with z′1(t) = 0 and such that the same constraints that are tight for z1 are
also tight for z′1. Also there must exist a 0-1 vector z ′2 ∈ PC(G2) with z′2(t

′) = 0 such
that the same constraints that are tight for z2 are also tight for z′2. Combine z′1 and z′2
to define a solution z′ ∈ PC(G) as follows.

z′(u) = z′1(u), for every node of G1,
z′(u, v) = z′1(u, v) for every arc of G1,
z′(u2, t) = 0,
z′(v) = z′2(v), for all node v ∈W2,
z′(u, v) = z′2(u, v), for all arc(u, v) ∈ A(W2),
z′(u, v) = z(u, v) = 0, for all arc having one endnode in W1 and the other in W2.

Clearly that any constraint among (2)-(5), that is tight for z is also tight for z ′. By
Lemma 8, any odd directed cycle is included either in G(W1) or in G(W2), thus any
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constraint (6) that is tight for z is also tight for z ′. This contradicts the fact that z is
an extreme point of PC(G). �

Now we plan to prove that if G is a restricted Y -graph then PCp(G) is integral. The
proof is by induction on the number of Y -nodes. If the graph is Y -free the result follows
from Theorem 1. Then we assume that it is true for any restricted Y -graph G′ with
|YG′ | < |YG|. We keep working with the graphs G1 and G2 defined before. Now let z be
a fractional extreme point of PCp(G). We need the following lemmas.

Lemma 10. The values of z are in {0, 1, α, 1 − α}, for some number α ∈ [0, 1].

Proof. Since PC(G) is an integral polytope and PCp(G) is obtained from PC(G) by
adding exactly one equation, the result follows from Lemma 3. �

Lemma 11. z(u1, t) = z(u2, t) = z(t) = 1
2 .

Proof. Suppose z(u1, t) < z(t). Consider the graph G′ obtained from G by removing
the arc (u1, t) and adding the arc (u1, w). Let z′ be defined as z′(u1, w) = z(u1, t) and
z′(u) = z(u), z′(u, v) = z(u, v) for all other nodes and arcs. We have that z ′ ∈ PCp(G

′).
Since G′ is a restricted Y -graph with |YG′ | < |YG|, then z′ is not an extreme point of
PCp(G

′). Hence, there exists a vector z∗ ∈ PCp(G
′), z∗ 6= z′, such that all constraints

that are tight for z′ are also tight for z∗. Define z̄(u1, t) = z∗(u1, w) and z̄(u) = z∗(u),
z̄(u, v) = z∗(u, v) for all other nodes and arcs. Then z̄ 6= z and since the arc (u1, t) does
not belong to any odd directed cycle in G then all constraints that are tight for z are
also tight for z̄. This is impossible since z is an extreme point of PCp(G). (Notice that
we do not need that z̄ ∈ PCp(G)). The same may be done if z(u2, t) < z(t).

Thus we may assume that z(u1, t) = z(u2, t) = z(t). Now we have to prove that
z(t) = 1

2 .

Consider the graph G′ defined from G as follows. Remove (u2, t) and add (u2, t
′),

(t′, v′) and (v′, w). Here t′ and v′ are new nodes, see Figure 5.
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Figure 5

Define z′ to be z′(u2, t
′) = z(u2, t), z′(t′) = z(u2, t), z′(t′, v′) = 1 − z(u2, t), z′(v′) =

1 − z(u2, t), z′(v′, w) = z(u2, t) and z′(u) = z(u), z′(u, v) = z(u, v) for all other nodes
and arcs. We have that z ′ ∈ PCp+1(G

′) and G′ is a restricted Y -graph with |YG′ | <
|YG|. Hence z′ is not an extreme point of PCp+1(G

′). Thus there must exist a 0-1
vectors z′1, . . . , z

′
r in PCp+1(G

′) such that z′ is a convex combination of z ′1, . . . , z
′
r, and



10 M. BAÏOU AND F. BARAHONA

all constraints that are tight for z ′ are also tight for z′1, . . . , z
′
r. Thus

z′ =
r

∑

i=1

λiz
′
i,(7)

r
∑

i=1

λi = 1,(8)

