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Abstract: We discuss in the paper the use of the Riemannian mean given by the differen-
tial geometric tools. This geometric mean is used in this paper for computing the centers
of class in the polarimetric H/α unsupervised classification process. We can show that
the centers of class will remain more stable during the iteration process, leading to a
different interpretation of the H/α/A classification. This technique can be applied both on
classical SCM and on Fixed Point covariance matrices. Used jointly with the Fixed Point
CM estimate, this technique can give nice results when dealing with high resolution and
highly textured polarimetric SAR images classification.

1. Introduction

The recently launched POLSAR systems are now capable of producing high quality polarimet-
ric SAR images of the Earth surface under meter resolution. The additional polarimetric infor-
mation allows the discrimination of different scattering mechanisms. In [1] was introduced the
entropy-alpha (H/α) classification based on the eigenvalues of the polarimetric (or coherency)
covariance matrix (CM). This CM is usually estimated, under homogeneous and Gaussian as-
sumptions, with the well known Sample Covariance Matrix (SCM) which is Wishart distributed.
Based on this decomposition, the unsupervised classification of the SAR images can be per-
formed by an iterative algorithm [2] based on complex Wishart density function. It uses the
H/α decomposition results to get an initial segmentation into eight clusters, followed by a K-
means clustering. This technique needs to derive by a classical Euclidian mean operation the
averaged CM of each class. The use of a more rigorous Riemannian metric, which is adapted to
the structure of the space of CM, to compute the class centers will be discussed and results on
real images will be presented.



2. SIRV model

For high resolution SAR images, recent studies have shown that the spatial heterogeneity of
the scene lead to a non-Gaussian model of the clutter. A commonly used non-Gaussian clutter
model is the compound model: the spatial heterogeneity is accounted for by modeling the clut-
ter polarimetric information m-vector k, by a SIRV (Spherically Invariant Random Vector). A
SIRV is the product between the square root of a positive random variable τ , called texture and
an independent, zero-mean gaussian vector z, called speckle, and characterized by its CM M:

k =
√
τ z, (1)

In this model, τ represents the local variation of intensity of k from one pixel to another.
All the polarimetric information (phase relationships in the vector k) is contained in the CM M.

Under homogeneous and Gaussian assumption, the texture τ is supposed to be constant and the
same for all pixels. In that case, the N -sample of secondary data ki, i ∈ [1, N ] is Gaussian-
distributed and the Maximum Likelihood Estimator (MLE) of the MC is the SCM:

M̂SCM =
1

N

N∑
i=1

ki k
H
i (2)

Under SIRV hypothesis, the CM is usually an unknown parameter which can be estimated by
a ML process. Gini et al. derived in [3] the MLE M̂FP of the CM M for deterministic texture,
which is the solution of the following equation:

M̂FP = f(M) =
m

N

N∑
i=1

ki k
H
i

kH
i M̂−1

FP ki

, (3)

This approach has been used in [4] by Conte et al. to derive an algorithm allowing to compute
the solution matrix, called the Fixed Point Estimate (FPE). This algorithm computes the fixed
point of f by using the sequence Mi+1 = f(Mi) and M0 = I. In [3] and [4], it has been proven
that the estimation process of Eq. (3) yields an approximate MLE under stochastic texture hy-
pothesis. This study has been completed with the works of Pascal et al. [5] who established
the existence and unicity of the FPE, as well as the convergence of the algorithm whatever the
initialisation. Moreover, the FPE is asymptotically Wishart-distributed.

3. Polarimetric classification in non-Gaussian environment

Classical polarimetric classification processes use a K-means algorithm[2]. Each pixel, repre-
sented by its CM, is assigned to a class. Each class is represented by its class center (mean of



all its elements). A distance is used to reassign pixels after each iteration. In the Gaussian case,
the Wishart distance between the CM M̂i and the class center M̂ω, derived in [2], is used:

DW
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)
= ln
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)

In the SIRV case, Vasile et al. derived a suitable distance in [6]:
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This expression can be rewritten as:
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M̂i, M̂ω
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= DW
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)
(4)

Note this is the same expression as in the Gaussian case. This distance is used to reassign pixels
into classes after each iteration. Class centers M̂ω are then recomputed using a euclidean metric,
i.e. the usual arithmetical mean:

M̂ωl
=

1

K

K∑
k=1

M̂l
k (5)

with M̂l
k, k ∈ [1, K] theK CM of the pixels belonging to class ωl. After several iterations of the

algorithm, class centers move significantly from their original position in the H-α plane, which
makes the physical interpretation of the classification result harder.

4. Geometry of information contribution

A recent theory [7, 8] allows to account for the fact the space of CM is not euclidean. Rigorously,
the mean of the CM of a class cannot be computed by Eq. (5).

The mean associated to the riemannian metric is the geometric mean defined by:
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with ||.||F the Frobenius norm and P(m) the space of Hermitian definite positive matrices of
size m. A gradient descent method easily yields a solution to this equation.

The rieamannian geometry of P(m) can also be used to compute a distance between two ma-
trices:

dG(P1,P2) =
∥∥log(P−1

1 P2

∥∥
F

(7)



5. Results on real data

Fig. 1 presents the data sets used: a dataset acquired in Brétigny, France by the ONERA RAM-
SES sytem in X band and a dataset acquired in Paracou, French Guyana by the ONERA SETHI
sytem in UHF band. In both cases, the ground resolution is 1.3x1.3m.

Fig. 2 presents the comparison between the classification results obtained with the FPE using
the arithmetical mean or the geometrical mean on the data set presented on Fig. 1(a). When
using the geometrical mean, the corner reflectors used for the calibration in the lower right
corner of the image stand out more by being the only pixels in the class 8. Urban areas, more
heterogeneous, are represented by classes 1, 3, 6 and 7 while more homogeneous areas (fields
and forests) are in the remaining classes.

Fig. 3 shows the classification results obtained with the FPE using the arithmetical mean or the
geometrical mean on the data set presented on Fig. 1(b). Using the geometrical mean allows to
refine the classification of specific areas on this dataset. On the whole, the number of pixels in
class 8 has reduced compared with the arithmetical mean. The pixels that left class 8 have been
attributed to neighbouring classes, mostly classes 4 and 5. This reordering increases when the
distance from Eq. (7) is used in place of the SIRV distance of Eq. (4), as seen in Fig. 3 (c). Class
8 is only composed of a straight line in the top left corner, which is a road, and an unidentified
area in the top right corner. Without detailed ground truth, it is difficult to provide a more
detailed interpretation but on both datasets, using geometry of information brings additional
information.
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(a) Brétigny, Pauli representation (b) Paracou, span.

Figure 1: Data sets.

6. Conclusions

First results using the Riemannian metric for PolSAR classification are encouraging and suggest
an improvement of the classifications by using these methods more intently. Simulations will



be done in order to quantify the contribution of this method.

(a) FPE, arithmetical mean (b) FPE, geometrical mean

Figure 2: Comparison between classification results with FPE after 10 iterations for arithmetical and geometrical
means.

(a) FPE and arithmetical mean (b) FPE, geometrical mean (c) FPE, geometrical mean, geo-
metrical distance

Figure 3: Comparison between classification results with FPE after 10 iterations for arithmetical and geometrical
means.
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