λi ≥ 0, i = 1, . . . , r.(9)

If there exists a vector z ′k with z′k(t) = z′k(t
′), then we can define from z ′k a 0-1 vector

z′′ ∈ PCp(G) such that the same constraints tight for z are also tight for z ′′. Thus we
may suppose that for all z ′i, i = 1 . . . , r, we have z′i(t) 6= z′i(t

′). Let z′i(t) = 1, z′i(t
′) = 0,

for i = 1, . . . , r1, and z′i(t) = 0, z′i(t
′) = 1, for i = r1 + 1, . . . , r. Then

z′(t) =

r1
∑

i=1

λi,(10)

z′(t′) =

r
∑

i=r1+1

λi,(11)

and since by definition z ′(t) = z′(t′) and
∑r

i=1 λi = 1, the result is obtained. �

Lemma 12. If z is a fractional extreme point of PCp(G) then each component of z is

in {0, 1, 1
2}.

Proof. Immediate from Lemma 10 and Lemma 11. �

Now we can state the final result of this section.

Theorem 13. The polytope PCp(G) is integral.

Proof. Define p1 =
∑

v∈W1
z(v) and p2 =

∑

v∈W2
z(v), so p = p1 + p2. We distinguish

two cases:

Case 1. The numbers p1 and p2 are integers.

Consider the graphs G1 and G2 of Figure 4, as defined above. Let z1 be the restriction
of z to G1. Clearly z1 ∈ PCp1

(G1). Define z2 as follows. z2(u2, t
′) = z(u2, t) = 1

2 ,

z2(t
′) = 1

2 , z2(t
′, v′) = 1

2 , z2(v
′) = 1

2 , z2(v
′, w′) = 1

2 , z2(w
′) = 1 and z2(u) = z(u),

z2(u, v) = z(u, v) for all other nodes and arcs of G2. We have that z2 ∈ PCp2+2(G
2).

G1 and G2 are both restricted Y -graphs and |YG1 | < |YG|, |YG2 | < |YG|. Since z1 and z2

are both fractional, by the induction hypothesis they are not extreme points of PCp1
(G1)

and PCp2+2(G
2), respectively. Thus there must exist a 0-1 vector z ′

1 ∈ PCp1
(G1) with

z′1(t) = 0 so that the same constraints that are tight for z1 are also tight for z′1. Also
there must exist a 0-1 vector z ′2 ∈ PCp2+2(G

2) with z′2(t
′) = 0 such that the same

constraints that are tight for z2 are also tight for z′2. Combine z′1 and z′2 to define a
solution z′ ∈ PCp(G) as follows.
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z′(u) = z′1(u), for every node u of G1,
z′(u, v) = z′1(u, v), for every arc (u, v) of G1,
z′(u2, t) = 0,
z′(v) = z′2(v), for every node v ∈W2,
z′(u, v) = z′2(u, v), for every arc(u, v) ∈ A(W2),
z′(u, v) = z(u, v) = 0, for every arc (u, v) having one endnode in W1

and the other in W2.

Remark that
∑

v∈V z′(v) = p. Also any constraint among (2)-(5), that is tight for z
is also tight for z′. By Lemma 8, any odd directed cycle is included either in A(W1) or
in A(W2), thus any constraint (6) that is tight for z remains tight for z ′. Then the same
constraints of PCp(G) that are tight for z are also tight for z ′. This contradicts the fact
that z is an extreme point of PCp(G).

Case 2. The values of p1 and p2 are not integers.

Thus from Lemma 12,
∑

v∈W1
z(v) = p1 = α + 1

2 and
∑

v∈W2
z(v) = p2 = β − 1

2 ,

where α and β are integers and α + β = p. Define G1 and G2 from G as follows.
G1 =

(

W1∪{u
′
1}, (A(W1)\{(u1, t)})∪{(u1, u

′
1), (u

′
1, t)}

)

and G2 =
(

W2∪{t
′, w′}, A(W2)∪

{(u2, t
′), (t′, w′)}

)

, see Figure 6.
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w′
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Figure 6

Define z1 to be:

z1(u1, u
′
1) = z1(u′

1) = z1(u′
1, t) =

1

2
,

z1(u) = z(u) for all other nodes of G1,

z1(u, v) = z(u, v) for all other arcs of G1.

Let z2 be defined by:

z2(u2, t
′) = z2(t′) = z2(t′, w′) =

1

2
,

z2(w′) = 1,

z2(u) = z(u) for all other nodes of G2,

z2(u, v) = z(u, v) for all other arcs of G2.

Notice that z1 ∈ PCα+1(G
1) and z2 ∈ PCβ+1(G

2). Notice also that G1 and G2 are
restricted Y -graphs with |YG1 | < |YG| and |YG2 | < |YG|. Thus there must exist a 0-1
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vector z̄1 ∈ PCα+1(G
1) such that the same constraints that are tight for z1 are also tight

for z̄1, and such that z̄1(u1, u
′
1) = 0. Also there must exist a 0-1 vector z̄2 ∈ PCβ+1(G

2)
such that the same constraints that are tight for z2 are also tight for z̄2 and such that
z̄2(t′) = 0. Now from z̄1 and z̄2 define z̄ ∈ PCp(G) as follows.

z̄(u2, t) = 0,
z̄(u) = z̄1(u), for all u ∈W1 \ {t},
z̄(u, v) = z̄1(u, v), for all (u, v) ∈ A(W1) \ {(u1, t), (t, w)},
z̄(t) = 0,
z̄(u1, t) = 0,
z̄(t, w) = 1,
z̄(u) = z̄2(u), for all u ∈W2,
z̄(u, v) = z̄2(u, v), for all (u, v) ∈ A(W2),
z̄(u, v) = z(u, v), for all other arcs.

It is easy to see that z̄ ∈ PCp(G) and the same constraints that are tight for z are also
tight for z̄. We have a contradiction because z is an extreme point. �

4. Bidirected paths

A bidirected path is a graph G = (V,A) where V = {u1, . . . , un}, and

A = {(ui, ui+1), (ui+1, ui), i = 1, . . . , n− 1}.

In this section we show that pMP (G) = Pp(G) and UFLP (G) = P (G) when G is a
bidirected path. For that we first consider a graph H = (V,A) where

V = {u1, . . . , un}
n
⋃

i=1

Vi,

with Vi = {vi
1, . . . , v

i
p(i)}, for i = 1, . . . , n.

The set of arcs A is composed by two arc-subsets. The arcs (ui, v
i
j) for i = 1, . . . , n

and j = 1, . . . , p(i). And the arc-subset between any two consecutive nodes ui and ui+1,
for i = 1, . . . , n− 1, that consists of one of the following possibilities:

• (ui, ui+1) ∈ A and (ui+1, ui) /∈ A, or
• (ui, ui+1) /∈ A and (ui+1, ui) ∈ A, or
• (ui, ui+1) ∈ A and (ui+1, ui) ∈ A, or
• there is no arc between ui and ui+1.

Notice that H may not be connected. Call such a graph an extended path. For H an
extended path, denote by Pair(H) the set of pair of nodes {ui, ui+1} such that both arcs
(ui, ui+1) and (ui+1, ui) belong to the set of arcs of H.

Theorem 14. If H is an extended path then pMP (H) = Pp(H) and UFLP (H) = P (H).

Proof. The proof is by induction on |Pair(H)|. If |Pair(H)| = 0 then H is a restricted
Y -graph with no odd directed cycle. Hence from Theorem 13 we have that pMP (H)
is defined by inequalities (1)-(5). Suppose that the theorem is true for every extended
path H ′ with |Pair(H ′)| ≤ m. Let H be an extended path with |Pair(H)| = m + 1 and
assume that z is a fractional extreme point of Pp(H).

Define Hz = (Vz, Az) to be the graph induced by the arcs (u, v) ∈ A, with
0 < z(u, v) < 1. Remark that Hz is also an extended path.
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Claim 1. |Pair(Hz)| ≥ 1.

Proof. Suppose |Pair(Hz)| = 0. Then Hz is a restricted Y -graph with no odd directed
cycle. Let H ′ be the graph obtained by adding to Hz all arcs (u, v) with z(u, v) = 1, and
all nodes u with z(u) = 1. It is easy to see that H ′ is also a restricted Y -graph with no

odd directed cycle. Then Pp(H
′) is an integral polytope. Let zH′

be the restriction of z

to H ′. Clearly zH′

∈ Pp(H
′). Since zH′

is fractional, we have that zH′

= 1/2z1 + 1/2z2

with z1, z2 ∈ Pp(H
′), z1 6= z2.

Let z̄1 (resp. z̄2) be the vector obtained by adding zeros to z1 (resp. z2) for each
(u, v) ∈ H \H ′. It is easy to see that z̄1 and z̄2 belong to Pp(H). Since z = 1/2z̄1 +1/2z̄2,
we have a contradiction. �

From the claim above, we may assume that there are at least two arcs (ui, ui+1) and
(ui+1, ui) with 0 < z(ui, ui+1) < 1 and 0 < z(ui+1, ui) < 1. Define H ′ from H by
removing the arc (ui, ui+1) and adding the arc (ui, w) where w is new a pendent node.
Define z′ to be z′(ui, w) = z(ui, ui+1), z′(w) = 1 and z′(u) = z(u), z′(u, v) = z(u, v) for
all other nodes and arcs of H ′. Notice that H ′ is an extended path with |pair(H ′)| = m
and that z′ ∈ Pp+1(H

′). Then by the induction hypothesis Pp+1(H
′) must be integral.

Hence there must exist a 0-1 solution z̄ ∈ Pp+1(H
′) with z̄(ui+1, ui) = 1, so that the

same constraints that are tight for z ′ are also tight for z̄.

From z̄ define z∗ ∈ Pp(H) as follows: z∗(ui, ui+1) = z̄(ui, w) and z∗(u) = z̄(u),
z∗(u, v) = z̄(u, v) for all other nodes and arcs. All constraints that are tight for z are
also tight for z∗. To see this, it suffices to remark that z∗(ui+1) = z̄(ui+1) = 0 and
z∗(ui, ui+1) = z̄(ui, w) = 0. This contradicts the fact that z is an extreme point of
Pp(H).

The proof for UFLP (H) is similar. �

We also have the following two corollaries.

Corollary 15. Let G be a 1-directed graph with no odd Y -cycle. Then Pp(G) is integral

for all p if and only if G does not contain any of the graphs H1, H2 and H3 as induced

subgraph.

Proof. Let G = (V,E) be a 1-directed graph with no odd Y -cycle. If G does not contain
none of the graphs H1, H2 and H3 as induced subgraph, then G is a restricted Y -graph
with no odd directed cycle. Thus PCp(G) = Pp(G) and the integrality of Pp(G) follows
from Theorem 13. Now suppose that G contains H1 = (V1, E1) as induced subgraph.
Call v∗ the unique pendent node in H1. Define z∗ as follows:

z∗(v) =

{

1
2 if v ∈ V1 \ {v

∗}
1 otherwise

, z∗(u, v) =

{

1
2 if (u, v) ∈ E1

0 otherwise

It is easy to verify that z∗ is an extreme point of P|V |−2(G). By the same manner one
can construct fractional extreme point of Pp(G) when G contains H2 or H3 as induced
subgraph. �

Corollary 16. Let G be a undirected graph. Then Pp(
←→
G ) is integral for all p if and

only if G is a path.



14 M. BAÏOU AND F. BARAHONA

Proof. If G is a path the result follows from Theorem 14. Suppose G is not a path. Thus
G contains a node w of degree at least 3. Let w1, w2 and w3 three nodes adjacent to w.

The solution z∗ defined below is an extreme fractional point of P|V |−2(
←→
G ).

z∗(v) =

{

1
2 if v ∈ {w,w1, w2, w3}
1 otherwise

, z∗(u, v) =







1
2 if (u, v) ∈ {(w,w1), (w1, w),

(w2, w), (w3, w)}
0 otherwise

�
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